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Abstract. Work with Pitts and others has led to FM (Fraenkel-Mostowski) theory, a fresh under-
standing of modelling syntax in the presence of variable binding. We discuss the design and other
issues encountered implementing these techniques in the mechanised theorem-prover Isabelle.

1 Introduction

It is easy to declare a naive datatype of terms of some language, for example the untyped A-calculus,
A = pX.Var of Nat + App of X x X + Lam of Nat x X (1)

where Nat is the natural numbers. Problems famously arise defining program transformations in the presence
of variable binding. For example a substitution function [t/a]s on A above should avoid “accidental variable
capture” in [Var(1)/Var(0)]s for s = Lam(1, Var(0)). Thus we rename 1 in s to some i # 0, 1, but then Var(s)
is no longer syntactically a subterm of s and we have made an arbitrary choice about the value of i. The
former point causes difficulty with structural induction, the latter because we may have to formally prove
irrelevance of the choice made.!

All this we could do without, especially in the unforgiving structure of a computer proof assistant such
as Isabelle, HOL98, or COQ), or even programming in some language with datatypes. There is much research
in this area, for example explicit substitutions ([2]), de Bruijn indices ([3]), and HOAS ([11], [4], [9])-

FM theories are another approach with a pleasingly elementary mathematical foundation. See [7] (my
thesis), [5] and [6] (set theory), [8] (higher-order logic), [13] (programming languages), [12] (first-order logic).
The label “Fraenkel-Mostowski” honours the creators of set theories designed to prove the independence of
the axiom of choice, see [15]: a very special Fraenkel-Mostowski set theory was the first FM theory in the
sense of this paper to be created.

In this paper we discuss principles of formally implementing a theory of FM syntax, based on experience
doing so in Isabelle [14].

The first design decision of the implementation is the choice of system, Isabelle. We chose Isabelle
for its paradigm of constructing arbitrary useable theories (Isabelle/Pure/FOL, Isabelle/Pure/HOL, Is-
abelle/Pure/CCL, ..., see [14]) in a fixed weak meta-language Isabelle/Pure. This meta-language is a very
weak higher-order logic (HOL) containing little more than modus ponens, but to which we may add new
types, constants of those types, and axioms on those constants. Thus we may axiomatise a theory in Is-
abelle/Pure and then work inside that theory. This is good for prototyping a new foundational system such
as FM.

2 FM

‘FM’ may differ depending on whether we do computation or logic. For example compare the typed A-calculus
(a theory of computable functions) to higher-order logic (a theory of all functions). This paper is about logic,
FM in computation (programming languages, unification) is under development, see [13,1].

* The author gratefully acknowledges the funding of UK EPSRC grant GR/R07615 and thanks Andrew Pitts for
his suggestions for improvements.

! Cf. the work of McKinna and Pollack in the LEGO system, e.g. [10]. FM is quite different but sometimes echoes
this work.
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‘FM’ is a set of techniques for a-equivalence with inductive definitions and not a particular theory. We
shall now present FM in the style of a higher-order logic. This is not an axiomatic presentation (see [8]) but
a ‘sketch of salient features, in the style of higher-order logic’. First, three preliminary remarks:

1 (Types). We shall write type annotations in two styles: z : @ and % both mean “z of type o”. <
2 (HOL sets). Higher-order logic has a notion of set, where ‘a-sets’ is predicates & — Bool also written

P(a). We borrow set notation, for example writing z € X for ‘(X z)’, X CY for Vz. (X z) — (Y z)’, and
0 for Az.L and « for Az*.T. <O

3 (Meaning of infinite). In FM theories not all types can be well-ordered (bijected with an ordinal, see
[8, Lemma 4.10(5)]). Therefore, a reading of ‘X is infinite’ as X = N is suspect. In FM we use ‘X & Pin(X)’

where Py;n(X) is the inductively defined type of finite subsets of X. <o
An FM theory has:
4 (Atoms). An infinite type of atoms a,b,c,...: A to model variable names. For example in an inductively

defined type of expressions for types,
Y := TypeVar of A + Product of X x ¥ + DisjSum of X x ¥, (2)

type variables are represented as TypeVar(a) for a: A. <

5 (Transposition). There is a (polymorphically indexed class of) constant(s)
Tran:A - A >0 —> o0, 3)

read “transposition”. Write (Tranabz”) as (a b).z. The intuitive meaning of (a b).z is as transposing a
and b in z. For example if z = <a,b> then (a b).z should equal <b,a>. This is made formal by the following
equational axioms which Tran must satisfy, and equivariance below:

(aa)z ==z (4)

(ab).(ab)x =z (5)

(a b).(cd).x = (cd). ((cd).a (cd).b) .x (6)

ab).n* =if(n=a,b,if(n=">b,a,n)) (7)

where i f(test,t1,t2) is Isabelle-like notation meaning “if test then t; else t2”. O
6 (Equivariance). For a term f with free variables z1,...,zp,

(a b).f(x1,.--,2n) = f((a b).x1,...,(a b).z,). (8)

In the case that f has no free variables we have the special case that (a b).f = f.
We say the language is equivariant. An equivariant element x is one such that for all a,b, (a b).x = x.
From (8) for n = 0 it follows that closed terms denote equivariant elements. o

Definition 7 (Smallness, N). Write Prin(A) for the HOL set of finite subsets of A. Say a set X C A is
cofinite when its complement A\ X is finite. Write Peofin(A) for the HOL set of cofinite subsets of A. For
P : A — Bool write ‘NP’ or Na. P(a)’ for P € Peopin(4).

A is infinite from remark 4 so we can read Wa. P(a) as “for all but finitely many a : A, P(a)”, or more
loosely as “for most a: A, P(a)”. We may call finite P : A — Bool small and their complements, cofinite
sets, large. Thus P is large precisely when Wa. P(a), and small precisely when WUa. =P(a).

Definition 8. Define a#zx def (WNb. (b a).x = ) and read this as “a is not “m’ x” or “a is apart from x”.

The intuition is that, since transposition transposes b for a in x and since b is fresh, if (b a).x = x then
certainly a is not in x.
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We have an axiom stating that ‘most’ atoms are not ‘in’ z : o:
VNa. a#zx. (Small)

Expanding definition 8 this becomes Wa. Ub. (a b).x = x. Write

Supp(z) def {a:A | —a#taz}

Then (Small) is equivalent to
Supp(z) € Pyin(z) 9)

and we can also read (Small) as “x has finite support’.

9 (Some observations). ‘In’ does not correspond to (HOL-)set membership. For example,
n¢g L=A\{n} but n e Supp(L).

We might think of Supp(x) as an object-level notion of those atoms occurring in some meta-level term which
z denotes.

Datatypes of syntax T certainly satisfy (9). Terms ¢ : T’ are finite? so mention only finitely many atoms,
and cofinitely many a : A satisfy a#t. <

10 (M excellent properties). Higher types such as A — Bool also satisfy (9). Observe that (using some
sets notation)

P:A — Bool = {z | P(z)}.
It follows from (8) that

(ab).P={(ab)z | P(z)} .
We can verify by calculation that (a b).P = P if and only if a,b € P or a,b ¢ P. When we combine this with
(9) it follows that either ‘most’ atoms are in P or most are not in P:

P(A) = 'me(A) + ’Pcofm(A). (10)

We can rewrite this as —Ma. P(a) & Wa. —P(a). Now the full set Az.T = A C A is clearly cofinite
so WMa. T = T. Combining this with other properties of cofinite and finite sets we obtain the algebraic
commutativity properties:

Na. P(a) A Na. Q(a) <= WNa. P(a) A Q(a) (11)
WNa. P(a) V Na. Q(a) <= Wa. P(a) V Q(a) (12)
Na. —P(a) <= —la. P(a) (13)
Na. T (14)
-WNa. L (15)
(Na. P(a)) AQ < Wa. (P(a) A Q), (16)

that is, W distributes over A, V, —, =, T and L. These strong properties make W convenient to work with
in a mechanised context. They also place W in an interestingly ‘in between’ V and 3, the equations being
informally:

2 Extending FM to infinitary syntax is possible and interesting.
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3 a-equivalence on a simple datatype

11. Tran is how an FM theory renames object-level variables. It interacts with object-level syntax better
than atom-substitution [b/a]. For example [b/a] applied to ¢ = Lam(a).Lam(b).a(b) raises all the usual
problems with capture avoidance, whereas (b a).t = Lam(a).Lam(b).b(a) is a-equivalent to ¢ itself. Similarly,
(b a).(A\ {a}) = A\ {b} wheras [b/a](A \ {a}) = A\ {a}. <O

We can define an a-equivalence relation =, by cases on inductive types. For example:

Definition 12.

L« TyVar of A+ TyProd of L x L + TyAbs of A x L
= ¥ TyVar(a) =, TyVar(b) —a=b
TyPTOd(t17t2) =a TyP'POd(tlla tl2) —t1 =q tll ANt2 =4 t’2
TyAbs(a,t) =, TyAbs(d',t') — Wb. (ba)t=4 (ba)t

Here L is intended to be a type of expressions for types. The definition of L above might be written in more
familiar style as
l := TyVar(a) | TyProd(l,1) | TyAbs(a,l) a: A,

and sugared to (writing o for [ a type and « for a : A a type variable)
0::=a|0x0|/\a.0.

We shall use L, =,, and =,' defined below in (18), as a running object of study in the rest of this paper. In
the rest of this section and elsewhere the proofs given are semi-formal accounts of the formal proofs as they
might be conducted in Isabelle.

This machinery allows us to quite easily prove some nice properties for =, for example transitivity:

Lemma 13. =, is transitive.

Proof. By induction on syntax using hypothesis

def
¢(t1) <:e> Vt2,t3. (tl =a o Aty =4, t3) — 11 =4 t3.

The significant case is of t; = TyAbs(ay,t]). So suppose ¢(t}), t1 =4 t2, and t2 =, t3. Then to =
TyAbs(as, ty) and t3 = TyAbs(as, t5), and

(Nb. (b a1).t] =4 (b az).th) A (Nb. (b az).th =4 (b as).ts).
We now equationally apply (11) to deduce
Nb. (b ar).t] =4 (b az).ty =4 (b ag).ts. (17)

Now we assumed ¢(t}), not ¢((b aq).t]). But we can apply equivariance (8) to ¢(z) to deduce ¢(t}) <=
&((b ay)-t}), which allows us to complete the proof. O

We can also define a more traditional a-equivalence =,':

TyVar(a) =, TyVar(b) +—a=b
TyProd(ti,ts) =, TyProd(t;,th) <t =, t) Aty =4t}

! 14! ! Myt (18)
TyAbs(a,t) =,' TyAbs(a',t') + 3b. [b/a].t =4," [b/a'lt'A

b nt)Un(t)U{a,a'}
in terms of an inductively defined names-of function n(t)
n(TyVar@) = {a}
’I’L(TyPI‘Od(tl, t2)) = n(tl) U ’I’L(tz) (19)

n(TyAbs(a,t)) ={a}Un(t)
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and an inductively defined atom-for-atom substitution function

[b/a]TyVar(a) = TyVar(b)

[b/a]TyVar(n) =TyVar(n) n#a (20)
[b/a]TyProd(ti,t2) = TyProd([b/a]t1,[b/a]ts)

[b/a]TyAbs(n,t) = TyAbs([b/a]n, [b/a]t).

n(t) and [b/a]t are simple and make no allowance for free variables or capture-avoidance, but they suffice for
our needs.
Suppose we want to prove t; =4 t2 <> t1 =4’ t2. A pleasing and clean method would be to prove

Nb. [b/a)t = (b a).t (21)
3b. [b/a).t =4 [b/d'lt' A bEn(t)Unt)U{a,d} <= (22)
Nb. [b/ajt =, [b/a]t'.
Proof (of (21)). We can use structural induction for a fixed with hypothesis ¢

def
<~

(t)

Suppose t = TyProd(t1,t2). By definition from (20), [b/a]TyProd(ti,t2) = TyProd([b/alt1, [b/alt2), and
by equivariance (8), (b a). TyProd(t;,t2) = TyProd((b a).t1, (b a).t2). By hypothesis we know

no. [b/a)t = (b a).t.

(Wb, [b/alts = (b a).t:) A (Ub. [b/alts = (b a).tz).

By (11) and applying the equalities under TyProd we obtain the result.

The cases of TyVar and TyAbs are no different. Each time, equivariance of (b a) as illustrated in (8)
allows us to push transposition down through the structure of a term and replicate the inductive behaviour
of [b/a]. This is a general pattern. O

Note from this proof how transposition with equivariance has provided a ‘general axiomatic theory of (purely
inductive) renaming’.

Proof (of (22)). The proof of (22) is rather more involved. It is best to work from the following lemmas:

n(t) € Prin(4) (23)
X € Prin(A) = (b¢ X & b#X) (24)
ben(t) < bi#t (25)
btz Ab#f = bitf(a) (26)
b#(f(x)) Ab#Sf A f injective = b#x (27)
b#c c a closed term (28)
b# PAB0L A P(b) = WNb. P(b) (29)
WNb. P(b) = 3b. b#P A P(b) (30)
Wo. P(b) = VYb. b#P = P(b) (31)
3b. btz (32)

The proof now proceeds as follows. We must prove
3b. [b/a)t =, [b/a'lt' Abgn(t) Un(t') U{a,a'} < Wb. [b/a]t =, [b/a']t'.

Write P 4 Aa,a’,t,t'.Ab.[b/alt =, [b/a]t' and use (25) (proved from (23) and (24)) and to rewrite this
to
Hb' b#t7 tl7a7 al /\P(t7 t17a7 al7b) @ I/Ib' P(t7 tl7a7 aIJb)7
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where b#z1,...,z, denotes the conjunction A, b#x;.
Left-right implication. We must prove

3b. b#tt, ' a,a’ A P(t,t',a,a',b) = Wb. P(t,t',a,d,b).
We eliminate the existential quantifier and obtain
b#t,t',a,a’ AP(t,t',a,a',b) = Wb. P(t,t',a,d,b). (33)
We resolve against (29) to obtain
b#t,t',a,a’ A P(t,t',a,a")(b) = b#P(t,t',a,a') A P(t,t',a,a’)(b),

which simplifies to b#t,t',a,a’ = b#P(t,t',a,a’). We repeatedly resolve against (26) to reduce to b#P,
and finish this off with (28).
Right-to-left implication. We must prove

Wb. P(t,t',a,a’,b) = 3b. b#t,t',a,a’ AP(t,t',a,d,b).
Now here we have a problem. Clearly we would like to eliminate W using (30) to obtain
b#P(t,t',a,a') A P(t,t',a,a’,b) = Tb. b#t,t',a,a’ A P(t,t',a,a’,b),
identify the b in the conclusion with the b in the hypotheses, and simplify. But we obtain
b#P(t,t',a,a') = b#t,t',a,d.

This implication does not follow for general P, nor even for our particular P: if P were injective we could
apply (27) repeatedly, but it is a predicate mapping into Bool and is not injective.
However we can use (32) to introduce into the context some b fresh for any =z, so instantiate = to the
3-tuple
<n(t),n(t'),{a,a'}>. (34)

Now we can apply (27) repeatedly to obtain
b#t,t',a,a’ ANb. P(t,t',a,a’,b) = 3b. b#t,t',a,a’ AP(t,t',a,a’,b).

(Here there is also a hypothesis b#Ax1,x2, x3.<T1, T2, £3> but this gives us no information since we get it
for free from (28), so we drop it.) This simplifies to

b#t,t',a,a’ AWNb. P(t,t',a,a',b) = P(t,t',a,d,b).
But now we have another problem. If we eliminate W using (30) we obtain for a variable symbol b',
b#t, t' a,a’ ANV'#P(t,t',a,a') AP(t,t',a,a',b') = P(t,t' a,ad’,b).

We need a different elimination rule for I which does not introduce a new variable into the context, and this
is provided by (31), with which we can finish off the proof. O

4 Morals from the proofs

In the previous section we have seen the beginnings of the automated theory of (a b), #, introducing a fresh
name, and V. We now bring it out explicitly.

14 (Theory of transposition). Given a conclusion of the form s = (a b).t, use (8) to simplify the RHS
by drawing transposition down to the variables on the right hand side. Similarly for other binary predicates
such as <> or also #. So for example

s = (a b).<z,y> simplifies to s=<(ab).z,(a b).y>.

This algorithm can fail, for example on the goal (a b).<z,y> = (a b).<z,y>. Call it push, because it ‘pushes’
transposition into the structure of the term on the right of an equality. In an implementation push would
denote a tactic. We shall continue to give such names to algorithms which would denote tactics. <
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15 (Theory of #). Given a goal of the form a#tt repeatedly apply (26) and (28) to simplify it to component
parts. So for example
a#<z,y>
reduces to a#x A a#Fy A afEAx,y.<x,y>, and then to a#x A afty. This algorithm can also fail, for example
in a#m <T,a> we should perform S-reduction first, otherwise we finish up with a#a, which is untrue. Call

the algorithm split#. <
Inductive proof on inductive types can, with proper handling and properly coordinated automated pro-

cedures, be made to produce very uniform proof-obligations which are amenable to this kind of treatment,
with only slightly more sophisticated algorithms.

16 (Introducing a fresh name). (32) allows us to introduce a new variable b into the context, fresh for
x for any x: given the proof-state

VZ1,...,%n. Conds(z,...,2,) = Concl(zy,...,2,)
we can reduce to
VZ1,...,%n,b. Conds(z1,...,z,) AbFt(z1,...,2,,0) = Concl(z1,...,2,)

for any t.
We can now take ¢ to be the n-tuple <Supp(z1),...,Supp(z,)>. Repeated applications of (27) reduce
b#t to A\, b#Supp(z;). It is a lemma that b#Supp(u) <= b#u, so we obtain

VZi1,...,%n,b. Conds(ml,...,mn)/\/\b#xi = Concl(z1,--.,Zn)-

In other words, “we can always invent a fresh b”. We applied this technique ad-hoc in (34). Call the algorithm

newname. 0
17 (Theory of WN). The treatment of W is more complex. There are two broad styles of reasoning on WU,

equational reasoning using for example properties such as (11) and (16), and directed reasoning using intro-
and elim- rules such as (29), (30), and (31). Both are useful. For example equations in (17), and intro- and
elim- rules in the proof of (22).

A further complication of the treatment of intro- and elim- rules is that N seems to have two pairs of
them. In full, they are

3b. (b#PA7E°L A P(b)) = Wb. P(b) (35)
Nb. P(b) = (3b. b#P A P(b)) (36)
Vb. (b#PA7B° 5 P(b)) = Wb. P(b) (37)
Nb. P(b) = (Vb. b#P = P(b)). (38)

For practical purposes these pair off naturally as (35) with (38) and (37) with (36). The first pair requires
we find in the context a fresh b. The second pair introduces that fresh b, but only fresh for P. We can do
better than this using (32) as in remark 16, so this latter pair seems less useful.

The complete algorithm is therefore: simplify using (11) to collect all N quantifiers in the hypotheses into
one single quantifier. Also use (13) to draw negations under the W quantifier. Finally, apply the intro- and
elim- rules (35) with (38), possibly augmented with remark 16 to generate a fresh name where necessary.
Thus for example

Vparams. Wa. P(a) A —Wa. Q(a) = —Wa. R(a)

simplifies to
Vparams. WNa. P(a) A -Q(a) = Wa. -R(a),

a fresh b is introduced
Vparams,b. b#params A Wa. P(a) A —=Q(a) = Wa. =R(a),
the intro- and elim- rules reduce this to
Vparams,b. P(b) A =Q(b) = —R(b),

and proof-search proceeds as normal. In the case that the fresh b is already in the context, as happened in
(33), we use that supplied b instead. Call this algorithm newsimp. O
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5 Difficulties implementing the algorithms

There are many technical difficulties putting the ideas of section 4 into practice.
18 (split#). split# is described in remark 15. The steps of the algorithm are:

1. repeated resolution with (26) followed by, when this fails,
2. resolution with (28).

There are difficulties with both steps.

1. Isabelle resolution with Isabelle unification is higher-order. a# f (z) unifies with a goal a#t for x matches
t and f matches Az.x the identity, and we have a non-terminating loop. The solution is to write ML code
to only allow this step when ¢ is syntactically an application term t1 $ t2, and package this up as an
Isabelle wrapper. An Isabelle wrapper, simplistically put, is an Isabelle theorem ‘wrapped’ in ML code
which provides some intelligent control on how it may be applied, see remark 20.

2. Tt is impossible at object level to decide whether a term of the meta-level is closed or not. Again, we
need an ML wrapper.

The algorithm push described in remark 14 is similar and also requires wrappers. (o4

19 (newname). To introduce a fresh b fresh for all variables 1, ..., z, in the context, as we saw in remark 16,
we must examine those names. This is, as in the previous remark, an operation on the meta-level syntax and
must be implemented by an ML wrapper which examines that syntax. <&

20 (Isabelle wrappers). We observed in remarks 19 and 18 that three significant FM features require
ML wrappers in implementation (split#, push, and newname).

Isabelle proof proceeds imperatively by applying tactics to a proof-state. Simple tactics may apply a
particular transformation to the state. More complex tactics will carry out some kind of proof-search. These
automated tactics (written in ML) give Isabelle proving much of its power. They are all essentially tree-search
algorithms of various kinds based on a library of Isabelle theorems which may be equalities, intro-rules, elim-
rules, as the case may be. In inductive reasoning we use this automation to automatically handle the dozens
if not hundreds and thousands of separate cases which a proof may entail. Wrappers are applied in between
proof-steps and perform well as intelligent agents which may examine the way the proof-state is developing
and perform for example some kind of garbage-collection.

But consider the example of split#. This is implemented as a wrapper as discussed above in remark 18
but morally it is clearly a pair of intro-resolution rules:

a#fANa#r = a#fxr and afc if ¢ closed.

In proof-search however split# will only be applied if none of the standard Isabelle theorems is applicable.
We cannot, using wrappers, interleave it ‘horizontally’ with the standard Isabelle theorems, only ‘vertically’
with lower precedence, and in consequence proof-search is inefficient. Unfortunately there seems no cure
other than dedicated FM proof-search ML code, or to hack existing code to hardwire algorithms such as
split#, push, and newsimp. <

Now consider our treatment of the logic of W. This consists of equational theory such as (11) and (16),
of intro- and elim- rules

a#P, P(a) = Wa. P(a) and (Ma. P(a)), a#P = P(a),

and of newname discussed in remark 17.

In this and in the equations immediately following we introduce two items of notation. A here is not
a conjunction (as previously used written A, prop;) but a meta-level Isabelle/Pure universal quantification
(A z. prop(z)). Also, a comma , denotes meta-level conjunction. I shall not be completely strict about
distinguishing meta-level Pure from object-level HOL, but A and , where used will definitely denote the
former.

As a simple example of a proof involving W consider a proof of

/\P,Q. Wa. P(a), Na. Q(a) = Wa. P(a) A Q(a). (39)
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Inductive reasoning tends to be resolution-based, so we prefer an algorithm in that style. Accordingly we
apply the intro- and elim- rules above, along with the conjunction intro-rule A, B = A A B, to obtain

A P,Q. P(?%a(P,Q)),Q(?b(P,Q)) = ?a(P,Q)#P
A\ P.Q. P(2a(P,Q)),Q(%b(P,Q)) = ?a(P,Q)#Q
A\ P.Q. P(?a(P,Q)),Q(?)(P,Q)) = P(?a(P,Q))
A P.Q. P(2a(P,Q)), Q(?b(P,Q)) = Q(?b(P,Q)).

Here ?a(P, Q) and 7b(P, @) are unknowns which may be instantiated to any expression with free variables at
most P, Q). The two freshness subgoals cannot be proved. We can use newname to introduce a fresh parameter
into the context, but that only gives us

A\ P.Q,b. P(?a(P,Q)),Q(?b(P, Q)), b#P,b#Q = ?a(P,Q)#P

and ?a(P, Q) cannot be instantiated to b because b is a new free variable not amongst P, Q). Thus we need
to apply newname before the resolution steps and then the proof succeeds.

In another situation such as proving (31) the fresh name may be provided by the previous proof-context
and we certainly do not want to apply newname: it will cause unknowns to be instantiated to an irrelevant
fresh parameter. It seems difficult to express a sensible and efficient compromise algorithm for this kind of
proof-search.

In the rest of this section we step back and take a high-level view of these problems. In Isabelle and other
theorem provers there are actually two kinds of variables. Free variables a, b, z,y and unknowns ?a, 7b, 7z, 7y.
Free variables are ‘universal’: they have an arbitrary value which ranges over all possible values. Unknowns are
‘existential’: they should, by the end of the proof-search, be instantiated to some specific term ¢. With these
built into the meta-level of Isabelle/Pure the intro- and elim- rules for universal and existential quantification
are easy to write. This need not be the case. For example in second-order A-calculus existential quantification
can be expressed using universal quantification. Theorem provers do not use this because it is nasty to work
with in implementation.

It seems that the underlying problem may be that we are trying to encode using both a and 7a a kind
of ‘freshness’ variable corresponding to the ‘new’ quantifier W. The fact that we need both reflects the V/3
duality of W mentioned in remark 10. Like unknowns, ?a a freshness variable depends on a context, for
which it is fresh, and two sufficiently fresh freshness variables may be assumed equal, ‘instantiated to each
other’, where convenient (think for instance of proving (11) or (12)). Like universals, freshness variables when
introduced extend the context, and other terms and variables may depend on them if they are introduced
later (e.g. other freshness variables). Trying to usefully express this in a dedicated logic belongs to future
work.

6 The technical lemmas

This section can be skipped. For the interested reader we show a simple algorithm in action, constructed
using the tactics developed in section 4. The point is that it neatly settles most of (23) to (32), which means
we have a decent algorithm. We skip to the fourth one (26) b#xz A b#f = b# f(z).

Unfold definition 8 and apply newname. We obtain

\b.z, f- Vie. (c b).w, Vic. (c b).f => We. (cb).f().
Apply newname
N\ bz, f,c. c#b,z, flc. (c b).z, Vic. (¢ b).f = We. (c b).f(=)

then newsimp to obtain

/\b,a:,f,c. C#b,l’,f(?cl(b,.'ll,f, C) b).’l}‘ =7, (?Cl(b,ﬂ],f, C) b)f =f
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It is now simple to instantiate 7cl(b, z, f,c) and ?¢2(b, z, f, ¢) to ¢, but we cannot apply push to the conclusion
and finish the proof because (?¢2(b, z, f,¢) b) is on the left, not the right. I had elided the following detail:
transposition is invertible on each type by (5) so £ = (u1 u3).y = (u; u2).z = y. push applies this as an
intro-rule, to “draw transposition to the right”. With this elaboration the proof runs smoothly.

The proof of (27) runs along similar lines. To prove (28) b#c we unfold definitions and use newsimp to
obtain

/\ b,c. (Tn(b,c) b).c =c.

If ¢ is a closed term push solves this completely (otherwise proof fails, as it should).

(29), (30), (31), are proved by the same script as (26). In fact, the script also proves (27) though its
behaviour for that goal, the path outlined in the previous paragraph, is a little special.

(32) underlies newname. The proof is best tailor-made. We rewrite it as 3b. b#xz A T and intro-resolve
against (36) for P = Ab.T, we now have Mb. b#z, an instance of the axiom (9).

7 The state of the implementation

An Isabelle/FM implementation exists but it is based on set theory rather than higher-order logic. This
creates technical difficulties which ultimately proved insurmountable for the following reason. Consider the
theorem
TyProd(t1,ts) = TyProd(t),t)) = t; =t].
In HOL this is rendered as
TyProd(tF,tL) = TyProd(t,", t,") = tL =¢,*
where we include all type annotations. In sets the same theorem is
TyProd(t1,t2) = TyProd(ty,t5), t1 € L,t2 € L,t; € L,ty € L = t; =t7.

The difference is that when we intro-resolve against the HOL version we get one subgoal, whereas the sets
version produces five (one each for each hypothesis of the implication, which must be established in order to
apply it). A sets-based treatment of inductive datatypes overcomes this by implementing TyProd by some
constructor which is is injective on the entire sets universe “by coincidence”, probably Inr(Inl(-)). In FM
this is not possible for various reasons which we now sketch.

Atoms must be marked as belonging to atomic type, the U quantifier introduces fresh variables of atomic
type which must be marked as such, and atom-abstraction a,z — a.z (which we have not discussed in this
paper, see [8, Section 6] or [6, Section 5]) is fundamentally non-injective so that the typing conditions can
actually get quite complex.

Considerable ingenuity went into minimising the impact of these typing conditions in a sets environment
(this should soon be the subject of a technical report). The price of using a HOL environment is precisely its
benefit, the relative rigidity the typing gives the theory relative to sets, with both theoretical and practical
consequences. In the recently-published [8] we provide what we hope is an elegant solution to the theoretical
difficulties which will also be implementable, and it remains to try implementing the approach.

8 Conclusions

This paper has given a very simplified account of the problem of producing an implementation of a new
foundational system FM with new and unfamiliar predicates and constructors. We considered two simple
examples:

— Some theory of a datatype of types with universal types X and relations of a-equivalence for it =,
(defined using FM structure) and =,' (defined in a more traditional style).
— Some technical FM lemmas (23) to (32).

These examples illustrated a fairly rich and representative selection of problems. We presented solutions to
these problems and discussed their limitations. Another contribution of this paper is in what it elides: there
are complications to automating FM which this paper has tried to bring out, but the short, slick, parts in
between are the proof of how far we have already come.
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