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Abstract. We use nominal sets (sets with names and binding) to define a
framework for trace semantics with dynamic allocation of resources.
Using novel constructions in nominal sets, including the technical devices
of positive nominal sets and maximal planes, we define notions of capture-
avoiding composition and name-restriction on sets of traces with names.
We conclude with an extended version of Kleene algebras which sum-
marises in axiomatic form the relevant properties of the constructions.

1 Introduction

Imagine a process evolving; every so often it may communicate with the out-
side world. In particular it may generate a new resource (allocate some mem-
ory; or perhaps create a cryptographic secret; or perhaps create a new channel
name) and communicate that new resource.

Represent resources as atoms (set-theorists can think of urelemente; process-
calculists can think of names). Then a model of the behaviour of our process is a
trace (finite list of actions) that may contain atoms, and a model of the process
is the set of all its possible traces. This is the trace semantics of computation [9],
widely-used both in theory and application (e.g. the SPIN model-checker [17]).

Thus, a model of behaviour for processes with dynamic allocation, is sets
of traces with atoms. But how then to represent dynamic allocation within this
framework? After all, if a program outputs ab there is nothing in the string itself
to tell us whether a, b, both a and b, or neither a nor b, has been ‘created fresh’.

We propose to represent binding using a notion similar to that of nominal
abstract syntax [15]; if e.g. ab is a possible trace of the process then the a in that
trace is considered α-convertible when for all but finitely many a′, a′b is also in
the set of possible traces of the process (note there is no binding primitive on
the trace itself ).

We will develop a model of binding based purely on sets of traces, such that:

– There is an operation νa that takes a behaviour (set of traces) X and creates
another behaviour (also a set of traces) νa.X in which a is α-renameable.

– Union of sets of traces is exactly union of sets.
– There is a notion of capture-avoiding composition ◦ such that (νa.X) ◦

νb.Y = νa.νb.(X ◦Y) if we choose a fresh for Y and b fresh for X.
Thus (νa.ab) ◦ νb.b = νa.νb′.abb′. Note that ab ∈ νa.ab and b ∈ νb.b but abb
is not in their composition, because of capture-avoidance.

Finally we introduce axioms that regulate the behaviour of ν, by suggesting a
notion of ‘nominal’ Kleene algebra [20].
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We believe the constructions in this paper would be more generally appli-
cable, so long as the semantics can be represented as sets and sensible notions
of composition can be defined in some pointwise manner on their elements (in
this paper it is sets of lists and list concatenation; see Definition 5.7).

Technical overview. The meat of this paper is some concrete calculations on
nominal sets. The key technical facts are Theorems 3.14 and 3.16 and Proposi-
tion 4.6. The key definitions are Definitions 3.7, 4.5, and 5.7. The main theorem
is Theorem 6.4.

Nominal sets were developed to represent syntax with binding; see [15] or
a recent survey [13]. In this paper we use nominal sets to interpret sets of traces
with atoms. The notions of names and free/bound names we use are exactly
those from [15]; namely atoms and supporting set/freshness.

To the reader familiar with nominal sets, name-restriction νa.X will be no
surprise; Proposition 4.6 characterises it as a variation of atoms-abstraction [a]x
from [15] (see [13, Definition 3.8 and Lemma 3.13]). Readers familiar with pre-
sheaves will recognise this as a sets-based presentation of δ from e.g. [8] or [21];
see [16,7] for further discussion.

The difference, which is significant, is that X and νa.X are of the same type
(both are sets of traces); our name-restriction is not a monad in the sense of [22],
though it does a similar job. More on this in the Conclusions.

Given that behaviour is modelled as ‘just sets’ and not wrapped up in an
explicit abstraction, the challenge is that in composition X ◦ Y, bound atoms in
Y should somehow be detected and renamed to avoid capture with free atoms
in X (see Remark 5.8), and vice-versa.

We use maximal positive planes as a foundational data structure for a notion
of capture-avoiding language composition. Planes (Definition 3.3) are from [12]
and were used to model capture-avoiding substitution. Positive planes are new
(Definition 3.7), as is the connection with ν (Proposition 4.6). Arguably, planes
and positive planes are as interesting as their application in this paper and we
expect them to be useful in the future.

We conclude with an axiomatisation in the style of Kleene algebras and a
proof of soundness (Section 6).

2 Nominal preliminaries

More on these constructions in [15] or in a recent survey [13].

Definition 2.1. Fix a countably infinite set A of atoms. We use a permutative
convention that a, b, c, . . . range over distinct atoms.

A permutation π is a bijection on atoms such that nontriv(π) = {a | π(a) 6=
a} is finite. We write id for the identity permutation such that id(a) = a for all
a. We write π′ ◦ π for composition, so that (π′ ◦ π)(a) = π′(π(a)). We write
π-1 for inverse, so that π-1 ◦ π = id = π ◦ π-1. Write (a b) for the swapping
permutation that maps a to b and b to a and all other c to themselves.

π will range over permutations.



Definition 2.2. If A ⊆ A define fix(A) = {π | ∀a ∈ A.π(a) = a}. A, B, C will
range over finite sets of atoms.

Definition 2.3. A set with a permutation action is a pair X = (|X|, ·) of an
underlying set and a group action of permutations which we write π·x (so
id·x = x and π′·(π·x) = (π′ ◦ π)·x).

Say finite A ⊆ A supports x ∈ |X| when π·x = x for all π ∈ fix(A). Say
x ∈ |X| has finite support when it is supported by some finite A.

A nominal set is a set with a permutation action whose every element has
finite support. X will range over nominal sets and x will range over elements
x ∈ |X| (that is, finitely-supported elements).

Proposition 2.4. If A′, A ⊆ A are finite and support x then so does A′ ∩ A.

Definition 2.5. Define supp(x) =
⋂{A ⊆ A | A finite and support x}. Call

supp(x) the support of x.
Write a#x when a 6∈ supp(x) and call a fresh for x.

We know supp(x) is well-defined in Definition 2.5 because by assumption at
the end of Definition 2.3, x has some finite supporting set.

Theorem 2.6. supp(x) supports x.

Corollary 2.7. 1. If π(a) = a for all a ∈ supp(x) then π·x = x.
2. If π(a) = π′(a) for every a ∈ supp(x) then π·x = π′·x.
3. a#x if and only if ∃b.b#x ∧ (b a)·x = x.

Proposition 2.8. supp(π·x) = π·supp(x).

Definition 2.9. Give X ⊆ |X| a pointwise permutation action given by π·X =
{π·x | x ∈ X}.

Define pow(X) to have elements X ⊆ |X| with the pointwise permutation
action and finite support.

It is not hard to use Proposition 2.8 to verify that pow(X) is a nominal set.

3 The planes of a set

From now until Section 6 we fix a nominal set X.
x, y, u, v will range over elements of |X| (i.e. x, y, u, z∈|X|) and X, Y, Z, U, and

V will range over finitely-supported subsets of |X| (i.e. X, Y, Z, U, V∈|pow(X)|).

3.1 Basic theory of planes

A subset X ⊆ |X| can be represented as a not-necessarily-disjoint union of orbits
under certain subgroups of the permutation action. A canonical representation
can be created using planes (Definition 3.3). A plane is an α-equivalence class



of an element under simultaneous renaming of one or more of its atoms (cf.
Lemma 3.2). For more on planes see [12, Subsection 3.3].

Definition 3.1. Define the plane x

x

A by x

x

A = {π·x | π ∈ fix(A)}.
We may omit brackets, writing e.g. x

x

a for x

x

{a} and x

x

a,b for x

x
{a,b}.

Lemma 3.2. If π ∈ fix(A) then (π·x)

x

A = x

x

A.

Lemma 3.2 expresses α-convertibility for (x, A) as a choice of representative for
the plane x

x

A, allowing us to rename supp(x)\A. A plausible (if long) notation
for x

x

A is ν(supp(x)\A).{x} where ν is atoms-restriction (cf. Definition 4.5).

Definition 3.3. Suppose A ⊆ A is finite. Write u

x

A ∝ Z when u

x

A ⊆ Z and
for every u′ and A′, u

x

A ⊆ u′

x

A′ ⊆ Z implies u′

x

A′ = u

x

A.
We call the plane u

x

A maximal in Z.

Example 3.4. 1. a

x

∅ ∝ A (this is the only maximal plane in A).
2. a

x

{a}∝{a}∪(A×A), (a, a)
x

∅∝{a}∪(A×A), and (a, b)

x

∅ ∝ {a}∪(A×A)

(there are three maximal planes).
3. a

x

{b} ∝ A\{b} (this is the only maximal plane in A \ {b}).
4. In Definition 3.3, quantification over A′ is necessary. For example: a

x

{a} 6∝
A \ {b}, but for no A′ ( {a} is a

x

A′ ⊆ A \ {b} (the only choice for A′ is ∅).

Remark 3.5. For a fixed Z and u there may be two distinct subsets A ⊆ supp(Z)
and B ⊆ supp(Z) such that u

x

A ∝ Z and u

x

B ∝ Z (thus; A and B are minimal
but not least). For example, if Z = {(x, y) | x = a ∨ y = b} and u = (a, b) then
u

x
{a} ∝ Z and u

x

{b} ∝ Z but u

x

∅ 6∝ Z.

Proposition 3.6. Z =
⋃{ux A | u

x

A ∝ Z}.

Proof. Planes in Z are ordered by subset inclusion. For each x ∈ Z, take some
greatest element above x

x

supp(x). Their union is Z.

3.2 Positive planes

For the definition see Definition 3.7 and Example 3.8.
Planes do not have to be disjoint. This may be a surprise at first, since planes

are orbits of an element under a permutation group and we are used to results
stating that orbits are either equal or disjoint—but the groups could be differ-
ent for different planes. For example, (a, b)

x

{a} and (a, b)

x

{b} are both positive
planes, but (a, b)

x

{a} ∩ (a, b)

x

{b} is non-empty because it contains (a, b).
Theorem 3.16 expresses that a union of positive planes behaves as a coprod-

uct in one respect: if a plane is included in a union of positive planes, then it is
included in one of the planes that made up that union.



Thus, the interest of positive planes is that they need not be disjoint, but
when we take their union it behaves in some ways like a coproduct. This fails
if planes are not positive; see Corollary 3.18 and Example 3.19. The importance
of this will become more apparent in the next section.

Definition 3.7. Recall the definition of x

x

A from Definition 3.1 and the defi-
nition of x

x

A ∝ X from Definition 3.3.
Call x

x

A positive when A ⊆ supp(x).
Call X positive when every x

x

A ∝ X is positive.

Example 3.8. {a} = a

x

{a} is positive. A \ {a} = b
x

{a} is not.

Lemma 3.9. If z

x

C ∩ x

x

A 6= ∅ and A ⊆ C then z
x

C ⊆ x

x

A.

Proof. Suppose z′ ∈ z

x

C ∩ x

x

A. Then z′ = πz·z = πx·x for some πz ∈ fix(C)
and πx ∈ fix(A). Now A ⊆ C so fix(C) ⊆ fix(A). By Lemma 3.2 (twice) z

x

C =

z′

x

C = x

x

C ⊆ x

x

A.

Proposition 3.10. Suppose u
x

A and u′

x

A′ are positive. Suppose u ∈ u′

x

A′ .
Then u

x

A ⊆ u′

x

A′ if and only if A′ ⊆ A.

Proof. Suppose u

x

A ⊆ u′
x

A′ and a ∈ A′ \ A. By assumption A′ ⊆ supp(u′)
so by Proposition 2.8, a ∈ supp(v) for every v ∈ u′

x

A′ . Also by assumption
A ⊆ supp(u) and so by Proposition 2.8, a 6∈ supp((a′ a)·u) for fresh a′ (so a′ 6∈
A′ ∪ supp(u)). Now (a′ a) ∈ fix(A) so (a′ a)·u ∈ u

x

A, contradicting u

x

A ⊆ u′

x

A′ .
Conversely, if A′ ⊆ A then we use Lemma 3.9.

Corollary 3.11. Suppose x

x

A ⊆ X and x

x

A and X are positive. Then there is A′ ⊆ A
with x

x
A ⊆ x

x

A′ ∝ X.

Proof. Planes are ordered by subset inclusion, so there exist some x′ and A′ such
that x

x

A ⊆ x′

x

A′ ∝ X. By assumption x′

x

A′ is positive. By Proposition 3.10
A′ ⊆ A. We use Lemma 3.2 to conclude that x′

x

A′ = x

x

A′ .

Lemma 3.12. If x

x

A is positive then supp(x

x

A) = A.

Proof. The left-to-right subset inclusion is from Lemma 3.2. Conversely suppose
a ∈ A and choose b fresh (so b 6∈ A ∪ supp(x)). By positivity, a ∈ supp(x).
Using Proposition 2.8 it follows that (b a)·x 6∈ x

x

A, so (b a)·(x

x

A) 6= x

x

A. Thus
a ∈ supp(x

x

A).

Lemma 3.13. If u

x

A ∝ Z and Z is positive then A ⊆ supp(Z).

Proof. Suppose u

x

A⊆Z and a∈A\supp(Z). From Theorem 2.6 (b a)·(u

x

A)⊆Z
for every b 6∈supp(Z); by group arguments u

x

A\{a}⊆Z. Also ((b a)·u)

x

(b a)·A∝Z
for every b 6∈supp(Z). Since u

x

A is positive, so is u

x

A\{a}. By Lemma 3.12 and
Proposition 3.10 u

x

A(u

x

A\{a}, contradicting maximality of u

x

A.



Theorem 3.14. If Z is positive then supp(Z) =
⋃{A | u

x

A ∝ Z}.

Proof. The right-to-left inclusion is by Lemma 3.13. The left-to-right inclusion
then follows from Proposition 3.6 and Lemma 3.12 using [13, Theorem 2.29].1

Remark 3.15. Theorem 3.14 fails if we remove the condition of maximality.
For instance, supp(A) = ∅ and a

x

{a} is non-maximal in A for every a, but
supp(a

x

{a}) = {a} and
⋃{supp(a

x

{a} | a ∈ A} = A 6= ∅.

Theorem 3.16. Suppose I is some indexing set and for each i ∈ I, Ai is a finite set
of atoms and xi is some element. Suppose xi

x

Ai
is positive for every i ∈ I and

⋃
Ai is

finite. Then z

x

C ⊆
⋃

xi

x

Ai
implies z

x

C ⊆ xi

x

Ai
for some i.

Proof. We will show that Ai ⊆ C for some i ∈ I with z ∈ xi

x

Ai
; the result

follows by Proposition 3.10. Suppose otherwise, so that ∀i. z∈xi

x

Ai
⇒Ai 6⊆C.

Choose some π mapping (
⋃

Ai) \ C to fresh atoms. For each i there are two
possibilities: if Ai ⊆ C then z 6∈ xi

x
Ai

and by Lemma 3.2 π·z 6∈ xi

x

Ai
; if Ai 6⊆ C

then using Proposition 2.8 again π·z 6∈ xi

x

Ai
. Yet by construction π ∈ fix(C) so

π·z ∈ z

x

C, contradicting our assumption that z

x

C ⊆
⋃

xi

x

Ai
.

Remark 3.17. Theorem 3.16 ensures that every maximal plane of a union of
positive planes is one of the planes of that union.2 We use this for example in
Theorem 5.11 and Lemma 5.13.

Corollary 3.18. Suppose xi

x

Ai
is positive for every i ∈ I, and

⋃
Ai is finite. Then

z

x

C ∝
⋃

xi

x
Ai

if and only if z

x

C = xi

x

Ai
for some i.

Proof. By Theorem 3.16 z

x

C ⊆ xi

x

Ai
for some i. We use maximality of z

x

C.

Example 3.19. U = (A×A) \ {(a, b)} is not positive. U ∪ {(a, b)} = A×A;
then (a, b)

x

∅ is maximal in A×A but is not a subset of U or {(a, b)}. Thus,
it is not possible to retrieve from a union of not-necessarily-positive planes a
subcollection of planes that make up that union. Extending this paper to the
‘negative’ case is future work.

Corollary 3.20. X is positive if and only if X =
⋃

xi

x

Ai
for some set of positive xi

x

Ai
such that

⋃
Ai is finite.

Proof. If X is positive the result follows taking xi

x

Ai
∝ X and using Theo-

rem 3.14. Conversely suppose X =
⋃

xi

x

Ai
for some set of positive xi

x

Ai
and

suppose
⋃

Ai is finite. We use Corollary 3.18.

1 Positivity is sufficent but not necessary. It suffices to restrict to u

x

A such that
¬(supp(u) ( A). This excludes an artefact of representing planes as pairs (u, A) since
if supp(u) ( A and supp(u) ( B then u

x

A = u

x

B = u

x

supp(u). Since we concentrate on
positive planes, where this cannot happen, we can ignore this.

2 Contrast with A \ {a} =
⋃{bx {b} | b ∈ A \ {a}} = b

x

{a} 6⊆ b

x

{b}. Theorem 3.16 is

inapplicable because
⋃{supp(b

x

{b}) | b ∈ A \ {a}} is not finite.



4 ν-restriction on nominal sets

We are now ready to define a notion of name-restriction on (positive) sets (Defi-
nition 4.5). By Theorem 3.16 the planes of νa.U are ‘the planes of U, with a taken
out of the support of each’. Proposition 4.6 relates that to a notion of ‘U, with a
taken out of the support of U’ which resembles the nominal atoms-abstraction
from [15] (see [13, Definition 3.8 and Lemma 3.13] for a proof). The rest of this
section proves some useful equalities involving name-restriction.

Definition 4.1. Suppose X is a set. Define X

	

A and X

	A by:

X

	

A = {π·x | x ∈ X, π ∈ fix(A)}
X

	A = {π·x | x ∈ X, π ∈ fix(supp(X) \ A)}

Write X

	a for X

	{a}. That is: X

	a = {π·x | x∈X, π∈fix(supp(X)\{a})}.

Example 4.2. (A\{a}) 	a = A. For comparison, (A\{a})

x

∅ = {A\{x}|x∈A}.

Lemma 4.3. If B ∩ supp(X) = B′ ∩ supp(X) then X

	

B = X

	

B′ .

Lemma 4.4. 1. Suppose supp(u) ∩ B ⊆ supp(u) ∩ A. Then u

x

A

	B = u

x

A\B.

2. Suppose X is positive. Then X

	B =
⋃{ux A

	B | u

x

A ∝ X}.

Proof. The first part is by routine arguments using part 2 of Corollary 2.7.
For the second part, using Proposition 3.6 we can calculate that

X

	B =
⋃
{u

x

A

	

supp(X)\B | u

x

A ∝ X}.

By assumption each u

x

A ∝ X is positive. By Lemma 3.12 supp(u

x

A) = A. By
Lemma 4.3 u

x

A

	

supp(X)\B = u

x

A

	

A\B and by definition this is equal to u

x

A

	B.

Definition 4.5. Define νa.U =
⋃{ux A\{a} | u

x

A ∝ U}.

Proposition 4.6. If U is positive then νa.U = U

	a.

Proof. By Proposition 3.6 and Lemma 4.4.

Lemma 4.7. If U is positive then so is νa.U.

Proof. Suppose U is positive. For every u

x

A ∝ U, by Theorem 3.14 A ⊆ supp(U).
The result follows by construction and by Corollary 3.20.

Lemma 4.8. Suppose u

x

A and u′

x

A′ are positive. Suppose u

x

A ⊆ u′

x

A′ .
Then u

x

A\{a} ⊆ u′

x

A′\{a}.



Proof. Suppose u

x

A ⊆ u′

x

A′ . So there exists some π ∈ fix(A′) such that u =
π·u′. Also, by Proposition 3.10 A′ ⊆ A.

Consider some τ·u ∈ u

x

A\{a} where τ ∈ fix(A \ {a}). Then τ·u = (τ ◦π)·u′,
and τ ◦ π ∈ fix(A′ \ {a}).

Remark 4.9. We illustrate why positivity is necessary in Lemma 4.8. Note that
{a} = a

x

{a} ⊆ b

x

{c} = A\{c} but A = a

x

∅ 6⊆ b

x

{c}. However, b

x

{c} is not
positive because {c} 6⊆ supp(b) = {b}.

Lemma 4.10. Suppose U is positive. Then:

1. If u

x

A′ ∝ νa.U then a 6∈ A′ and either u

x

A′ ∝ U or u
x

A′∪{a} ∝ U.
2. If u

x

A ∝ U then u

x

A\{a} ⊆ νa.U.

Proof. For part 1, suppose u

x

A′ ∝ νa.U. By Lemma 4.7 νa.U is positive. By
Corollary 3.18 u

x

A′ = u

x

A\{a} for some u
x

A ∝ U.
For part 2, if u

x

A ∝ U then direct from Definition 4.5 u

x

A\{a} ⊆ νa.U.

Proposition 4.11. For positive U, supp(νa.U) = supp(U) \ {a}.

Proof. From Theorem 3.14 and part 1 of Lemma 4.10.

Remark 4.12. Proposition 4.11 is not what it seems. To the reader familiar with
nominal techniques it may look just like e.g. [15, Corollary 5.2] which is the
corresponding result for [a]x.

But consider U = (A×A) \ {(a, b)}. This has three maximal planes: (c, c)

x

∅,
(c, b)

x

a, and (a, c)

x

b, and is not positive. Also supp(U) = {a, b}, yet supp(νa.U) =
∅ 6= {b}. The reason for this ‘discrepancy’ is the observation made in the In-
troduction that νa.U and U have the same type, whereas [a]U and U do not.
Proposition 4.11 is different, and uses planes.

Corollary 4.13. Suppose U is positive. Then νa.U = U if and only if a#U.

Proof. Suppose νa.U = U. By Proposition 4.11 a#U. Conversely if a#U then by
Theorem 3.14 a 6∈ A for every x

x

A ∝ U and νa.U = U follows by construction.

Lemma 4.14. X

	A 	B = X

	A∪B.

Proof. By routine properties of permutations, and Theorem 2.6.

Corollary 4.15. Suppose U is positive. Then νa.νb.U = νb.νa.U.

Proof. From Proposition 4.6 and Lemma 4.14.

Proposition 4.16. π·(X

	A) = (π·X)

	π·A.
As a corollary, if b#X then (b a)·(X

	a) = ((b a)·X)

	b and νa.X = νb.(b a)·X.

Proof. The first part is by calculations on permutations, or by equivariance [13,
Corollary 4.6]. The corollary follows using Proposition 4.11 and Theorem 2.6.



5 Nominal languages

Definition 5.1. Write A∗ for the set of finite (possibly empty) strings of atoms.
k, l, m will range over elements of A∗. We write kl for the concatenation of

k and l. We write [] for the empty string.
A∗ is a nominal set with permutation action π·k = π(k1) . . . π(kn) where ki

is the ith element of k. Also, supp(k) = {k1, . . . , kn} (the atoms in k).

A nominal language is a positive subset of A∗. K, L will range over lan-
guages.

An innocuous extension of Definition 5.1 is to use (A∪ Σ)∗ for some Σ.

Definition 5.2. The union of two languages K ∪L is their sets union.

Proposition 5.3. Suppose Xi is positive for every i ∈ I. Suppose
⋃

supp(Xi) is finite.
Then

⋃
Xi is positive. As a corollary, if K and L are languages then so is K ∪L.

Proof. From Theorem 3.14 and Corollary 3.20.

Theorem 5.4. (νa.K) ∪ (νa.L) = νa.(K ∪L).

Proof. Suppose m

x
C ∝ (νa.K)∪ (νa.L). Using Corollary 3.18 either m

x

C ∝ νa.K
or m

x

C ∝ νa.L; suppose without loss of generality m

x

C ∝ νa.K. By part 1 of
Lemma 4.10 m

x
C = k

x

A\{a} for k

x

A ∝ K. Then m

x

C ⊆ νa.(K ∪ L) by part 2 of
Lemma 4.10. The reverse inclusion follows by similar reasoning.

Definition 5.5. Write u

x

A ∝
S Z when u

x

A∝Z and supp(u)∩S ⊆ A.
We may omit brackets, writing e.g. u

x

A ∝
a Z for u

x

A ∝
{a} Z.

Remark 5.6. ac

x

a ∝
b {ax | x∈A\{a}} and ab

x

a 6∝
b {ax | x∈A\{a}}. An

analogy with λ-terms: λc.ac avoids name-clash with b whereas λb.ab does not.
Think of u

x

A in Definition 5.5 as νb1. . . . νbn.{u}where {b1, . . . , bn} = supp(u) \
A. ‘Avoiding clash with S’ means choosing a representative u such that bi 6∈ S
for 1 ≤ i ≤ n. In Definition 5.7, the superscript supp(L) and supp(K) ∪ supp(k)
are generalised capture-avoidance conditions. More on this in Remark 5.8.

Definition 5.7. Define composition of languages K ◦ L by:

K ◦ L =
⋃
{kl

x

A∪B | k

x

A ∝
supp(L) K, l

x

B ∝
supp(K) ∪ supp(k) L}

Recall that here, kl denotes list concatenation. In words: K ◦ L is a capture-
avoiding composition of the maximal planes of K and L. For example, if K =
{a} and L = A then we can take k = a, A = {a}, l = b and B = ∅ to calculate
that K ◦ L = {ax | x∈A\{a}} = ab

x

a.



Remark 5.8. The ‘definition’ {kl

x

A∪B | k

x

A ∝ K, l

x

B ∝ L}would put the string
aba in (νb.ab) ◦ νb.b. This is undesired behaviour because νb.b should avoid
clash with the name a free in νb.ab. Similarly the ‘ordinary’ notion of composi-
tion {kl | k ∈ K, l ∈ L} does not avoid capture and delivers incorrect results.

Remark 5.9. The mention of supp(k) in l

x

B ∝
supp(K) ∪ supp(k) L tells l to avoid

name-clash with atoms used in k; if we wrote l

x

B ∝
supp(K) L then composition

would deallocate fresh names in k before executing l. Thus, Definition 5.7 does
not put abb in (νb.ab) ◦ (νb.b), because of the mention of supp(k).

Lemma 5.10. K ◦ L is positive.

Proof. By assumption K and L are positive. Suppose k

x

A ∝ K and l

x

B ∝ L. By
assumption A ⊆ supp(k) and B ⊆ supp(l) and it is a fact that therefore A ∪ B ⊆
supp(k) ∪ supp(l) = supp(kl). Furthermore by Theorem 3.14 A ⊆ supp(K) and
B ⊆ supp(L). The result follows by Corollary 3.20.

Theorem 5.11. 1. If a#L then (νa.K) ◦ L = νa.(K ◦ L).
2. If b#K then K ◦ νb.L = νb.(K ◦ L).

Proof (Sketch proof). We consider only the first part. Suppose m

x

C ∝ νa.(K ◦ L).
By definition and using part 1 of Lemma 4.10 and Corollary 3.18 there exist
k

x

A ∝
supp(L) K and l

x
B ∝

supp(K) ∪ supp(k) L such that m

x

C = kl

x

(A∪B)\{a}.

By part 1 of Lemma 4.10 k

x

A\{a}∝
supp(L)\{a}νa.K. By Theorem 3.14 a 6∈ B so

(A∪B)\{a}=(A\{a})∪B. It follows by definition that kl

x

(A∪B)\{a} ⊆ (νa.K)◦L.
The reverse inclusion follows by similar reasoning.

Lemma 5.12. Suppose K and L are languages. Suppose supp(K) ∪ supp(L) ⊆ C.
Then K ◦ L = {kl

x

A∪B | k

x

A ∝
C K, l

x

B ∝
C ∪ supp(k) L}.

Proof. By Proposition 2.8 and Lemma 3.2.

Lemma 5.13. (K ◦ L) ◦M = K ◦ (L ◦M).

Proof (Sketch proof). Set C = supp(K) ∪ supp(L) ∪ supp(M). It is a fact that
supp(K ◦ L) ⊆ C and supp(L ◦ K) ⊆ C.3

By Corollary 3.18 and Lemma 5.12 if n

x

D ∝ (K ◦ L) ◦ M then n

x

D =

n′m

x

D′∪C for some n′

x

D′ ∝
C K ◦ L and some m

x

C ∝
C ∪ supp(n′) M. Similarly,

n′

x

D′ = kl

x

A∪B for some k

x

A ∝
C K and l

x

B ∝
C ∪ supp(k) L.

By renaming k and l appropriately we may assume that n′ = kl. It is a fact
that supp(n′) = supp(k) ∪ supp(l). It follows that

(K◦L) ◦M =
⋃
{klm

x

A∪B∪C | k

x

A ∝
C K, l

x

B ∝
C ∪ supp(k) L, m

x

C ∝
C ∪ supp(k) ∪ supp(l) M}.

The result follows.
3 We can deduce this by direct calculations or by construction and using Theorem 3.14.



Theorem 5.14. If
⋃

supp(Li) is finite thenK◦⋃Li =
⋃
(K◦Li) and (

⋃Li) ◦K =⋃
(Li ◦ K).

Proof. We consider only the first part; the proof of the second part is similar. Set
G = supp(K) ∪⋃

supp(Li). We prove two subset inclusions.

– Proof of the left-to-right subset inclusion. Choose some k

x

A ∝
G K. Suppose

n

x

D ∝
G ∪ supp(k) ⋃Li. From Theorem 3.16 n

x

D ∝
G ∪ supp(k) Li for some i. By

Lemma 5.12 kn

x

A∪D ⊆
⋃
(K ◦ Li).

– Proof of the right-to-left subset inclusion. Suppose n
x

D ∝
G ⋃

(K ◦ Li). By
Lemma 5.12 we may take n = kl and D = A ∪ B for some k

x

A ∝
G K

and some i and l

x

B ∝
G ∪ supp(k) Li. Using Corollary 3.11 we can deduce that

l

x

B ⊆ l

x

B′ ∝
G ∪ supp(k) ⋃Li for some B′ ⊆ B. Since A ∪ B′ ⊆ A ∪ B we can

conclude that n

x

D ⊆ kl

x

A∪B′ ⊆ K ◦
⋃Li.

Definition 5.15. Define O = ∅ (the empty set). Define I = {[]} (recall from
Definition 5.1 that [] is the empty string).

Definition 5.16. Define K0 = I and Ki+1 = Ki ◦ K. Define K∗ = ⋃
i Ki.

Lemma 5.17. O ◦K = O = K ◦O and I ◦ K = K = K ◦ I .

Theorem 5.18. O and I are languages. Also, the set of languages is closed under
K ∪L, νa.L, K ◦ L, and K∗.

Proof. That O and I are languages is easy to verify. The case of K ∪ L is from
Proposition 5.3; that of νa.L is from Lemma 4.7; that ofK◦L is from Lemma 5.10.

supp(Ki) ⊆ supp(K) can be verified by calculations or by equivariance [13,
Theorem 4.7]. The case of K∗ follows using Lemma 5.10 and Proposition 5.3.

6 Nominal Kleene algebra

We can use a nominal algebra style axiomatisation [14] to synthesise what we
have proved so far as an extension of Kleene algebras (Definition 6.2 and The-
orem 6.4). ‘Nominal Kleene algebra’ should be read tongue-in-cheek; we have
no completeness proof like [20]. This is future work.

Definition 6.1. Call x ∈ |X| equivariant when supp(x) = ∅, thus ∀π.π·x = x.
Call a function f ∈ |X| → |Y| equivariant when π· f (x) = f (π·x) for all

x ∈ |X| and all permutations π.

Definition 6.2. A nominal Kleene algebra is a tuple X = (|X|,+, ·, ∗, 0, 1, ν) of:

– A nominal carrier set |X|.
– Equivariant functions + and · from ||X|| × ||X|| to ||X||. We usually omit ·,

writing e.g. XY for X ·Y.



X + (Y + Z) = (X + Y) + Z X + Y = Y + X
X + 0 = X X + X = X

X(YZ) = (XY)Z
1X = X X1 = X

X(Y + Z) = XY + XZ (X + Y)Z = XZ + YZ
0X = 0 X0 = 0

1 + X(X∗) ≤ X∗ 1 + X∗X ≤ X∗

XY ≤ Y ⇒ X∗Y ≤ Y YX ≤ Y ⇒ Y(X∗) ≤ Y

a#X ⇒ νa.X = X νa.νb.X = νb.νa.X
νa.X + νa.Y = νa.(X + Y) a#Y ⇒ (νa.X)Y = νa.(XY)

b#X ⇒ νa.X = νb.(b a)·X b#X ⇒ X(νb.Y) = νb.(XY)

Fig. 1: Axioms of nominal Kleene algebra

– An equivariant function ∗ from ||X|| to ||X||.
– Equivariant elements 0 ∈ ||X|| and 1 ∈ ||X||.
– An equivariant function ν from A× ||X|| to ||X||.

such that for all X, Y, Z ∈ ||X|| and all a, b ∈ A the conditions in Figure 1 hold.

The upper axioms are the standard axioms of a Kleene algebra [20]. Here
(as standard) we write r ≤ s as shorthand for r + s = s. Note that these axioms
are not purely equational (so Kleene algebra is not, depending on terminology,
actually algebraic), and the class of Kleene algebras forms a quasi-variety. This
will not matter to us in this paper.

The axioms on the lower lines describe behaviour of name-restriction.

Remark 6.3. Note that νa.0 = 0 and νa.1 = 1 follow from the axiom a#X ⇒
νa.X = X, because it is a fact that a#0 and a#1.

Theorem 6.4. Languages form a nominal Kleene algebra if we interpret + as ∪, · as
◦, ν as ν, and 0 and 1 as O and I respectively.

Proof. We consider each axiom in turn:

– It is a fact that K ∪ (L ∪M) = (K ∪L) ∪M, and K ∪L = L ∪K. It is also
a fact that K ∪O = K and K ∪K = K.

– K ◦ (L ◦M) = (K ◦ L) ◦M by Lemma 5.13.
– K ◦ (L ∪M) = (K ◦ L) ∪ (K ◦M) and (L ∪M) ◦ K = (L ◦ K) ∪ (L ◦ K)

are by Theorem 5.14.
– O ◦K = O = K ◦O and I ◦ K = K = K ◦ I by Lemma 5.17.
– The four axioms for K∗ follow using Theorem 5.14. To use some jargon, our

denotation is ∗-continuous [19].
– If a#K then νa.K = K is by Corollary 4.13.
– (νa.K) ∪ (νa.K) = νa.(K ∪L) is by Theorem 5.4.
– (νa.K) ◦ (νa.L) = νa.(K ◦ L) is by Theorem 5.11.
– νa.νb.K = νb.νa.K is by Corollary 4.15.
– b#K ⇒ νa.K = νb.(b a)·K is by Proposition 4.16.



7 L ◦A is equal to L⊗A

Nominal sets have an atoms tensor product X⊗A ([27] or [13, Definition 9.27])
given by X⊗A = {(x, a) | x ∈ X, a ∈ A, a#x}. This has an obvious generali-
sation: X⊗ Y = {(x, y) | x ∈ X, y ∈ Y, supp(x) ∩ supp(y) = ∅}. We can view ◦
as another (less obvious) generalisation of ⊗, as follows:

Proposition 7.1. If supp(K) = ∅ then K ◦A = K ⊗A and A ◦ K = A⊗ K,
where we treat K as a nominal set with underlying set itself.

Thus, composition of languages generalises ⊗. -⊗A is left-adjoint to atoms-
abstraction [A]- [13, Theorem 9.30]. By Proposition 7.1, so is - ◦A. It remains to
investigate the futher properties of - ◦A.

8 Conclusions

Name-generation has long been a motivation for nominal techniques.
Odersky in [24] and Pitts and Stark [25] studied name-generation, and this

was in the background thinking of the first author’s and Pitts’s development of
Fraenkel-Mostowski/nominal sets. FreshML included a name-generating con-
struct [29] which was a precursor of Fernández and the first author augmenting
nominal terms and nominal rewriting explicitly with name generation Na.t [5];
Pitts added a similar construct νa.t to system T [26]. The axioms for αa in Fig-
ure 1 are of the same family.

A very abstract semantic study of name-generation is the abstractive func-
tions considered in [11]. This influenced [12], where much machinery used in
this paper was introduced. Abramski et al. give a concrete games semantics to
the nu-calculus in nominal sets [1]: ideas here and in [12] also appear there,
including Definition 3.1 (see e.g. Definition 2.7 of [30]).

There exist denotations for dynamic allocation using atoms-abstraction [A]-,
typically written δ in presheaf presentations. Examples are coalgebraic seman-
tics for the π-calculus using δ (see e.g. [6, Subsection 2.2] or [2, Subsection 5.2]),
the name-generation monad of FreshML [28, F〈〈name〉〉τ , page 38]. We can also in-
clude the X�Y construct of nominal games from [1], which is in the same spirit
and used in similar ways. In these examples name-generation exists at its own
distinct level; in programming terms this corresponds to carrying around an
explicit context of known ‘fresh’ names.

νa (Definition 4.5) is different because it places binding on a level with union
∪ and composition ◦: a language L is just a set of traces, not under a monad
and not a set of α-equivalence classes of sets of traces. Thus we must work
harder because freshness must be ‘decrypted’, but this buys us an appealingly
simple model. A language really is just a set—as in the classical case of regular
languages, without names and binding. That explicit context of known ‘fresh’
names is not explicitly necessary in the mathematical models we build.

One can raise the question of decidability of equality and inclusion between
(subclasses of) languages, and automata. To consider such questions we need to
match the developments of this paper with an automata-theoretic counterpart.



One well-studied notion of finite automaton with names and allocation is
history-dependent (HD-)automata [23]. The correspondence to coalgebras over
presheaves/nominal sets is considered in [3]. Investigation of the languages of
HD-automata and the link with finite-memory automata [18] has shown that HD-
automata are still essentially finite-memory machines [4]. However, the finite-
support property of nominal sets corresponds to an idea of ‘finitely but un-
boundedly many’. In FreshML, a type system in [10] first tried to restrict gen-
eration of fresh names and later in [28] the programming language appeared
without such restrictions but the denotation used a monad to keep track of gen-
erated fresh names. Similarly, we would expect acceptors for languages from
Section 5 to either impose bounds on support (if they are to be finite), or to be
in the style of e.g. pushdown automata.

Most recently, fresh register automata have also been proposed, explicitly as
an automaton model of names and fresh name generation [31]. It remains to
investigate these in connection with this work.

We note in Remark 5.9 a ‘deallocating’ variant of composition K ◦ L. There
is a rich design space here to be studied in future work.

Nominal sets have further structure. We can model when a process omits a
name (e.g. ‘junk’ in the π-calculus; a channel name that is not emitted yet occurs
in the syntax of the term) using a freshness constraint: X#a = {x ∈ X | a#X}.

Note that ν is not the N-quantifier introduced by the first author with Pitts
in [15]. For instance, X ⊆ νa.X is a fact, whereas φ(x) ⇒ Nx.φ(x) is in general
false. It is possible to define a version of Nacting on languages, given by na.X =
{x ∈ X | Nb.(b a)·x ∈ X}. We do not believe that n and ν are interdefinable and
investigating them is future work.

Our models do not include negation; this is also future work.
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