
MFPS 2012

Game semantics in the nominal model

Murdoch Gabbay
School of Mathematical and Computer Sciences

Heriot-Watt University
Edinburgh, United Kingdom

www.gabbay.org.uk

Dan Ghica
School of Computer Science
University of Birmingham

Birmingham, United Kingdom

Abstract

We present a model of games based on nominal sequences, which generalise sequences with atoms and a new
notion of coabstraction. This gives a new, precise, and compositional mathematical treatment of justification
pointers in game semantics.

Keywords: Game semantics, nominal sets, nominal abstraction and coabstraction, equivariance

1 Introduction

Game semantics is a successful collection of techniques for giving denotations to
logic and computation. It came to particular prominence by solving the open problem
of full abstraction for PCF [2,19] and is widely used from philosophy and logic, to
model checking and synthesis of digital circuits [22,13].

The game metaphor is a dialogue between Proponent and Opponent: a play
of a game records interactions between a term (the Proponent) and its context (the
Opponent), and how they are scheduled.

One way to model a play is as a labelled acyclic graph called a pointer sequence.
Each node in the graph is a Proponent or Opponent move and edges in the graph
represent the justification for that move. Thus, a pointer sequence records what
moves were made and in what order, and also why.

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

http://www.gabbay.org.uk

Gabbay and Ghica

We propose a model of games based on nominal sets, inspired by pointer se-
quences, with the difference that we model edges using atoms from nominal tech-
niques (which we may also call names). Why this is useful will become clear in a
moment.

Atoms are just a countably infinite set of distinct symbols: a, b, c, A diagram
shows how these can model pointer sequences. The pointer sequence on the left
corresponds to the nominal sequence on the right:

q q' a a' a'' corresponds to qc[a] q′a[b] aa a′b a′′b

Questions and answers are written q and a, and atoms are used as pointers. The
symbols [a] and [b] can be thought of as naming the questions q and q′ and are binders
into the ‘future’. So we see above that q justifies two moves: q′ and a. Pointers
(arrows, in the diagram above) are rendered as a pair of atoms. The tip of the arrow
is represented by a coabstraction [b] which must be unique (this is formalised by the
condition b 6∈ atoms(e) in Definition 2.8). The tail of the arrow, which need not be
unique, is an occurrence of the name. This deals straightforwardly with dangling
pointers, which are viewed just as free names; in the sequence above c is free.

Nominal sequences have the following good properties:
(i) A sub-sequence of a nominal sequence is a nominal sequence. A sub-graph of

a pointer sequence is not a pointer sequence, because it might have ‘dangling
pointers’. In that sense, nominal sequences generalise pointer sequences and
help talk easily about ‘open sequences’ (easy handling of open elements is a
typical benefit of nominal techniques).

(ii) A concatenation of two nominal sequences is a nominal sequence; names link up
and there are no reindexing isomorphisms. It is not so clear how to concatenate
pointer sequences.

(iii) Nominal sequences are an inductive data-type and can be manipulated with
standard tools (to fully benefit would require a mechanised nominal system
[26] but we shall see our sequences simplify paper-and-pencil proofs too).

There is an important, specifically nominal advantage to using names in particular: it
enables a particularly efficient management of renaming pointers to avoid ‘accidental
clash’. It is important and useful that we use names to name moves and not e.g.
numbers, because names are by definition symmetric (i.e. can be permuted); not
only can we use permutations to α-convert, but taking names and their permutative
symmetry as primitive saves effort since permutations propagate necessarily to
the things we build using them, such as plays and strategies. 1 This style of name
1 A general statement of this is the principle of equivariance (see [7, Subsection 4.2], [12,
Lemma 4.7]).
The principle of equivariance implies that, provided we permute names uniformly in all the parameters
of our definitions and theorems, we then get another valid set of definitions and theorems. This
is not true of numbers because our mathematical foundation equips numbers by construction with

2

Gabbay and Ghica

management is characteristic of nominal techniques and we shall see that it is effective
here.

We formalise game models for PCF [19,23] and Concurrent Algol [14], at low
overhead. The decoration of sequences by atoms is no more of an overhead than
decoration by pointers, and equivariance is a very efficient way to manage renaming,
so the overhead is low and the advantages in precision and conciseness appear to be
significant.

We cannot replicate all definitions and proofs from these two large papers in this
conference paper but we hope that it will be entirely obvious to the reader how this
could be done. We do not claim to make the work above trivial. However, we do
claim that using our formulation, game semantics can be carried out more quickly,
more accurately, and more transparently.

This is important for more than good practice: we speculate that by our formula-
tion, implementation and mechanisation of game semantics proofs are significantly
easier. The reader can compare the definitions in this paper with the original versions
[19,14] and judge which would be easier to work with, in a prover like Isabelle.
Furthermore, game semantics can provide theoretical foundations for program verifi-
cation and for hardware synthesis, where the pen-and-paper style of much previous
work must be augmented by machine-checked proofs, because of scale, or for safety,
or both. Here, the compositionality, computational, and symmetry properties enu-
merated and discussed above really count. Finally, game semantics can reconcile
the compositionality of denotational semantics with the effectiveness of operational
semantics via communicating abstract machines [16]; here, the conventional repre-
sentation of pointers is arguably actively counterintuitive, whereas the use of names
as tags for messages carries immediate computational intuitions.

2 Nominal game semantics

2.1 Nominal sequences

Definition 2.1 Fix disjoint countably infinite set of atoms A, and constants. a, b, c
will range over distinct atoms (the permutative convention). f, g, h will range over
constants, not necessarily distinct.

numerical properties such as less than or equal to ≤, which can be defined from first principles with
no parameters.
So if we use numbers to model pointer sequences then we do not care about≤ because we just needed
a countable set of elements, but we repeatedly have to prove that we did not use an asymmetric
property like ≤. In contrast, if we assume nominal foundations and use atoms, then we do not have to
explicitly prove symmetry because we can just look at our mathematical foundation and note that it is
naturally symmetric under permuting names; we reserve numbers for naturally asymmetric activities,
such as counting.

3

Gabbay and Ghica

Define (nominal) sequences by

e ::= ε | e a | e f | e [a].

Remark 2.2 Call ε the empty list and write e e′ for list concatenation. Call [a] a
coabstraction. The reminds us of the atoms-abstraction of nominal techniques
[12]—but in e[a], a is bound ‘in the future’ in whatever e′ we might concatenate
after e[a]. We contrast the intended denotations of abstraction and coabstraction in
the Conclusion.

Definition 2.3 Define coabstracted and free atoms ca(e) and fa(e) by:
ca(ε)= ∅ fa(ε)= ∅

ca(ea)= ca(e) fa(ea)= fa(e)∪({a}\ca(e))
ca(ef)= ca(e) fa(ef)= fa(e)

ca(e[a])= ca(e)∪{a} fa(e[a])= fa(e)

Define the atoms in an expression atoms(e) by atoms(e) = fa(e) ∪ ca(e).

Lemma 2.4 ca(e e′) = ca(e) ∪ ca(e′) and fa(e e′) = fa(e) ∪ (fa(e′) \ ca(e)).
Definition 2.5 A renaming ρ is a function from atoms to atoms such that dom(ρ) =
{a | ρ(a) 6= a} is finite. Write id for the identity renaming such that id(a) = a and
ρ′ ◦ ρ for composition such that (ρ′ ◦ ρ)(a) = ρ′(ρ(a)).

Call bijective ρ permutations. Following [12] let π range over permutations
(the application of renaming in a nominal context goes back to [11]).

Definition 2.6 Define a renaming action ρ·e on sequences by:
ρ·ε = ε

ρ·(ea) = (ρ·e)ρ(a)
ρ·(ef) = (ρ·e)f

ρ·(e[a]) = (ρ·e)[ρ(a)]

2.2 Nominal game semantics

A game is an arena (Definition 2.7) along with some set of legal plays which are
lists of moves by a proponent or opponent—precisely what classes of plays are legal,
determines the type of game they play.

Definition 2.7 An arena is a tuple A = (qstA, ansA, λA, À, iniA) of:
• Disjoint sets of questions q ∈ qstA and answers a ∈ ansA.

Write m ∈ mvsA = qstA] ansA for short and call this the set of moves.
• A polarity function λA : mvsA → {O,P}. Write O∗ = P and P∗ = O.
• An enabling relation À ⊆mvsA ×mvsA where m À m′ implies m ∈ qstA and
λA(m)=λA(m

′)∗.
4

Gabbay and Ghica

• A set of initial questions iniA ⊆ qstA such that:
· λA(i) = O for every initial i ∈ iniA.
· If q ∈ qstA and i ∈ iniA then q 6 À i.

Definition 2.8 Define proto-plays e over an arena A inductively by:

e ::= ε | ema[b] (b 6∈ atoms(e))

Recall that m∈qstA ∪ ansA. Write pplyA for the set of all proto-plays of A.

Every proto-play is a sequence; not every sequence is a proto-play. It will always
be clear what e ranges over.

Definition 2.9 Call ma[b] a (named) move; m will range over named moves.

Remark 2.10 • A proto-play consists of a sequence of named moves, each of which
consists of a move m, a justifying name a and a coabstraction [b] which we call
the name of m. This b ‘names’ its move, so that a later named move’s justifying
name can point to m by its name b.

• The freshness condition b 6∈ atoms(e) makes b name its move uniquely in the
sequence. This is inefficient—we cannot reuse names even if somehow we know
we could—but we optimise for mathematical convenience.

• In the games models of [19,23,14] only questions justify, so for the applications in
this paper À⊆ qstA×mvsA and we can drop the coabstractions naming answers in
protoplays (so: qa[b] but just aa). However, this complicates definitions and loses
generality, so we leave in (dummy) coabstractions and take À⊆ mvsA×mvsA. An-
swers justifying moves are used to construct ‘coproduct arenas’ in game semantics
for call-by-value languages [3].

Definition 2.11 Suppose e and e′ are sequences. Write e′ ≤ e when e′ e′′ = e for
some e′′; call e′ a prefix of e. Write e′ ⊆ e when e′′′ e′ e′′=e for some e′′′ and e′′; call
e′ a segment of e.

Definition 2.12 Define enabled(e) the moves enabled by e ∈ pplyA by:

enabled(ε) = ∅
enabled(ema[b]) = enabled(e) ∪ {m′b | m À m′}

Lemma 2.13 enabled(e) =
⋃{mb | m′a[b] ⊆ e, m′ À m}.

Definition 2.14 Given e ∈ pplyA define its underlying sequence |e| by:

|ε| = ε

|ema[b]| = |e|m
Intuitions for Definition 2.15 are discussed in Remark 2.16:

Definition 2.15 Suppose A is an arena and A ⊆ A.
5

Gabbay and Ghica

(i) Call e ∈ pplyA justified when e′ma≤e and m6∈iniA implies ma∈enabled(e′).
(ii) Call e ∈ pplyA well-opened when e′ ia[b] ≤ e implies e′ = ε.
(iii) Call e ∈ pplyA strictly scoped when aa[b]e′ ⊆ e implies a 6∈ fa(e′), for every

e′ ∈ pplyA, a ∈ ansA, and atom a.
(iv) Call e ∈ pplyA strictly nested when qa[b] e2 q

′b[c] e3 ab ⊆ e implies a′c ⊆ e3
for some answering move a′ ∈ ansA. 2

(v) Call e ∈ pplyA alternating when mm′ ⊆ |e| implies λA(m) 6= λA(m
′).

Remark 2.16 Intuitively, Definition 2.15 means:
• e is justified when every non-initial move responds to a preceding move.
• e is well-opened when the initial move is unique and first in the sequence.
• e is strictly scoped 3 when a question can receive at most one answer. If we read

games as processes, this means answering a question stops the process associated
with that question.

• e is strictly nested when questions are answered in (reverse) order. This forbids
starting a process b, then c from inside b, then stopping b before c.

The intuition of e alternating seems clear but it does not have directly to do with
names and binding, so we will not consider it further.

Definitions 2.17 and 2.18 follow [23, Sec. 2.1]:

Definition 2.17 Given justified e ∈ pplyA define the proponent view peq and op-
ponent view xey by: 4

pεq = ε

pema[b]q = peqma[b] (λA(m)=P)

peia[b]q = ia[b]

peqa[b]e′mb[c]q = peqqa[b]mb[c] (λA(m)=O)

xεy = ε

xema[b]y = xeyma[b] (λA(m)=O)

xeqa[b]e′mb[c]y = xeyqa[b]mb[c] (λA(m)=P)

Definition 2.18 We say that a justified proto-play e ∈ pplyA satisfies visibility when
e′qa[b]e′′q′b[c] ≤ e implies that:
• if λA(q) = P then qa[b] ⊆ pe′qa[b]e′′q , and
• if λA(q) = O then qa[b] ⊆ xe′qa[b]e′′y .

Compare this to the more informal definition of visibility in [23, Sec. 2.1]:

2 What is important here is the atom c.
3 In [14, p. 7] ‘strictly scoped’ is called fork and ‘strictly nested’ is called join.
4 The function e 7→ xey is not a total function because it is not defined on e of the form ia[b]e′ where
λA(i) = P. However, xey is defined on all justified e, because ia[b]e′ where λA(i) = P is not justified.

6

Gabbay and Ghica

A well formed sequence s is legal, or is a legal position, if it also satisfies the
following visibility condition:
• if tm v s where m is a P-move, then the justifier of m occurs in ptq .
• if tm v s where m is a noninitial O-move, then the justifier of m occurs in ptq .

The difficulty here is that the taking of the view removes moves from a play, and
so requires a complex reindexing if pointers are formalised using integers. Finding
the justifier of a move in a view is not straightforward.

Visibility is subtle, typical of languages that are pure or have only ground-type
state. We have shown above how to formalise it in our framework, but proofs of
properties involving visibility are non-trivial for reasons other than the handling of
names and binding, so we will not consider this property further.

Remark 2.19 We can now characterise the plays of HO-games (the games from
[19]) and GM-games (those from [14]). Suppose A is an arena and e ∈ pplyA is a
proto-play. Then:
• In HO-games, e is a legal play when fa(e) = {a} for some a ∈ A and e is justified,

well opened, alternating, strictly nested and satisfies visibility (see [19, Def. 4.2,
Def. 4.4]).

• In GM-games, e is a legal play when fa(e) = {a} as above and e is justified,
well-opened, strictly scoped, and strictly nested (see [14, Def. 1]).

The condition fa(e) = {a} implies e has one free atom a; one ‘dangling pointer’.
With being well-opened, this ensures a names the initial question.

How do we choose a above? We do not. It is a non-evident design decision
that proto-plays do not have α-conversion on coabstracted atoms. This preserves
compositionality: if [a]a equals [b]b then [a]ab equals [b]bb, which is nonsense. 5
In our framework α-conversion lives in strategies (sets of proto-plays), which are
subject to an equivariance (symmetry) condition up to the choice of atoms in the
proto-plays they contain. So α-equivalence does not live in the elements, it lives in
the sets of elements. More on this in Remark 5.3.

3 Operations on plays

3.1 Deletion of moves from a play

We often want to delete moves from pointer sequences, reflecting ‘hiding’ of irrel-
evant parts of a computation (see e.g. Definition 5.2). But pointers into and out
of deleted moves need to be updated. Definition 3.1 and Proposition 3.4 make this
formal for our nominal framework. The culminating result of this subsection is

5 It is possible to reconcile α-conversion with proto-plays, by appending a ‘future permutation’, like
so: [a]π . Then [a]ida equals [b](b a)b, not [b]idb. This is not needed here.

7

Gabbay and Ghica

Theorem 3.11, which uses Proposition 3.4 amongst other constructions to show that
properties of proto-plays are preserved by deletion.

Definition 3.1 Suppose X ⊆ mvsA is some set of moves from an arena A, and e ∈
pplyA. Define deletion e�X inductively on e as follows, where we take inductively
(f, ρ) = e�X :

ε�X = (ε, id)

(ema[b])�X = (f mρ(a)[b], ρ) (m 6∈ X)
(ema[b])�X = (f, ρ[b:=ρ(a)]) (m ∈ X)

It will be convenient to write e�A for π1(e�mvsA), that is, for deletion of the set of
moves of A. Here π1 is first projection.

Remark 3.2 Intuitively e�X is ‘e with the moves in X deleted’. Some reindexing
has to take place when we do this: e.g. if qa[b] is deleted then any pointers to b are
‘reattached’ so that they point to whatever a points to:

D
RA

FT

11

We define the uncovering of s ∈ LA⇒C, written u(s, σ, τ), as the
unique maximally explicit justified sequence u of moves of A,B,C such
that u ! (A,C) ≤ s, u ! (B,C) ∈ τ and there is m ∈ IB such that
u ! (A,B, m) ∈ σ. Then, σ; τ =

{
u(s, σ, τ) ! (A,C) | s ∈ LA⇒C

}
. [4,

Section 5.1].

Above, ≤ is the prefix ordering, u ! (A,C) is the sequence obtained from u by
removing all occurrences of B-moves, and u ! (A,B, m) means the sequence
obtained from u by removing all occurrences of C-moves and all moves which
can not be traced back to m by following the justification pointers. The “pro-
jection” u ! (A,C) is similarly defined, except that whenever there was a justi-
fication pointer from a A-move, to a B-move, to a C-move the deletion of the
B-move is followed by the introduction of a new justification pointer from the
A-move to the C-move.

Although the intention of the definition is clear, from a formal point of view
it also makes underlying assumptions about the pointer structure remaining
“otherwise unchanged” when a sequence has moves removed. Formalising this
using indexes would be tedious in the extreme and is not attempted, especially
in the case of u ! (A,C) where pointer readjustment is also necessary. Jamie, maybe you can make

this more polite? drg.We define all the requisite notions in the nominal setting.
[mjg could move later]

Definition 3.8.1. Suppose A+B+C is any arena [mjg dan: why?] [mjg explain
alphabet] constructed from A, B, or C using ×, ⇒. An interaction sequence is
any proto-play u over A+B+C. Write int(A+B+C) for the set of all interaction
sequentces.

Construct the interaction [mjg defined?] of two arenas by taking int(A,B) =
int(A + B + ∅) [mjg define?]. [mjg delete?] Let • be a reserved global name.

Definition 3.8.2. Suppose A is a arena and X ⊆ quesA ∪ answA is some set of
moves from A. Suppose [c]e ∈ pplyA is a play in A. Define the restriction [c]e"X
inductively on e by:

ε"X = ε
(qa[b] e)"X = e[b := c]"X (q ∈ X)
(qa[b] e)"X = qa[b](e"X) (q (∈ X)

(aa e)"X = e"X (a ∈ X)
(aa e)"X = aa(e"X) (a (∈ X)

Intuitively, e"X is ‘e with the moves in X deleted’. This looks like a trivial def-
inition, but note the important subtlety that if qa[b] gets deleted then b gets
‘reindexed’ [mjg to c?]

[mjg lemmas 3.25 and 3.27 are ”sanity checks” for different notions of game:
whatever your definition, these lemmas should hold]

Lemma 3.8.3. If e ∈ pplyA⇒B then e"A ∈ pplyB.

In the diagram above the shaded nodes (circles) are in X and are deleted.

e�X inductively generates a ‘result’ f and a ‘reindexing renaming’ ρ. It is
tempting to dismiss ρ as a by-product, but ρ may be the more important information
since f can be calculated from ρ and X . This is Proposition 3.4, which is key to a
nice proof of Theorem 3.11.

Definition 3.3 Suppose e∈pplyA and X⊆mvsA. We define naive deletion e-X as
follows:

ε-X = ε

(ema[b])-X = (e-X)ma[b] (m 6∈ X)
(ema[b])-X = e-X (m ∈ X)

Proposition 3.4 Suppose e ∈ pplyA and e�X = (e′, ρ). Then e′ = (ρ·e)-X . 6

Proof By induction on e. We consider the interesting case (it changes ρ):
• The case ema[b] where m ∈ X . Suppose e�X = (e′, ρ). Using the inductive

hypothesis (ema[b])�X = ((ρ·e)-X , ρ[b:=ρ(a)]).
Now (ρ·e)-X = (ρ·(ema[b]))-X since m ∈ X . Also, ρ·e = (ρ[b:=ρ(a)])·e

because by assumption in Definition 2.8 b 6∈ atoms(e) (Definition 2.3). 7

6 ρ·e is a nominal sequence but it might not be a proto-play because coabstracted atoms need not be
distinct. Also e-X need not be legal because naive deletion does not update links. Proposition 3.4
shows that Definition 3.1 calculates ρ and X such that if we do these two naive operations together,
then we are all right.
7 This is the crux of the proof: because b is fresh, changing ρ to ρ[b:=ρ(a)] does not change whatever
we have calculated so far.

8

Gabbay and Ghica

Lemma 3.5 enabled(ρ·e) = ρ·enabled(e).
As an immediate corollary, enabled(ρ·e)-X = (ρ·enabled(e))-X .

We now examine the impact deletion has on the legality conditions of Defini-
tion 2.15. Legality is not preserved by arbitrary deletions, but deletion is usually
used in a controlled way which ensures preservation. For instance deletion of moves
forming an entire sub-tree in the arena, preserves legality properties. Other kinds of
deletions can be dealt with similarly.

Lemma 3.6 Suppose X ⊆ mvsA and e ∈ pplyA. Write e�X = (f, ρ). Then
fa(f) ⊆ fa(e) and ca(f) ⊆ ρ·ca(e).
Lemma 3.7 Suppose e ∈ pplyA. If ma ∈ enabled(e) then a ∈ atoms(e).

Proof By a routine induction on the proto-play e, using Definition 2.12.

Lemma 3.8 If ma[b] ⊆ e ∈ pplyA and m′b ∈ enabled(e) then m À m′.

Proof By induction on e. We consider one case:
• The case ema[b]. Suppose m′b ∈ enabled(ema[b]). By assumption in Def-

inition 2.8 b 6∈ atoms(e) and by Lemma 3.7 m′b 6∈ enabled(e). Unpacking
Definition 2.12 it follows that m À m′.

Definition 3.9 Call X ⊆ mvsA closed under À when m ∈ X and m À m′ implies
m′ ∈ X .

Lemma 3.10 Suppose X ⊆ mvsA is closed under À. Suppose e�X = (e′, ρ). Then
if ma ∈ enabled(e) and ma 6∈ X then mρ(a) ∈ enabled(e′).

Proof By Lemma 3.5 it suffices to show that if ma ∈ enabled(e) then mρ(a) ∈
enabled((ρ·e)-X). We work by induction on e and consider one case:
• The case of ema′[a]. Write e�X = (e′, ρ) and suppose m′a ∈ enabled(ema′[a])

and m′ 6∈ X . By Lemma 3.8 m À m′. Since m′ 6∈ X it follows by closure of
X under À that m 6∈ X . So (ρ·(ema′[a]))-X = ((ρ·e)-X) (mρ(a′)[ρ(a)]). By
Definition 2.12, m′ρ(a) ∈ enabled(((ρ·e)-X) (mρ(a′)[ρ(a)])).

Theorem 3.11 Suppose X ⊆ mvsA and e�X = (f, ρ).

(i) If X ⊆ mvsA is closed under À then if e is justified then so is f .
(ii) If iniA ∩ X = ∅ then if e is well-opened then so is f .

(iii) If e is strictly scoped then so is f .
(iv) If X ⊆ mvsA is closed under À then if e is strictly nested then so is f .

Proof
(i) Suppose f ′mρ(b) ≤ f where e�X = (f, ρ) and m 6∈ iniA. Using Proposi-

tion 3.4 f ′mρ(b) = ((ρ·e′)-X)mρ(b) for some e′mb ≤ e, and also m 6∈ X .
Since e is justified, by Lemma 2.13 it must be that q À m for some qa[b] ⊆ e.

9

Gabbay and Ghica

Since X is closed under À we know q 6∈ X . It follows by Proposition 3.4 that
qρ(a)[ρ(b)] ⊆ f ′ and we are done.

(ii) By an easy argument using Proposition 3.4.
(iii) Suppose aρ(a)f ′ ⊆ f . Then aae′ ⊆ e for some e′ ∈ pplyA. Since e is strictly

scoped we know that a 6∈ fa(e′). By Lemma 3.6 also a 6∈ fa(f ′).
(iv) Much as the previous case.

3.2 Restriction to a hereditarily justified sub-play

The structure of this subsection resembles that of Subsection 3.1. We have a more
complex operation than deletion; extracting the hereditarily justified sub-pointer
sequence. In our framework the definition is absolutely routine; we just take a
sub-sequence. This is Definition 3.12; then Proposition 3.14 shows how to quickly
calculate the relevant sub-sequence using names, and Theorem 3.18 expresses how
properties are preserved.

Definition 3.12 Suppose e ∈ pplyA and A ⊆ A. Define the hereditarily justified
proto-play e�A ⊆ pplyA as follows, where we take (f,B) = e�A and a ∈ B and
a′ 6∈ B:

ε�A = (ε, A)

(ema[b])�A = (f ma[b], B∪{b})
(ema′[b])�A = (f,B)

Definition 3.13 Suppose e∈pplyA and A⊆A. Define e@A as follows, where a∈A
and a′ 6∈A (the resemblance with atoms-concretion from [12] is deliberate):

ε@A = ε

(ema[b])@A = (e@A)ma[b]

(ema′[b])@A = e@A

Proposition 3.14 If e�A = (f,B) then e@B = f .

Corollary 3.15 Suppose e�A = (f,B). Then:
• If f ′ma[b] ≤ f then e′ exists such that e′ma[b] ≤ e and (e′ma[b])@B = f ′ma[b].
• If aa[b]f ′ ⊆ f then e′ exists such that aa[b]e′ ⊆ e and (aa[b]e′)@B = aa[b]f ′.
• If qa[b]f2q′b[c]f3ab[d] ⊆ f then e2 and e3 exist such that

(qa[b]e2q
′b[c]e3ab[d])@B = qa[b]f2q

′b[c]f3ab[d].

Corollary 3.16 If e�A = (f,B) then {mb∈enabled(e) | b∈B} = enabled(f).

Corollary 3.17 fa(e@B) = fa(e) ∩B and ca(e@B) = ca(e) ∩B.

Theorem 3.18 Suppose e�A = (f,B). Then if e is justified / well-opened / strictly
scoped / strictly nested then so is f .

Proof We consider each property in turn:
10

Gabbay and Ghica

• Justified. Using part 1 of Corollary 3.15 and Corollary 3.16.
• Well-opened. Using part 1 of Corollary 3.15.
• Strictly scoped. From part 2 of Corollary 3.15 and Corollary 3.17.
• Strictly nested. From part 3 of Corollary 3.15.

4 Combining arenas
Definition 4.1 (i) Suppose f is a function on a set X and g is a function on

a disjoint Y . Write [f, g] for the co-pairing function on X ∪ Y such that
[f, g](x) = f(x) and [f, g](y) = g(y) for x ∈ X and y ∈ Y respectively.

(ii) Suppose g is a function to {O,P}. Write g∗ for the function mapping x to g(x)∗
(Definition 2.7).

Definition 4.2 Define product A×B and arrow A⇒ B of arenas by:
A×B = (qstA+qstB, ansA+ansB, [λA, λB], À + B̀, iniA+iniB)

A⇒ B = (qstA+qstB, ansA+ansB, [λ
∗
A, λB], À + B̀ +iniB × iniA, iniB)

• Above, the symbol + denotes disjoint sets union (for convenience assume sets of
moves of distinct arenas are distinct), and

• iniB×iniA = {(i′, i) | i′∈iniB, i∈iniA}. So À + B̀ +iniB×iniA is the disjoint
union of the enabling relations of A and B, disjoint union iniB×iniA.

We show how from proto-plays in A⇒ B we recover proto-plays in A and
B. This is Lemmas 4.3 and 4.5. These state that two important operations on
proto-plays—deletion and unravelling—preserve certain well-formedness properties
which define the notion of HO and GM legal plays. These operations are key to
formulating composition of strategies, so preservation of legality is essential to show
that composition of HO or GM strategies is well-defined.

Lemma 4.3 Suppose e ∈ pplyA⇒B and e�mvsA = (f, ρ). Then f ∈ pplyB. If e is
justified, well-opened, strictly scoped, or strictly nested, then so is f .

Proof For the first part, by Proposition 3.4 f contains only moves in mvsB. The
second part follows by Theorem 3.11 and we note that the enabling relation À⇒B

restricted to the moves mvsB, is just B̀.

Definition 4.4 Define the unravelling of e ∈ pplyA by unravel(e) = {e�{a} | a ∈
fa(e)}.

Unravelling is key to constructing exponential games [23, Sec 2.4]. Intuitively,
in a play in A ⇒ B we can recover one play in B, by deleting the moves of A.
Removing the moves in B yields an interleaved set of plays of A. Unravelling
separates these plays by following pointers, as illustrated:

{ , }

D
RA

FT
8

Definition 3.6.6. Suppose e ∈ pplyA and suppose A ⊆ A. Define the hereditar-
ily justified proto-play e!A ⊆ pplyA as follows:

ε!A = ε
(qa[b] e)!A = qa[b](e!A∪{b}) (a ∈ A) (qa[b] e)!A = e!A (a #∈ A)

(aa e)!A = aa(e!A) (a ∈ A) (aa e)!A = e!A (a #∈ A)

The following property is immediate.

Proposition 3.6.7. If [a]e ∈ playA then [a]
(
e!{a}

)
= [a]e.

Proof. Immediate, since plays are justified and only the first question is initial.

The following definition is used in defining strategy composition:

Definition 3.6.8 (Unravelling). Suppose e ∈ pplyA is an expression. Define the
unravelling e ! of an expression e ∈ pplyA by e! = {e!a | a ∈ fn(e)}.

Intuitively, in a play in arena A ⇒ B we can recover, by deleting the moves in
A one play in B, as per Lemma ??, but by removing the plays in B we obtain a
set of interleaved plays of A. Unravelling separates these interleaved plays, by
following the pointers from initial moves, into a set of proper A plays, as in the
diagram below:

D
RA

FT
12

[mjg lemmas 3.25 and 3.27 are ”sanity checks” for different notions of game:
whatever your definition, these lemmas should hold]

Lemma 3.8.3. If e ∈ pplyA⇒B then e!A ∈ pplyB.

Proof. The proof is immediate on induction on p and it uses the fact that moves
in A only justify other moves in A [mjg dan: where is this stated in the def-
inition?]. Whenever an A-question is deleted the name it introduces becomes
•, but this is not a problem since all moves which use this n themselves are
eventually deleted. [mjg working here]This needs to be updated af-

ter we decide on the defini-
tion above. Definition 3.8.4. For any proto-play e = qa[b] :: f ∈ pplyA, the hereditarily

justified sequence e" is defined as qa[b] :: (f " {b}), where e " A for A ⊆ A is
defined inductively on the length of e as follows:

– ε " A = ε

– (qa[b] :: e) " A =

{
(e " A) if a #∈ A

qa[b] ::
(
e " (A ∪ {b})

)
otherwise

– (aa :: e) " A =

{
e " A if a #∈ A

aa :: (e " A) otherwise

Obviously, [mjg obviously what?]

Proposition 3.8.5. If [a]e ∈ γ(playA) then [a](e") = [a] :: e.

Proof. Immediate, since plays are justified and only the first question is initial.

The following result [mjg no result follows!] is important for the well-definedness
of strategy composition:

Definition 3.8.6 (Unravelling). Suppose e ∈ pplyA is an expression. Define the
unravelling e " a of an expression e ∈ pplyA relative to a name a ∈ A by

e " a =
{

(qa[b] :: g)" | ∃f, g ∈ pplyA such as e = f :: qa[b] :: g
}

.

[mjg hello]

Lemma 3.8.7. If [a]e ∈ γ(playA⇒B) then α
(
[a](e | B) " a) ⊆ playA.

The restriction u " (A,B, m) in the conventional game literature is refined here
into the two operations: the deletion of moves and the hereditary justification,
which are quite different.

Proof (sketch). If we start with a legal play in A ⇒ B and we delete all occur-REVISIT
rences of B-moves we are a left with an A proto-play which will satisfy Fork
and Join because, essentially, whenever a question is removed its answer, if any,
is also removed.

Note that when deleting the B-moves, all initial A-moves are reassigned •
as the justification pointer, which makes the first conclusion true.

{ , }

a

[mjg hello]

Lemma 3.6.9. If [a]e ∈ γ(playA⇒B) then α
(
[a](e | B) ! a) ⊆ playA.

The restriction u ! (A,B, m) in the conventional game literature is refined here
into the two operations: the deletion of moves and the hereditary justification,
which are quite different.

Proof (sketch). If we start with a legal play in A ⇒ B and we delete all occur-REVISIT
rences of B-moves we are a left with an A proto-play which will satisfy Fork
and Join because, essentially, whenever a question is removed its answer, if any,
is also removed.

Note that when deleting the B-moves, all initial A-moves are reassigned •
as the justification pointer, which makes the first conclusion true.

The second conclusion is to show that fa(q•[b] :: f) = {•}, which is imme-
diate from the definition of the operation. In order to show that this sequence
is actually a proto-play we need to show that it has no other initial questions.
This is true because all initial questions are justified by •.

We can now define strategy composition in the nominal setting.

Definition 3.6.10 (Uncovering). Given strategies σ : A ⇒ B, τ : B ⇒ C and an
expression e ∈ γ(playA⇒C) we define the uncovering of e in accord to σ, τ , writ-
ten u(e, σ, τ) as the unique maximal proto-play over A + B + C [mjg correct
fonts] such that

11

Gabbay and Ghica

It is easy to see that if e is justified then unravel(e) captures the idea of “the set of
threads in e”, and if e is additionally well-opened then unravel(e) = {e}.
Lemma 4.5 If e∈pplyA⇒B then unravel(e�B)⊆pplyA. If e is justified / well-opened
/ strictly-scoped / strictly-nested then so is every f ∈ unravel(e�B).

Proof Directly from Lemma 4.3.

5 Strategies

5.1 Strategies and equivariance

Definition 5.1 Call σ ⊆ pplyA equivariant when e ∈ σ implies π·e ∈ σ for every
permutation π. Write σ : A when σ is an equivariant subset of pplyA and call σ a
strategy.

(The notion of strategy is usually subject to further constraints; these are discussed
below.)

Recall deletion e�A from Definition 3.1. We follow [23, Section 2.2.3]:

Definition 5.2 SupposeA,B, andC are arenas on disjoint moves. Then for strategies
σ : A⇒ B and τ : B⇒ C define their interaction and composition by:

σ||τ = {e ∈ pplyA×B×C | e�C ∈ σ ∧ e�A ∈ τ}
σ; τ = {e�B | e ∈ σ||τ}

This is the linear version of strategy composition; exponential games are con-
structed using the concept of unravelling introduced earlier (Definition 4.4). The use
of proto-plays, which have almost no structure, simplifies the definition of interaction
(−||−) compared to the usual definition (c.f. [23, Section 2.2.3]) which needs the
auxiliary concept of interaction sequences.

Remark 5.3 Equivariance is symmetry under permuting atoms. Names fulfil the
function that links fulfil in e.g. [19,23,14]. Permutative symmetry of strategies
amounts to saying ‘we can α-rename’.

So proto-plays do not have α-equivalence in our framework but sets of proto-
plays do (cf. [10]). Thus, Theorem 5.4 becomes a one-line argument by symme-
try/equivariance. This avoids arguments about α-renaming, reindexing, or re-linking
that would be needed if we used numbers or explicitly linked lists. So we have:

Theorem 5.4 Suppose A, B, and C are arenas and σ : A⇒ B and τ : B⇒ C
are strategies. Then the set σ; τ is equivariant, and thus is a strategy in A⇒ C.

Proof By Definition 5.1 a strategy is an equivariant set of protoplays, so σ and
τ are equivariant. We note that the definitions involved in specifying σ; τ are all

12

Gabbay and Ghica

symmetric in atoms, and so by assumption are the inputs to those definitions σ and
τ , therefore by the principle of equivariance also σ; τ are symmetric. (A formal
discussion of equivariance is elsewhere [7, Subsection 4.2].)

5.2 Associativity of composition

We will prove Theorem 5.5, that composition of strategies is associative:

Theorem 5.5 Suppose A, B, C, and D are arenas on disjoint moves. Suppose
σ : A⇒ B, τ : B⇒ C, and µ : C⇒ D are strategies. Then (σ; τ);µ = σ; (τ ;µ).

This will follow immediately from Lemma 5.8. For us in this paper strategies
are just sets of sequences of moves and names, and the proofs are just by routine
induction and name-chasing, that is: unpacking definitions and noting that names end
up in the same places on both sides of the equality (see the proof of Proposition 5.6).
Proposition 5.6 Suppose C is an arena and X ,Y ⊆ mvsC are two disjoint sets of
moves, and e ∈ pplyC. Suppose e�X = (e′, ρ) and e′�Y = (e′′, ρ′) and e�(X∪Y) =
(f, ρ′′).

Then f = e′′ and ρ′′ = ρ′◦ρ (where ◦ is functional composition, notation from
Definition 2.5).

Proof By induction on e using Definition 3.1.
• The case ε. . . is easy.
• The case ema[b]wherem ∈ X . By Proposition 3.4 e′ = ρ·e-X and e′′ = ρ′·e′-Y .

It follows that e′′ = (ρ′◦ρ)·e-(X∪Y). Also by Proposition 3.4 f = ρ′′·e-(X∪Y).
By inductive hypothesis f = e′′ and ρ′′ = ρ′ ◦ ρ.

By Definition 3.1 we have that ema[b]�X = (e′, ρ[b:=ρ(a)]) and it follows that
π1(ema[b]�X)�Y = (e′′, ρ′ ◦ (ρ[b:=ρ(a)])). Also, it is a fact of functions that
ρ′ ◦ (ρ[b:=ρ(a)]) = (ρ′◦ρ)[b:=(ρ′◦ρ)(a)].

Using Definition 3.1 we have that ema[b]�(X∪Y) = (f, ρ′′[b:=ρ′′(a)]), and the
result follows.

• The case ema[b] where m ∈ Y . Similar to the previous case, but simpler.

Remark 5.7 Our notion of strategy is simple and it does not rely on a notion of legal
play. So to study properties of composition, any strategy over an arenaA⇒ B is also
a strategy over an arena A×B, as the two arenas have the same sets of moves—the
polarities of the moves and the justification structure are different between A⇒ B
and A×B, but this information is not used in the definition of composition.

Similarly for defining σ||τ for strategies σ : A ⇒ B and τ : B ⇒ C. An
interaction can be viewed as a strategy in (A × B) ⇒ C or A ⇒ (B × C), as
convenient. This is correct because interaction preserves equivariance and the sets
of moves in these arenas are the same.

Thus we will obtain a particularly simple proof of associativity of interaction,
given below.

13

Gabbay and Ghica

Lemma 5.8 Suppose σ : A⇒B, τ : B⇒C, and µ : C⇒D are strategies. Then
(σ||τ)||µ = σ||(τ ||µ).

Proof We unpack Definition 5.2 repeatedly: e ∈ (σ||τ)||µ if and only if e�D ∈ σ||τ
and e�A×B ∈ µ, if and only if (e�D)�C ∈ σ and (e�D)�A ∈ τ and e�A×B ∈ µ.
Using Proposition 5.6 this is equivalent to e�D×C ∈ σ and e�D×A ∈ τ and
e�A×B ∈ µ.

By similar reasoning, e′ ∈ σ||(τ ||µ) is equivalent to e′�D×C ∈ σ and e′�D×A ∈
τ and e′�A×B ∈ µ.

The result follows.

5.3 Prefix- and opponent-closed

Just as for proto-plays, GM and HO strategies are subject to constraints. In the rest
of this section we sketch, sometimes in detail, how these can be expressed.

Two standard conditions on strategies are being prefix-closed and opponent-
closed; see [19, Section 5] (where opponent-closed is called contingent completeness)
or [14, Definition 4]. These are straightforward to formalise:

Definition 5.9 Call σ ⊆ pplyA prefix-closed and opponent-closed respectively
when:

ema[b] ∈ σ
e ∈ σ

e ∈ σ λA(m)=O ema[b] ∈ pplyA

ema[b] ∈ σ

5.4 The asynchrony pre-order on proto-plays

In [14] the authors were interested in modelling asynchronous concurrency. Accord-
ingly strategies must be saturated under certain move swapping [14, Subsection 2.5]
(the idea goes back to [25]).

Definition 5.10 Call a relation ≤ on sequences compatible when e ≤ e′ implies
ef ≤ e′f and fe ≤ fe′. Define � on pplyA to be the least compatible pre-order
such that:

(b 6∈ fa(e), λA(m)=O)
(bmX)

ma[b] e � e ma[b]

(b 6∈ fa(e), λA(m)=P)
(bXm)

e ma[b] � ma[b] e

Call σ ⊆ pplyA �-saturated when e ∈ σ, e′ ∈ pplyA and e′ � e imply e′ ∈ σ.

Remark 5.11 It may be worth quoting the definition from [14] (text just before
Definition 6) for comparison with Definition 5.10:

. . .we define a pre-order � on playA for any arena A as the least reflexive and
transitive relation satisfying s′ � s for all s, s′ ∈ playA

(i) s′ = s0 · o · s1 · s2 and s = s0 · s1 · o · s2, or
(ii) s′ = s0 · s1 · p · s2 and s = s0 · p · s1 · s2,

14

Gabbay and Ghica

where o is any O move and p is any P move and the justification pointers in s are
“inherited” from s′ . . .

Nominal sequences help make these intuitions formal.

In [14, Lemma 7] a small step version �′ is given and the equality �′=� is
claimed. With what we have so far, this is a routine inductive argument:

Definition 5.12 Give {O,P} a partial order such that O ≤ O, O ≤ P, and P ≤ P.
Define a pre-order �′ on closed sequences to be the least reflexive transitive relation
such that:

(λA(m1) ≤ λA(m2))
(smm)

m1a1[b1] m2a2[b2] �′ m2a2[b2] m1a1[b1]

(λA(m1) ≤ λA(m2))
(smm′)

m1a[b1] m2a[b2] �′ m2a[b2] m1a[b1]

Here is the asynchronous swapping rule (smm) interpreted for q1, q2:
b1

q1 q2
b2

a1

a2 b1

q1q2

b2
a1

a2

≼

Lemma 5.13 �′=�.

Proof We show �′⊆� by induction on �′:
• Rule (smm). By (bmX) if λA(m1)=O and by (bXm) if λA(m1)=P=λA(m2).
• Rule (smm′). By (bmX) if λA(m1)=O and by (bXm) if λA(m1)=P=λA(m2).
In both cases the side-condition b2 6∈ fa(a1a1) is valid. Next we show that �⊆�′ by
induction on � and the length of e:
• Rule (bmX). We use (smm) and (smm′) to swap ma[b] with the leftmost move in
e. The condition b 6∈fa(e) matches the distinctness condition b2 6∈{a, a1, b1}.

• Rule (bXm). We use (smm) and (smm′) to swap ma[b] with the rightmost move
in e.

5.5 Innocence

An important notion in HO games is innocence [19, Definition 5.2], which charac-
terises side-effect-free sequential computation. For us this is Definition 5.14 and
with the tools we have built so far, it is quite compact: 8

Definition 5.14 Suppose m and m′ are named moves (Definition 2.9). Given HO-
legal plays emm′, e′m in A, where |emm′| has even length, ca(m′)∩atoms(e′) = ∅
and pemq = pe′mq , there is a unique renaming ρ = (c 7→ c′) with c ∈ fa(m′) and
c′ ∈ ca(e′) such that pemm′q = pe′m(ρ·m′)q . Call σ : A innocent when

emm′, e′ ∈ σ ∧ e′m HO-legal ∧ pemq = pe′mq =⇒ e′m(ρ·m′) ∈ σ.
8 We use McCusker’s equivalent formulation [23, Subsection 2.2.4].

15

Gabbay and Ghica

In [19, Definition 5.2] Hyland and Ong must write in English about the manip-
ulation of pointers, and that this has to be done throughout their work (and this is
typical of similar papers). We propose nominal techniques as a way to deal with this
quickly and elegantly.

In HO games, moves can be repeated, which leads to a need to identify particular
occurrences of moves in sequences. This goes away in our setting because every
question or answer is uniquely identified by a name: the coabstracted name that it
introduces. So implicit in our framework is a separation of ‘move’ versus ‘occurrence’,
removing a significant source of ambiguity. In this paper we have been able to
implicitly identify an occurrence of a move in a proto-play with the named move in
which the occurrence appears, since coabstracted atoms in proto-plays are distinct
(Definition 2.8).

6 Conclusions

We have seen how pointer sequences can be modelled as nominal sequences. Pointers
are split into a coabstraction [b] corresponding to the head of the arrow, and a (free)
atom b corresponding to its tail. Unlike pointers, a name carries its identity with it; b
points to [b] wherever we put it.

Furthermore, unlike e.g. numbers, a name is permutatively symmetric, so rein-
dexing / renaming can be expressed at a high level of abstraction. Because of this,
nominal sequences are easy to break apart, compose, and reindex.

We have considered some non-trivial operations, like deletion and hereditarily
justified sub-sequences; and some important definitions, like strategy composition,
asynchronous reordering, and innocence. We have seen how these operations and
definitions become straightforward and precise, if we choose the right machinery.
This is attractive, but we also believe it will be almost a prerequisite for the kind of
mechanised treatment of game semantics that is required for games to be applied in
the second author’s research programme.

We have discussed pointer sequences [19,14,23]. In contrast, the Abramsky-
Jagadeesan-Malacaria (AJM) games [2] rely on tags instead of pointers. These
do not raise the problems of pointers and are fully formalised, but they are a more
restricted formalism which was only used for PCF. For languages with effects the
flexibility of pointers was required.

Another strategy is to become more abstract: so [5,17,24,21] revise the whole
game semantic paradigm per se, in categorical terms. Some readers will instinctively
believe that this categorical generalisation obsoletes any concrete realisation, but this
is incorrect; there will always be a need for concrete models—especially if we want
to implement or mechanise theorems. We seek convenient reformulations of the
impressive collection of existing game models to make them more suitable for our
intended applications. The work cited above is complementary, but also orthogonal.

Representations of pointer games [18] and games models of nominal languages [20]
16

Gabbay and Ghica

exist, including work by the second author with others on game semantics for nominal
or nominal-related languages [15,1]. However, there has been no nominal repre-
sentation of pointer sequences themselves. The closest the literature gets is in the
Introduction to [24] where Melliès discusses representing pointers using integer
indexes acted on by two group actions.

There is more to this paper than representing pointers. We use atoms in FM sets,
which have structure that ZF sets do not. Functions, predicates, and subsets have
symmetry (equivariance) properties and apartness (freshness) structure which make
it relatively more convenient to handle distinctness conditions (like in Definition 2.8)
or to deduce symmetry properties (as in Theorem 5.4), and so on (a very general
treatment is in [6, Section 5]).

In this paper, coabstraction is a syntactic token in sequences. We give a deno-
tational intuition how this differs from nominal atoms-abstraction: suppose X is a
nominal set with an internal atoms-abstraction [A]X→ X written [a]x (for definitions
see [12,7]). SupposeR ⊆ X× X is a relation on X. Then (briefly)R[A] is the least
relation such that if x R y and a#x,R then x R [a]y, andR[a] is the least relation
such that if x R y and a#x,R then x R [a]y. This is coabstraction. Nominal terms
admit a similar generalisation; we would admit freshness a#X and cofreshness
a%X conditions. More on this in a later paper.

We can read this paper as an exciting, if only partially articulated, commentary
on semantics. The issue of dangling pointers and compositionality has not been
properly addressed in the games literature and it remains to understand where the
nominal model will take us. The nominal model of this paper exists in a larger
context of nominal sets, substitution models, and some sophisticated logical and
semantic theory [7,9], including abstract treatments of metavariables and renaming
[8,11] and even e.g. trees with pointers [4]; the fruit of applying this theory, remains
to be discovered.

Acknowledgements. The first author acknowledges the support of the Leverhulme
trust.

References

[1] Samson Abramsky, Dan R. Ghica, Andrzej S. Murawski, C.-H. Luke Ong, and Ian D. B. Stark.
Nominal games and full abstraction for the nu-calculus. In Proceedings of the 19th IEEE Symposium
on Logic in Computer Science (LICS 2004), pages 150–159. IEEE Computer Society Press, 2004.

[2] Samson Abramsky, Radha Jagadeesan, and Pasquale Malacaria. Full abstraction for PCF.
Information and Computation, 163(2):409–470, 2000.

[3] Samson Abramsky and Guy McCusker. Call-by-value games. In Proceedings of Computer Science
Logic (CSL’97), volume 1414 of Lecture Notes in Computer Science, pages 1–17, 1998.

[4] Luca Cardelli, Philippa Gardner, and Giorgio Ghelli. Manipulating trees with hidden labels.
In Proceedings of the 6th international conference on Foundations of software science and
computational structures (FoSSaCS 2003), pages 216–232, 2003.

[5] Vincent Danos and Russell Harmer. The anatomy of innocence. In Proceedings of the 10th EACSL
Annual Conference on Computer Science Logic (CSL 2001), pages 188–202, 2001.

17

Gabbay and Ghica

[6] Murdoch J. Gabbay. A General Mathematics of Names. Information and Computation, 205(7):982–
1011, July 2007.

[7] Murdoch J. Gabbay. Foundations of nominal techniques: logic and semantics of variables in abstract
syntax. Bulletin of Symbolic Logic, 17(2):161–229, 2011.

[8] Murdoch J. Gabbay. Meta-variables as infinite lists in nominal terms unification and rewriting. Logic
Journal of the IGPL, 2012.

[9] Murdoch J. Gabbay. Nominal terms and nominal logics: from foundations to meta-mathematics. In
Handbook of Philosophical Logic, volume 17. Kluwer, 2012.

[10] Murdoch J. Gabbay and Vincenzo Ciancia. Freshness and name-restriction in sets of traces
with names. In Foundations of software science and computation structures, 14th International
Conference (FOSSACS 2011), volume 6604 of Lecture Notes in Computer Science, pages 365–380.
Springer, 2011.

[11] Murdoch J. Gabbay and Martin Hofmann. Nominal renaming sets. In Proceedings of the 15th
International Conference on Logic for Programming, Artificial Intelligence, and Reasoning (LPAR
2008), pages 158–173. Springer, November 2008.

[12] Murdoch J. Gabbay and Andrew M. Pitts. A New Approach to Abstract Syntax with Variable
Binding. Formal Aspects of Computing, 13(3–5):341–363, July 2001.

[13] Dan R. Ghica. Applications of game semantics: From software analysis to hardware synthesis. In
Proceedings of the 24th IEEE Symposium on Logic in Computer Science (LICS 2009), pages 17–26,
2009.

[14] Dan R. Ghica and Andrzej Murawski. Angelic semantics of fine-grained concurrency. Annals of
Pure and Applied Logic, 151(2-3):89–114, 2008.

[15] Dan R. Ghica and Andrzej S. Murawski. Compositional model extraction for higher-order concurrent
programs. In Tools and Algorithms for the Construction and Analysis of Systems (TACAS 2006),
pages 303–317, 2006.

[16] Dan R. Ghica and Nikos Tzevelekos. A system-level semantics. Electronic Notes in Theoretical
Computer Science (to appear). Mathematical Foundations of Computer Science XXVIII, Bath, UK,
2012.

[17] Russell Harmer, Martin Hyland, and Paul-André Melliès. Categorical combinatorics for innocent
strategies. In Proceedings of the 22nd IEEE Symposium on Logic in Computer Science (LICS 2007),
pages 379–388. IEEE Computer Society, 2007.

[18] Martin Hyland and C.-H. Luke Ong. Pi-calculus, dialogue games and PCF. In FPCA, pages 96–107,
1995.

[19] Martin Hyland and C.-H. Luke Ong. On full abstraction for PCF: I, II, and III. Information and
Computation, 163(2):285–408, 2000.

[20] Jim Laird. A game semantics of names and pointers. Annals of Pure and Applied Logic, 151(2-
3):151–169, February 2008. First Games for Logic and Programming Languages Workshop.

[21] Jim Laird, Giulio Manzonetto, and Guy McCusker. Constructing differential categories and
deconstructing categories of games. In Luca Aceto, Monika Henzinger, and Jiri Sgall, editors, ICALP
(2), volume 6756 of Lecture Notes in Computer Science, pages 186–197. Springer, 2011.

[22] Ondrej Majer, Ahti-Veikko Pietarinen, and Tero Tulenheimo. Games: Unifying Logic, Language,
and Philosophy. Springer, 2009.

[23] Guy McCusker. Games and full abstraction for FPC. Information and Computation, 160(1-2):1–61,
2000.

[24] Paul-André Melliès. Asynchronous games 2: The true concurrency of innocence. In Proceedings of
the 15th International Conference on Concurrency Theory (CONCUR 2004), pages 448–465, 2004.

[25] Jan Tijmen Udding. A formal model for defining and classifying delay-insensitive circuits and
systems. Distributed Computing, 1(4):197–204, 1986.

[26] Christian Urban. Nominal reasoning techniques in Isabelle/HOL. Journal of Automatic Reasoning,
40(4):327–356, 2008.

18

http://www.gabbay.org.uk/papers.html#genmn
http://www.gabbay.org.uk/papers.html#fountl
http://www.gabbay.org.uk/papers.html#fountl
http://www.gabbay.org.uk/papers.html#metvil
http://www.gabbay.org.uk/papers.html#nomtnl
http://www.gabbay.org.uk/papers.html#frenrs
http://www.gabbay.org.uk/papers.html#frenrs
http://www.gabbay.org.uk/papers.html#rens
http://www.gabbay.org.uk/papers.html#newaas-jv
http://www.gabbay.org.uk/papers.html#newaas-jv

	Introduction
	Nominal game semantics
	Nominal sequences
	Nominal game semantics

	Operations on plays
	Deletion of moves from a play
	Restriction to a hereditarily justified sub-play

	Combining arenas
	Strategies
	Strategies and equivariance
	Associativity of composition
	Prefix- and opponent-closed
	The asynchrony pre-order on proto-plays
	Innocence

	Conclusions
	References

