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a-logic with arrows

Murdoch J. Gabbay Michael J. Gabbay

Abstract

We present an extension of first-order predicate logic with a novel predicate ‘at t’ meaning intuitively “this
term is a variable symbol”. We give simple sequent proof-rules for it, we demonstrate cut-elimination for
the resulting logic, and we give a semantics for which the logic is sound and complete.
Because we can now make assertions about what would normally be considered an intensional property of
a term (being a variable symbol) we can now express inside the logic, properties of its terms and predicates
which would normally be external to the logic. We give axiomatisations in a-logic, including of the lambda-
calculs, and discuss what relevance this might have to logic programming.

1 Introduction

a-logic extends classical First-Order Logic (FOL) with a predicate at s such that if

s is not a variable symbol then at s is contradictory. We read at a as ‘a is a variable

symbol’.

Let a, b, c, and so on, be variable symbols. A simple inductive definition of

substitution on abstract syntax without binding is:

a[a:=b] ≡ b a 6≡b⇒ b[a:=c] ≡ b f(a1, . . . , an)[a:=b] ≡ f(a1[a:=b], . . . , an[a:=b])

Here f is a term-former and we write s ≡ t for ‘s and t are identical terms’, and

s 6≡ t for ‘s and t are syntactically different terms’. For the first two clauses it is

necessary to identify a and b as variable symbols. Of course substitution is at the

heart of many major systems in computer science, including logic and functional-

and logic programming.

We find that at gives just enough power to axiomatise the λ-calculus. We

investigate the λ-calculus example in detail but by the end of the paper it should

seem plausible that a-logic has broader applications.

So what is new? Plenty of other systems can express the syntax and reductions

of the λ-terms. To our knowledge a-logic is unique in that it has this expressivity

while still being a first-order (that is, β-reduction is not primitive) logic such that:

1 We acknowledge the support of British Academy grant PDF/2006/509 and grant RYC-2006-002131 at
the Polytechnic University of Madrid.
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variables of the object theory are variables of the logic and λ and application are

just binary term-formers taking pairs of terms and giving terms.

We would like to say that again, but we need some (informal) terminology.

Say a map is a shallow embedding from one system (logic or calculus, say) to

another, when variables map to variables (with a deep embedding variables map to

constants) [2,29]; a map is compositional when the interpretation of an expression

can be obtained directly by composing the interpretation of its parts in a syntax-

directed manner. Say a system is first-order when its language of terms does not

already contain β-reduction.

Our application of a-logic is unique in that it is to our knowledge the only

compositional shallow embedding of the λ-calculus into a first-order logic.

The reader need not care about logic or about the λ-calculus. However, these

are paradigmatic and they are the basis of logic and functional programming re-

spectively. It has not previously been possible to directly (in the sense just given)

map one to the other. We discuss potential applications and related work in the

Conclusions.

Outline of the paper. a-logic is a straightforward classical first-order logic with a

Boolean semantics. We define syntax in Subsection 2.1 and sequent rules in Subsec-

tion 2.2. We axiomatise substitution in Subsection 3.1, then the untyped λ-calculus

in Subsection 3.2, and finally we briefly consider other examples. Section 4 proves

cut-elimination. Section 5 constructs a class of models and proves soundness and

completeness. In the Conclusions we recap on related work, summarise, and mention

possible future work. In Appendix A we build a concrete semantics for the axioms

of the λ-calculus, incidentally proving consistency of the main axiomatisations in

this paper.

The ‘a’ in ‘a-logic’ refers to the fact that the logic is for making statements about

its variable symbols a, b, c. Any resemblance to an indefinite article is coincidental.

2 a-logic

2.1 Terms, directions, predicates

Assume a countably infinite set a, b, c ∈ V of variable symbols and some untyped

language of abstract syntax trees. Write s, t, for arbitrary terms, built inductively

from variable symbols and some countable set of term-formers of fixed arity ap-

plied to terms. Write t[a:=t′] for the usual substitution on terms. We may write

a ∈ t if a occurs in t and a 6∈ t otherwise. 2

We assume three directions ↑ up, ↓ down, and 	 up and down. Where

necessary, d will vary over directions. Assume some countable set of predicate

constant symbols p, q, r . . . ∈ P, each with an arity δ = (d1, . . . , dn) which is a

sentence in {↑, ↓,	}∗ (thus, a possibly empty list of directions). We write p : δ

for ‘p has arity δ’. When δ has length n and some list of terms also has length n,

we say that list has length appropriate to δ. We assume distinguished predicate

constants:

2 If the language of terms admits binding then a ∈ t when a occurs free in t.
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(i) We call  : (↑, ↓) ayquality.

(ii) We call at : (↓) atom (‘is an atom’).

(iii) We call ⊥ : () false or contradiction.

We may write ts as shorthand for a list of terms t1, . . . , tn. Write p(ts) for a predicate

constant applied to a list of terms of length appropriate to its arity.

Consider p : (d1, . . . , dn) and a list of terms (t1, . . . , tn). When for all i such that

a ∈ ti, it is the case that di ∈ {↑,	}, we say a occurs up in p(ts) and we write

a↑p(ts). Similarly when for all i such that a ∈ ti we have di ∈ {↓,	}, write a↓p(ts).
When for all i such that a ∈ ti we have di = 	, write a	p(ts).

The intuition of  is a formalisation of a reduction relation (like β-reduction,

for example). The intuition of a↓p(ts) is a ‘subject reduction’ property, that if s t

then p(ts)[a:=s] implies p(ts)[a:=t]. If a↑p(ts) and s  t then p(ts)[a:=t] implies

p(ts)[a:=s]. Finally, if a	p(ts) and s t then p(ts)[a:=s] if and only if p(ts)[a:=t].

More on this in Subsection 2.3.

Intuitively, at s is true when s is a variable symbol. The arity (↑, ↓) of  is

consistent with its intuition. at must have arity (↓) both to avoid inconsistencies

(we see this later) and to remain true to the intuition. 3

There is no interaction (yet) between directions and the terms, so p(ts) is always

well-formed so long as ts has the right length. Predicates are generated by the

grammar

P ::= p(ts) | P ⊃ P | ∀a.P.
∀a.P is binding, nothing else is. As is usual we write ∀a, b, . . . .P as shorthand

for ∀a.∀b. . . . P . We equate predicates up to α-equivalence; we will not talk about

‘occurring free’ or ‘occurring bound’. Consistent with our convention for terms we

write P ≡ Q for ‘P and Q are identical predicates up to α-equivalence’.

Write V P for the variables occurring in P , defined by: V p(t1, . . . , tn) =⋃
V ti, V (P ⊃ Q) = V P ∪ V Q, and V (∀b.P ) = V P\{b}. We may write a ∈ P for

a ∈ V P , we read it ‘a occurs in P ’. Then a 6∈ P means ‘a does not occur in P ’.

Write P [a:=s] for P with every instance of the variable a replaced by the term

s in the usual, capture-avoiding, manner.

2.2 Contexts and judgements

A (logical) context Γ,∆ is a finite set of predicates. We write a ∈ Γ when a ∈ P
for some P ∈ Γ, and a 6∈ Γ otherwise.

A judgement is a pair of contexts which we write Γ ` ∆. When a context is on

the right-hand side of a judgement we call it a cocontext. The valid or derivable

judgements are inductively defined by the rules in Figure 1.

In Figure 1 a and b are distinct variable symbols; bound by ∀, free otherwise

(note that the a in (at L) must be a variable symbol). Formulae in square brackets

are side-conditions whose satisfaction can be decided just by examining syntax.

(at L) is not mis-typed. It eliminates a variable.

3 For example, if  models a literal reduction relation then we can interpret t a as expressing that some
complex term t reduces to an atom a. In that case we had better not allow the substitution of t for a in a
(true) sentence such as at a, for that would yield the (potentially false) sentence at t.
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(Ax)
Γ, P ` P,∆

Γ, P ` Q,∆
(⊃ R)

Γ ` P ⊃ Q,∆

Γ ` P,∆ Γ, Q ` ∆
(⊃ L)

Γ, P ⊃ Q ` ∆

Γ ` P,∆ [a 6∈ Γ,∆]
(∀R)

Γ ` ∀a.P,∆

Γ, P [a:=t] ` ∆
(∀L)

Γ,∀a.P ` ∆

Γ ` P,∆ Γ, P ` ∆
(Cut)

Γ ` ∆

(⊥L)
Γ,⊥ ` ∆

Γ,at a ` ∆ [a 6∈ Γ,∆]
(at L)

Γ ` ∆

Γ ` at t,∆ [t not a variable]
(at R)

Γ ` ∆

( R)
Γ ` t t,∆

Γ ` p(ts)[a:=t′],∆ [a↓p(ts)]
( L↓)

Γ, t′  t ` p(ts)[a:=t],∆

Γ ` p(ts)[a:=t],∆ [a↑p(ts)]
( L↑)

Γ, t′  t ` p(ts)[a:=t′],∆

Fig. 1. Derivation rules of a-logic with ayquality

Call Γ ` ∆ a theorem when a derivation exists concluding in Γ ` ∆. If Γ = ∅
write Γ ` ∆ as ` ∆. If ∆ = ∅ write Γ ` ∆ as Γ `.

A subset of the logic is classical predicate logic, so we use standard sugar such

as writing ¬P for P ⊃ ⊥, P ∨ Q for (¬P ) ⊃ Q, ∃a.P for ¬(∀a.¬P ), P ∧ Q for

¬(P ⊃ (¬Q)), and in general we shall use other well-known shorthands for classical

equivalences.

2.3 Comments on atoms

(at L) states that atoms exist, and (at R) states that we cannot indirectly describe

them.

As can be seen from this derivation, assuming t is not a variable,

(Ax)
Γ,at t ` at t,∆

(at R)
Γ,at t ` ∆

(at R) is like (⊥L); ‘if t is a term then it is not a variable’. at 〈a, a〉 ` is a theorem

and can be derived by (Ax) followed by (at R). (We assume a pair term-former

〈-, -〉.) There is no rule Γ ` at a,∆. It would break Lemma 4.1 (the substitution

lemma) which underlies the essential case of ∀ and which formalises the intuition

‘variable symbols represent unknown terms’.

We cannot conclude at a just because a is a variable symbol! at a in Γ represents

a promise that a will never be instantiated to a (non-variable) term. This explains

(at R) since there the promise has manifestly been broken, and also (at L) since

there a is fresh from Γ and thus immune to any nasty things Γ may do to it (such as

contain a = 0). We may call a variable symbol a of which we know at a an atom.
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Define a↑P , a↓P , and a	P by:

a	P

a↑P

a	P

a↓P

a↑P a↓Q

a↓(P⊃Q)

a↓P a↑Q

a↑(P⊃Q)

a	P a	Q

a	(P⊃Q)

a↑P

a↑∀a.P

a↓P

a↓∀a.P
a	P

a	∀a.P

Theorem 2.1  is transitive and reflexive; s  t, t  u ` s  u and ` s  s

are derivable.

Proof. The latter is simply an instance of ( R), the former follows by this deriva-

tion (noting that a↓(s a)):

(Ax)
s t ` s a[a:=t]

( L↓)
s t, t u ` s a[a:=u]

2

 behaves like the transitive reflexive closure of a reduction/rewrite relation.

By Theorem 2.2 below if a↓P then P satisfies ‘subject reduction’; if P [a:=s] then

P [a:=t]. But then in P ⊃ Q (where Q does not mention a) the direction of the

‘subject reduction’ is reversed, thus we need a↑(P ⊃ Q). Similar issues arise with

 itself. For example if (a t)[a:=s] and s′  s then (a t)[a:=s′]. This is why

 has arity (↑, ↓).

Theorem 2.2 The following two rules are derivable:

Γ ` P [a:=t′],∆ (a↓P )
( L↓)

Γ, t′  t ` P [a:=t],∆

Γ ` ∆, P [a:=t] (a↑P )
( L↑)

Γ, t′  t ` ∆, P [a:=t′]

Proof. It is not hard to check, by induction on P , that directions propagate point-

wise but get flipped if they are in negative position (the left-hand side of an impli-

cation) and that a	P precisely when a↑P and a↓P .

We now work by induction on P . The atomic case follows immediately from

( L↑), ( L↓) and the definition of a↓P in the case where P is atomic (see page 3).

The induction cases are routine. For example suppose P is (Q ⊃ R). We must show

that

(i) if a↓(Q ⊃ R) and Γ ` (Q ⊃ R)[a:=t′]∆ then Γ, t′  t ` (Q ⊃ R)[a:=t]∆

(ii) if a↑(Q ⊃ R) and Γ ` (Q ⊃ R)[a:=t],∆ then Γ, t′  t ` (Q ⊃ R)[a:=t′],∆

The antecedent of case (i) can be only if we have a↑Q and a↓R, and the antecedent

for case (i) can occur only if a↓Q and a↑R.
For case (i) we sketch a derivation as follows:

(Ax)
Γ, Q[a:=t] ` Q[a:=t],∆

Ind.Hyp., ( L↑)
Γ, t′  t, Q[a:=t] ` Q[a:=t′],∆

(Ax)
Γ, R[a:=t′] ` R[a:=t′],∆

Ind.Hyp.( L↓)
Γ, t′  t, R[a:=t′] ` R[a:=t],∆

(⊃ L)
Γ, t′  t, (Q ⊃ R)[a:=t′], Q[a:=t] ` R[a:=t],∆

(⊃ R)
Γ, t′  t, (Q ⊃ R)[a:=t′] ` (Q ⊃ R)[a:=t],∆

5
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We can now derive Γ, t′  t ` P [a:=t],∆ from the assumption that Γ ` (Q ⊃
R)[a:=t′],∆ and (Cut).

The relevant derivation for case (ii) is easily obtained from the derivation above

by swapping t with t′ and by swapping Ind.Hyp., ( L↓) with Ind.Hyp., ( L↓).2

The standard derivation rules for equality are: 4

(=R)
Γ ` t = t,∆

Γ ` P [a:=t′],∆
(=L)

Γ, t′ = t `, P [a:=t],∆

If we make sure that a	P , then  behaves just like an equality — at least for that

a. Also, a-logic predicates can express a notion of equality:

Definition 2.3 Write t = u in a-logic as shorthand for t u ∧ u t.

Theorem 2.4 (=R) and (=L) are derivable in a-logic.

Proof. If neither a↑p(ts) nor a↓p(ts) we view p(ts) in terms of two variables fresh

atoms a′ and a′′, one occurring exclusively up in p(ts), the other occurring ex-

clusively down. That is, we view p(ts) as p′(ts)[a′:=a, a′′:=a] where a′↓p′(ts) and

a′′↑p′(ts), and where a 6∈ p′(ts). It is then easy to verify that with one use each of

( L↑) and ( L↓) we can obtain the effect of (=L). (=R) is easy. 2

So a-logic combines elements of computation, given by  , of logic, given by the

evident logical apparatus, and of something quite unusual, given by at .

3 Expressivity

We are now ready to write down some axioms:

3.1 Substitution

Definition 3.1 Suppose a ternary term-former 〈〉. We usually write 〈〉(s, u, t) as

s〈u7→t〉. Assume a binary predicate # : (↓, ↓) freshness. Then an a-logic theory

of substitution is given by the axioms in Figure 2.

We intend # to express a notion of ‘not free in’. This notation and intuition

is inherited from nominal techniques [18], though the properties of # are here

expressed as axioms in a-logic, whereas they are built in as primitive to the nominal

framework. We intend 〈〉 to express a notion of ‘capture-avoiding substitution for

atoms’; a related nominal treatment is also available [17].

Remark 3.2 Note, in Figure 3 that a#t implies at a. We use this for example

when we omit an assumption at a in a number of axioms, e.g. ( 7→comm), but we

still give a the name ‘a’.

4 A familiar alternative to (=L) is this:

Γ, P [a:=t′] ` ∆
(=L′)

Γ, t′ = t, P [a:=t] ` ∆

6
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( 7→#) ∀a, v.
(
a#v ⊃ ∀b.(at b ⊃ v〈a 7→b〉 v)

)
( 7→aa) ∀a, v.(at a ⊃ v〈a 7→a〉 v)

( 7→at) ∀a, t.(at a ⊃ a〈a7→t〉 t)

( 7→ren) ∀a, b, u, v.
(
(at a ∧ b#v) ⊃ v〈a7→b〉〈b7→u〉 v〈a7→u〉

)
( 7→comm) ∀a, b, v, t, u.

(
(at b ∧ a#b ∧ a#u) ⊃ v〈a7→t〉〈b7→u〉 v〈b7→u〉〈a7→t〈b7→u〉〉

)
Fig. 2. a-logic axioms for substitution

(#aa) ∀a.(¬a#a)

(#at ) ∀a, t.(a#t ⊃ at a)

(# ) ∀a, b.
(
(at a ∧ at b) ⊃ (a b ∨ a#b)

)
Fig. 3. a-logic axioms for freshness

(λref) ∀a, b, v.(at a ∧ b#v ⊃ λa.v = λb.v〈a7→b〉)

(λβ) ∀a, v, t.(at a ⊃ (λa.v)t v〈a 7→t〉)

Fig. 4. a-logic axioms for α-equality and for β-reduction

A remark on syntax is particularly important:

Remark 3.3 v〈s7→t〉 is valid syntax whether or not s is a variable symbol. 〈〉 is

just a ternary term-former. 〈〉 is distinct from substitution on terms v[a:=t]. For

example c[a:=b] ≡ c but c〈a:=b〉 6≡ c and furthermore ` c〈a 7→b〉 c is not derivable.

v[s:=t] is not well-defined unless s ≡ a for some variable symbol a. v〈s 7→t〉 is a

valid term always, but only if we have assumed at s can we prove anything useful

about v〈s7→t〉 from the axioms in Figure 2. However, assuming at s of s that is not

a variable symbol leads to immediate contradiction by (at R). Therefore in practise

we only have occasion to usefully write down terms such as t〈a 7→u〉.

We can now give an answer to the question “why  not =?”. Assume the

axioms of Figure 2, except replacing with = from Definition 2.3, which we proved

in Theorem 2.4 has the properties we expect of equality. For example axiom (7→at)

becomes ∀a, t.(at a ⊃ a〈a 7→t〉 = t). Call this set of axioms Σ′. Then:

Theorem 3.4 Σ′ ` is derivable. In words: “Σ′ is inconsistent in a-logic”.

Proof. Note that all the axioms of Σ′ are closed and that Σ′,at a ` a〈a 7→a〉 =

a is derivable using the replaced version of ( 7→aa). Using (Cut) and (=L) also

Σ′,at a ` at (a〈a7→a〉) is derivable and using (at R) we obtain Σ′,at a `. Finally

7
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by (at L) we derive Σ′ `. 2

So at in a-logic interacts with equality, and it seems to require it t be directed.

In Appendix A we build a nontrivial model for all the axioms of Figures 2, 3

and 4. By a soundness result which we prove later in Theorem A.7, this demon-

strates that any subset or weakening of these axioms is neither inconsistent nor

trivial.

Remark 3.5 The axioms of Figure 3 interact to yield some further theorems of of

substitution and freshness. For example, using ( R) it follows that

b#a, a b ` b b

and then using (#aa) and we can derive that b#a ` ¬(a b). Then using (# )

we can derive

at a,at b, b#a ` a#b

so freshness is a symmetric relation when between atoms.

Remark 3.6 A corollary of Theorem A.7 is that it is consistent to strengthen

(7→comm) to

∀a, b, v, t, u.
(
(at b ∧ a#b ∧ a#u) ⊃ v〈a7→t〉〈b7→u〉 = v〈b7→u〉〈a7→t〈b7→u〉〉

)
This may be appropriate in some examples, for example such in the λ-calculus of

Subsection 3.2.

Axiomatisations of substitution exist though we are aware of no authoritative

source. Two examples are Crabbé [10, p.2] and Salibra [23, p.6]. Crabbé assumes a

function symbol which we can identify with #; Salibra gives a more algebraic ax-

iomatisation but the domain must be a model of the λ-calculus so he expresses a#s

(a is not free in s) by writing s as (λx.s)a. Salibra’s and Crabbé’s axiomatisations

are almost equivalent; the authors do not cite one another but the interested reader

can note that (λx.s)t in Salibra corresponds to s[a:=t] in Crabbé [10, Proposition

3.1]. We must remove Salibra’s axiom β6, which is β-reduction. The first author

with Mathijssen has recently investigated an axiomatisation of substitution using

nominal algebra [16,17]. Nominal algebra makes more structure, such as freshness,

primitive to the logic; making a formal connection with a-logic is future work.

3.2 λ-calculus

Definition 3.7 Assume the term-former substitution 〈〉 and predicate constant

freshness # : (↓, ↓) from Subsection 3.1. Also assume binary term-formers applica-

tion · and lambda λ. Write ·(t′, t) as t′ · t. Write λ(s, t) as λs.t. An a-logic theory

of the λ-calculus is given by the axioms in Figures 2, 3 and 4.

Note (as observed of 〈〉 in Remark 3.3) that application and λ are merely term

formers; λs.t is a valid term for any s, but the axioms permit nothing of interest to

be derived about it, unless at s is also derivable.

8



Gabbay and Gabbay

We can add an axiom for extensionality to those of Figure 4:

∀b.∀s.at b ⊃ (λb.s)b s.

There are other interesting properties we might consider investigating in future

work. For example:

• A unary predicate symbol 2 with axiom 2s ⇔ ∀a.at a ⊃ a#s. The intuition is

‘s is closed’.

• A predicate ‘the free atoms of s are precisely b’ axiomatised by (¬b#s)∧∀a.at a∧
a 6= b ⊃ a#s.

• A predicate ‘the free atoms of s are at most b’ axiomatised by ∀a.at a ∧ a 6= b ⊃
a#s.

These are in the spirit of suggestions already make for nominal rewriting in [11,

Subsection 9.2] though the technical details are very different.

The first author was instrumental in developing so-called Nominal techniques,

including Nominal Logic [22,14]. These have similar applications to a-logic and

they have a freshness predicate #. However they are inconsistent with the axiom

of choice; for example Nominal Logic is inconsistent with a unary term-former f

such that (fs)#s always. It seems that we can axiomatise such an f in a-logic, as

∀s.∃b.fs b ∧ b#s. The use of  helps to avoid contradictions and this might be

useful in some applications of nominal techniques.

4 Cut-elimination

In this section we prove that a-logic (without additional axioms and term formers

for substitution) satisfies Cut-Elimination. If Γ = {G1, . . . , Gn} write Γ[a:=t] for

{G1[a:=t], . . . , Gn[a:=t]}. Similarly for ∆[a:=t].

Lemma 4.1 (Substitution Lemma) If Γ ` ∆ has a derivation Π, then Γ[a:=t] `
∆[a:=t] has a derivation Π[a:=t] that is no deeper than Π.

Proof. By induction on the depth of derivations. 5

We consider some cases:

• The case of (at R). If v is not a variable in Γ ` at v,∆ then v[a:=t] is not a

variable in Γ[a:=t] `,at v[a:=t],∆[a:=t] so substitution instances of instances of

(at R) are still instances of (at R).

• The case of (at L). Suppose the sequent Γ ` ∆ is derived from the sequent

Γ,at b ` ∆ by (at L). Then b is a variable symbol such that b 6∈ Γ,∆. We need

to show that Γ[a:=t] ` ∆[a:=t] is derivable.

By the inductive hypothesis, we have that Γ[b:=b′],at b[b:=b′] ` ∆[b:=b′] is

derivable, for any other variable b′. Choosing b′ so that b′ 6∈ Γ,∆, t it follows that

the sequent Γ,at b′ ` ∆ is derivable, and the derivation is no deeper.

5 Where the depth of a derivation is defined inductively as follows: the empty derivation has depth 0; if a
derivation has depth n up to the premise of any rule application, then the derivation up to the conclusion
of that rule application has depth n+ 1.
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By the inductive hypothesis again

Γ[a:=t], (at b′)[a:=t] ` ∆[a:=t]

is derivable. Now, b′ was chosen so that (at b′)[a:=t] ≡ at b′. So we can use (at L)

to derive Γ[a:=t] ` ∆[a:=t] as required.

• The rules for  are non-standard but it is not hard to verify that substitution

in a valid instance of a rule is still a valid instance, just as we would do for the

usual equality rules.

For example in the case of ( L↓) if we have

Π···
Γ ` p(ts)[b:=t′],∆ [b↓p(ts)]

( L↓)
Γ, t′  t ` p(ts)[b:=t],∆

. . . then by induction hypothesis we have:

Π[a:=s]
···

Γ[a:=s] ` p(ts)[b:=t′[a:=s]],∆[a:=s] [b↓p(ts)]
( L↓).

Γ[a:=s], (t′  t)[a:=s] ` p(ts)[b:=t[a:=s]],∆[a:=s]

Other cases are routine.

2

Lemma 4.2 (Weakening) If Γ ` ∆ then Γ,Γ′ ` ∆,∆′.

Proof. By induction on the derivation of Γ ` ∆. We may need to rename variables

generated by (at L), or (∀R) to avoid clashes with variables in Γ′ or ∆′. For example

if the derivation ends with (Ax) then the weakened conclusion is itself derivable by

(Ax), if the derivation ends with (∀R):

Π···
Γ ` P,∆

(∀R)(∗)

Γ ` ∀a.P,∆

. . . then by the induc-

tion hypothesis we

have. . .

Π[a:=c]
···

Γ,Γ′ ` P [a:=c],∆,∆′

where Π[a:=c] is obtained using Lemma 4.1 by replacing a in Π by some atom c

that does not occur in Γ,Γ′,∆ or ∆′. We know that Π[a:=c] really is a derivation

because a is not free in Γ or ∆. From this we can derive Γ,Γ′ ` ∀a.P,∆,∆′ by

an application of (∀R) (recall from Subsection 2.1 that we equate predicates up to

α-equivalence). The remaining cases follow by familiar application of the induction

hypothesis. 2

Theorem 4.3 (Cut) is an admissible rule in the system without it.

Proof. By induction on the rank and degree of the earliest cut, counting from

the leaves of the proof down to the conclusion. The proof is standard for first-order

10
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logic with equality and uses weakening, and the substitution lemma for the essential

cases. (at L) and (at R) have no essential case. Cuts are commuted in the usual

way with the rules, including (at L) and (at R), to lower their rank forming essential

cases where they are reduced to cuts of lower degree.

Π1···
Γ ` P,∆

Π2···
at a,Γ, P ` ∆

(at L)
Γ, P ` ∆

(Cut)
Γ ` ∆

=⇒

Π′1···
at a,Γ ` P,∆

Π2···
at a,Γ, P ` ∆

(Cut)
at a,Γ ` ∆

(at L)
Γ ` ∆

Here we use Weakening (proved above) to extend Π1 to Π′1 by adding at a to the

premise of every sequent in Π1. Since a 6∈ Γ,∆, P we can rename all terms in Π1 so

that a does not occur at all in it, and then we can add at a without invalidating any

rule applications in Π. The essential (and commutation) cases for the remaining

connectives are familiar, and with one exception the essential cases for  are also

easy.

( R)
Γ ` t t,∆

Π···
Γ ` ∆

( L↓)
Γ, t t ` ∆

Γ ` ∆

=⇒
Π···

Γ ` ∆

It is worth stating explicitly the problematic commutation case for aequality. This

is the case where an aequality rule applies to the cut formula itself. Suppose a↓p(ts)
and we have

Π′···
Γ ` p(ts)[a:=t′],∆

( L↓)
Γ, t′  t ` p(ts)[a:=t],∆

Π···
Γ, p(ts)[a:=t] ` ∆

(Cut)
Γ, t′  t ` ∆

then (by the other commutation cases) we can assume that the right premise of

such a (Cut) where the Cut formula is atomic, is actually the conclusion of (Ax),

(⊥L), ( R) or (at R) (that is, we can assume Π is empty).

If the right premise of the (Cut) is derived by (⊥L) or ( R), or if the predicate

relevant to its derivation is in Γ or ∆ (and is not p(ts)[a:=t]). Then the conclusion

of the (Cut) can be derived directly by the rule that derived Γ, p(ts)[a:=t] ` ∆.

If the right premise of the (Cut) is derived from (Ax) so that ∆ is ∆′, p(ts)[a:=t]

11
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then we may permute the derivation to

Π′···
Γ ` p(ts)[a:=t′],∆

(Ax)
Γ, p(ts)[a:=t′] ` p(ts)[a:=t′],∆′

(Cut)
Γ ` p(ts)[a:=t′],∆′

( L↓)
Γ, t′  t ` ∆

The twins to these, where a↑p(ts), is similar. 2

Lemma 4.4 If Γ ` ∆, where Γ and ∆ do not contain at or  and where the final

rule application is (at L) or (at R) to the formula at a, then a (shorter) derivation

can be found without this application.

Proof. By induction on the length of a cut-free derivation that Γ ` ∆. Suppose

(at L) or (at R) follows to a derivation of length 1. Since Γ and ∆ do not contain

 the derivation must be a single application of (Ax) or (⊥L). In the first case

the derivation must be of one of these forms:

(Ax)
Γ′,at a, P ` P,∆′

(at L)
Γ ` ∆

or
(Ax)

Γ′, P ` P,at t,∆′

(at R)
Γ ` ∆

where Γ = Γ′∪{P} and ∆ = ∆′∪{P}. This can be replaced by a single application

of (Ax). The case for (⊥L) is similar.

Now suppose the derivation is of length > 1. Then the rule preceding the final

application of (at L) cannot be any rule (for then Γ would contain ). Therefore

the preceeding rule must be a FOL rule. Then we permute the application of (at L)

or (at R) with the FOL rule (so the at rule applies to the premises of the FOL rule).

We can then apply the induction hypothesis. For example:

Π···
Γ,at a, P ` Q,∆

(⊃R)
Γ,at a ` P ⊃ Q,∆

(at L)
Γ ` P ⊃ Q,∆

. . . gets permuted

to. . .

Π···
Γ,at a, P ` Q,∆

(at L)
Γ, P ` Q,∆

(⊃R)
Γ ` P ⊃ Q,∆

and the induction hypothesis applies to the derivation up to the application of

(at L). 2

Corollary 4.5 a-logic is a conservative extension of FOL without identity.

Proof. Suppose Γ ` ∆, in the language of FOL without identity, is derivable in

a-logic. We shall argue it is also derivable in FOL. We know that Γ ` ∆ can be

derived in a cut-free derivation. If this derivation makes no use of the rules for

at and  then there is nothing to prove, otherwise the our argument proceeds by

induction on the length of the derivation. If the final rule is a FOL rule then the

result follows by induction hypothesis on its premises. Given the conditions on Γ

and ∆, the only other possibility for the final rule is that it is (at L) or (at R) , in

12
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this case the result follows by Lemma 4.4. 2

5 Models of a-logic

5.1 Semantic definitions and soundness

An a-domain D is a tuple (|D|, ID,≤D) — we may write (|D|, I,≤) if D is understood

— such that:

• |D| is a set.

We call it the underlying set of D. We may write x ∈ D for x ∈ |D|.
• ≤ is a poset on |D|.

That is, ≤ is a transitive reflexive asymmetric binary relation on |D|.
• I ⊆ |D| is down-closed with respect to ≤. That is, for any x, x′ ∈ |D|, if x′ ∈ I

and x ≤ x′ then x ∈ I

A valuation ς to D is a function from A to |D| such that ς(a) ∈ I for at least

one a ∈ A. Write ς{a7→x} for the valuation such that ς{a7→x}(b) = ς(b) for all b

other than a, and ς{a7→x}(a) = x.

We need some notation. Write |D|n for the set of n-tuples (x1, . . . , xn) of elements

xi ∈ |D| for 1 ≤ i ≤ n. |D|0 contains just the 0-tuple (). Call a function f from |D|n
to |D| continuous when

if xi ≤ x′i then f(x1, . . . , xi, . . . , xn) ≤ f(x1, . . . , x
′
i, . . . , xn).

A model [[-]] extends an a-domain D with the following information:

• For each term-former f of arity n a continuous function [[f ]] from |D|n to |D| such

that [[f ]](x1, . . . , xn) 6∈ I for all x1, . . . , xn.

Intuitively, the result of applying the interpretation of a term-former to some

arguments must never be the interpretation of a variable symbol. This reflects

the intuition that at t is false if t is not a variable symbol.

• For each predicate constant symbol p of arity (d1, . . . , dn) other than at and  ,

a set [[p]] ⊆ |D|n such that if xi ≤ x′i then:

· If di = ↑ and (x1, . . . , xi, . . . , xn) ∈ [[p]] then (x1, . . . , x
′
i, . . . , xn) ∈ [[p]].

· If di = ↓ and (x1, . . . , x
′
i, . . . , xn) ∈ [[p]] then (x1, . . . , xi, . . . , xn) ∈ [[p]].

· If di = 	 then (x1, . . . , xi, . . . , xn) ∈ [[p]] if and only if (x1, . . . , x
′
i, . . . , xn) ∈ [[p]].

Comparing these conditions with ( L↓) and ( L↑) from Figure 1 we see that

≤ models  , and we make this intuition precise below.

We extend the model [[-]] to an interpretation of terms inductively by

[[a]]ς = ς(a) [[f(t1, . . . , tn)]]ς = [[f ]]([[t1 ]]ς , . . . , [[tn ]]ς)

as is standard.

Given a valuation ς and a [[-]] we define a notion of validity in the model (for

the valuation) as follows:

• [[⊥]]ς is invalid.

13
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• [[P ⊃ Q]]ς is valid when [[P ]]ς is invalid or [[Q]]ς is valid.

• [[∀a.P ]]ς is valid when [[P ]]ς{a7→x} is valid for all x ∈ D.

• For p 6∈ { ,at }, [[p(t1, . . . , tn)]]ς is valid when ([[t1 ]], . . . , [[tn ]])ς ∈ [[p]].

• [[t1  t2 ]]ς is valid when [[t2 ]]ς ≤ [[t1 ]]ς .

• [[at t]]ς is valid when [[t]]ς ∈ I.

We write that [[Γ]]ς is valid when [[G]]ς is valid for all G ∈ Γ, and we extend validity

to judgements Γ ` ∆ by: [[Γ ` ∆]]ς is valid when either

• [[G]]ς is not valid for some G ∈ Γ, or

• [[D]]ς is valid for some D ∈ ∆.

Finally we write

[[Γ ` ∆]] is valid when [[Γ ` ∆]]ς for all valuations ς.

Lemmas 5.1 and 5.2 are technical results which are useful later:

Lemma 5.1 [[at t]]ς is valid if and only if t is a variable symbol and ς(t) ∈ I.

Proof. By definition, [[at t]]ς is valid when [[t]]ς ∈ I and by the conditions on [[-]]

and ς, [[t]]ς cannot be in I if t is a constant or a complex term (as no function symbol

is interpreted to have values in I). 2

Lemma 5.2 (i) [[v[a:=t]]]ς = [[v]]ς{a7→[[t]]ς}
.

(ii) [[P [a:=t]]]ς is valid if and only if [[P ]]ς{a7→[[t]]ς}
is valid.

Proof. The first part is by an easy induction on syntax. The second part is also

by an easy induction, we consider only one case:

[[at (v[a:=t])]]ς is valid if and only if [[v[a:=t]]]ς ∈ I, and by part (i) this is the

case if and only if [[v]]ς{a7→[[t]]ς}
∈ I.

Other cases are similar. 2

Lemma 5.3 ((∀L)) (i) If [[∀a.P ]]ς is valid then [[P [a:=t]]]ς .

(ii) If [[Γ, P [a:=t] ` ∆]]ς is valid then [[Γ ∧ ∀a.P ` ∆]]ς .

Proof. The first part is direct from Lemma 5.2 and the definition of [[∀a.P ]]ς . The

second part is routine from the definition, using the first part. 2

Lemma 5.4 Suppose that a 6∈ t, a 6∈ G and ς(b) = ς ′(b) for all other b ∈ A. Then

(i) [[t]]ς = [[t]]ς′

(ii) [[G]]ς is valid iff [[G]]ς′ is valid.

As an easy corollary, if a 6∈ Γ,∆ and ς(b) = ς ′(b) for all other b ∈ A then [[Γ ` ∆]]ς
if and only if [[Γ ` ∆]]ς′.

Proof. We work by induction on t for (i) and then on G for (ii). We consider only

two cases:

• The case G ≡ at t. Suppose [[at t]]ς is valid. By Lemma 5.1 t is a variable symbol

and ς(t) ∈ I. t ≡ a is impossible because we assumed a 6∈ t. Therefore ς ′(t) is
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valid. The result follows.

The reverse implication is similar.

• The case G ≡ ∀b.P . We can assume b is distinct from a because we quotient

syntax by α-conversion. [[∀b.P ]]ς is valid when [[P ]]ς{b 7→x} for all x ∈ D. The

result follows by inductive hypothesis.

2

Lemma 5.5 ((∀R)) If [[Γ ` P,∆]] and a 6∈ Γ,∆ then [[Γ ` ∀a.P, ∆]].

Proof. Fix ς. We now reason by cases:

• Fix some G ∈ Γ. By Lemma 5.4 [[G]]ς is not valid if and only if [[G]]ς′ is not

valid, for any other ς ′ such that ς(b) = ς ′(b) for all b other than a. Therefore

[[Γ ` ∀a.P,∆]]ς is valid.

• Fix some D ∈ ∆. If [[D]]ς is valid then by Lemma 5.4 also [[Γ ` ∀a.P,∆]]ς is valid.

• Suppose [[G]]ς is valid for all G ∈ Γ and suppose [[D]]ς is not valid for all D ∈ ∆.

Then [[P ]]ς is valid. By Lemma 5.4 [[P ]]ς{a7→x} must be valid for all x ∈ D.

Therefore [[∀a.P ]]ς is valid and so [[Γ ` ∀a.P,∆]]ς is valid as required.

2

Lemma 5.6 ((at R),(at L)) (i) If [[Γ ` atu,∆]]ς is valid and u is not a variable

symbol then [[Γ ` ∆]]ς is valid.

(ii) If [[Γ,at a ` ∆]]ς is valid and [[a]]ς ∈ I then [[Γ ` ∆]]ς is valid.

Proof.

(i) By Lemma 5.1 [[atu]]ς is not valid on any valuation ς. The result then follows

from the definition of validity.

(ii) Since [[a]]ς ∈ I it follows that [[at a]]ς is valid. By definition, either [[G]]ς is

invalid for some G ∈ Γ or [[D]]ς is valid for some D ∈ ∆. Again by definition,

[[Γ ` ∆]]ς .

2

Theorem 5.7 (Soundness) Suppose [[-]] is a model. Then if Γ ` ∆ is derivable

then [[Γ ` ∆]] is valid.

Proof. We work by induction on the depth of derivations.

• Most cases are immediate from the definitions (we have sketched the reasoning

in what we consider the more complex cases in lemmas above). Only rule (at L)

is not straightforward.

• The case of (∀L). By part (ii) of Lemma 5.3.

• The case of (∀R). By Lemma 5.5.

• The case of (at R). By part (i) of Lemma 5.1.

• The case of (at L). Suppose Γ,at a ` ∆ is derivable where a 6∈ Γ,∆. Let a′

be such that [[a′ ]]ς ∈ I. By Lemma 4.1 for [a:=a′] it follows that Γ,at a′ ` ∆ is

derivable, and the derivation is no deeper. By inductive hypothesis [[Γ,at a′ ` ∆]]ς
is valid. The result now follows by part (ii) of Lemma 5.6.

2
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5.2 Prime theories and completeness

Let T range over (possibly infinite) sets of formulae; call T a theory. Call T
inconsistent when there exists some (finite) Γ ⊆ T such that Γ ` is derivable.

Otherwise call T consistent. Call T maximal when:

• T is consistent.

• If Γ ⊆ T and Γ ` P then P ∈ T . We call T deductively closed.

• For all P , P ∈ T or ¬P ∈ T .

• If P [a:=t] ∈ T for all t then ∀a.P ∈ T .

• at a ∈ T for at least one a.

Lemma 5.8 If T is maximal then ∀a.P ∈ T if and only if P [a:=t] ∈ T for all t.

Also ¬∀a.P ∈ T if and only if ¬P [a:=t] ∈ T for some t.

Proof. By easy calculations using the definition of maximal set. 2

Lemma 5.9 If Γ is a consistent and a 6∈ Γ then Γ ∪ {at a} is consistent.

Proof. We suppose Γ,at a ` and we prove a contradiction. By assumption a 6∈ Γ;

it is not hard to extend the derivation of Γ,at a ` to a derivation of Γ ` ∀a.¬at a.

We combine this using (Cut) with the following derivation

(Ax)
Γ,at a ` at a

(⊃ L)
Γ,at a,¬at a `

(∀L)
Γ,at a,∀a.¬at a `

(at L)
Γ, ∀a.¬at a `

to produce a derivation of Γ `. This contradicts our assumption that Γ is consis-

tent. 2

Lemma 5.10 If Γ is finite and consistent then there exists a maximal theory T
such that Γ ⊆ T .

Proof. Since Γ is finite there are infinitely many variable symbols that do not

appear in Γ. The language is countable so we enumerate its predicates P1, P2 . . .

We now construct a sequence Γ0, Γ1, . . . as follows:

• Γ0 = Γ ∪ {at b} for some b such that b 6∈ Γ.

• Suppose Γn, Pn+1 is inconsistent. Then Γn+1 = Γn ∪ {¬Pn+1}.
• Suppose Γn, Pn+1 is consistent and Pn is not of the form ¬∀a.P for any P . Then

Γn+1 = Γn ∪ {Pn+1}.
• Suppose Γn, Pn+1 is consistent and Pn is of the form ¬∀a.P for some P . Then

Γn+1 = Γn ∪ {¬P [a:=b]} for some b 6∈ Γn.

Note that Γm ⊆ Γn if m ≤ n. Write T =
⋃
n Γn. By construction Γ ⊆ T . If we can

prove that T is maximal then we are done:
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• T is consistent: Γ0 is consistent by Lemma 5.9. By construction Γn+1 is consis-

tent if Γn is, so Γn is consistent for all n > 0.

If T is inconsistent then it has a finite inconsistent subset. This must be

contained in some Γn and this is impossible. The result follows.

• T is deductively closed: Suppose that T ` P . P ≡ Pn for some n and by

construction P ∈ Γn+1.

• For every P , either P ∈ T or ¬P ∈ T : P ≡ Pn for some n. By construction

Pn ∈ Γn+1 or ¬Pn ∈ Γn+1.

• If P [a:=s] ∈ T for all s then ∀a.P ∈ T . Suppose that ∀a.P 6∈ T . Then ¬∀a.P ∈
T . Now ¬∀a.P ≡ Pn for some n. Therefore ¬P [a:=b] ∈ Γn+1 for some b 6∈ Γn
and so P [a:=b] 6∈ T .

• at b ∈ T for at least one b: By construction of Γ0.

2

For a given set of sentences T , define |t| = {u | t u ∈ T }.

Lemma 5.11 If T is maximal then |u| ⊆ |t| if and only t u ∈ T .

Proof. Suppose that |u| ⊆ |t|. Since T ` u  u it follows that u ∈ |u| and so

if |u| ⊆ |t| we have that u ∈ |t| and so t  u. Conversely suppose t  u ∈ T .

Now if s ∈ |u| then u  s ∈ T and so t  s ∈ T by the maximality of T and the

transitivity of  (see Theorem 2.1), and so s ∈ |t|. Thus, |u| ⊆ |t|. 2

Lemma 5.12 If Γ is consistent then there exists some model [[-]] and some valuation

ς on [[-]] such that [[Γ]]ς is valid.

Proof. Suppose Γ is consistent. Extend it using the construction in the proof of

Lemma 5.10 to a maximal set T such that Γ ⊆ T .

Define an a-domain D by:

• |D| = {|t| | t is a term}
• I|D| = {|t| | at t ∈ T }
• |t| ≤|D| |u| when |t| ⊆ |u|.

The arity at : (↓) and the rules for ayquality entail that if at t and t  u

are derivable then so is atu. It follows that I is down-closed. Therefore D is an

a-domain.

We specify a model [[-]] and valuation ς by stipulating that:

(i) If f has arity n and |t1|, . . . , |tn| ∈ |D|. Then [[f ]](|t1|, . . . , |tn|) = |f(t1, . . . , tn)|.
(ii) [[p]] = {(|t1|, . . . , |tn|) | p(t1, . . . , tn) ∈ T }.
(iii) ς(a) = |a| ∈ |D|.

We must verify the properties required of a model.

• If [[f ]](|t1| . . . |tn|) ∈ I, then |f(t1, . . . , tn)| ∈ I and so at f(t1, . . . , tn) ∈ T .

But this is impossible since at f(t1, . . . , tn) ` and T is consistent. Therefore

[[f ]](|t1| . . . |tn|) 6∈ I.

Also if |ti| ≤ |t′i| then |ti| ⊆ |t′i| and then t′i  ti ∈ T . But since  has arity
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(↑, ↓) we have that

( R)
` f(t1, . . . , t

′
i, . . . , tn) f(t1, . . . , t

′
i, . . . , tn)

( L↓)
t′i  ti ` f(t1, . . . , t

′
i, . . . , tn) f(t1, . . . , ti, . . . , tn)

and so f(t1, . . . , t
′
i, . . . , tn) f(t1, . . . , ti, . . . , tn) ∈ T . Therefore

|f(t1, . . . , ti, . . . , tn)| ⊆ |f(t1, . . . , t
′
i, . . . , tn)|

which entails that |f(t1, . . . , ti, . . . , tn)| ≤ |f(t1, . . . , t
′
i, . . . , tn)|. Thus if |ti| ≤ |t′i|

then [[f ]](|t1|, . . . , |ti|, . . . , |tn|) ≤ [[f ]](|t1|, . . . , |t′i|, . . . , |tn|) and we have shown

that [[f ]] is continuous.

• By construction ς maps atoms to elements of D. By construction there exists an

a such that at a ∈ T . Also by construction |at a| ∈ I. Therefore there exists an

a such that ς(a) ∈ I.

• Suppose the arity of p is (d1 . . . dn) and suppose |ti| ≤ |t′i|. By definition |ti| ⊆ |t′i|
and by Lemma 5.11 t′i  ti ∈ T . There are now three cases:

· The case that di = ↑:
If (|t1|, . . . , |ti|, . . . , |tn|) ∈ [[p]], then p(t1 . . . , ti, . . . , tn) ∈ T . By the following

derivation and the maximality of T , we have that p(t1 . . . , t
′
i, . . . , tn) ∈ T :

(Ax)
p(ts)[a:=ti] ` p(ts)[a:=ti] [a↑p(ts)]

( L↑)
t′i  ti, p(ts)[a:=ti] ` p(ts)[a:=t′i]

Therefore (|t1|, . . . , |t′i|, . . . , |tn|) ∈ [[p]].

· The cases di = ↓ and di = 	 are similar.

We prove by induction that [[t]]ς = |t| for any t:

• The case t ≡ a. [[a]]ς = ς(a) = |a| by construction.

• The case t ≡ f(t1, . . . , tn). Then

[[f ]]([[t1 ]]ς , . . . , [[tn ]]ς) = [[f ]](|t1|, . . . , |tn|) = |f(t1, . . . , tn)|.

We prove by induction that [[P ]]ς is valid if and only if P ∈ T :

• The case that P ≡ at t. [[at t]]ς is valid when [[t]]ς ∈ I, which happens when

|t| ∈ I, and this happens when at t ∈ T .

• The case that P ≡ t1 ≤ t2. [[t2  t1 ]]ς is valid when [[t1 ]]ς ≤ [[t2 ]]ς , which happens

when |t1| ≤ |t2|, which happens when |t1| ⊆ |t2|, and by Lemma 5.11 this happens

when (t2  t1) ∈ T .

• The case that P ≡ p(t1, . . . , tn) for some p 6∈ {at , }. [[p(t1, . . . , tn)]]ς is valid

when ([[t1 ]]ς , . . . , [[tn ]]ς) ∈ [[p]]. Now [[ti ]]ς = |ti| for 1 ≤ i ≤ n, so this happens

when (|t1|, . . . , |tn|) ∈ [[p]]. By construction this happens when p(t1, . . . , tn) ∈ T .

• Other cases are straightforward. For example:
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[[∀a.P ]]ς is valid iff [[P ]]ς{a7→|t|} is valid for all |t|

iff [[P [a:=t]]]ς is valid for all t (Lemma 5.2)

iff P [a:=t] ∈ T is valid for all t (induction hypothesis)

iff ∀a.P ∈ T

We conclude that [[P ]]ς is valid for every P ∈ T , and it follows that [[Γ]]ς is valid.2

Theorem 5.13 (Completeness) If [[Γ ` ∆]] is valid in all models then Γ ` ∆

Proof. a-logic is classical. Therefore Γ ` ∆ when Γ ∪ {¬D : D ∈ ∆} `. It suffices

to show that if Γ ∪ {¬D : D ∈ ∆} is consistent then there is a model [[-]] and

valuation ς such that [[P ]]ς is valid for all P ∈ Γ ∪ {¬D : D ∈ ∆}. This follows by

Lemma 5.12. 2

6 Conclusions

a-logic is a classical first-order logic with a two-valued model theory, one of many

[5,13]. The twist to the story is that at can identify variables, and accordingly

truth-values are given also to open predicates.

In the semantics, predicates are sets of (tuples of) elements of the domain. at

is a unary predicate. Atoms are simply a subset of the underlying domain; those in

[[at ]] which is the interpretation of at in the domain. Elements of [[at ]] are special;

they cannot be in the image of the interpretation of any term-formers.

We believe that a-logic could provide a logical semantics for isvar in PROLOG,

as used for example in practical programming in CIAO PROLOG [9]. isvar is a

non-logical predicate which is true when its argument has not yet been unified with a

concrete value — that is, when it is a variable. This is used exactly as we have used it

in this paper, to master shallow embeddings into CIAO of languages with variables.

at and isvar appear to be compatible but problems arise interpreting PROLOG

conjunction, which ceases to be commutative in the presence of isvar . This is a

known issue which we are attempting to solve by using a modified translation of

CIAO conjunction which is will be the topic of a future paper.

A previous paper considered a variant of a-logic with equality [15]. There, in

order to axiomatise substitution we had to introduce a (in the authors’ opinion) ad

hoc notion which we called ‘essentially a term’. In this paper we take a different path

and introduce a directed equality  — the arrow in the title of this paper. This

solves the issues we encountered in [15], arguably in more elegant way which seems to

benefit the resulting theory and axioms. In particular, our principal axiomatisations

(of the λ-calculus and of substitution) are improved.

It is relevant how conveniently a-logic can be implemented in a theorem-prover

such as Isabelle [21]. We do not know.

 gives a-logic a flavour of a ‘logical theory of rewriting’. 6 Rewriting itself is

traditionally intensional on the syntax of terms (we look at a term’s syntax to decide

6 To our surprise, we could find no reference in the literature for a logic-based-on a transitive reflexive
not-necessarily-symmetric congruence — that is, for a logic of rewriting. We would be happy to hear of
such a reference. Rewriting Logic [19] seems different, informally treating terms as formulae.
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whether to rewrite), or completely abstract (we just take any relation on a set, but

the only properties of its elements are the relation so elements are closed, in the

sense that instantiation is absent) [3,28]. In some sense at provides just enough to

give a point of contact between these two worlds and it may be possible to make

this idea useful for the theory of rewriting.

How else can the λ-calculus (and friends) be modelled in a formal system and

how does a-logic relate to them?

We can use a higher-order system to begin with (build the system as an extension

of a λ-calculus). The λ-calculus cannot recognise a variable symbol as such, so to

use it to model the λ-calculus requires deep embedding which model variables by

closed terms (in essence, you have to write a Turing machine).

First-order logic also cannot recognise a variable symbol. We can take a two-level

hierarchy with object-level variables modelled by constants. We cannot quantify

over constants so a hallmark of such approaches is an infinity of axioms, one for each

constant (the a-logic axiomatisations look similar, but are finite). This approach

is followed for example by Cylindric Algebras [8] (which assume only finitely many

variable symbols so as to obtain a finite theory), by Salibra’s Lambda Abstraction

Algebras [24], and by some treatments of Structural Operational Semantics (SOS)

[1], see for example Bernstein’s SOS axiomatisations of the π-calculus, the lazy

λ-calculus, and CHOCS [6].

We can do away with variables entirely, for example using Boehm trees, Scott

domains, or combinators [4]. The translations are only for closed terms (hence, not

compositional) and combinators may suffer exponential blow-up [7]. This is a bit

off-topic for us, because we are interested not just in a ‘naked denotation’ but also

in the formal system it is constructed in.

We can suppose a two-level hierarchy of variables and meta-variables and as-

sume β-reduction for the former; computation/reasoning is by instantiation of meta-

variables following by reduction. One of several examples of this style is Combina-

tory Reduction Systems (CRS). Note that in CRS meta-variables vary over closed

elements — the higher-order elements are used to feed arguments to where they are

used. In a-logic unknowns may be substituted for open terms. So for example a#b

states that (whatever b is) it should not depend on a. This is not expressible in a

CRS. Being a variable or meta-variable is an intensional property in CRS, whereas

in a-logic the difference is expressed by at and can be mixed with implication and

the rest of the logic. Finally, in CRS β-reduction is built-in. Although we certainly

concentrate on substitutions and the λ-calculus in this paper, other theories are

possible so a-logic is probably more flexible.

Nominal logic [22] has a notion of atom but keeps this separate from the notion

of variable; this is because nominal logic was designed for reasoning on syntax — in

our terminology, reasoning on a deep embedding where there is a clear distinction

between variable symbols of the object-level language, called atoms because they

behave like atomic entities, and variables of the meta-level language which range

over unknown elements of the domain. A shallow embedding of (for example) the

λ-calculus in nominal logic is not possible. We also believe, but have not proved,

that a-logic is consistent with arbitrary choice. Nominal logic is not [22], so a-logic

may have some interesting technical advantages.
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a-logic may be closer to Miller and Tiu’s logic of Generic Judgements (GJ) [20],

where ‘being a variable symbol’ is managed by scoping for a dedicated quantifier

∇ instead of a dedicated predicate at . GJ is significantly different in being higher-

order and having a ‘definitional’ equality [25] suited more to logic-programming

than model theory; we suspect it is unsuited for our applications.

Kit Fine’s ‘Reasoning with arbitrary objects’ [12] axiomatises dependence be-

tween elements. Perhaps our semantics, which contain variables, may be related.
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A Consistency and nontriviality of the axiomatisation
of the λ-calculus

We build a model of the theory for the untyped λ-calculus from Subsection 3.2.

This illustrates an easy but non-trivial example of an a-logic model and it suffices

to prove consistency of the axioms in Figures 2, 3 and 4.

Let Λ be the set of untyped λ-terms, generated by the grammar

q, r ::= a | λa.q | qq.

Here a ranges over variables of a-logic; it is convenient to identify these with vari-

ables of the λ-calculus. We define α-conversion and β-reduction on λ-terms set as

usual [4]. Write fv(q) for the free variables of q. For example a 6∈ fv(λa.a).

Write q[r/a] for the capture-avoiding substitution of r for a in q, making some

fixed but arbitrary choice about how to rename variable symbols to avoid capture.

For example (λa.b)[a/b] = λa′.a for some fixed but arbitrary choice of a′.

Remark A.1 Note that our use of q[r/a] for capture-avoiding substitution in λ-

terms is distinct from the (syntactic) substitution action [a:=t] of Subsection 2.1:

[q/a] is an operation on the λ-terms which we are about to use to construct a

concrete model for the theory of Figures 2 and 4; [a:=t] is an operation on a-logic

terms.

Write q →αβ q′ for the relation generated by an α-conversion followed by a

β-reduction followed by α-conversion, and call this αβ-reduction. 7

Write →∗αβ for the transitive reflexive closure of →αβ. That is, q′ →∗αβ q when

either q′ = q or there exists some chain q2, . . . , qn−1 such that

q′ →αβ q2 →αβ . . .→αβ qn−1 →αβ q.

Write q′↓αβ for the relational image of {q′} under →∗αβ. That is,

q′↓αβ = {q | q′ →∗αβ q}.

7 The first author has studied different ways these definitions can be expressed. This is not the issue for
constructing the model; for our purposes it suffices to know that the relation exists.
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All of these definitions are standard [4].

Definition A.2 Let ¿ be some symbol not in Λ and read it as error. We define

an a-domain D by:

• |D| = {q↓αβ | q ∈ Λ} ∪ {¿}. x, y, z will range over elements of |D|.
• x ≤ y when x ⊆ y or x = y = ¿.

• I = {{a} | a ∈ A} ∪ {∅}.

We define a valuation ς by ς(a) = {a}. We define a model [[-]] by:

• [[λ]](x, y) = (λa.r)↓αβ if q ∩ A = {a} and y = r↓αβ.

[[λ]](x, y) = {¿} otherwise.

• x[[ · ]]y = (qr)↓αβ if x = q↓αβ and y = r↓αβ.

x[[ · ]]y = {¿} otherwise.

• [[〈〉]](z, x, y) = (q[r/a])↓αβ if z = q↓αβ, x ∩ A = {a}, and y = r↓αβ.

[[〈〉]](z, x, y) = {¿} otherwise.

• (x, y) ∈ [[#]] when x ∩ A = {a} and y = r↓αβ and a 6∈ fv(r).

(x, y) 6∈ [[#]] otherwise.

λ, ·, and 〈〉 in the language of L are term-formers with arities 2, 2, and 3

respectively. a-logic permits ‘silly terms’ such as λ(λa.λb.ab).c. Standard methods

are available to exclude them; for instance a sorting system for a-logic could be

developed. On the other hand, we could even ‘embrace the silliness’, allow such

terms, and investigate their properties. All of this is future work; for our purposes

we need only include ¿ an error value, and in Definition A.2 we let the denotation of

a silly term such as λ(λa.λb.ab).c be {¿}. For more future work, it may be possible

to identify ¿ with the ⊥ of Scott domain models of the λ-calculus [27]. However,

this requires a more sophisticated construction, perhaps involving nominal domain

theory [26].

We now sketch a proof that we have indeed constructed a model of L. Lem-

mas A.3 and A.4 are technical lemmas needed for Corollary A.5.

Lemma A.3 Suppose x, x′ ∈ |D| and suppose x ≤ x′. Then:

• If x′ = r′↓αβ for some r′ then x = r↓αβ for some r ∈ x′ (that is, x = r↓αβ for

some r such that r′ →∗αβ r).

• If x′ ∩ A = {a} then x ∩ A = {a}.

Proof.

• Suppose x′ = r′↓αβ and suppose x ≤ x′. Note that ¿ 6∈ x′. By definition of ≤ we

know x ⊆ x′. It follows that ¿ 6∈ x and so x = r↓αβ for some r. It follows that

r ∈ x′ and therefore that r′ →∗αβ r.
• Suppose x′∩A = {a} and x ≤ x′. By construction of |D| it follows that x′ = r′↓αβ

and r′ →∗αβ a. By the first part of this result x = r↓αβ and r′ →∗αβ r. It is a fact

that a does not β-reduce. By confluence of λ-calculus reduction it follows that

r →∗αβ a. The result follows.

2
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Lemma A.4 If x ∈ |D| then precisely one of the following holds:

• x ∩ A = {a} for some a ∈ A.

• x ∩ A = ∅.

Proof. We work by cases on possible forms for x ∈ |D|:
• The case x = q↓αβ. It is a fact of λ-calculus reduction that if q →∗αβ a for some

a ∈ A then q 6→∗αβ b for any other b.

• The case x = {¿}. Immediate.

2

Corollary A.5 [[λ]], [[ · ]], and [[〈〉]] are continuous.

Proof. It suffices to verify that:

• If x ≤ x′ and y ≤ y′ then [[λ]](x, y) ≤ [[λ]](x′, y′).

• If x ≤ x′ and y ≤ y′ then [[ · ]](x, y) ≤ [[ · ]](x′, y′).
• If x ≤ x′, y ≤ y′, and z ≤ z′ then [[〈〉]](x, y, z) ≤ [[〈〉]](x′, y′, z′).

We will consider only the first of these calculations, for λ; the calculations for ·
and 〈〉 are similar. Suppose that x ≤ x′ and y ≤ y′.

By Lemma A.4 either x′ ∩ A = ∅ or x ∩ A = {a} for some a ∈ A. It is helpful,

though, to distinguish three cases:

• The case that y′ = {¿}. Then [[λ]](x′, y′) = {¿}. We assumed y ≤ y′. By

construction of |D| it follows that y = {¿}. Therefore [[λ]](x, y) = {¿} and the

result follows.

• The case that x′ ∩ A = ∅. Then [[λ]](x′, y′) = {¿}. We assumed x ≤ x′ and so

(since the definition of ≤ unpacks to x ⊆ x′) x∩A = ∅. Therefore [[λ]](x, y) = {¿}
and the result follows.

• The case that x′ ∩ A = {a} and y′ = r′↓αβ. Then [[λ]](x′, y′) = (λa.r′)↓αβ. By

part 1 of Lemma A.3 since x ≤ x′ it must be that x ∩ A = {a}. By part 2 of

Lemma A.3 since y ≤ y′ it must be that y = r↓αβ for some r such that r′ →∗αβ r.
By construction [[λ]](x, y) = (λa.r)↓αβ. By properties of αβ-reduction λa.r′ →∗αβ
λa.r and so ([[λ]](x, y) ⊆ [[λ]](x′, y′) and so by definition) [[λ]](x, y) ≤ [[λ]](x′, y′)

as required.

2

Theorem A.6 D is an a-domain. ς is a valuation. [[-]] is a model.

Proof. We verify all the required properties in turn. D is an a-domain:

• |D| is a set: This is a fact.

• ⊆ is a partial order on |D|: This is also a fact.

• I is down-closed: Suppose x′ ∈ I and x ≤ x′. By definition of I we know that

x′ = {a} for some a ∈ A. By part 1 of Lemma A.3 we know x = x′. It follows

that x ∈ I.

ς is a valuation: By construction ς maps a to {a} ∈ |D|. Also, ς(a) ∈ I for all

a ∈ A, and therefore ς(a) ∈ I for at least one a ∈ A.

24



Gabbay and Gabbay

[[-]] is a model:

• λ is a term-former with arity 2. By construction [[λ]] is a function from |D|2 to

|D|. It is a fact of λ-calculus reduction that if λa.q →∗αβ q′ then q′ is not a variable

symbol. It follows that [[λ]](x, y) 6∈ I always. We proved in Corollary A.5 that

[[λ]] is continuous.

• The cases of application and substitution are similar.

• Recall that # : (↓, ↓). Suppose that x ≤ x′, y ≤ y′, and (x′, y′) ∈ [[#]]. We must

show that (x, y) ∈ [[#]].

By construction x′ = {a} for some a ∈ A, y′ = r′↓αβ, and a 6∈ fv(r′). By part 1

of Lemma A.3 since x ≤ x′ we know x = {a}. By part 2 of Lemma A.3 since

y ≤ y′ it must be that y = r↓αβ for some r such that r′ →∗αβ r. It is a fact of the

λ-calculus that a 6∈ fv(r). The result follows.

2

Theorem A.7 The construction above yields a model of L.

Proof. We verify that the axioms given in in turn. We consider only two cases.

(7→#)

We must show that if (x, y) ∈ [[#]] then
• x = {a} ∈ I,
• for all {b} ∈ I such that b 6= a it is the case that y ⊆ [[〈〉]](y, {a}, {b}).
Suppose that (x, y) ∈ [[#]]. By definition x = {a}, so x ∈ I. Also by definition

y = r↓αβ and a 6∈ fv(r). By definition [[〈〉]](r↓αβ, {a}, q↓αβ) = (r[q/a])↓αβ.

But, since a 6∈ fv(r), r[q/a] ≡ r. And so y = r↓αβ ⊆ r[q/a])↓αβ. The result

follows.

(7→comm)

Suppose that x2 = {a2} ∈ I, (x1, x2) ∈ [[#]] and (x1, y2) ∈ [[#]]. We must show

that
• [[〈〉]]

(
[[〈〉]](z, x2, y2), x1, [[〈〉]](y1, x2, y2)

)
⊆ [[〈〉]]

(
[[〈〉]](z, x1, y1), x2, y2

)
We may suppose that y1 = r1↓αβ, y2 = r2↓αβ and z = q↓αβ. It follows that

x1 = {a1} ∈ I and that a 6∈ fv(r2) . It also follows that a1 6∈ fv(a2) and, since

a2 is just a variable, this entails that a1 6= a2.

Now [[〈〉]](z, x2, y2) = q[r2/a2]↓αβ and [[〈〉]](y1, x2, y2) = r1[r2/a2]↓αβ by defi-

nition. So [[〈〉]](q[r2/a2]↓αβ, x1, r1[r2/a2]↓αβ) = q
[
r2/a2

][
r1[r2/a2]/a1

]
↓αβ.

Similarly it follows that [[〈〉]]
(

[[〈〉]](z, x1, y1), x2, y2

)
= q[r1/a1][r2/a2]↓αβ

But it is a fact of the λ-calculus that if a1 6= a2 and a 6∈ fv(r2) that

q[r1/a1][r2/a2] ≡ q
[
r2/a2

][
r1[r2/a2]/a1

]
.

The other axioms in Figures 2, 3 and 4 can be verified similarly. 2
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