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Abstract

By operations on models we show how to relate completeness with respect to permissive-
nominal models to completeness with respect to nominal models with finite support.
Models with finite support are a special case of permissive-nominal models, so the con-
struction hinges on generating from an instance of the latter, some instance of the former
in which sufficiently many inequalities are preserved between elements. We do this us-
ing an infinite generalisation of nominal atoms-abstraction.

The results are of interest in their own right, but also, we factor the mathematics so as
to maximise the chances that it could be used off-the-shelf for other nominal reasoning
systems too. Models with infinite support can be easier to work with, so it is useful to
have a semi-automatic theorem to transfer results from classes of infinitely-supported
nominal models to the more restricted class of models with finite support.

In conclusion, we consider different permissive-nominal syntaxes and nominal mod-
els and discuss how they relate to the results proved here.
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1. Introduction

Nominal techniques are an approach to variables in syntax and semantics which give
variables denotational reality as names. The semantics underlying nominal techniques
are nominal sets [GP01], which identify variable symbols with names or (for set theorists)
urelemente. We may call names/urelemente atoms and we write the set of all atoms as A.

According to nominal techniques, syntax and semantics both ‘contain’ atoms, in a
sense made formal by a notion of support (see Definition 2.7).
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The original applications of nominal sets and nominal terms [GP01, UPG04] ad-
mitted only finite support (the interested reader can find more applications listed on
[Mul10]).

Permissive-nominal terms and models generalise this by allowing infinite support
(based on a set of finitely representable but still infinite supporting sets called permission
sets). Precise definitions will come later. For the benefit of the reader already familiar
with nominal techniques we give a simple schematic for how this fits together:

nominal sets ↔ nominal terms
⊆ ⊆

permissive-nominal sets ↔ permissive-nominal terms

Both models and syntax seem better-behaved in the permissive case: we avoid the con-
ditional reasoning typical of more traditional finitely-supported nominal techniques.1

This makes it possible to unify the semantic and syntactic notions of α-equivalence and
freshness, to ‘just quotient’ terms by α-equivalence, and to cleanly add universal quan-
tification. Some complex mathematical proofs become dramatically simpler. Precise
examples are cited in the Conclusions of this paper.

So permissive-nominal techniques are arguably nicer to work with, but ‘ordinary’
nominal techniques are arguably more elementary (no infinities to confuse the reader)—
and they are sufficient for many applications.

We indicate subset inclusions in the schematic above because models with finite
support are special cases of models with infinite support, and it has been shown by ar-
guments on syntax how to map from ‘ordinary’ nominal syntax to permissive-nominal
syntax [DGM10, Section 4].

But what about the other way around?
In this paper, we explore models with differently-sized sets of atoms, give construc-

tions to move from ‘larger’ to ‘smaller’ support, and test when these size transforma-
tions can and cannot be internally detected by the logics concerned. The main two
results are Theorems 6.8 and 7.15—these follow from two technical results, Theorem 5.2
and Lemma 5.4.

Because our arguments are based on models, it is fairly easy to apply them to dif-
ferent syntaxes. In this paper we use the two examples studied in previous work by
the author and others: nominal algebra [GM09] (an equality reasoning system whose
term language is nominal terms) and permissive-nominal logic (ditto, for first-order
logic) [DG12]. See also a recent survey paper, which covers both of these in a uniform
presentation [Gab12b].

Structure of the paper
• In Section 2 we briefly introduce permissive-nominal sets, with examples. These

will be our semantic universe in this paper; nominal sets from [GP01] are a special
case.

• In Section 3 we introduce permissive-nominal terms: signatures, terms, α-equivalence,
and their interpretation in permissive-nominal sets. The critical definition is Defi-
nition 3.13, which maps from syntax to semantics.

1For instance, ‘nominal algebra’ uses equations conditional on freshness constraints saying that ‘a is fresh
for X’ [GM09], whereas ‘permissive-nominal algebra’ uses just equations [Gab12b].
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• Section 4 shows how to reduce the size of the support of a interpretation with
‘large’ support, to obtain a interpretation with ‘smaller’ support. This requires
some interesting technical constructions. Notably, we consider atoms-abstraction
by a list of atoms [l]x (Definition 4.3), and a permutative notion of restricting a
permutation π/S (Definition 4.11).

• In Section 5 are three technical commutation results: the common theme is that
reducing the size of the support of a interpretation commutes with the structure
of that interpretation.

• Section 6 proves our first main theorem, that permissive-nominal algebra is com-
plete over finitely-supported interpretations (Theorem 6.8).

• Section 7 introduces a novel notion of ‘medium support’ (Definition 7.4) and proves
our second main theorem, that permissive-nominal logic over interpretations with
medium support has the same validity as over interpretations with finite support
(Theorem 7.15). We discuss what this means in Subsection 7.4.

• Section 8 discusses how the precise design of permission sets and permutations
affects the proofs of this paper. We find that the results are delicate: even quite
small changes can break the proofs (Propositions 8.2 and 8.5).

• We conclude with a technical discussion of our results, related work, and future
work.

2. Permissive-nominal sets

We start with the basic definitions of permission sets, permissive-nominal sets, and
then we give some examples.

2.1. Atoms, permutations, permission sets
Definition 2.1. Write N = {0, 1, 2, 3, . . .} for the natural numbers. and Z = {0, -1, 1, -2, 2, . . .}
for the integers.

Definition 2.2. For each i ∈ N fix a pair of disjoint countably infinite sets of atoms A<

i

and A>

i. Write

A< =
⋃

A<

i, A> =
⋃

A>

i, Ai = A<

i ∪ A>

i, and A = A< ∪ A>.

a, b, c, . . . will range over distinct atoms: we call this the permutative convention.

Definition 2.3. Given a, b ∈ Ai for some i ∈ N write (a b) for the swapping bijection on
atoms mapping a to b, b to a, and any other c ∈ A \ {a, b} to c.

If π is a bijection on atoms define nontriv(π) = {a | π(a) 6= a}.
Write Pfin for the group of bijections (finitely) generated by swappings, and call these

bijections permutations.
Write π◦π′ for the composition of π and π′ (so (π◦π′)(a) = π(π′(a))). Write id for the

identity permutation (so id(a) = a always).

Lemma 2.4. A bijection π on atoms is a permutation if and only if

• a ∈ Ai if and only if π(a) ∈ Ai.
• nontriv(π) = {a | π(a) 6= a} is finite.
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Definition 2.5. If A ⊆ A define the pointwise action by π·A = {π(a) | a ∈ A}.
A permission set S is a set of the form π·A<. S, T will range over permission sets.
The choices made in Definitions 2.3 and 2.5 make Theorems 6.8 and 7.15 work. These

choices are possible within the framework of [Gab12b].

2.2. Permissive-nominal sets
Definition 2.6. A set with a permutation action X is a pair (|X|, ·) of a carrier set |X| and
a group action on the carrier set (Pfin × |X|)→ |X|, written infix as π·x.2

Say A ⊆ A supports x ∈ |X| when for every (finite) permutation π ∈ Pfin, if π(a) = a
for all a ∈ A then π·x = x.

Definition 2.7. A permissive-nominal set is a set with a permutation action such that
every element has a unique least supporting set supp(x) such that supp(x) ⊆ S for
some permission set S. We call this the support of x.
X, Y will range over permissive-nominal sets.

In fact, if x ∈ |X| has some supporting set A ⊆ S, then it has a least one; see e.g.
[DG10, Theorem 4.3].

Definition 2.8. If π is a permutation and A ⊆ A write π|A for the restriction of π to
A. This is the partial function such that π|A(a) = π(a) when a ∈ A, and is undefined
otherwise.

Lemma 2.9. Suppose X is a nominal set. Suppose x ∈ |X| and A ⊆ A supports x.
Then π|A = π′|A implies π·x = π′·x.

Proof. From the definition of support, considering π-1◦π′.

Lemma 2.10. Suppose X is a permissive-nominal set and x ∈ |X|. Then supp(π·x) = π·supp(x).

Proof. By a routine calculation using the group action.

We conclude with a useful condition for checking whether a ∈ supp(x):

Corollary 2.11. Suppose X is a permissive-nominal set and x ∈ |X|. Suppose b 6∈ supp(x).
Then (b a)·x = x if and only if a 6∈ supp(x).

Proof. Suppose b 6∈ supp(x). The right-to-left implication is by the definition of support.
For the left-to-right implication, we prove the contrapositive. Suppose a ∈ supp(x). By
Lemma 2.10 supp((b a)·x) = (b a)·supp(x). By our suppositions, (b a)·supp(x) 6= supp(x).
It follows that (b a)·x 6= x.

2So, id·x = x and π·(π′·x) = (π◦π′)·x for every π and π′ and every x ∈ |X|.
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2.3. Examples
We briefly consider examples of permissive-nominal sets, which will be useful shortly.

Definition 2.12. A the set of atoms can be considered a permissive-nominal set with a
natural permutation action π·a = π(a).

In the case of A only, we will be lax about the distinction between the set, and the
permissive-nominal set with its natural permutation action.

Definition 2.13. Suppose X is a permissive-nominal set and Aν is a set of atoms. Sup-
pose x ∈ |X| and a ∈ Aν . Define atoms-abstraction [a]x and [Aν ]X by:

[a]x = {(a, x)} ∪ {(b, (b a)·x) | b ∈ Aν\supp(x)}
|[Aν ]X| = {[a]x | a ∈ Aν , x ∈ |X|}
π·[a]x = [π(a)]π·x

(Compare Definition 2.13 with Definition 4.3.)

Remark 2.14. In the definition of [a]x in Definition 2.13 recall that by our permutative
convention b 6= a. An equivalent and more compact way of writing this is

[a]x = {(π(a), π·x) | π ∈ fix (supp(x)\{a})}

where fix (A) = {π | ∀a∈A.π(a) = a} [Gab11a, Definition 3.8].

Lemma 2.15. 1. [Aν ]X is a permissive-nominal set.
2. [a]x=[a]x′ if and only if x=x′, for a∈Aν and x∈|X|.
3. [a]x=[a′]x′ if and only if a′ 6∈supp(x) and (a′ a)·x=x′, for a, a′∈Aν and x, x′∈|X|.

Definition 2.16. If Xi are permissive-nominal sets for 1 ≤ i ≤ n then define X1× . . .×Xn
by:

|X1 × . . .× Xn| = |X1| × . . .× |Xn|
π·(x1, . . . , xn) = (π·x1, . . . , π·xn)

Lemma 2.17. • supp(a) = {a}.
• supp([a]x) = supp(x) \ {a}.
• supp((x1, . . . , xn)) =

⋃
{supp(xi) | 1 ≤ i ≤ n}.

Proof. Proofs are as in [GP01] or [Gab11a].

3. Permissive-nominal terms syntax and its interpretation

3.1. Signatures
Definition 3.1. A sort-signature is a tuple (A,B) of name and base sorts A ⊆ N and B.

ν will range over name sorts; τ will range over base sorts.
A sort language is defined by

α ::= ν | τ | (α, . . . , α) | [ν]α.
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Definition 3.2. A term-signature over a sort-signature (A,B) is a tuple
(C,X ,F , ar , pmss) where:

• C is a set of constants.
• X is a set of unknowns.
• F is a set of term-formers.
• ar assigns

– to each constant C ∈ C a base sort τ which we may write sort(C),
– to each unknown X ∈ X a sort α which we write may sort(X), and
– to each f ∈ F a term-former arity (α)τ , where α and τ are in the sort-

language determined by (A,B).

• pmss assigns to each constant a set pmss(C) ⊆ A<.

A (nominal terms) signature Σ is then a tuple (A,B, C,X ,F , ar , pmss).

We may write ((α1, . . . , αn))τ just as (α1, . . . , αn)τ .

3.2. Terms
Definition 3.3. For each signature Σ = (A,B, C,X ,F , ar , pmss), define terms over Σ by:

(a ∈ Aν , ν ∈ A)

a : ν

(sort(C) = τ)

π·C : τ

(sort(X) = α)

π·X : α

r : α (ar(f) = (α)τ)

f(r) : τ

r1 : α1 . . . rn : αn

(r1, . . . , rn) : (α1, . . . , αn)

r : α (a ∈ Aν , ν ∈ A)

[a]r : [ν]α

We may write f((r1, . . . , rn)) as f(r1, . . . , rn).

Definition 3.4. Define free atoms and the permutation action, and free variables on
terms r as follows:

fa(a) = {a} fa(f(r)) = fa(r)
fa(π·C) = π·pmss(C) fa((r1, . . . , rn)) =

⋃
1≤i≤n fa(ri)

fa(π·X) = π·A< fa([a]r) = fa(r)\{a}

π·a = π(a) π·f(r) = f(π·r)
π·(π′·C) = (π◦π′)·C π·(r1, . . . , rn) = (π·r1, . . . , π·rn)
π·(π′·X) = (π◦π′)·X π·[a]r = [π(a)]π·r

fv(a) = ∅ fv(f(r)) = fv(r)
fv(π·C) = ∅ fv((r1, . . . , rn)) =

⋃
1≤i≤n fv(ri)

fv(π·X) = {X} fv([a]r) = fv(r)

Remark 3.5. In Definition 3.4 we in effect give every unknown permission set A< (so
that fa(π·X) = π·A<). We obtain the effect of an unknown with permission set π·A<

just by writing π·X . This simplified design makes Proposition 5.6 easier to express. It
corresponds roughly to [Gab12b, Example 3.1.7(2)].
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Lemma 3.6. fa(π·r) = π·fa(r).

Lemma 3.7. If π(a) = π′(a) for all a ∈ fa(r) then π·r = π′·r.

3.3. α-equivalence
Definition 3.8. A congruence is an equivalence relation R such that if r R s then f(r) R
f(s) and (t1, . . . , r, . . . , tn) R (t1, . . . , s, . . . , tn) and [a]r R [a]s.

α-equivalence is then the least congruence such that if a, b 6∈ fa(r) then (b a)·r =α r.3

We do not quotient terms by α-equivalence. The syntax [a]r is a formal pair of a and
r. So for example, [a]X and [b](b a)·X for b 6∈ A< are different concrete terms.

In fact, we never use α-equivalence =α directly in this paper (it would be needed if
we proved soundness and completeness, but these proofs are in other papers and are not
included here). However =α lurks in the background, hard-wired into the denotation:
it can be proved that if r =α s then r and s will always denote the same element in
Definition 3.13.

3.4. Interpretation of signatures and terms
Definition 3.9. Suppose X and Y are permissive-nominal sets and F ∈ |X| → |Y| is a
function. Call F equivariant when F (π·x) = π·F (x) for all permutations π ∈ Pfin and
x ∈ |X|.
Definition 3.10. Suppose (A,B) is a sort-signature (Definition 3.1).

A interpretation I for (A,B) consists of an assignment of a permissive-nominal set
JαKI to each sort α in (A,B), along with equivariant maps

• for each ν ∈ A an equivariant and injective map Aν → JνKI which we write aI ,
• for each ν ∈ A and α an equivariant and injective map [Aν ]JαKI → J[ν]αKI

which we write [a]I x, and
• for each αi for 1 ≤ i ≤ n an equivariant and injective map ΠiJαiKI →

J(α1, . . . , αn)KI which we write (x1, . . . , xn)I .

Definition 3.11. Suppose Σ = (A,B, C,F , ar , pmss) is a signature (Definition 3.2).

A (Σ-)interpretation I for Σ, or Σ-algebra, consists of the following data:

• An interpretation for the sort-signature (A,B) (Definition 3.10).
• For every f ∈ F with ar(f) = (α)τ an equivariant function fI from JαKI to JτKI .
• An assignment of a CI ∈ Jsort(C)KI to C ∈ C, such that supp(CI ) ⊆ pmss(C).

Definition 3.12. Suppose I is a Σ-algebra. A valuation ς to I is an equivariant function
on unknowns X such that for each unknown X , ς(X) ∈ Jsort(X)KI .

ς will range over valuations.

3This characterisation, which follows [GM07] (see Lemma 3.2 and the discussion preceding it in [GM07])
captures in slightly abstract form three more syntax-directed rules: b 6∈ fa(r) then [b](b a)·r =α [a]r, and if
π|A< = π′|A< then π·X =α π′·X , and if π|pmss(C) = π′|pmss(C) then π·C =α π′·C.
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Definition 3.13. Suppose I is a Σ-algebra. Suppose ς is a valuation to I .
Extend I to an interpretation on terms JrKI

ς (where of course r is a term in the
signature Σ) by:

JaKI
ς = aI Jf(r)KI

ς = fI (JrKI
ς )

JCKI
ς = CI J(r1, . . . , rn)KI

ς = (Jr1KI
ς , . . . , JrnKI

ς )I

Jπ·XKI
ς = π·ς(X) J[a]rKI

ς = [a]I JrKI
ς

Lemmas 3.14 to 3.17 are proved by routine inductions:

Lemma 3.14. If r : α then JrKI
ς ∈ JαKI .

Lemma 3.15. If ς(X) = ς ′(X) for every X ∈ fv(r) then JrKI
ς = JrKI

ς ′ .

Lemma 3.16. π·JrKI
ς = Jπ·rKI

ς .

Lemma 3.17. supp(JrKI
ς ) ⊆ fa(r).

Looking ahead, later on in Section 6, we use interpretations to define a notion of
validity with respect to a model or a collection of models, written H � r = s and
T � r = s.

4. Reducing support of an interpretation

In this section we show how, given an interpretation H , to build an interpretation
[m]H with ‘smaller’ support.

[m]H will have ‘almost the same structure’ as H . If two terms have a distinct de-
notation in H then their interpretation in [m]H is also distinct (Proposition 6.3, which
is essentially Theorem 5.2 combined with Lemma 4.5).

As we shall see in Section 6, this result can be leveraged to proofs of completeness
with respect to interpretations with finite support, assuming completeness with respect
to all interpretations.

The idea of the construction is simple: in Definition 4.3 we take H and abstract all
but finitely many atoms in its elements—in Definition 4.15 we show how to combine
this with the interpretation of the term-formers of H .

One way to think of this, is that we replace atoms by numerical indexes (where a is
identified with its position in the infinite list of abstractions which we impose). We can
think of [m]H as a version of H with abstract de Bruijn indexes, where we recall that de
Bruijn indexes are a method of representing object-level variables as numerical indexes
[dB72] typically applied concretely to formal syntax rather than to models. More on this
in the Conclusions.

4.1. Abstraction by atoms and by infinite lists of distinct atoms: [a]x and [l]x

Definition 4.1. Choose a fixed but arbitrary enumeration a-1, a-2, a-3, . . . of some subset
of A<—since atoms are countable, this can be done. Write this enumeration as a list,
l∗ = [a-1, a-2, a-3, . . .].4

4We use negative indexes because we wrote A< with a <. Of course this does not matter, but it does allow
the diagram in Section 8 to make geometric sense.
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Define a permissive-nominal set L (parameterised by l∗) by:

π·l∗ = [π(a-1), π(a-2), π(a-3), . . .]
|L| = {π·l∗ | all π}

l will range over elements of |L|.
It is very easy to check that L is indeed a permissive-nominal set, and that supp(l) is

equal to the atoms in l.
We will be most interested in the cases of Definition 4.1 when l∗ enumerates all of

A< (Section 6) and when l∗ enumerates ‘half’ of A< (Section 7). However, nothing in the
mathematics below will depend on this.

Definition 4.2. If A ⊆ A define fix (A) by:

fix (A) = {π | ∀a∈A.π(a) = a}

Definition 4.3. Suppose X is a permissive-nominal set and x ∈ |X|. Suppose l ∈ |L|.
Define [l]x and [L]X as follows:

[l]x = {(π·l, π·x) | π ∈ fix (supp(x)\supp(l))}
|[L]X| = {[l]x | x ∈ |X|, l ∈ |L|}
π·[l]x = [π·l]π·x

Remark 4.4. [l]x and [L]X mirror [a]x and [A]X from Definition 2.13, and have broadly
similar properties. The idea of abstracting over infinitely many atoms was investigated
in [Gab07] (see equation (2) in Subsection 2.1).

Lemma 4.5. Suppose X is a permissive-nominal set and x, y ∈ |X|. Suppose l ∈ |L|.
Then [l]x = [l]y if and only if x = y.

Proof. Clearly if x = y then [l]x = [l]y. Suppose [l]x = [l]y. By construction (l, x) ∈ [l]x,
so also (l, x) ∈ [l]y. It follows that there exists π such that π·l = l and π·y = x, and
π ∈ fix (supp(y) \ supp(l)). From π·l = l follows that π ∈ fix (supp(l)). It follows that
π ∈ fix (supp(y)) and so by Lemma 2.9 that π·y = y.

Lemma 4.6. Suppose X is a permissive-nominal set and x ∈ |X|. Suppose l ∈ |L|.
Then supp([l]x) = supp(x)\supp(l).

Proof. By properties of the group action if π ∈ fix (supp(x)\supp(l)) then π·[l]x = [π·l]π·x.
Now suppose a ∈ supp(x)\supp(l) and choose any b fresh (so b 6∈ supp(x)∪ supp(l)).

It is easy to use Lemma 2.10 to verify that every (l′, x′) ∈ [l]x satisfies a ∈ supp(x′)
whereas every (l′, x′) ∈ (b a)·[l]x satisfies a 6∈ supp(x′). It follows that (b a)·[l]x 6= [l]x
and so by Corollary 2.11 a ∈ supp([l]x).

Corollary 4.7. [L]X from Definition 4.3 is a permissive-nominal set.

Proof. That it is a set with a permutation action is clear. That every element has a sup-
porting permission set follows from Lemma 4.6.
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Lemma 4.8. Suppose X is a permissive-nominal set. Suppose x̂ ∈ |[L]X| and l ∈ |L| is such
that supp(x̂) ∩ supp(l) = ∅. Then there exists a unique element, write it x̂@l ∈ |X|, such that
x̂ = [l](x̂@l).

Proof. By Lemma 4.5 x̂@l is unique if it exists.
Suppose supp(l) ∩ supp(x̂) = ∅. By construction (Definition 4.3) x̂ = [l′]x′ for some

l′ ∈ L and x′ ∈ |X|. By construction (Definition 4.1) l′ = π·l for some π.5 It is also a
fact that since supp(l) ∩ supp(x̂) = ∅ and (by Lemma 4.6) supp(l′) ∩ supp(x̂) = ∅, we
can suppose without loss of generality that nontriv(π) ∩ supp(x̂) = ∅. It follows that
x̂ = [l]π-1·x′ and so x̂@l exists and is equal to π-1·x′.

Lemma 4.9. Suppose y1, . . . , yn ∈ |[L]X|. Then for any l such that supp(l)∩
⋃

supp(yi) = ∅,
there exist x1, . . . , xn ∈ |X| such that yi = [l]xi for 1 ≤ i ≤ n.

Proof. We use Lemma 4.8 and take xi = yi@l.

4.2. Restricting permutations π/S
Intuitively, π/S (Definition 4.11) is the ‘smallest’ permutation to agree with π on S.

π/S is ‘trying’ to be π|S (Definition 2.8) but π/S is a total function and furthermore is a
permutation. The main result is Theorem 4.14, and we use π/S in Theorem 5.2.

As nominal techniques demonstrate, permutations are an attractive way to handle
name-binding. Think of π/S as a version of π|S that we can use if we want to stay in the
world of permutations.

Example 4.10. Suppose π = (a b c d e)(f g) (so π maps a to b to c to d to e to a, and f to
g to f ). Then:

π/{a} = (a b e) π/{a, b} = (a b c e)
π/{a, c} = (a b c d e) π/{a, f} = (a b e)(f g)

Suppose π = (a b c d e f). Then

π/{b, e} = (a b c)(d e f) π/{b} = (a b c)
π/{b, e, d} = (a b c d e f) π/{a, d} = (a b f)(c d e)

Recall the definitions of nontriv(π) and π from Definition 2.3.

Definition 4.11. Represent permutations π as cycles; so we write π as a finite set of finite
cycles indexed by i ∈ I where cycle number i has length αi > 1:

π = Πi∈I(ai1 ai2 . . . aiαi)

Define π/S as that permutation obtained as follows:

• Delete from the cycle representation of π above any atom a such that
{a, π(a), π-1(a)} ∩ S = ∅. That is, if there is any part of a cycle of the form
‘a1 a2 a3’ where a1 6∈ S, a2 6∈ S, and a3 6∈ S, then we replace it with ‘a1 a3’.
Repeat, until we cannot proceed.

• If there is any part of a cycle of the form ‘a1 a2 a3 a4’ where a1 ∈ S and
a4 ∈ S but a2 6∈ S and a3 6∈ S, break the cycle into two subcycles as follows:
‘a1 a2)(a3 a4’.

5This is the crux of the proof: L is composed of a single orbit under the permutation action.
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In words:

π/S is obtained from π by eliding sequences of three or more consecutive
atoms not in S, and then by splitting cycles at any two consecutive atoms
not in S.

Lemma 4.12. π/S is well-defined.

Proof. At each step the size of nontriv reduces, so the rewrite system is terminating. It
is not hard to check that rewrites are locally confluent. The result follows by Newman’s
Lemma [New42].

Definition 4.13. Define π′ ≤S π when:

• π′|S = π|S
• (π′)-1|S = π-1|S
• For every cycle with atoms C ′ in π′, there is a cycle with atoms C in π such that
C ′ ⊆ C.

It is easy to verify that ≤S is a transitive reflexive relation. ≤S is not antisymmetric:
if π = (a b c) and π′ = (a c b) and S = ∅ then π ≤S π′ and π′ ≤S π yet π 6= π′.
Theorem 4.14. 1. π/S is the unique ≤S-least permutation beneath π.

2. As a corollary, (π/S)|S = π|S and if π|S = π′|S and π-1|S = (π′)-1|S then π/S = π′/S.

Proof. By construction π/S contains only those atoms, in the smallest possible cycles,
necessary to agree with π and π-1 on S.

4.3. Making support smaller
Given an interpretation H and a list of atoms m, we are interested in ‘subtracting’

m from the support of H , in some sense. The main definition is Definition 4.15, which
builds an interpretation with smaller support out of an interpretation. For the cases we
care about, ‘smaller support’ will mean finite support; this will come later in Lemmas 6.4
and 7.10, which are then used in Theorems 6.8 and Theorem 7.15 respectively. Here, we
give the relevant construction.

Definition 4.15. Given a signature Σ, a Σ-interpretation H , and a list m ∈ |L| construct
a Σ-interpretation [m]H as follows:

JαK[m]H = {[l]x | l ∈ |L|, x ∈ JαKH }

a[m]H = [l](aH ) (supp(l) 63 a) f[m]H ([l]x) = [l]fH (x)
([l]x1, . . . , [l]xn)[m]H = [l](x1, . . . , xn)H [a][m]H ([l]x) = [l]([a]H x)

C[m]H = [m]CH

Remark 4.16. A couple of comments on Definition 4.15:
The index m of [m]H is only used to interpret constants C. We have to choose some

list of atoms to abstract—if our language did not admit non-equivariant constants, as
was the case for the original Urban-Pitts-Gabbay syntax from [UPG04] or its permissive
variant from e.g. [DGM10], then we could just write [L]H .

In the case of tuples, we know we can write every element in the form [l]xi for
1 ≤ i ≤ n for some xi, by Lemma 4.9.

12



Proposition 4.17. [m]H from Definition 4.15 is an interpretation.

Proof. It is routine to check that every condition in Definitions 3.10 and 3.11 is satisfied.

The next step is to build valuations to [m]H . This is Definition 4.18 and Proposi-
tion 4.19.

Definition 4.18. Suppose ς is a valuation to H and l ∈ |L|. Define [l]ς by:

([l]ς)(X) = [l](ς(X))

Proposition 4.19. If ς is a valuation to H then [l]ς is a valuation to [m]H .

Proof. Consider an unknown X . By assumption ς(X) ∈ Jsort(X)KH and supp(ς(X)) ⊆
A<. By construction in Definitions 2.5 and 4.3, A< \ supp(l) is finite so by Lemma 4.6,
supp([l]ς(X)) is finite. The result follows.

5. Three commutation results

Theorem 5.2, Lemma 5.4, and Proposition 5.6 are three commutation results. In Sec-
tions 6 and 7 we will use these as the technical ‘engine’ behind main theorems such as
Theorems 6.8 and 7.15.

5.1. Atoms of a term
First, we need a technical tool atoms(r). We need this to express the side-condition

atoms(r)∩supp(l) = ∅ in Theorem 5.2, and the side-condition atoms(r)∩nontriv(π) = ∅
in Proposition 5.6. Without these side-condition, the results would not hold.

Definition 5.1. Define atoms(r) inductively by:

atoms(a) = {a} atoms(f(r)) = atoms(r)
atoms(π·C) = nontriv(π/pmss(C)) atoms((r1, . . . , rn)) =

⋃
atoms(ri)

atoms(π·X) = nontriv(π/A<) atoms([a]r) = atoms(r) ∪ {a}

atoms(r) collects the atoms ‘explicit’ in r. Contrast this with ‘free atoms of’ fa(r)
from Definition 3.4 which collects the atoms ‘potentially’ in r. For instance, fa(X) = A<

and is infinite, but atoms(X) = ∅. This is because X mentions no atoms explicitly, but
intuitively it could be instantiated for any term with atoms in A<.

5.2. First commutation result
Recall from Definition 4.1 the construction of L, parameterised over some l∗.

Theorem 5.2. Suppose l ∈ |L| and atoms(r) ∩ supp(l) = ∅. Then JrK[l]H

[l]ς = [l]JrKH
ς .

Proof. By induction on r:

• The case a. We reason as follows:
13



JaK[l]H

[l]ς = [l]aH Defs 3.13, 4.15, a 6∈ supp(l)

= [l]JaKH
ς Definition 3.13

We know a 6∈ supp(l) because we assumed atoms(r)∩supp(l) = ∅, and atoms(a) =
{a}.

• The case π·X . We reason as follows:

Jπ·XK[l]H

[l]ς = π·[l]ς(X) Definition 3.13
= (π/A<)·[l]ς(X) Lems 2.9 & 4.6, Thm 4.14
= [l](π/A<)·ς(X) Fact
= [l]π·ς(X) Lems 2.9 & 4.6, Thm 4.14
= [l]Jπ·XKH

ς Definition 3.13

The fact above follows since we assumed atoms(π·X) ∩ supp(l) = ∅.

• The case [a]r, where a 6∈ supp(l). We reason as follows:

J[a]rK[l]H

[l]ς = [a][l]H JrK[l]H

[l]ς Definition 3.13
= [a][l]H [l]JrKH

ς ind. hyp.
= [l]([a]H JrKH

ς ) Definition 4.15
= [l]J[a]rKH

ς Definition 3.13

• The case π·C. We reason as follows:

Jπ·CK[l]H

[l]ς = π·[l]CH Defs 3.13 & 4.15
= (π/pmss(C))·[l]CH Lems 2.9 & 4.6, Thm 4.14
= [l](π/pmss(C))·CH Fact
= [l]π·CH Lems 2.9 & 4.6, Thm 4.14
= [l]Jπ·CKH

ς Definition 3.13

The fact above follows since we assumed atoms(π·C) ∩ supp(l) = ∅.

• The case (r1, . . . , rn). We reason as follows:

J(r1, . . . , rn)K[l]H

[l]ς = (Jr1K
[l]H

[l]ς , . . . , JrnK
[l]H

[l]ς )[l]H Definition 3.13
= ([l]Jr1KH

ς , . . . , [l]JrnKH
ς )[l]H ind. hyp.

= [l](Jr1KH
ς , . . . , JrnKH

ς )H Definition 4.15
= [l]J(r1, . . . , rn)KH

ς Definition 3.13

• The case f(r) . . . is routine.

5.3. Second commutation result
Definition 5.3. Given an interpretation H , a valuation ς to H , and some X and x ∈
Jsort(X)KH with supp(x) ⊆ A<, define ς[X := x] by:

ς[X := x](X) = x ς[X := x](Y ) = ς(Y )

Lemma 5.4. Suppose ς , X , and x are as in Definition 5.3. Suppose l ∈ |L|. Then

([l]ς)[X:=[l]x]) = [l](ς[X:=x]).

Proof. By routine calculations.
14



5.4. Third commutation result
Definition 5.5. Suppose ς is a valuation. Suppose π is a permutation such that nontriv(π) ⊆
A<.

Define π◦ς by

(π◦ς)(X) = π·ς(X).

Proposition 5.6. Suppose nontriv(π) ⊆ A< and atoms(r) ∩ nontriv(π) = ∅. Then JrKH
π◦ς =

π·JrKH
ς .

Proof. By a routine induction on r similar to that in Theorem 5.2:

• The case a. By assumption a 6∈ nontriv(π).
• The case π′·X . By assumption nontriv(π)∩nontriv(π′/A<) = ∅. Since nontriv(π) ⊆
A< it is a fact that nontriv(π) ∩ nontriv(π′) = ∅. The result follows.

• The case [a]r, where a 6∈ supp(l). By assumption a 6∈ nontriv(π).
• The case π′·C. As for π′·X .
• The cases (r1, . . . , rn) and f(r) . . . are routine.

6. Nominal algebra completeness relative to interpretations with finite support

We now have everything we need to set up two notions of validity � and �fin (Defi-
nition 6.7) and prove our main result, that they are equal (Theorem 6.8).

Definition 6.1. Suppose r and s are terms in Σ, which is the signature of an interpreta-
tion H .

• Write H , ς � r = s when JrKH
ς = JsKH

ς .
• Write H � r = s when H , ς � r = s for every valuation ς to H .

Notation 6.2. For the rest of this section, we will take l∗ from Definition 4.1 to enumerate
all of A<. We write the L so generated by Definition 4.1 as L< .

Recall the construction of [m]H from Definition 4.15.

Proposition 6.3. Suppose r and s are terms in Σ, which is the signature of an interpretation
H . Suppose m ∈ |L< |. Then:

1. If H 6� r = s then [m]H 6� r = s.
2. If H � r = s then [m]H � r = s.

Proof. For the first part, suppose H 6� r = s. So there exists a valuation ς to H such
that JrKH

ς 6= JsKH
ς . Choose some l such that supp(l)∩ (atoms(r)∪ atoms(s)) = ∅. We can

do this, because atoms(r) and atoms(s) are finite. By Theorem 5.2 JrK[m]H

[l]ς = [l]JrKH
ς and

JsK[m]H

[l]ς = [l]JsKH
ς . By Lemma 4.5 [l]JrKH

ς 6= [l]JsKH
ς . It follows that JrK[m]H

[l]ς 6= JsK[m]H

[l]ς .
For the second part, suppose that H � r = s and suppose ς ′ is a valuation to [m]H .

Choose some l ∈ |L< | such that

supp(l) ∩
(

atoms(r) ∪ atoms(s) ∪
⋃
{supp(ς ′(X)) | X ∈ fv(r) ∪ fv(s)}

)
= ∅.

15



We can do this since all the sets on the right-hand side of ∩ are finite.
Using Lemmas 4.9 and 3.15 there exists a valuation ς to H such that JrK[m]H

ς ′ = JrK[m]H

[l]ς

and JsK[m]H

ς ′ = JsK[m]H

[l]ς . We now reason using Theorem 5.2 and Lemma 4.5, as in the first
part.

The model [m]H is composed of ordinary—i.e. finitely-supported—nominal sets,
in the sense of [GP01]:

Lemma 6.4. Every [l]x ∈ JαK[m]H has finite support.

Proof. It suffices to observe Lemma 4.6 and note that by assumption supp(x) is contained
in a permission set, and by assumption in Notation 6.2 supp(l) is a permission set, and
by construction permission sets differ finitely from one another.

Definition 6.5 is standard, e.g. from [GM09] (nominal) or [Gab12b] (permissive-
nominal):

Definition 6.5. A (permissive-)nominal algebra theory T = (Σ,Ax ) is a pair of a signa-
ture Σ and a set of equality axioms Ax . (So elements of Ax are pairs r = s.)

Suppose H is a Σ-interpretation (Definition 3.11). Write H � T to mean that for
every valuation ς to H and every (r = s) ∈ Ax , JrKH

ς = JsKH
ς .

Definition 6.6. Suppose Σ is a signature and F is a Σ-interpretation. Say that F has
finite support when for every sort α in Σ and every x ∈ |JαKF |, it is the case that
supp(x) is finite.

Definition 6.7. Suppose T = (Σ,Ax ) is a theory. Then:

• Define T �fin r = s to mean that F � T implies F � r = s, for every Σ-interpretation
F with finite support.

• Define T � r = s to mean that H � T implies H � r = s, for every Σ-interpretation
H .

Theorem 6.8. Suppose that T is a Σ-theory.
Then T �fin r = s if and only if T � r = s.

Proof. The right-to-left implication is immediate since an interpretation with finite sup-
port is an interpretation.

For the left-to-right implication we prove the contrapositive. Suppose T 6� r = s.
So there is an interpretation H such that H � T and a valuation ς to H such that
JrKH

ς 6= JsKH
ς .

Choose any m ∈ |L< |. By part 2 of Proposition 6.3 [m]H � T. By part 1 of Proposi-
tion 6.3 [m]H 6� r = s, and by Lemma 6.4 we are done.

Permissive-nominal algebra is sound and complete with respect to permissive-nominal
models (the proof is by a Herbrand construction; see [Gab12b, Subsection 7.5]). So the
relevance of Theorem 6.8 is to give completeness also with respect to interpretations
with finite support.
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7. Permissive-nominal logic

Permissive-nominal logic (PNL) extends signatures with proposition-formers P with
arity α. It is ‘first-order logic over (permissive-)nominal terms’.

Full details can be found in [DG10, DG12] or [Gab12b, Section 9]. Here, we only give
the necessary outline.

7.1. Sketch of permissive-nominal logic
Definition 7.1. PNL propositions are defined by

φ, ψ ::= ⊥ | φ⇒φ | ∀X.φ | P(r)

where we insist that r : α (where α is the arity of P).

Definition 7.2. if X is a nominal set and U ⊆ |X| call U equivariant when x ∈ U ⇔ π·x ∈
U for all x ∈ |X| and all permutations π.6

Definition 7.3 corresponds to e.g. [DG10, Definition 5.11].

Definition 7.3. An interpretation H maps a term to an element of a permissive-nominal
set as in Definition 3.13, and maps each P to an equivariant subset PH ⊆ JαKH .

This extends to propositions φ just as in first-order logic where JφKH
ς is a truth-value

> or ⊥, as follows:

• J⊥KH
ς (the syntax) is equal to ⊥ (the truth-value).

• The PNL of [DG10, DG12, Gab12b] is classical, so Jφ⇒ψKH
ς is interpreted as ‘not

JφKH
ς or JψKH

ς ’.
• JP(r)KH

ς is equal to ‘JrKH
ς is an element of PH ’.

• The only non-obvious case is the universal quantifier, which gets a denotation as
follows:

J∀X.φKH
ς =

∧
{JφKH

ς[X := x] | x ∈ Jsort(X)KH , supp(x) ⊆ A<}

This is non-obvious because the ∀X in ∀X.φ quantifies only over x with support
in A<. More discussion on this in the Conclusions.

7.2. Three notions of validity in denotations
Three distinct notions of validity will interest us. They are parameterised by ‘how

many atoms’ they allow in support. This is Definition 7.6; to express it, we need Defini-
tion 7.4.

Definition 7.4. For each i ∈ N fix some set A<<

i ⊆ A<

i such that A<<

i and A<

i \ A<<

i are both
infinite. Write A<< =

⋃
iA<<

i and:

• Say that x ∈ JαKH has medium support when supp(x) ⊆ π·A<< for some π.
• Say that H has medium support when for every sort α and every x ∈ JαKH , x has

medium support.

6This notion of equivariance coincides with that of Definition 3.9, if we consider U as a function to truth-
values {>,⊥}, such that π·> = > and π·⊥ = ⊥ for all π.
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Remark 7.5. The point of Definition 7.4 is that x with medium support may have infi-
nite support, but this support cannot exhaust the atoms in A<. But did we not see this
already in Definition 2.2 when we split A into A< and A>? Yes, but PNL has a ∀X , so that
now (and unlike was the case in permissive-nominal algebra) we have to worry about
exhausting all the atoms in A< within nested quantifiers. To see this idea made concrete,
consider the proof of Proposition 7.7.

Definition 7.6. • Write � φ to mean that H , ς � φ for every interpretation H and
valuation ς to H .

• Write �<< φ to mean that H , ς �<< φ for every interpretation H with medium
support and valuation ς to H .

• Write �fin φ to mean that F , ς � φ for every interpretation F with finite support
and valuation ς to F .

Proposition 7.7. � φ implies �<< φ. The reverse implication does not necessarily hold.

Proof. The first part is immediate since an interpretation with medium support is also
an interpretation.

For the second part it suffices to provide a counterexample. Suppose a base sort
τ and name sort ν and variables X : τ and Y : ν. Suppose a predicate # : (ν, τ) with
intended meaning ‘is fresh for’/‘is not in the support of’. Consider the formula φ =
∀X.∃Y.Y#X . Then �fin φ and �<< φ, but not � φ; it might be that ς(X) = l where l lists
all atoms in A<, so there exists no atom in A< (by Definition 7.3, Y ranges over atoms in
A<) that is not in supp(l).

The rest of this section is devoted to proving that �<< φ if and only if �fin φ (Theo-
rem 7.15). We discuss the relevance of these results in Subsection 7.4.

7.3. Finite support denotations from medium support denotations
Notation 7.8. For the rest of this section, we will take l∗ from Definition 4.1 to enumerate
A<<. We write the L generated by Definition 4.1 as L<<.

Definition 7.9. Given a PNL interpretation H with medium support and a listm ∈ |L<<|,
generate a PNL interpretation [m]H by extending Definition 4.15 such that

P[m]H = {[l]x | x ∈ PH , l ∈ |L<<|}.

Where does the m in [m]H appear on the right-hand side here? It does not: m is
only used to reduce the support of the interpretations of constant symbols; see Defi-
nition 4.15. PNL only allows equivariant (Definition 7.2) interpretation of proposition-
formers. If we considered a flavour of PNL in which proposition-formers could receive
non-equivariant interpretation (so that in the syntax we would allow terms of the form
(π·P)(r)), then Definition 7.9 would mention m on the right. This makes no difference
to expressivity since we can emulate the effect of a non-equivariant proposition-former
using P(C, r). Our design follows the path of the simplest definitions and proofs.

Lemma 7.10. Every [l]x ∈ JαK[m]H has finite support.

Proof. As for Lemma 6.4, but now using Notation 7.8 and our assumption that x ∈ JαKH

has medium support.
18



Definition 7.11. Extend atoms(r) (Definition 5.1) to propositions atoms(φ) inductively
by:

atoms(⊥) = ∅ atoms(φ⇒ψ) = atoms(φ)∪atoms(ψ)
atoms(P(r)) = atoms(r) atoms(∀X.φ) = atoms(φ)

Lemma 7.12 extends Proposition 5.6 to predicates, and is needed for Proposition 7.14.
Recall from Definition 5.5 the definition of π◦ς :
Lemma 7.12. Suppose ς is a valuation to an interpretation H . Suppose φ is a predicate and π
a permutation such that nontriv(π) ⊆ A< and nontriv(π) ∩ atoms(φ) = ∅.

Then JφKH
π◦ς = JφKH

ς .

Proof. By a routine induction on φ. We consider two cases:

• The case of P(r). By definition JP(r)KH
π◦ς = > if and only if JrKH

π◦ς ∈ PH . By Proposi-
tion 5.6 JrKH

π◦ς = π·JrKH
ς . By assumption PH is equivariant (Definition 7.2).

• The case of ∀X.φ.

J∀X.φKH
π◦ς =

∧
{JφKH

(π◦ς)[X:=x] | x ∈ Jsort(X)KH , supp(x) ⊆ A<}
=
∧
{JφKH

(π◦ς)[X:=π·x] | x ∈ Jsort(X)KH , supp(x) ⊆ A<}
=
∧
{JφKH

π◦(ς[X:=x]) | x ∈ Jsort(X)KH , supp(x) ⊆ A<}
=
∧
{JφKH

ς[X:=x] | x ∈ Jsort(X)KH , supp(x) ⊆ A<}
= J∀X.φKH

ς

Lemma 7.13. fa(φ) ⊆ A< ∪ atoms(φ) and fa(r) ⊆ A< ∪ atoms(r).

Proof. By a routine induction on Definitions 5.1 and 7.11 and by a routine calculation
using part 2 of Theorem 4.14 for the base case of π·X .

Proposition 7.14. Suppose φ is a proposition, H is a PNL interpretation with medium support
(Definition 7.4), and ς is a valuation to H . Suppose A ⊆ A is a finite set of atoms such that
atoms(φ) ⊆ A, and suppose l ∈ |L<<| and supp(l) ∩A = ∅.

Then H , ς � φ if and only if [l]H , [l]ς � φ.

Proof. By induction on φ. We consider a selection of cases:

• The case of P(r). We consider the two implications separately.

(⇐) Suppose [l]H , [l]ς � P(r). This means that JrK[l]H

[l]ς ∈ P[l]H . By Theorem 5.2
JrK[l]H

[l]ς = [l]JrKH
ς (note that atoms(P(r)) = atoms(r)), and so by Definitions 7.9

and 4.3 π′·JrKH
ς ∈ PH for some π′ ∈ fix (supp(JrKH

ς ) \ supp(l)). By equivariance of
PH it immediately follows that JrKH

ς ∈ PH and so that H , ς � P(r).

(⇒) Now suppose H , ς � P(r), so that by definition JrKH
ς ∈ JPKH . As in the

previous paragraph by Theorem 5.2 [l]JrKH
ς = JrK[l]H

[l]ς . It follows by Definition 7.11
that JrK[l]H

[l]ς ∈ P[l]H .
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• The case of ∀X.φ. Again we consider the two implications separately:

(⇐) Suppose H , ς 6� ∀X.φ. Unpacking definitions, this means there is some
x ∈ |Jsort(X)KH |with supp(x) ⊆ A< and H , ς[X:=x] 6� φ.

By inductive hypothesis [l]H , [l](ς[X:=x]) 6� φ. We can use Lemma 5.4 to write
[l](ς[X:=x]) as ([l]ς)[X:=[l]x]. Furthermore, by assumption supp(x) ⊆ A< so by
Lemma 4.6 supp([l]x) ⊆ A< \ supp(l) ⊆ A<. It follows by Definition 7.3 that
[l]H , [l]ς 6� ∀X.φ.

(⇒) Suppose [l]H , [l]ς 6� ∀X.φ. Unpacking Definition 7.3 this means there are
x′ ∈ |Jsort(X)KH | and l′ ∈ |L<<| such that

supp([l′]x′) ⊆ A< and [l]H , ([l]ς)[X:=[l′]x′] 6� φ.

If supp([l′]x′) ∩ supp(l) = ∅ then we may use Lemma 4.8 and write [l′]x′ as
[l](([l′]x′)@l) and deduce by inductive hypothesis that H , ς 6� φ.

Otherwise, we choose some π′ that maps supp([l′]x′)∩supp(l) 6= ∅ to a set of atoms
in A< that is disjoint from supp(l) ∪ atoms(φ), and π′ fixes all other atoms. This is
possible because by construction supp([l′]x′) is finite and A< \ (supp(l)∪atoms(φ))
is infinite (recall that A< \ A<< is assumed infinite). Using Lemma 7.12

[l]H , ([l]ς)[X:=π′·([l′]x′)] 6� φ.

We now proceed as in the case where supp([l′]x′) ∩ supp(l) = ∅.

• The case of φ⇒ψ. Suppose H , ς � φ⇒ψ. This means that H , ς 6� φ or H , ς � ψ.
By inductive hypothesis this is if and only if [l]H , [l]ς 6� φ or [l]H , [l]ς � ψ. In
either case [l]H , [l]ς � φ⇒ψ, and we are done.

Theorem 7.15. �fin φ if and only if �<< φ.

Proof. The right-to-left implication is immediate, just as in Theorem 6.8. The left-to-right
implication follows using Proposition 7.14 and Lemma 7.10.

7.4. Relevance of the theorem
It will help to establish some new terminology:

Notation 7.16. Suppose X is a set with a permutation action and x ∈ |X|.

• Say the element x ∈ |X| is finite-namespace when supp(x) is finite. Similarly say
X is finite-namespace when every x ∈ |X| has finite support.
This is synonymous with X being a nominal set in the sense of [GP01]; cf. also
Definition 6.6.

• Say x is A<<-namespace when supp(x) ⊆ π·A<< for some π. Similarly say that X is
A<<-namespace when every x ∈ |X| is A<<-namespace.
This is synonymous with medium support from Definition 7.4.

• Say x is A<-namespace when supp(x) ⊆ π·A< for some π. Similarly say that X is
A<-namespace when every x ∈ |X| is A<<-namespace.
This is synonymous with X being a permissive-nominal set in the sense of Defini-
tion 2.7 or [Gab12b].
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Similarly we will call interpretations finite-namespace, A<<-namespace, and A<-namespace
in accordance with the support of their underlying sets.

The relevance of Theorem 7.15 is that a PNL predicate is valid over A<<-namespace
interpretations if and only if it is valid over finite-namespace interpretations.7

The PNL of [DG10, DG12, Gab12b] has a sequent system giving a notion of logical
entailment which is proved sound and complete for �, that is, for the collection of A<-
namespace interpretations. This differs from the validity �<<, which is validity over
A<<-namespace interpretations (those with medium support). This is a more restricted
class of models.

Medium support is a new idea to the theory of PNL. When models are restricted,
more statements become valid (usually). In this case we get a family of theorems, which
is exemplified by Proposition 7.7. It remains to devise a complete proof system for PNL
over medium support.

We would not speculate on whether large or medium support is ‘better’; we suspect
that the situation is similar to the intuitionistic/classical question of whether to allow
double negation elimination: sometimes we may want it and sometimes we may not.

The value of Theorem 7.15 is that it tells us that A<< is as small as we need go in
exploring validity: restricting models of PNL further to smaller namespaces, and in
particular to finite support, will not give us any extra valid propositions. As we shall
argue in the Conclusions, working with sets with infinite support can be easier than
working with sets with finite support, so this matters.

And note the obvious: once we carried out our constructions and applied them to
permissive-nominal algebra, we could re-use them for permissive-nominal logic with a
relatively slight effort of two pages of mathematics in Subsection 7.3.

8. More permission sets, more permutations

In Definition 2.5 we followed [Gab12b] and took permission sets to be sets of the
form π·A<. This captures a simple assertion language about the atoms permitted in
unknowns. The results in this paper are sensitive to the expressivity of this language: if
we make it slightly more powerful then the results in this paper fail.

8.1. More permission sets
If we follow e.g. [DGM10] and take permission sets to be sets of the form (A< \A)∪B

where A ⊆ A< and B ⊆ A> are finite, then the results in this paper fail.
This genuinely enlarges the set of permission sets (and so makes the assertion lan-

guage which they represent, more expressive). For instance, if b ∈ A> then there is no
finite permutation π such that π·A< = A< ∪ {b}.
Notation 8.1. Write P for the set of all sets of atoms differing finitely from A< as just
described.

7For comparison, nominal logic does not have this property [Pit03]: there are nominal logic predicates that
are valid of all finite-namespace interpretations but not of all A<<-namespace interpretations (and thus also not
valid of all A<-namespace interpretations). Nominal logic, of course, is a first-order theory; an axiomatisation
in first-order logic similar to the axiomatisation of Fraenkel-Mostowski sets from which it is descended. What
makes the languages of this paper different is that they are purpose-built using the dedicated new syntax of
(permissive-)nominal terms.
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Proposition 8.2. There exists a theory T in permissive-nominal algebra with permission sets
from P , and an assertion r′ = s′ in that theory, such that T �fin r

′ = s′ and T 6� r′ = s′ (where
models are permissive-nominal sets with permission sets in P).

Proof. Assume one base type τ and one term former 0 : τ with pmss(0) = ∅. Assume
an axiom X = 0 where fa(X) = A<. Assume an unknown Z with sort(Z) = τ and
fa(Z) = A< ∪ {b}where b ∈ A>. Then:

• T �fin Z = 0.
For suppose F is an interpretation of T with finite support: then for any x ∈ JτKF ,
there is some finite π with supp(π·x) ⊆ A<, hence by our single axiom π·x = 0 and
by equivariance x = π-1·0 = 0, since 0 has empty support.

• However, T 6� Z = 0.
To see this, interpret τ to be the set {π·(A< ∪{b}) | π finite}∪ {∅}, interpret 0 by ∅,
and take ς(Z) = A< ∪ {b}.

Initially we used P ; notably in [DG10, DGM10, DG12]. However, in later papers
such as [Gab12b] we preferred the design of Definition 2.5 because it seemed to make
some proofs easier to express. In the light of the results of this paper we can now better
understand the significance of our design choices: Proposition 8.2 suggests that our
design in Definition 2.5 is mathematically more elementary and somewhat closer to the
design ‘nominal terms + finitely-supported nominal sets’ from the previous literature.
That is, the design of Definition 2.5 and [Gab12b] is the closest ‘permissive’ version of
traditional nominal techniques, and the design of [DG10, DGM10, DG12] is slightly but
measurably more expressive.

8.2. shift-permutations
In the presence of infinite permutations, the results in this paper fail. We sketch the

mathematics involved, starting with a justification of why infinite permutations are an
interesting case to consider.

For simplicity assume a single sort of atom.

Definition 8.3. Suppose a ∈ A< = {a, a-1, a-2, a-3, . . . } and A> = {a1, a2, a3, . . . }.
Assume a bijection δ on atoms mapping A< to A< \ {a} and such that A \ nontriv(π)

is infinite (we can do this because we assumed that A is countable).
We illustrate an example:

Illustration of δ: a-6
��

a-5
��

a-4
��

a-3
��

a-2
��

a-1
��

a
zz

a1 YY a2
xx

a3 YY a4
xx

a5 YY a6

Call δ a shift-permutation.
δ has a measurable and favourable effect on the mathematics and algorithmics of

nominal syntax. For instance:

• δ nontrivially increases the deductive power of ∀X in PNL [DG12, Subsection 2.7].
If fa(X) = A< where a ∈ A< then ∀X.R(X,X) does not entail R((X, a), (X, a)) with-
out δ, but it does entail R((X, a), (X, a)) with δ (for R having an appropriate arity).
This extra power is irrelevant if we only care about finitely-supported models,
which is why the issue has not arisen in previous work.
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• shift-permutations can be used to obtain a particularly concise unification algo-
rithm [Gab12b, Section 4].

For more discussion see [Gab12b, Subsection 3.6].
This extra power is not particularly expensive: we can do what we are used to in

nominal techniques, in the presence of δ. Indeed, the results of [Gab12b] are parame-
terised over a permutation group general enough to admit δ because this was easier than
excluding it. In particular the specific design of the nominal unification algorithm and
HSP result there, are shorter and simpler because of their use of δ.

However, in the presence of δ the results of this paper fail. Proposition 8.5 gives an
example of a signature for which permissive-nominal algebra � (all permissive-nominal
models) is complete, but �fin (models with finite support) are not. In order to state this
result we must ‘upgrade’ the material in this paper with δ.

Definition 8.4. To augment Sections 2 and 3 with a shift permutation δ, we proceed as
follows:

1. In Definition 2.3 permutations are finitely generated by swappings and δ (they
remain finitely representable, but nontriv(π) is now not always finite).
Write Pδ for the group of bijections generated by swappings and δ.

2. In Definition 2.6 assume the permutation action has type (Pδ × |X|) → |X|. So
permissive-nominal sets have an action by swappings and δ.

3. In Definition 2.6 we say that A ⊆ A supports x ∈ |X| when for every permutation
π ∈ Pδ , if π(a) = a for all a ∈ A then π·x = x.8

4. In the examples of Subsection 2.3 extend for the extra permutations in the natural
way. So π·a = π(a) for π ∈ Pδ and π·[a]x = [π(a)]π·x for π ∈ Pδ .

5. In Definition 3.3 extend terms also with the extra permutations. So π·X is a term
for π ∈ Pδ . The permutation action Definition 3.4 extends in the natural way.

6. We extend the notion of equivariance (Definition 3.9) with the extra permutations.
So F is equivariant when F (π·x) = π·F (x) for all permutations π ∈ Pδ and x ∈ |X|.9

Proposition 8.5. There exists a theory T in permissive-nominal algebra with δ, and an assertion
r′ = s′ in that theory, such that T �fin r

′ = s′ and T 6� r′ = s′ (where models are permissive-
nominal sets with δ).

Proof. Assume no term-formers and one base type τ . Assume a ∈ A< and a shift permu-
tation δ bijecting A< with A< \ {a}, as illustrated just after Definition 8.3.

Assume an axiom (b a)·X = X where b 6∈ A<. Then:

• If F is a model of T with finite support then supp(x) = ∅ for every x ∈ JτKF .
For suppose there exists x with supp(x) 6= ∅. By equivariance we may (apply a
permutation to x to) assume without loss of generality that a, b 6∈ supp(x).

8This is a little stronger than we need. We could also retain the condition that π be finite in the definition
of supporting set, so we say that A ⊆ A supports x ∈ |X| when for every finite permutation π ∈ Pfin (so no
δ), if π(a) = a for all a ∈ A then π·x = x. We only ever α-convert by finitely many atoms in this paper, so the
proofs remain unchanged.

What does happen is that we admit models with elements which are fixed by finite permutations, but
perhaps not by δ. For more on this design see [DG12], in particular Remark 3.3.

9We then call the notion of equivariance from Definition 3.9 finite equivariance. It is possible to be equiv-
ariant for finite permutations but not for δ. The proof of Proposition 8.5 will depend on this.
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Now choose some a′ ∈ supp(x) and choose some π mapping supp(x) to a subset of
A< and such that specifically π(a′) = a. By our axiom, (b a)·(π·x) = π·x. It follows
by calculations on permutations that (b a′)·x = x and so by Corollary 2.11 that
a′ 6∈ supp(x), a contradiction.
Thus, T �fin δ·Y = Y .

• T 6� δ·Y = Y . To see this consider the elements xi = {(π◦δi)·A< | π finite}with the
pointwise action, for every i ∈ Z (where Z is the integers; see Definition 2.1).
It is a fact that (b a)·xi = xi, but it is also a fact that δ·xi = xi+1 6= xi. We interpret
τ to be the set {xi | i ∈ Z} and see that (b a)·xi = xi for every i so the axiom
(b a)·X = X is valid, but δ·x0 6= x0 so T 6� δ·X = X .
This observation is exactly the fuzzy support noted in [Gab07], see also Remark 3.3
from [DG12].

Remark 8.6. Where do the proofs fail? Failure occurs in the interaction of atoms(r)
(Definition 5.1) with Theorem 5.2.

The reasonable definition for atoms(δ·X) is nontriv(δ)/A<, which is infinite. This
gives us infinitely many atoms to avoid in order to guarantee atoms(r)∩ supp(l) = ∅ in
Theorem 5.2. Thus, supp([l]JrKH

ς ) need not be finite.
As a corollary we can clarify something that is evident but only semi-formal in previ-

ous work: permissive-nominal terms with δ are strictly more expressive than permissive-
nominal terms without δ, and also strictly more expressive than ‘ordinary’ nominal
terms.

9. Conclusions

We have seen permissive-nominal sets and how, given a permissive-nominal set X,
we can build a corresponding nominal set [L]X from X by applying to each x ∈ |X| an
infinite simultaneous atoms-abstraction abstracting all but finitely many of the atoms in
supp(x). We have used this to translate between interpretations with differently sized
sets of support, and we have used this translation to translate between different notions
of validity for permissive-nominal syntaxes.

It can be easier to work with permissive-nominal models—even dramatically eas-
ier. To see an example, compare the direct completeness proof for nominal algebra
with respect to finitely-supported models in [GM09] (subsections 4.3 and 4.4; over five
pages including a ‘trick’) with the completeness proof for the permissive-nominal al-
gebra used in this paper with respect to permissive-nominal models in [Gab12b] (sub-
section 7.5; under two pages, and the maths is straightforward). Even more extreme,
compare the proof of the Nominal HSPA theorem from [Gab09] (twenty-eight pages)
with the permissive-nominal HSP theorem from [Gab12b] (five pages).10

What this means is that—based on this author’s experience—even if the reader is
interested specifically in finitely-supported models, it might be shorter and cleaner to
prove completeness with respect to some flavour of infinitely-supported permissive-
nominal models first, and then to use this paper off-the-shelf.

10This is unfair. For instance, the five pages do not include setting up the syntax. Still, looking at the maths,
a leap in difference in complexity is clear.
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de Bruijn indexes. The technical construction at the heart of this paper, [L]X from Defi-
nition 4.3, is arguably reminiscent of de Bruijn indexes [dB72]. Given an x ∈ |X| with
infinite support, we form [l]x where supp(x) \ supp(l) is finite. In doing this, we in effect
convert all but finitely many of the atoms in supp(x) into numerical indexes, where a is
identified by the position in l at which it occurs (if any).

Of course this is not a literal replacement in x, since we assume no internal struc-
ture. But it is an abstract de Bruijn indexing in the sense that binding names in order
corresponds to turning them into numerical indexes. An explicit connection is made in
[Gab07, Section 4] as mentioned below.

Infinite sets of atoms in the literature. The notions of infinite support, infinite lists of atoms,
and infinite simultaneous atoms-abstraction were considered by the author in [Gab02,
Gab07].

Translations between nominal abstract syntax, name-carrying syntax, and de Bruijn
syntax were given in [Gab07, Section 4]. The precise definition used in this paper is
different and tailored to our intended application (e.g. we restrict to abstractions such
that supp([l]x) is finite), and of course, we concentrate on things other than abstract
syntax.

The notion of not-necessarily-finite support was also raised in [Pit03], and Cheney
took up the suggestion in [Che06]. The support ideals considered there are not quite the
same as the permission sets considered here (for instance, permission sets in this paper
are never finite, and the emphasis on well-orderings is absent in Cheney’s work), but
the spirit of the maths is similar.

Implicit connection with unknowns. A non-evident connection exists between [l]x and un-
knowns, which this paper has not explored. Elsewhere we explore how a model of
unknowns X is given by infinite well-orderings of permission sets [Gab11b, Gab12a].

One way to view [l]x is as ‘x abstracted by an unknown X’.
Now L from Definition 4.1 is a single permutation orbit under finite permutations of

some list l∗ of atoms. This author calls this a namespace—L is a namespace, that is, a
set of sets of atoms (in order) obtained by permuting finitely many of them at a time.
We go from X to [L]X essentially by abstracting a namespace, and because an unknown
identifies a namespace, this can be read as a (level 1) abstraction of (the atoms in) a level
2 variable.

This paper does not make anything of these connections, but they exist in the back-
ground. At some point, we hope to produce a broader account which will bring the
threads in the various papers together and makes clearer the overall picture. For now,
the results in this paper have independent interest as discussed above.

shift-permutations. We concluded the technical part of this paper in Section 8 by dis-
cussing shift-permutations. These infinite permutations are useful and mathematically
well-behaved, but they mark a point at which permissive-nominal techniques go strictly
beyond the expressivity of nominal techniques, and this is made formal: we saw in Sec-
tion 8 how the results of Section 6 depend on permutations π being finite and when we
include infinite permutations in syntax, the results begin to fail. This is reasonable and
as it should be.

So a lesson we can draw from this paper and from the translation in [DGM10, Sec-
tion 4] is this: permissive-nominal terms with finite permutations are essentially the
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same thing as (but somewhat better-behaved than) ‘ordinary’ nominal terms; permissive-
nominal terms with possibly infinite permutations are different, and they are strictly
more expressive.

Non-equivariance of atoms . One curious aspect of our proofs is that the function atoms
from Definition 5.1, which plays a role in Section 5, is not invariant under α-equivalence.
For instance, atoms([a]X) = {a} and atoms([b](b a)·X) = {b, a} (where a ∈ A< and
b ∈ A>).

It is shown in [Gab11b] and [Gab12b] that valuations ς (Definition 3.12) can be
thought of as (finite-)equivariant maps out of moderated unknowns π·X considered as a
permissive-nominal set.

The non-equivariance of atoms is an artefact of the fact that the syntax of this pa-
per amounts to choosing id·X as a representative of the permutation equivalence class
{π·X | π a permutation}. Permissive-nominal syntax is already non-equivariant, because
for each unknown-up-to-permutations we have chosen a canonical representative X .

None of this matters for the proofs here, because we only care about avoiding cap-
ture with finitely many atoms.

Final words on set theory. The results of this paper are reminiscent of the upwards and
downwards Löwenheim-Skolem theorems, which express that a first-order theory can-
not ‘count’ the cardinality of its infinite models [Hod93]. The construction of this paper
can be read as saying that first-order permissive-nominal syntax with finite permuta-
tions cannot ‘count’ the cardinality of its supporting sets.

We believe it would be fairly easy to strengthen and generalise this result to the
following: first-order nominal syntax cannot ‘count’ the cardinality of the set of atoms or
its supporting sets, so long as these are no smaller than the permutations in that syntax.
Making this formal would require us to be just a little systematic but it should not be
too hard using a free construction—and the syntax should be a natural generalisation
sufficient to subsume permissive-nominal algebra and permissive-nominal logic.

More generally, we can also ask how the group of permutations can be indepen-
dently enlarged or restricted in syntax and in the denotation. For instance, in this paper
we have considered syntax and semantics using the same group of permutations. But
the semantics could allow more permutations than the syntax, e.g. we could allow shift
in the denotation (this is useful to ‘make support smaller’ in some element), but not in
the syntax (so that we might avoid the issues discussed in Subsection 8.2 and specifi-
cally in Remark 8.6). In short, we see this paper as the first of a family of similar results
which may become useful if and when further variations on logics based on nominal
terms, and their models, are developed. We leave these thoughts to future work.
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