
Curry-Style Types for Nominal Terms?

Maribel Fernández and Murdoch J. Gabbay

King’s College London Heriot-Watt University
Dept. Computer Science Dept. Mathematics and Computer Science

Strand, London WC2R 2LS, UK Riccarton, Edinburgh EH14 4AS, UK
maribel.fernandez@kcl.ac.uk murdoch.gabbay@gmail.com

Abstract. We define a rank 1 polymorphic type system for nominal
terms, where typing environments type atoms, variables and function
symbols. The interaction between type assumptions for atoms and sub-
stitution for variables is subtle: substitution does not avoid capture and
so can move an atom into multiple different typing contexts. We give
typing rules such that principal types exist and are decidable for a fixed
typing environment. α-equivalent nominal terms have the same types; a
non-trivial result because nominal terms include explicit constructs for
renaming atoms. We investigate rule formats to guarantee subject reduc-
tion. Our system is in a convenient Curry-style, so the user has no need
to explicitly type abstracted atoms.
Keywords: binding, polymorphism, type inference, rewriting.

1 Introduction

Nominal terms are used to specify and reason about formal languages with bind-
ing, such as logics or programming languages. Consider denumerable sets of
atoms a, b, c, . . ., variables X, Y, Z, . . ., and term-formers or function sym-
bols f, g, Following previous work [10, 21], nominal terms t are defined
by:

s, t ::= a | [a]t | ft | (t1, . . . , tn) | π·X π ::= Id | (a b) ◦ π

and called respectively atoms, abstractions, function applications, tuples,
and moderated variables (or just variables). We call π a permutation and
read (a b)·X as ‘swap a and b in X’. We say that permutations suspend
on variables. X is not a term but Id·X is and we usually write it just as X.
Similarly we omit the final Id in π, writing (a c)·X instead of ((a c) ◦ Id)·X.

For example, suppose term-formers lam and app. Then the nominal terms
lam[a]a and app(lam[a]a, a) represent λ-terms λx.x and (λx.x)x, and lam[a]X
and app(lam[a]X, X) represent λ-term ‘contexts’ λx.- and (λx.-)-. Note how X
occurs under different abstractions. Substitution for X is grafting of syntax trees,
it does not avoid capture of atoms by abstractions; we may call it instantiation.

Nominal terms differ from other treatments of syntax-with-binding because
they support a capturing substitution, and the notation, although formal, is
? Research partially supported by the EPSRC (EP/D501016/1 “CANS”).

close to standard informal practice; for example β-reduction may be represented
simply but explicitly as app(lam[a]X, Y) → sub([a]X, Y) where sub([a]X, Y) is
a term which may be given the behaviour of ‘non-capturing substitution’ (once
we instantiate X and Y) by rewrite rules [10, 12].

Now consider static semantics, i.e. types like τ ::= N | τ → τ where we
read N as numbers and τ → τ as function types. Assigning types to terms
partitions the language into ‘numbers’, or ‘functions between numbers’, and so
on. Java [16], ML [9], and System F [15] demonstrate how this is commercially
useful and theoretically interesting.

Existing static semantics for nominal terms type atoms with a special type
of atoms A [21, 20]. But when we write lam[a]X or lam[a]a, our intention is λx.-
or λx.x and we do not expect a to be forbidden from having any type other
than A. We can use explicit casting function symbols to inject A into other
types; however the a in lam[a]X still has type A, so we cannot infer more about
a until X is instantiated. This notion of typing can only usefully type terms
without variables and in the presence of polymorphism such strategies break
down entirely.

We now present a Curry-style system with rank 1 polymorphism (ML-style
polymorphism or Hindley-Milner types [9]). Atoms can inhabit any type. We
can write lam[a]X, or fix[f]X, or forall[a]X, or app(lam[a]X, lam[b]X), and
so on, and expect the type system to make sense of these terms, even though
these terms explicitly feature context holes representing unknown terms and
abstractions over those holes. Different occurrences of X may be under different
numbers of abstractions, and for different atoms. This means that, when we
instantiate X with t, the atoms in t may move into different type contexts and
so receive different types. At the same time, the entire type system is consistent
with a functional intuition, so X of type N manages to simultaneously behave
like an ‘unknown number’ and an ‘unknown term’.

We give syntax-directed typing rules and show that every typable term has a
principal type (one which subsumes all others in a suitable sense) in a given
environment. Type inference is decidable and types are compatible with α-
equivalence on nominal terms. We give a notion of typable rewrite rule such
that rewriting preserves types. In future, we plan to extend the system with
intersection types, to derive a system with principal typings (a type and a type
environment which subsume all others). With this system we will study normal-
isation of nominal terms.

2 Background

We continue the notation from the Introduction. Write V (t) for the variables in t
and A(t) for the atoms in t (e.g., a, b, c ∈ A([a][b](a c)·X), X ∈ V ([a][b](a c)·X)).
We define π·t, the permutation action of π on t, inductively by:

2

Id·t ≡ t and ((a b) ◦ π)·t ≡ (a b)·(π·t), where

(a b)·a ≡ b (a b)·b ≡ a (a b)·c ≡ c (c 6≡ a, b)
(a b)·(π·X) ≡ ((a b) ◦ π)·X (a b)·ft ≡ f(a b)·t

(a b)·[n]t ≡ [(a b)·n](a b)·t (a b)·(t1, . . . , tn) ≡ ((a b)·t1, . . . , (a b)·tn)

For example (a b)·lam[a](a, b, X) ≡ lam[b](b, a, (a b)·X).

Define t[X 7→s], the (term-)substitution of X for s in t, by:

(ft)[X 7→s] ≡ f(t[X 7→s]) ([a]t)[X 7→s] ≡ [a](t[X 7→s]) (π·X)[X 7→s] ≡ π·s
a[X 7→s] ≡ a (t1, . . .)[X 7→s] ≡ (t1[X 7→s], . . .) (π·Y)[X 7→s] ≡ π·Y (X 6≡ Y)

Term-substitutions are defined by θ ::= Id | [X 7→s]θ and have an action
given by tId ≡ t and t([X 7→s]θ) ≡ (t[X 7→s])θ. We write substitutions postfix,
and write ◦ for composition of substitutions: t(θ ◦ θ′) ≡ (tθ)θ′.

Nominal syntax represents systems with binding, closely following informal
notation. See [21, 10, 11] for examples and discussions of nominal terms and
nominal rewriting. It has the same applications as higher-order systems such as
Klop’s CRSs, Khasidashvili’s ERSs, and Nipkow’s HRSs [18, 17, 19]. Intuitively,
the distinctive features of nominal syntax are:

– X is an ‘unknown term’; the substitution action t[X 7→s] which does not
avoid capture, makes this formal. Therefore X behaves differently from ‘free
variables’ of systems such as HRSs [19] or meta-variables of CRSs [18].

– [a]X denotes ‘X with a abstracted in X’. We do not work modulo α-
equivalence and [a]X and [b]X are not equal in any sense; for example
([a]X)[X 7→a] ≡ [a]a and ([b]X)[X 7→a] ≡ [b]a, and we certainly expect from
the intuition ‘λx.x’ and ‘λx.y’ that [a]a and [b]a should not be equal. There-
fore atoms in nominal terms also behave differently from ‘bound variables’
of systems such as HRSs, ERSs and CRSs.
We call occurrences of a abstracted when they are in the scope of [a]-, and
otherwise we may call them unabstracted.

– (a b)·X represents ‘X with a and b swapped’. So π·[a]s ≡ [π·a]π·s, and
(a b)·[a][b]X ≡ [b][a](a b)·X. Therefore this permutation action is distinct
from De Bruijn’s transformers and other explicit substitutions, which avoid
capture as they distribute under abstractions, and which do not satisfy the
same simple algebraic laws [7].

We now come to some of the more technical machinery which gives nominal
terms their power.

We call a#t a freshness constraint, and s ≈α t an equality constraint.
We will use letters P,Q to range over constraints. We introduce a notion of
derivation as follows (below a, b denote two different atoms):

3

a#b

a#s

a#fs

a#si (1 ≤ i ≤ n)

a#(s1, . . . , sn) a#[a]s
a#s

a#[b]s

π-1(a)#X

a#π·X

s≈αt

fs≈αft

a≈αa

s≈αt

[a]s≈α[a]t

s≈α(a b)·t a#t

[a]s≈α[b]t

ds(π, π′)#X

π·X≈απ′·X

si≈αti (1 ≤ i ≤ n)

(s1, . . . , sn)≈α(t1, . . . , tn)

Here we write π-1 (the inverse of π) for the permutation obtained by revers-
ing the order of the list of swappings; for example ((a b) ◦ (c d))-1 = (c d) ◦
(a b). Here ds(π, π′) ≡

{
n

∣∣ π(n) 6= π′(n)
}

is the difference set. For exam-
ple ds((a b), Id) = {a, b} so (a b)·X ≈α X follows from a#X and b#X. Also
[a]a ≈α [b]b and [a]c ≈α [b]c but not [a]c ≈α [a]a; this is what we would expect.

Write ∆,∇ for sets of freshness constraints of the form a#X and call these
freshness contexts. We write Pr for an arbitrary set of freshness and equality
constraints; we may call Pr a problem. Substitutions act on constraints and
problems in the natural way. Write ∆ ` P when a derivation of P exists using
elements of ∆ as assumptions, and extend this notation elementwise to ∆ ` Pr
for deducibility of all P ∈ Pr (see [21, 11] for algorithms to check constraints).
For example, ∆ ` ∇θ means that the constraints obtained by applying the
substitution θ to each term in ∇ can be derived from ∆. We will use this notation
in the definition of matching in Section 4.1.

The following result is one of the main technical correctness properties of
nominal terms, and we should compare it with Theorem 8.

Theorem 1 If ∆ ` a#s and ∆ ` s ≈α t then ∆ ` a#t.

Proofs, and further properties of nominal terms, are in [21, 12].

3 Typing

3.1 Types and type schemes

We consider denumerable sets of
– base data types (write a typical element δ), e.g. N is a base data type for

numbers;
– type variables (write a typical variable α);
– type-formers (write a typical element C), e.g. List is a type-former.

Definition 1. Types τ , type-schemes σ, and type-declarations (or arities)
ρ are defined by:

τ ::= δ | α | τ1 × . . .× τn | C τ | [τ ′]τ σ ::= ∀α.τ ρ ::= (τ ′)τ

α denotes any finite set of type variables (if empty we omit the ∀ entirely); we
call them bound in σ and call free any type variables mentioned in σ and not in
α. We write TV (τ) for the set of type variables in τ , and ≡ for equality modulo
α-equivalence for bound variables.1

1 We could express types too using nominal syntax. We use the standard informal
treatment because we focus on the term language in this paper.

4

We call τ1 × . . . × τn a product and [τ]τ ′ an abstraction type. We say
that C τ is a constructed type, and we associate a type declaration to each
term-former. For example, we can have succ : (N)N and 0 : ()N (we may write
just 0 : N in this case).

Basic type substitution τ [α 7→τ ′] is the usual inductive replacement of τ ′

for every α in τ ; base cases are α[α 7→τ] ≡ τ and α[β 7→τ] ≡ α. We extend the ac-
tion elementwise to arities ρ, for example ((τ)τ ′)[α 7→τ ′′] ≡

(
τ [α 7→τ ′′]

)
(τ ′[α 7→τ ′′]),

and to type-schemes σ in the usual capture-avoiding manner. For example:

([α]α)[α 7→τ]≡[τ]τ (∀β.[β]α)[α 7→β]≡∀β′.[β′]β ((α×β)α)[α 7→β]≡(β×β)β

Type substitutions S, T , U are defined by S ::= Id | S[α 7→τ] where Id is
the identity substitution: τId ≡ τ by definition (we also use Id for the identity
substitution on terms, but the context will always indicate which one we need).
S has an action on types τ , schemes σ, and arities ρ, given by the action of Id
and by extending the basic action of the last paragraph. We write application
on the right as τS, and write composition of substitutions just as SS′, meaning
apply S then apply S′. The domain of a substitution S, denoted dom(S), is the
set of type variables α such that αS 6= α.

Substitutions are partially ordered by instantiation. Write mgu(τ, τ ′) (most
general unifier) for a least element S such that τS ≡ τ ′S (if one exists). We
refer the reader to [1] for detailed definitions and algorithms for calculating mgu.

Write σ < τ when σ ≡ ∀α.τ ′ and τ ′S ≡ τ for some S which instantiates only
type variables in α. τ may contain other type variables; only bound type variables
in σ may be instantiated, for example ∀α.(α×β) < (β×β) but (α×β) 6< (β×β).

Also write ρ < ρ′ when ρS ≡ ρ′ for some S. In effect all variables in arities
are bound, but since they are all bound we do not write the ∀. For example
(α× α)α < (β × β)β < (N× N)N.

The following useful technical result follows by an easy induction:

Lemma 2 If σ < τ then σ[α 7→τ ′] < τ [α 7→τ ′]. Also if ρ < ρ′ then ρ < ρ′[α 7→τ ′].

3.2 Typing judgements

A typing context Γ is a set of pairs (a : σ) or (X : σ) subject to the condition
that if (a : σ), (a : σ′) ∈ Γ then σ ≡ σ′, similarly for X.

We write Γ, a : σ for Γ updated with (a : σ), where this means either Γ ∪
{(a : σ)} or (Γ \ {(a : σ′)})∪ {(a : σ)} as well-formedness demands. Similarly we
write Γ,X : σ. For example, if Γ = a : α then Γ, a : β denotes the context
a : β. We say that a (or rather its association with a type) is overwritten in
Γ . We write ΓS for the typing context obtained by applying S to the types in
Γ . Similarly, π·Γ denotes the context obtained by applying π to the atoms in Γ .
TV (Γ) denotes the set of type variables occurring free in Γ .

Definition 2. A typing judgement is a tuple Γ ;∆ ` s : τ where Γ is a typing
context, ∆ a freshness context, s a term and τ a type (when ∆ is empty we omit
the separating ′;′).

5

We inductively define derivable typing judgements as follows:

σ < τ

Γ, a : σ;∆ ` a : τ

σ < τ Γ ;∆ ` π·X : �

Γ,X : σ;∆ ` π·X : τ

Γ, a : τ ;∆ ` t : τ ′

Γ ;∆ ` [a]t : [τ]τ ′

Γ ;∆ ` ti : τi (1 ≤ i ≤ n)

Γ ;∆ ` (t1, . . . , tn) : τ1 × . . .× τn

Γ ;∆ ` t : τ ′ f : ρ < (τ ′)τ

Γ ;∆ ` ft : τ

Here Γ ;∆ ` π·X : � holds if, for any a such that π·a 6= a, ∆ ` a#X or
a : σ, π·a : σ ∈ Γ for some σ. The condition f : ρ < (τ ′)τ is shorthand for
f : ρ and ρ < (τ ′)τ . The way we set things up, the arity of f is fixed and < is
independent of Γ . In the rule for abstractions the type environment is updated.

We may write ‘Γ ;∆ ` s : τ ’ for ‘Γ ;∆ ` s : τ is derivable’.
To understand the condition in the second rule, note that π·X represents an

unknown term in which π permutes atoms. Unlike non-nominal α-equivalence,
α-equivalence on nominal terms exists in the presence of unknowns X for which
substitution does not avoid capture, as ([a]X)[X 7→s] = [a]s demonstrates and as

the rules
s ≈α (a b)·t a#t

[a]s ≈α [b]t
and

ds(π, π′)#X

π·X ≈α π′·X
show. Our typing system is designed

to be compatible with this relation and so must be sophisticated in its treatment
of permutations acting on unknowns. For concreteness take π = (a b) and any
term t. If Γ ` t : τ then Γ ` (a b)·t : τ should hold when at least one of the
following conditions is satisfied:
1. (a b)Γ = Γ so that Γ cannot ‘tell the difference between a and b in t’.
2. If a and b occur in t then they are abstracted, so that what Γ says about a

and b gets overwritten.
Given Γ , ∆ and s, if there exists τ such that Γ ;∆ ` s:τ is derivable, then

we say Γ ;∆ ` s is typable. Otherwise say Γ ;∆ ` s is untypable.
The following are examples of derivable typing judgements:

a : ∀α.α,X : β ` (a,X) : α× β a : ∀α.α,X : β ` (a,X) : β × β

` [a]a : [α]α a : β ` [a]a : [α]α ` [a]a : [ζ]ζ
a : α, b : α, X : τ ` (a b)·X : τ X : τ ; a#X, b#X ` (a b)·X : τ

X : τ, a : α, b : α ` [a]((a b)·X, b) : [α](τ × α)
a : α, b : β ` ([a](a, b), [a][b](a, b), a, b, [a][a](a, b)) :

[α](α× β)× [α][β](α× β)× α× β× [α][α](α× β).

a : α, b : β ` ([a](a, b), [a][b](a, b), a, b, [a]([a](a, b), a)) :
[α1](α1 × β)× [α2][β2](α2 × β2)× α× β× [α3]([α4](α4 × β), α3).

The first line of examples just illustrates some basic typings, and the use of <.
The second line illustrates typing abstractions and how this overwrites in Γ .
The third line illustrates how permutations are typed. The last three illustrate
interactions between typing and (multiple) abstractions and free occurrences of
atoms. Note that a : α, X : τ 6̀ (a b)·X : τ and a : α, X : τ ; b#X 6` (a b)·X : τ .

Lemma 3 If Γ ;∆ ` t : τ then Γ [α 7→τ ′];∆ ` t : τ [α 7→τ ′].

6

Proof. By induction on the derivation, using Lemma 2 for the side-conditions.

Lemma 4 If Γ ;∆ ` t:τ and a,b:σ ∈ Γ for some σ, then (a b)·Γ ;∆ ` (a b)·t:τ .

Proof. By induction on the type derivation: The case for atoms is trivial. In the
case of a variable, the side condition holds since a and b have the same type in
Γ . The other cases follow directly by induction.

3.3 Principal types

Definition 3. A typing problem is a triple (Γ,∆, s), written: Γ ;∆ ` s:?. A
solution to Γ ;∆ ` s :? is a pair (S, τ) of a type-substitution S and a type τ
such that ΓS;∆ ` s:τ . We write S|Γ for the restriction of S to TV (Γ).

For example, solutions to X:α, a:β, b:β ` (a b)·X:? are (Id, α) and ([α 7→N], N).
Note that a solution may instantiate type-variables in Γ .

Solutions have a natural ordering given by instantiation of substitutions:

(S, τ) ≤ (S′, τ ′) when ∃S′′.S′ ≡ SS′′ ∧ τ ′ ≡ τS′′;

we call (S′, τ ′) an instance of (S, τ) using S′′. A minimal element in a set of
solutions is called a principal solution. By our definitions there may be many
principal solutions; (Id, α) and (Id, β) are both principal for X : ∀α.α ` X :?.
As in the case of most general unifiers, principal solutions for a typable Γ ;∆ ` s
are unique modulo renamings of type-variables. In a moment we show that the
following algorithm calculates principal solutions:

Definition 4. The partial function pt(Γ ;∆ ` s) is defined inductively by:
– pt(Γ, a:∀α.τ ;∆ ` a) = (Id, τ), where α ∈ α are assumed fresh (not in Γ)

without loss of generality.
– pt(Γ,X:∀α.τ ;∆ ` π·X) = (S, τS) (again α ∈ α are assumed fresh) provided

that for each a in π such that a 6= π·a, we have ∆ ` a#X, or otherwise
a : σ, π·a : σ′ ∈ Γ for some σ, σ′ that are unifiable. The substitution S is the
mgu of those pairs, or Id if all such a are fresh for X.

– pt(Γ ;∆ ` (t1, . . . , tn)) = (S1 . . . Sn, φ1S2 . . . Sn × . . . × φn−1Sn × φn) where
pt(Γ ;∆ ` t1) = (S1, φ1), pt(ΓS1;∆ ` t2) = (S2, φ2), . . . , pt(ΓS1 . . . Sn−1;∆ `
tn) = (Sn, φn).

– pt(Γ ;∆ ` ft) = (SS′, φS′) where pt(Γ ;∆ ` t) = (S, τ), f : ρ ≡ (φ′)φ
where the type variables in ρ are chosen distinct from those in Γ and τ , and
S′ = mgu(τ, φ′).

– pt(Γ ;∆ ` [a]s) = (S|Γ , [τ ′]τ) where pt(Γ, a:α;∆ ` s) = (S, τ), α is chosen
fresh, αS = τ ′.
Here Γ, a:α denotes Γ with any type information about a overwritten to a:α,
as discussed in Subsection 3.2.

pt(Γ ;∆ ` s) may be undefined; Theorem 5 proves that s is untypable in the
environment Γ ;∆.

7

The definition above generalises the Hindley-Milner system [9] for the λ-
calculus with arbitrary function symbols f , as is standard in typing algorithms
for rewrite systems [2], and with atoms and variables (representing ‘unknown
terms’) with suspended atoms-permutations.

The treatment of typing for atoms, abstraction and moderated variables is
new; for example if Γ = X : τ, a : α, b : α, then Γ ` [a](a b)·X : [α]τ but not
Γ ` [a](a b)·X : [β]τ . However, Γ ` [a]X : [β]τ as expected.

pt(Γ ;∆ ` s) gives a static semantics in the form of a most general type to
s, given a typing of atoms and variables mentioned in s, and information about
what atoms may be forbidden from occurring in some variables.

Theorem 5 1. If pt(Γ ;∆ ` s) is defined and equal to (S, τ) then ΓS;∆ ` s : τ
is derivable.

2. Let U be a substitution such that dom(U) ⊆ TV (Γ). If ΓU ;∆ ` s : µ is
derivable then pt(Γ ;∆ ` s) is defined and (U, µ) is one of its instances.

That is: (1) “pt(Γ ;∆ ` s) solves (Γ ;∆ ` s:?)”, and (2) “any solution to (Γ ;∆ `
s:?) is an instance of pt(Γ ;∆ ` s)”.

Proof. The first part is by a routine induction on the derivation of pt(Γ ;∆ `
s) = (S, τ) (using Lemma 3), which we omit. The second part is by induction
on the syntax of s:
– Suppose ΓU ;∆ ` π·X : µ. Examining the typing rules, we see that X : ∀α.τ ∈

Γ and X : ∀α.τU ∈ ΓU , that ΓU ;∆ ` π·X : �, and that µ = τUS for some
S acting only on α (U acts trivially on α because we assume α was chosen
fresh). Hence, for each a such that a 6= π·a, we have ∆ ` a#X, or, for some σ,
a : σ, π·a : σ ∈ ΓU , that is, a : σ1, π·a : σ2 ∈ Γ . Let V be the mgu of all such
pairs σ1, σ2, so U = V S′ (we take V = Id if there are no pairs to consider).
Thus, pt(Γ ;∆ ` π·X) = (V, τV). Therefore, (U, µ) = (V S′S, τV S′S).

– Suppose ΓU ;∆ ` a : µ. Clearly a is typable in the context Γ ;∆ so (exam-
ining the typing rules) a : ∀α.τ must occur in Γ and pt(Γ ;∆ ` a) = (Id, τ).
It is now not hard to satisfy ourselves that (Id, τ) is principal.

– Suppose ΓU ;∆ ` [a]t:µ. This may happen if and only if µ ≡ [µ′]µ′′ and
(U [α 7→ µ′], µ′′) solves Γ, a : α;∆ ` t:?, where α is fresh for Γ . By inductive
hypothesis (U [α 7→ µ′], µ′′) is an instance of (S, τ) = pt(Γ, a : α;∆ ` t), that
is, there is a substitution Ua such that U [α 7→ µ′] = SUa, µ′′ = τUa. By
definition, pt(Γ ;∆ ` [a]t) = (S|Γ , [τ ′]τ) where τ ′ = αS. So (SUa)|Γ = U
and αSUa = µ′. Therefore (U, [µ′]µ′′) is an instance of (S|Γ , [αS]τ).

– The cases for (t1, . . . , tn) and ft are long, but routine.

Corollary 6 Γ ;∆ ` s is typable if and only if pt(Γ ;∆ ` s)=(Id, τ) for some τ .

3.4 α-equivalence and types

We now prove that α-equivalence respects types; so our static semantics correctly
handles swappings and variables X whose substitution can move atoms into new
abstracted (typing) contexts. We need some definitions: Given two type contexts

8

Γ and Γ ′, write Γ, Γ ′ for that context obtained by updating Γ with typings in
Γ ′, overwriting the typings in Γ if necessary. For example if Γ = a : α and
Γ ′ = a : β, b : β then Γ, Γ ′ = a : β, b : β. If Γ and Γ ′ mention disjoint sets of
atoms and variables (we say they are disjoint) then Γ, Γ ′ is just a set union.

Lemma 7 1. If Γ ;∆ ` s : τ then Γ, Γ ′;∆ ` s : τ , provided that Γ ′ and Γ are
disjoint. Call this type weakening.

2. If Γ, a : τ ′;∆ ` s : τ then Γ ;∆ ` s : τ provided that ∆ ` a#s. Call this type
strengthening (for atoms).

3. If Γ,X : τ ′;∆ ` s : τ then Γ ;∆ ` s : τ provided X does not occur in s. Call
this type strengthening (for variables).

Proof. By induction on the derivation. For the second part, if a occurs in s under
an abstraction, then a : τ ′ is overwritten whenever a is used.

Theorem 8 ∆ ` s ≈α t and Γ ;∆ ` s : τ imply Γ ;∆ ` t : τ .

Proof. By induction on the size of (s, t). The form of t is rather restricted by
our assumption that ∆ ` s ≈α t — for example if s ≡ π·X then t ≡ π′·X for
some π′. We use this information without commment in the proof.
– Suppose ∆ ` a ≈α a and Γ ;∆ ` a : τ . There is nothing to prove.
– Suppose ∆ ` [a]s ≈α [a]t and Γ ;∆ ` [a]s : τ . Then ∆ ` s ≈α t, and

τ ≡ [τ ′]τ ′′, and Γ, a : τ ′;∆ ` s : τ ′′. We use the inductive hypothesis to
deduce that Γ, a : τ ′;∆ ` t : τ ′′ and concluce that Γ ;∆ ` [a]t : [τ ′]τ ′′.

– Suppose ∆ ` [a]s ≈α [b]t and Γ ;∆ ` [a]s : τ . Then by properties of
≈α [21, Theorem 2.11] we know ∆ ` s ≈α (a b)·t, a#t, (a b)·s ≈α t, b#s.
Also τ ≡ [τ ′]τ ′′ and Γ, a : τ ′;∆ ` s : τ ′′. By Lemma 7 (Weakening) also
Γ, a : τ ′, b : τ ′;∆ ` s : τ ′′. By equivariance (Lemma 4) (a b)·Γ, b : τ ′, a :
τ ′;∆ ` (a b)·s : τ ′′. Since ∆ ` (a b)·s ≈α t, by inductive hypothesis (a b)·Γ, b :
τ ′, a : τ ′;∆ ` t : τ ′′.
Now note that (a b)·Γ, b : τ ′, a : τ ′ = Γ, b : τ ′, a : τ ′ (because any data Γ
has on a and b is overwritten). So Γ, b : τ ′, a : τ ′;∆ ` t : τ ′′. We conclude
that Γ, b : τ ′, a : τ ′;∆ ` [b]t : [τ ′]τ ′′. Since ∆ ` a#[b]t and ∆ ` b#[b]t by
Lemma 7 (strengthening for atoms) we have Γ ;∆ ` [b]t : [τ ′]τ ′′.

– Suppose ∆ ` π·X ≈α π′·X and suppose Γ ;∆ ` π·X : τ . Then ∆ `
ds(π, π′)#X, and X : σ ∈ Γ , and σ < τ , and Γ ;∆ ` π·X : �.
∆ ` ds(π, π′)#X so Γ ;∆ ` π′·X : � and Γ ;∆ ` π′·X : τ follows.

– The cases of ft and (t1, . . . , tn) follow easily.

Corollary 9 ∆ ` s ≈α t implies pt(Γ ;∆ ` s) = pt(Γ ;∆ ` t) modulo renamings
of type variables, for all Γ,∆ such that either side of the equality is defined.

4 Rewriting

We now consider how to make a notion of nominal rewriting (i.e., a theory of
general directed equalities on nominal terms [12]) interact correctly with our
type system. We start with some definitions taken from [12].

9

A nominal rewrite rule R ≡ ∇ ` l → r is a tuple of a freshness context ∇,
and terms l and r such that V (r,∇) ⊆ V (l). Write R(a b) for that rule obtained by
swapping a and b in R throughout. For example, if R ≡ b#X ` [a]X → (b a)·X
then R(a b) ≡ a#X ` [b]X → (a b)·X. Let RId ≡ R and R(a b)◦π = (R(a b))π.
Let R range over (possibly infinite) sets of rewrite rules. Call R equivariant
when if R ∈ R then R(a b) ∈ R for all distinct atoms a, b. A nominal rewrite
system is an equivariant set of nominal rewrite rules.

Say a term s has a position at X when it mentions X once, with the
permutation Id. We may call X a hole. Write s[s′] for s[X 7→s′].2 We would
usually call s a ‘context’ but we have already used this word so we will avoid it.
For example, X and [a]X have positions at X, but (X, X) and (a b)·X do not.
We may make X nameless and write it just -.

Definition 5. Suppose pt(Φ;∇ ` l) = (Id, τ) and suppose that Φ mentions no
type-schemes. All the recursive calls involved in calculating pt(Φ;∇ ` l) have
the form pt(Φ,Φ′;∇ ` l′) where l′ is a subterm of l and Φ′ contains only type
assumptions for atoms. We will call recursive calls of the form pt(Φ,Φ′;∇ `
π·X) = (S, τ ′) variable typings of Φ;∇ ` l : τ .

Note that there is one variable typing for each occurrence of a variable in l, and
they are uniquely defined modulo renaming of type variables. Also, S may affect
Φ′ but not Φ since we assume that pt(Φ;∇ ` l) = (Id, τ).

Definition 6. Let pt(Φ,Φ′;∇ ` π·X) = (S, τ ′) be a variable typing of Φ;∇ `
l : τ , and let Φ′′ be the subset of Φ′ such that ∇ ` A(Φ′\Φ′′)#π·X. We call
Φ,Φ′′S;∇ ` π·X : τ ′ an essential typing of Φ;∇ ` l : τ .

So the essential typings of a : α, b : α, X : τ ` ((a b)·X, [a]X) : τ × [α′]τ are:

a : α, b : α, X : τ ` (a b)·X : τ and b : α, a : α′, X : τ ` X : τ .

The essential typings of a : α, b : α, X : τ ; a#X ` ((a b)·X, [a]X) : τ × [α′]τ are:

b : α, X : τ ` (a b)·X : τ and b : α, X : τ ` X : τ .

We will talk about the typing at a position in a term; for example the
typing at Z in (Z, [a]X)[Z 7→ (a b)·X] in the first example above (with hole
named Z) is a : α, b : α, X : τ ` (a b)·X : τ .

4.1 Matching problems

Definition 7. A (typed) matching problem (Φ;∇ ` l) ?≈ (Γ ;∆ ` s) is a
pair of tuples (Φ and Γ are typing contexts, ∇ and ∆ are freshness contexts, l
and s are terms) such that the variables and type-variables mentioned on the left-
hand side are disjoint from those mentioned in Γ,∆, s, and such that Φ mentions
no atoms or type-schemes.
2 Here ‘positions’ are based on substitution and not paths in the abstract syntax tree

as in [10]. The equivalence is immediate since substitution is grafting.

10

Below, l will be the left-hand side of a rule and s will be a term to reduce. The
condition that Φ mentions no atoms or type-schemes may seem strong, but is all
we need: we give applications in Section 4.3.

Intuitively, we want to make the term on the left-hand side of the matching
problem α-equivalent to the term on the right-hand side. Formally, a solution
to this matching problem, if it exists, is the least pair (S, θ) of a type- and term-
substitution (the ordering on substitutions extends to pairs component-wise)
such that:
1. Xθ ≡ X for X 6∈ V (Φ,∇,l), αS ≡ α for α 6∈TV (Φ)3, ∆ ` lθ≈αs and ∆ ` ∇θ.
2. pt(Φ;∇ ` l) = (Id, τ), pt(Γ ;∆ ` s) = (Id, τS), and for each Φ,Φ′;∇ `

π·X : φ′ an essential typing in Φ;∇ ` l : τ , we have Γ, (Φ′S);∆ ` (π·X)θ : φ′S.
The first condition defines a matching solution for untyped nominal terms

(see [21, 12] for more details on untyped nominal matching algorithms). The last
condition enforces type consistency: the terms should have compatible types, and
the solution should instantiate the variables in a way that is compatible with
the typing assumptions. When the latter holds, we say that (S, θ) respects the
essential typings of Φ;∇ ` l : τ in the context Γ ;∆.

For example, (X:α ` X) ?≈ (a:B ` a) has solution ([α 7→B], [X 7→a]), whereas
(X:B ` X) ?≈ (a:α ` a) has no solution — α on the right is too general.

To see why we need to check θ in the second condition, consider the term
g(f True) where g : (α)N and f : (β)N, that is both functions are polymorphic,
and produce a result of type N. Then the untyped matching problem g(f X)) ?≈
g(f True) has a solution (Id, {X 7→ True}), but the typed matching problem
(X : N ` g(f X)) ?≈ (` g(f True)) has none: {X 7→ True} fails the last
condition since X is required to have type N but it is instantiated with a boolean.

4.2 Typed rewriting

Definition 8. A (typed) rewrite rule R ≡ Φ;∇ ` l → r : τ is a tuple of a
type context Φ which only types the variables in l and has no type-schemes (in
particular, Φ mentions no atoms), a freshness context ∇, and terms l and r such
that
1. V (r,∇, Φ) ⊆ V (l),
2. pt(Φ;∇ ` l) = (Id, τ) and Φ;∇ ` r : τ .
3. Essential typings of Φ;∇ ` r : τ are also essential typings of Φ;∇ ` l : τ .

The first condition is standard. The second condition says that l is typable
using Φ and ∇, and r is typable with a type at least as general. The third
condition ensures a consistency best explained by violating it: Let f : ([α]N)N,
then X : N ` f([a]X) → X : N passes the first two conditions, but fails the
third because in the right-hand side we have an essential typing X : N ` X : N
whereas in the left-hand side we have X : N, a : α ` X : N. For comparison,
X : N ` g([a]X) → [a]X : [α]N with g : ([α]N)[α]N passes all three conditions
and is a valid rewrite rule, as well as X : N; a#X ` f([a]X) → X.
3 So in particular, by the side-conditions on variables being disjoint between left and

right of the problem, Xθ ≡ X for X∈V (Γ, ∆, s) and αS ≡ α for α ∈ TV (Γ).

11

The rewrite relation is defined on terms-in-context: Take Γ ;∆ ` s and Γ ;∆ `
t, and a rule R ≡ Φ;∇ ` l → r : τ , such that V (R) ∩ V (Γ,∆, s, t) = ∅, and
TV (R) ∩ TV (Γ) = ∅ (renaming variables in R if necessary). Assume Γ ;∆ ` s
is typable: pt(Γ ;∆ ` s) = (Id, µ), s ≡ s′′[s′] and Γ ′;∆ ` s′ : µ′ is the typing of
s′ at the corresponding position. We say that s rewrites with R to t in the
context Γ ;∆ and write Γ ;∆ ` s

R→ t when:
1. (Φ;∇ ` l) ?≈ (Γ ′;∆ ` s′) has solution (S, θ).
2. ∆ ` s′′[rθ] ≈α t.

These conditions are inherited from nominal rewriting [10, 12] and extended
with types. Instantiation of X does not avoid capture, so an atom a introduced
by a substitution may appear under different abstractions in different parts of
a term. We must pay attention to the typing at the position of the variable in
the rewrite; essential typings do just this. For example if f : (τ1)τ , g : (τ)[α]τ
and R ≡ X : τ ` gX → [a]X : [α]τ then pt(X : τ ` gX) = (Id, [α]τ) and
X : τ ` [a]X : [α]τ . R satisfies the first two conditions in the definition of typed
rule but fails the third: the only essential typing in the left-hand side is X : τ `
X : τ , whereas in the right-hand side we have X : τ, a : α ` X : τ . Notice that
a : τ1 ` g(fa) : [α]τ and the typed matching problem (X : τ ` gX) ?≈ (a : τ1 `
g(fa)) has a solution (Id, {X 7→ fa}). So, if we ignore the third condition in the
definition of typed rule, we have a rewriting step a : τ1 ` g(fa) → [a](fa) which
does not preserve types: a : τ1 ` g(fa) : [α]τ but a : τ1 6` [a](fa) : [α]τ .

We need a lemma to prove Subject Reduction (Theorem 11):

Lemma 10 Suppose that Φ;∇ ` r : τ , where Φ types only variables in r (it men-
tions no atoms) and has no type schemes. Let θ be a substitution instantiating all
variables in r, and such that (S, θ) respects the essential typings of Φ;∇ ` r : τ
in the context Γ,∆, that is, for each essential typing Φ,Φ′;∇ ` π·X : τ ′ of
Φ;∇ ` r : τ , it is the case that Γ,Φ′S;∆ ` (π·X)θ : τ ′S. Then Γ ;∆ ` rθ : τS.

Theorem 11 (Subject Reduction) Let R ≡ Φ;∇ ` l → r : τ . If Γ ;∆ ` s : µ

and Γ ;∆ ` s
R→ t then Γ ;∆ ` t : µ.

Proof. It suffices to prove that if pt(Γ ;∆ ` s) = (Id, ν) and Γ ;∆ ` s
R→ t then

Γ ;∆ ` t : ν. Suppose Γ ;∆ ` s
R→ t. Then (using the notation in the definition

of matching and rewriting above) we know that:
1. s ≡ s′′[s′], ∆ ` lθ ≈α s′, and ∆ ` ∇θ.
2. θ acts nontrivially only on the variables in R, not those in Γ,∆, s.
3. Assuming Γ ′;∆ ` s′ : ν′ is the typing of s′, then Γ ′, Φ′S;∆ ` (π·X)θ : φ′S

for each essential typing Φ,Φ′;∇ ` π·X : φ′ in Φ;∇ ` l : τ (therefore also for
each essential typing in Φ;∇ ` r : τ since they are a subset).

4. pt(Φ;∇ ` l) = (Id, τ) and pt(Γ ′,∆ ` s′) = (Id, τS) so there is some S′ such
that Γ ′S′ = Γ ′ and τSS′ = ν′.

5. ∆ ` s′′[rθ] ≈α t.
By Theorem 8, from 3, 4 and 1 we deduce Γ ′;∆ ` lθ : τSS′. Since pt(Φ;∇ ` l) =
(Id, τ), by our assumptions on rewrite rules also Φ;∇ ` r : τ , and by Lemma 3

12

also ΦSS′;∇ ` r : τSS′. By Lemma 10, Γ ′;∆ ` rθ : τS. Since Γ ′S′ = Γ ′, by
Lemma 3 also Γ ′;∆ ` rθ : τSS′. Hence Γ ;∆ ` s′′[rθ] : ν as required.

4.3 Examples

Untyped λ-calculus. Suppose a type Λ and term-formers lam : ([Λ]Λ)Λ, app :
(Λ×Λ)Λ, and sub : ([Λ]Λ×Λ)Λ, sugared to λ[a]s, s t, and s[a7→t]. Rewrite rules
satisfying the conditions in Definition 8 are:

X, Y :Λ ` (λ[a]X)Y → X[a7→Y]:Λ X, Y :Λ; a#X ` X[a7→Y] → X:Λ
Y :Λ ` a[a7→Y] → Y :Λ X, Y :Λ; b#Y ` (λ[b]X)[a7→Y] → λ[b](X[a7→Y]):Λ

X, Y, Z:Λ ` (XY)[a7→Z] → X[a7→Z]Y [a7→Z]:Λ

The freshness conditions are exactly what is needed so that no atom moves
across the scope of an abstraction (which might change its type). For instance,
in rule X, Y :Λ; a#X ` X[a7→Y] → X:Λ, X is under an abstraction for a in the
left-hand side and not in the right-hand side, but we have a#X.

The typed λ-calculus Suppose a type-former ⇒ of arity 2 and term-formers
λ : ([α]β)(α ⇒ β), ◦ : (α ⇒ β × α)β, and σ : ([α]β × α)β. Sugar as in the
previous example, so, instead of σ([a]s, t) we write s[a7→t]. Then the following
rewrite rules satisfy the conditions in Definition 8:

X : α, Y : β; a#X ` X[a7→Y] → X : α Y : γ ` a[a7→Y] → Y : γ

X : α ⇒ β, Y : α, Z : γ ` (XY)[a7→Z] → (X[a7→Z])(Y [a7→Z]) : β

X : β, Y : γ; b#Y ` (λ[b]X)[a7→Y] → λ[b](X[a7→Y]) : α ⇒ β

For the β-reduction rule we mention two variants; they give the same rewrites:

X:[α]β, Y :α ` (λX)Y → σ(X, Y) : β X:β, Y :α ` (λ[a]X)Y → σ([a]X, Y) : β

Assume types B and N. Then B : B, N : N ` ((λ[a]a)B, (λ[a]a)N) : B× N and

B : B, N : N ` ((λ[a]a)B, (λ[a]a)N) → (B,N) : B× N.

λ[a]a takes different types just like λx.x in the Hindley-Milner type system;
pt(` λ[a]a) = (Id, α ⇒ α). Our system will not type B : B, N : N ` BN or
λ[a]aa — the system for the untyped λ-calculus above, types the second term.

Surjective pairing Rewrites for surjective pairing cannot be implemented by a
compositional translation to λ-calculus terms [4]. Our system deals with rules
defining surjective pairing directly; assume fst : (α× β)α and snd : (α× β)β:

X : α, Y : β ` fst(X, Y) → X : α X : α, Y : β ` snd(X, Y) → Y : β

X : α× β ` (fst(X), snd(X)) → X : α× β

13

Higher-order logic. Extend the typed λ-calculus above with a type Prop and
term-formers > : Prop, ⊥ : Prop, = : (α × α)Prop, ∀ : ([α]Prop)Prop, ∧:
(Prop× Prop)Prop, and so on. Rewrite rules include:

X : α ` X = X → > : Prop X : Prop; a#X ` ∀[a]X → X : Prop

X, Y : Prop ` ∀[a](X ∧ Y) → ∀[a]X ∧ ∀[a]Y : Prop

Arithmetic Extend further with a type N, term-formers 0 : N, succ : (N)N,
+ : (N× N)N and =: (α× α)Prop. Observe that λ[a]succ(a) has principal type
N ⇒ N whereas λ[a]0 has principal type α ⇒ N. Likewise, ∀[a](a = 0) is typable
(with type Prop) whereas ∀[a](λ[a]succ(a) = 0) is not typable.

5 Conclusions and future work

We have defined a syntax-directed type inference algorithm for nominal terms.
It smoothly resolves the tension between the denotational intuition of a type
as a set, and the syntactic intuition of a variable in nominal terms as a term
which may mention atoms. The algorithm delivers principal types (our function
pt). The types produced resemble the Hindley-Milner polymorphic type system
for the λ-calculus, but are acting on nominal terms which include variables X
representing context holes as well as atoms a representing program variables,
and such that the same atom may occur in many different abstraction contexts
and thus may acquire different types in different parts of the term.

Theorem 8 proves our types compatible with the powerful notion of α-
equivalence inherited from nominal terms [21]. Theorem 11 shows that a notion
of typed nominal rewrite rule exists which guarantees preservation of types.

Our system is in Curry style; type annotations on terms are not required.
We do rely on type declarations for function symbols (arities) and in future we
may investigate inferring the type of a function from its rewrite rules.

Type inference is well-studied for the λ-calculus and Curry-style systems also
exist for first-order rewriting systems [2] and algebraic λ-calculi (which combine
term rewriting and λ-calculus) [3]. We know of no type assignment system for
the standard higher-order rewriting formats (HRSs use a typed metalanguage,
and restrict rewrite rules to base types).

Our type system has only rank 1 polymorphism (type-variables are quanti-
fied, if at all, only at the top level of the type). It should be possible to consider
more powerful systems, for instance using rank 2 polymorphic types, or intersec-
tion types [6]. The latter have been successfully used to provide characterisations
of normalisation properties of λ-terms. Normalisation of nominal rewriting using
type systems is itself a subject for future work, and one of our long-term goals
in this work is to come closer to applying logical semantics such as intersection
types, to nominal rewriting.

14

References

1. F. Baader and W. Snyder, Unification Theory, Handbook of Automated Reasoning,
volume I, chapter 8, 445–532. A. Robinson and A. Voronkov (eds.), Elsevier Science,
2001.

2. S. van Bakel and M. Fernández. Normalization results for typable rewrite systems.
Information and Computation, 133(2):73–116, 1997.

3. F. Barbanera and M. Fernández. Intersection type assignment systems with higher-
order algebraic rewriting. Theoretical Computer Science, 170:173–207, 1996.

4. H. P. Barendregt, Pairing without conventional constraints, Zeitschrift für mathe-
matischen Logik und Grundlagen der Mathematik 20 (1974), 289–306.

5. H. P. Barendregt, Lambda Calculi With Types, Handbook of Logic in Computer
Science, Oxford University Press, S. Abramsky, D. Gabbay and T. S. E. Maibaum
(eds.), 1992.

6. H. P. Barendregt, M. Coppo and M. Dezani-Ciancaglini, A filter lambda model and
the completeness of type assignment. Journal of Symbolic Logic, 48(4):931–940,
1983.

7. S. Berghofer and C. Urban, A Head-to-Head Comparison of de Bruijn Indices and
Names. LFMTP’06, 46–59, 2006.

8. H. B. Curry and R. Feys, Combinatory Logic, volume 1. North Holland,1958.
9. L. M. M. Damas and R. Milner, Principal Type Schemes for Functional programs,

Conference Record of the Ninth Annual ACM Symposium on Principles of Pro-
gramming Languages, 1982.

10. M. Fernández, M. J. Gabbay and I. Mackie, Nominal Rewriting Systems, ACM
Symposium on Principles and Practice of Declarative Programming (PPDP’04),
ACM Press, 2004.

11. M. Fernández and M. J. Gabbay, Nominal Rewriting with Name Generation: Ab-
straction vs. Locality, ACM Symposium on Principles and Practice of Declarative
Programming (PPDP’05), ACM Press, 2005.

12. M. Fernández and M. J. Gabbay, Nominal Rewriting, Information and Computa-
tion, to appear, available from http://dx.doi.org/10.1016/j.ic.2006.12.002.

13. M. J. Gabbay and A. M. Pitts, A New Approach to Abstract Syntax with Variable
Binding. Formal Aspects of Computing, vol. 13, pp. 341–363, 2002.

14. M. J. Gabbay. A Theory of Inductive Definitions with Alpha-Equivalence. PhD
Thesis, Cambridge University, 2000.

15. J-Y. Girard, The System F of Variable Types, Fifteen Years Later, Theoretical
Computer Science, 45, 1986.

16. J. Gosling, B. Joy, and G. Steele. The Java Language Specification. Addison-
Wesley, Reading, MA, 1996.

17. Z. Khasidashvili, Expression reduction systems, Proceedings of I.Vekua Institute
of Applied Mathematics (Tbisili), vol. 36, 1990, pp. 200–220.

18. J.-W. Klop, V. van Oostrom, and F. van Raamsdonk, Combinatory reduction
systems, introduction and survey, Theoretical Computer Science 121 (1993), 279–
308.

19. R. Mayr and T. Nipkow, Higher-order rewrite systems and their confluence, The-
oretical Computer Science 192 (1998), 3–29.

20. M. R. Shinwell, A. M. Pitts, and Murdoch Gabbay, FreshML: Programming with
binders made simple, ICFP 2003, pp. 263–274.

21. C. Urban, A. M. Pitts, and M. J. Gabbay, Nominal unification, Theoretical Com-
puter Science, 323, pp. 473–497, 2004.

15

