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By constructions in monoid and group theory we exhibit an adjunction between the
category of partially ordered monoids and lazy monoid homomorphisms, and the
category of partially ordered groups and group homomorphisms, such that the unit of
the adjunction is injective. We also prove a similar result for sets acted on by monoids and
groups.

We introduce the new notion of lazy homomorphism for a function f between
partially-ordered monoids such that f(mom’) < f(m)o f(m’).

Every monoid can be endowed with the discrete partial ordering (m < m’ if and only if
m = m’) so our constructions provide a way of embedding monoids into groups. A
simple counterexample (the two-element monoid with a non-trivial idempotent) and
some calculations show that one can never hope for such an embedding to be a monoid
homomorphism, so the price paid for injecting a monoid into a group is that we must
weaken the notion of homomorphism to this new notion of lazy homomorphism.

The computational significance of this is that a monoid is an abstract model of
computation—or at least of ‘operations’—and similarly a group models reversible
computations/operations. By this reading, the adjunction with its injective unit gives a
systematic high-level way of faithfully translating an irreversible system to a ‘lazy’
reversible one.

Informally, but perhaps informatively, we can describe this work as follows: we give an
abstract analysis of how to sensibly add “‘undo’ (in the sense of ‘control-Z").

t Many thanks to Phil Scott and to an anonymous referee, without whom the paper would not have attained
its current form. The first author acknowledges the support of the Leverhulme trust and of grant RYC-
2006-002131 at the Polytechnic University of Madrid; the second author acknowledges the support of
Cornell University, New York and of the Institut Mittag-Leffler, Sweden.
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1. Introduction

1.1. Monoids, groups, computation, and inverses
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Suppose we have a computer. We run programs, and this changes the state of the
computer.
This can be thought of as a set X (representing states) and some functions f : X — X
(representing operations) closed under function composition. The functions in X — X
form a monoid, which is like a group but does not have inverses. Monoids provide an
abstract model of state and computation.
Now suppose we want to undo the effects of an operation. But since f : X — X need
not be injective, given some x € X there may be several y such that f(y) = x. Monoids
do not have inverses.
Yet ‘undo’ or ‘rollback” operations are very common. This may be familiar to the
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reader from e.g. word processing or version control (subversion was used in the pro-
duction of this paper). A notion of ‘state, with rollback’ called transactional memory is
useful, especially in concurrency where updates from one process may need to be un-
done in the light of results later arrived at by a concurrent process [ ,

]. In proof-search the difference between proof-rules which are reversible, such as
left conjunction introduction (AL) below, also called asynchronous, and those that are
not reversible, such right disjunction introduction (VR) below, also called synchronous,

has mathematical significance [ , 1.
ILANBEC r=A
Asynchronous ———  (AL) Synchronous ————— (VR)
IABEC I'-AvVB

Note that (AL) just rearranges connectives (by turning a ‘A" into a ‘,” if we read the
rule bottom-up), but (VR) eliminates B so is (from the point of view of proof-search)
an irreversible step.

Further, the field of reversible computation, which has physical importance for heat-
dissipation and the design of biological and quantum computation, is devoted to the
study of hand-tailored reversible computational mechanisms. References and further
discussion are in the Conclusions.

Now let us return to our monoid M. This is given to us and it was not designed
from the start to be reversible. How can we ‘add an undo function” to M, in some
abstract sense? In view of the discussion above we can mathematically distil this to the
following formal and rigorously answerable question:

Given a monoid M, does there exist a group M* and an injective monoid map M — M*?

We ask for the map to be injective so that distinct operations in the monoid correspond
to distinct reversible operations in the group. That is, M* needs to faithfully represent
the original states and operations. Otherwise, we could just map all of M to the trivial
group with one element.

Given the injection above, we could have our cake and eat it: given any notion of
computation, represent it as a monoid M, calculate M+, compute in that group (with
an undo function) and then, if we like the result, we can return our result and if we do
not, we can always undo.

1.2. Monoids, lazy monoids, and our solution

Unfortunately what we have asked for is impossible.
This can easily be proved with a small counterexample:

Example 1.1. Consider the two-element monoid {0,1} with
lox=x for x€{0,1} and Oox=0 for xe{0,1}.

If we try to adjoin an element 0! then 0 = 000 and so (applying 0! to both sides) 0 = 1.
We lose injectivity; if M = {0,1} then M¥ is the trivial group in which computation is
reversible because everything is equal to the identity operation which does nothing at
all.
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In this paper we will indeed exhibit a construction which assigns to a monoid M
a partially ordered group M*, and we will exhibit a lazy monoid homomorphism from
M to M*. By moving to partially ordered structures and lazy homomorphisms, the
contradiction noted in the previous paragraph is avoided.

Thus it is possible to add ‘undo’ to a monoid after all—we just have to do it in the
right way. How this should work, is not immediately obvious.

Our solution supports an attractive computational interpretation: think of the monoid
M as a set of operations, and monoid composition as their composition, and both of
these may be irreversible. Then the ‘lazy’ group M* which we build, is operations
which have been assembled but not yet carried out; they are ‘suspended’. Each el-
ement in the group is a plan of action; we can compose plans, modify them, erase
elements from them—and this is reversible because nothing has been carried out. The
partial order represents the operation of actually carrying out the plan; moving down
along the partial order represents refining results as the plan is executed, which may
lose information and is irreversible.

Our main result can be stated as follows:

There is an adjunction between the categories of partially-ordered monoids and lazy homo-
morphisms, and of partially-ordered groups and group homomorphisms, and the unit of the
adjunction is injective.

This is Theorems 3.22, 3.24, 3.25, and 3.30.

1.3. Map of the paper

Here is an eagle’s eye view of how our construction works for monoids:

inj. ing. free
Monoid PoMon PoMonZ |  PoGrp
\_/
forget

Monoid is the category of monoids and monoid homomorphisms. PoMon is the cate-
gory of partially-ordered monoids and monotone monoid homomorphisms. The injec-
tion from Monoid to PoMon is just obtained by giving a monoid the trivial partial order
relating x to itself.

PoMonZ is the category of partially-ordered monoids and lazy monotone monoid
homomorphisms, where ‘lazy’ is defined in Definition 2.3. Every monotone monoid
homomorphism is a lazy monotone monoid homomorphism so we obtain a trivial
injection from PoMon to PoMonZ.

PoGrp is the category of partially-ordered groups and monotone group homomor-
phisms. There is an easy forgetful functor from PoGrp to PoMonZ and a free functor that
is left adjoint to the forgetful functor mapping a monoid M to its free group with added
‘imaginary’ inverse M*. Constructing the underlying set of M easy, as is defining its
group structure and giving it a natural preorder (Definitions 3.3 and 3.6). What is not
easy is proving that the preorder is a partial order, and showing that the unit of the
adjunction is a monomorphism. This is Theorems 3.22 and 3.24, see also Theorem 3.25.
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Later on in Section 4 we discuss how this can be generalised in various ways, and
in Section 5 we extend the construction to sets with a lazy monoid or group action.
The generalisations are essentially routine, and extending to sets with an action is not
entirely trivial, but no harder.

2. Basic definitions
2.1. Partially ordered groups and monoids, and lazy homomorphisms

Definition 2.1. Consider the following axioms:

(assoc) xo(x'ox")=(xox")ox"
(id) idox=xo0id =x
(inv) xoxt=xlox=id

— A group § is a tuple (|G],0,id,!) of a carrier set |G|, a composition o mapping
|G| x |G| to |G|, an element id € |G|, and an inverse map ' mapping |G| to |S],
satisfying (assoc), (id), and (inv).

— A monoid M is a tuple (|M], o,id) as above, satisfying (assoc) and (id).

Definition 2.2. A (compatible) order on a monoid M is a partial order <C |M]| x |M]
such that x <y implies xoz <yozandzox <zoy.

— A partially ordered monoid is a pair (M, <) of a monoid M and a compatible order
on M.

— A partially ordered group is a pair (G, <) of a group § and a compatible order on
G, considered as a monoid.

Definition 2.3. Call a function f € (M| — |M’| between monoids M and M’ a homo-
morphism when it satisfies the two axioms

idye = f(idoy) and  f(x1 00 x2) = f(x1) oper f(x2).

If M is a group, the first equation can be deduced from the second, as can the identity
f(x1) = f(x)!; but in general both axioms are required.

Suppose now that M and M’ are partially ordered monoids. Call a function f €
|M| — |M’'| a lazy homomorphism when

idM/ SM/ f(ldjv[) and f(xl oM XQ) SM’ f(xl) O/ f(xz).

Call f € |[M| — |M'| monotone when x <y y implies f(x) <y¢ f(y).

We discuss this definition in Subsection 2.2.
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Definition 2.4.

— Write PoMonZ for the category of partially ordered monoids and monotone lazy
homomorphisms between them (Partially Ordered MONoids with laZy homomor-
phisms).

— Write PoGrp for the category of partially ordered groups and monotone lazy
group homomorphisms between them (Partially Ordered GRouPs and homomor-
phisms).

Note in Definition 2.4 that we take lazy homomorphisms in PoMonZ but ‘real’ homo-
morphisms in PoGrp. We could certainly define PoGrpZ, but it turns out that we will
never use it; see Example 3.28 for an example illustrating why this is the case.

Remark 2.5. For the reader’s convenience we explicitly unpack what it is to be an
arrow in PoMonZ. An arrow f : (M, <p¢) — (M, <yr) is a function f from | M| to |M|
such that:

1 idyy <o f(idye) (laziness).

2 flxony) <o f(x)one f(y) (laziness).

3 x <y yimplies f(x) <y f(y) (monotonicity).

2.2. Why lazy?

There is a notion of lax functor between 2-categories (see for instance [ , ,
Definition 1.5.8]). Specifically for us here,” this suggests the following definition:

Definition 2.6. Suppose now that M and M’ are partially ordered monoids. Call a
function f € |[M| — |M’| a lax homomorphism when

fldy) <pwidpye  and  f(xg one x2) <o f(x1) o f(x2)-

Call a function f € [M| — |M/| an oplax or colax homomorphism when

idye <o flidy)  and  f(x1) oo f(x2) <o f(x1 000 X2).

To see in elementary terms why lax homomorphisms are natural, note that if we con-
sider the inequality f(x1 on¢ x2) <pe f(x1) o f(x2) and imagine what its 0-ary ver-
sion should be, we obtain f(idy¢) < idyy.

A lazy homomorphism sits in-between lax and oplax, combining the first axiom of
oplax with the second axiom of lax. This is new.

We would like to give some intuition, in elementary terms, about why lazy homo-
morphisms are interesting.

* That is, specialising laxness to the case of a locally posetal 2-category on one object, a.k.a. partially ordered
monoid.
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First, an informal computational intuition: Read a partially ordered monoid or group
as a set of operations, which can be composed. Think of the partial order as describing
‘execution’ of these operations—so z < x oy means “if we combine x with y and
execute then we obtain z”. Then we can give the lazy inequalities the following informal
reading;:

— idyp <pe f(idne) means if we apply f to the identity and execute, we get the identity.

— f(xony) <pv f(x)ony f(y) means if we apply f to x and apply f to y and combine,
then if we execute we can obtain the result of combining x and y in M first, and then
applying f.

We call this lazy by analogy with lazy evaluation in the A-calculus.

Second, a mathematical intuition: We want M to inject into the ‘imaginary’ group
M* which augments M with ‘imaginary’ inverses (formal definition in Subsection 3.1).
So let us consider a specific example and see what is required to make this work.

Let M be the one-element monoid {*} with monoid composition * o * = %. Then M*
is isomorphic to the integers under addition: the unit is (); the number 1 corresponds
to +x; the number 2 corresponds to +*+x%; the number -1 corresponds to —*, and so on.
The function taking * to 1 is lazy because 0 < 1 and 1 < 2. This function is not lax,
because 1 £ 0, and not oplax because 2 £ 1, but it is lazy.

So, with lazy homomorphisms the integers Z considered as a group with their nat-
ural arithmetic ordering are exhibited as the free object over a single generator.

Interestingly, our proof of injectivity hinges on studying index functions i(-), from
M* to Z. See Definition 3.12. So the meat of our proof—the technical action happens
between Definition 3.12 and Lemma 3.16—hinges on a study of the structure of the
functions and objects making up the following commuting square:

M417>M:t

! terminal map i(-)
{x} =2

The reader should be careful: though the total index function ((-) (a ‘sum of exponents’
function) is an arrow in PoMonZ, the proof uses measure functions ¢(-),, that are not
arrows in this category. So the abstract nonsense above is useful for organising the ma-
terial, but the proofs themselves cannot be conveniently phrased purely in categorical
terms; we use combinatorial arguments on concrete constructions.

For reference: M* is defined in Definition 3.3; 77 is defined in Theorem 3.30; the proof
that 77 is mono is Theorem 3.22; and commutativity is an easy calculation. With respect
to later notation, we have abused notation in the diagram above and written M* for
(M*)7 (Definition 3.29).

3. The imaginary group

Our construction is the simplest possible; given a monoid M we take strings of elements-
with-a-polarity + or — and quotient such that +m-m becomes equal to the empty string.
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We immediately obtain an imaginary group M*. It is the free group over M in the cat-
egory of lazy monoids, to be precise. This is Definition 3.3 (the hard part is not con-
structing it, but proving it is not trivial; see the conservative extension results below).

For the following step we need a little general theory about partial orders on groups.
It is a fact that a partial order can be generated by a normal submonoid. This turns out
to be useful: see Proposition 3.7.

We then define a preorder on M* in Figure 1, in submonoid style. The order is sound
by construction; the rule (leq) makes sure that if n < m in M then +n < +m in M*.

The hard work is injectivity and conservative extension results, that the preorder is a
partial order and is not ‘too big’—we do not want +n < +m to hold because +n = +m
always, in the spirit of Example 1.1. The main technical lemma is Proposition 3.19, and
the main results are Theorems 3.22, 3.24 and 3.25.

Once we have this, it is a matter of fairly routine calculations to convert this into the
adjunction promised in the Introduction, culminating with Theorem 3.30.

3.1. The free group

This subsection describes an easy construction. Given M we consider |M| and build
the free group generated by this set.

Definition 3.1. Given a set X write X*string for the set inductively defined by:
su=()|s+x|s—x (x e X)

Call () the empty string. Write string concatenation as s-t. We may elide the initial (),
so for instance we may write +m as shorthand for ()+m.

Soif X = {1,2,3,...} then intuitively X*string is the set of lists of nonzero integers.

Definition 3.2. Define ~ to be the least equivalence relation on |M|*string such that:
1 ()tm-m~ () ~ ()-m+m.
2 Ifs~s and t~t thenst~s't.

Definition 3.3. Given a monoid M define the free group M* over |M| as follows:

— The carrier set is |M|*string quotiented by ~.
— Group composition is given by concatenation of representatives.

We may write m for both m € M| and for the ~-equivalence class of () + m.

Lemma 3.4. M is indeed a group, with the natural composition, identity, and inverse.

Example 3.5.

1 Suppose M is the monoid of natural numbers N = {0,1,2,3,...} under addition
(so 0 is the identity). Then M* is not isomorphic to the integers. For instance, +3+4 €
|M*| is not equal to +7. We return to this in a mathematically richer context, later
on in Remark 3.18.
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2 Suppose M is the one-element monoid with underlying set {*} and monoid com-
position * o x = * (we also saw this in Subsection 2.2). Then M* is isomorphic to
the integers under addition: the unit is (); the number 1 corresponds to +x; the
number 2 corresponds to +*+*; the number -1 corresponds to —*, and so on.

So M* is resource sensitive. Note, however, that resources can be destroyed if we
interpret > as ‘entailment’; +x+x* > +x t

3.2. Positive cones

This subsection develops some more standard theory. There is a bijection between
normal submonoids of § and compatible partial orders. We only need one direction of
this for the proofs to follow; see [ , , Subsection 1.1] for more details.

Definition 3.6.

— Suppose § = (|G],0,!) is a group. Call X C || normal when x € X and y € ||
implies yoxoy! € X.

— Suppose M is a monoid. Call X C |M| a submonoid when id € X and when x € X
and y € X implies xoy € X.

Suppose P C |G| is a normal submonoid of a group §. Then write x <p y when
-1
yox €P.

Proposition 3.7. Suppose § = (|G|, 0,) is a group and P C |G| is a normal submonoid of
S. Then <p from Definition 3.6 is a compatible preorder on |G|.5

Proof. We consider each property in turn:

— By assumption id € P; it follows that m <p m and so <p is reflexive.

— Suppose x <p y and y <p z. This means that yox! € Pand zoy™ € P. Since P is
a monoid also z o x' € P. It follows that <p is transitive.

— Suppose x <p y. This means that y o x™} € P. To check that <p is compatible we
need to verify that for any z € |G|, zox <pzoyand xoz <pyoz.
Since P is a normal subgroup also zoy o x' ozl € P, and this means that zo x <p
zoy.

Also, yox!' =yozoz!

ox1 sothatxoz <pyoz

+ In logical terminology, we are observing that we have contraction on the right but not on the left.
Contraction in logic is a rule that allows us to convert from A A A to A. If A represents an assertion and
A represents logical conjunction, then this is immediate. If A represents a pound coin and A represents
addition, then this may not be so.

‘Contraction on the left’ means we may go from A to A A A (like truth, or taxes) whereas ‘contraction on
the right’ means we may go from A A A to A (like truth, or our bank account). More on this is in the field
of substructural logics, and the interested reader is referred elsewhere [ , ].

§ Recall that a preorder is reflexive and transitive, but not necessarily antisymmetric. A partial order is an
antisymmetric preorder.
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(n <pp m) (m1,my € [M])
———— (leq) 7 (lazy)
+m-n € PT +my+mmy—(my opq my) € P

pe Pt (geMb) pePt pept
(norm) ———— (mon)
gl one poye g € PF pon=p € PT

Fig. 1: Rules determining the partial order on M*

3.3. The partial order

Now the non-standard part begins. Fix a partially ordered monoid (M, <y ). In Defi-
nition 3.3 we saw how to construct the free group M+ generated by |M]|.

We show how to extend <y to a preorder <+ on M*. By Proposition 3.7 it suffices
to exhibit a normal submonoid of M*. In fact the preorder is also a partial order, but
proving this takes more work: the main technical result is Proposition 3.19 and this
quickly yields Theorem 3.22.

Definition 3.8. Define P" to be the least subset of |J\/[i| closed under rules (leq), (lazy),
(norm), and (mon) from Figure 1. By rules (norm) and (mon) this is a normal sub-
monoid of M* and so by Proposition 3.7 P* determines a compatible preorder on
|M*|. We write this <.

Remark 3.9. A few words on the rules in Figure 1.

— (leq) expresses that n < m implies n <yx m.

— (lazy) expresses that +(mq ong mp) <+ +my+my.

— (norm) expresses that if p <+ g then p oyt ¥ <px g 0o+ 7 (left-compatibility is
automatic by construction; see Proposition 3.7).

— (mon) expresses transitivity of <q=.

The two base cases are (leq) and (lazy). Of these, rule (leq) introduces a string which
has index 0; and rule (lazy) introduces a string which has index 1.

Lemma 3.10.

1 Ifn <o mthen +n <pp+ +m.
2 Ifn <y my ong my then +n <qpx +my+my.

Proof. The first part is direct from (leq) and Definition 3.6. The second part follows
using (lazy). Ul

Converse implications also hold but the proofs are harder: see Theorems 3.24 and 3.25.

Now (lazy) in Figure 1 corresponds to the condition f(x1 on x2) <o f(X1) o
f(x2) from Definition 2.3. What corresponds to the condition idyy <5 f(idy) from
Definition 2.3? In fact, this is derivable:

Corollary 3.11. () <y+ +idy. (Recall from Subsection 3.1 that () is the identity element of
M*.)
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Proof. By part 2 of Lemma 3.10 +idy; <p = +idac+idye. We apply —idy¢ to both sides.
U

3.4. Technical lemmas

This is where the maths begins to become non-trivial. In Definition 3.8 we defined
a relation <+ on |[M*|. It is easy to see that this is reflexive and transitive; but is
it antisymmetric? In other words, is <)+ a partial order as the caption to Figure 1
suggests, and not just a preorder? Also, is <+ a conservative extension of <j¢ or
does it introduce spurious relations that should not be there?

This subsection develops the technical machinery we need to answer these questions.
These lemmas are then used to give the questions concise answers, in Subsection 3.5.

Definition 3.12. Suppose m € |M|. Define index functions (s),, and i(s) on |[M|Fstring
as follows:

{()m =0 i(s+m" ) = 1(s)m (m'#m)  1(s=m" )y = 1(s)m (m'#m)
(s=m)ym = 1(8)m-1  t(s+m)y = 1(s)y+1
1(s) = Ty H(5)m

In words, we can say that i(s) sums exponents.

Lemma 3.13. The index functions are well-defined as functions on p € |M*|. That is, if
p € | M| then for every s,s' € p and every m it is the case that () = 1(s')y and (therefore)

1(s) = 1(s").

Proof. We consider each of the rules in Definition 3.2 and see that they conserve
index. U

Lemma 3.14. If () <o+ p and ((p) = O then every proof that p € PT, does not mention
(lazy).

Proof. We note by arithmetic that (leq) generates an element with index 0, (lazy)
increases the index by 1, and (norm) and (mon) leave the index unchanged. The result
follows. u

Corollary 3.15. If () <o+ pand ((p)m = O for all m, then p = ().

Proof. We first use Lemma 3.14 to see that the derivation of () <,+ p cannot use
rule (lazy). The rules (norm) and (mon) do not affect index at all.

Let n be <jp(-minimal in p. This # must have been introduced by (leq) for some
n <y m. Since n is <j(-minimal in p there is no other instance of (leq) for n’ <y n.
By assumption ((p), = 0, so it must be that n = m. The result follows. U

Lemma 3.16.
1 Ifpe P* theni(p) > 0.
2 If p <qe= g then (p) < 1(q)-
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Proof. The first part is by a routine induction on the rules in Figure 1.
For the second part, suppose p <+ . Then () <+ p ongs g. By part 1 of this
result, 1(p™ oy g) > 0. It is a fact that ¢(p™ o= g) = —i(p) + 1(q). The result follows.
U

Corollary 3.17. If +my...+my g+ +nq...+n;and +ny...+10; <gyex +my ... +my then
k=1

Proof. 1(+my...+my) =k and ((+ny ...+n;) = I. We use part 2 of Lemma 3.16. Ul

Remark 3.18. Recall part 1 of Example 3.5 and take M to be the monoid of natural
numbers N = {0,1,2,3,...} under addition (so 0 is the identity). Then by Corol-
lary 3.17 +3+4 £+ +7, since ((+3+4) =2 and ((+7) =1land 2 £ 1.

In fact, a much stronger result than Corollary 3.17 can be obtained, but the proof is
harder. See Corollary 3.23.

Proposition 3.19 might seem a little formidable, but in fact it only expresses some
common sense: Suppose the index of p is 0, so that for every +m in p there is a corre-
sponding —n. Suppose there are more +ms in p than -ms, so that there is a surfeit of ms
in p and ¢(p), > 0. In order for everything to balance out, there must be some # such
that ¢(p), < 0—that is, such that there is a deficit of ns—and since p is a finite structure
we can find an <j¢-minimal such 7 in p. This is what Proposition 3.19 asserts, and this
property turns out to be key.

Proposition 3.19. Suppose p € P and 1(p) = 0. Suppose ((p)m > 0. Then there exists
some <y¢-minimal n <y m such that ((p), < 0.

Proof. By induction on the derivation that p € P™. We consider each rule in turn, in
a long but essentially routine analysis of cases ((mon) is arguably the more interesting,
and certainly the most complex, case).

— The case of (leq). Then n <5 m, but we still need to show that «(p),, > 0 and
((p)n < 0. By assumption ((+m-n),, > 0. This means that m # n. It follows by
arithmetic that ((+m-n), < 0.

— The case of (lazy). If ((+my+my—(my on my)) = O then either m; = mp, = m = id or
my = m # id and mp = id or my = m # id and my = id. All cases are impossible
because we assumed (p),, > 0 (for some m).

— The case of (norm). From the fact that (p)m = (g7 ont P Ot €)m-

— The case of (mon). Suppose ((p one+ p')m > 0. There are now two cases:

— The case 1(p)m > 0. By inductive hypothesis there exists a <j(-minimal n <y m
such that ((p), < 0. There are now two sub-cases:

o Thecase i(p')n < —t(p)n. In this case ((p oye+ p')n < 0 and we are done.

e The case t(p')n > —i(p)n. In this case, in particular, ((p'), > 0. So there
exists some <j¢-minimal n’ <y n such that «(p’),, < 0. By assumption n
was minimal, so ((p), = 0. It follows that ((p op= p’),y < 0. By transitivity
n’ <5t m and we are done.

— Thecase t(p)m < 0... is symmetric with the case ((p'), < —i1(p)n.
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Proposition 3.19 has a natural dual:

Proposition 3.20. Suppose p € P* and 1(p) = 0. Suppose 1(p)m < 0. Then there exists a
<on¢-maximal n > m such that ((p), > 0.

Proof. We take M and p and consider M’ which is M but we invert <, (we omit
a formal definition), and p'. Thus, «(p), < 0 becomes ((p'),, > 0 and n >y m
becomes n <5 m, and ‘<y¢-maximal’ becomes ‘<,-minimal’. The result is then just
Proposition 3.19. L]

Corollary 3.21. Suppose p € P" and 1(p) = 1. Then there exist n,my, my € |M| such that
n <o my oy mp and 1((p)y < —land i(p)y, > 1and 1(p)m, > 1.

Proof. By induction on the derivation that p € P*. We consider each rule in turn:

— The case of (leq) is not relevant since ((+m-n) = 0.

— The case of (lazy). By construction, since 1y ooy 1y <y 171 09 M.

— The case of (norm). From the fact that ((p)m = (g7 ot P Ot €)m-

— The case of (mon). Suppose ((p oyt p') = 1. Then by part 1 of Lemma 3.16 precisely
one of i((p) =1and «(p’) =0 or«(p’) =1 and «(p) = 0 must hold.
Suppose ((p) = 1 and (p’) = 0; the other case is symmetric and we will not
consider it. By inductive hypothesis we obtain n, my, and m; as required, in p.
Now if 1(p’)n > —i(p)n then we use Proposition 3.19 to obtain an n’ <yt n such
that n’ <y my o my and then use transitivity of <j.
Similarly if (p’)m, < —i(p)m, then we use Proposition 3.20 and compatibility of
the partial order with oy¢. Similarly for ;. The result follows.

O

3.5. The preorder is a partial order and the natural map is injective

Theorem 3.22. If p <y qand q <y+ p then p = q.

Proof. Suppose p <yp+ g and g <yg+ p. Write P = goy: pl and Q = p oy gl

Thus () <p¢+ P and () <5+ Q. Also by part 2 of Lemma 3.16 «(p) = i(q) and so
((P) = 0.

Now if ((P),;, = 0 for all m then using Corollary 3.15 it follows that p = g and we are
done.

So suppose ((P),, # 0 for some m’. We will deduce a contradiction. If ¢(P),, # 0
for some m’ then ((P),, > 0 for some m. By Proposition 3.19 (P), < 0 for some
n <n m and n is <y¢-minimal such amongst monoid elements mentioned in P. But
then 1(Q), > 0 and by Proposition 3.19 again ((Q),,» < 0 for some m"” <5 n. This
contradicts minimality of #. U

We immediately apply Theorem 3.22 to strengthen Corollary 3.17:
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Corollary 3.23. If +my...+my <+ +nq...+npand +nqy...+10; <gx +my ... +my then
k =1 and m; = n; for every 1<i<k.

Proof. By Theorem 3.22 +mjy...+my = +ny...+n;. The result follows from Defini-
tion 3.3. L]

Theorem 3.24 is a conservative extension result expressing that M injects into M*
considered as a partially ordered monoid:

Theorem 3.24. +n <y+ +m if and only if n <o m.

Proof. The right-to-left implication is part 1 of Lemma 3.10. For the left-to-right im-
plication we reason as follows: If m = n then n <5 m by reflexivity. So suppose m # n
and suppose +11 <y + +1.

By Definition 3.6 this means that +m-n € PT. We note that ((+m-n) = 0 and
((+m-n), > 0. Using Proposition 3.19 it follows that n <y m. O

M* also does not introduce any new ‘lazy’ relations:

Theorem 3.25. +n <yt +my+my if and only if n <y mq o My.

Proof. The right-to-left implication is part 2 of Lemma 3.10. The left-to-right implica-
tion follows using Corollary 3.21. U

3.6. The functor from PoMonZ to PoGrp

Definition 3.26. Define a functor imag : PoMonZ — PoGrp as follows:

— M € PoMonZ maps to (M*, <+ ) (Definitions 3.3 and 3.8).

— An arrow f : M — M’ € PoMonZ acts elementwise on representatives of ~-
equivalence classes. In full:

imag(f)() = ()
imag(f)(s+m) = imag(f)(s)+f(m)
imag(f)(s-m) = imag(f)(s)-f(m)
Lemma 3.27. imag from Definition 3.26 is well-defined and is a functor from PoMonZ to
PoGrp.

Proof. Since imag(f) acts elementwise, imag(f)(s-s’) = imag(f)(s)-imag(f)(s’) and
imag(f)() = () by construction. Thus, imag(f) is a group homomorphism.

We need to check that imag(f) : imag(M) — imag(M') is well-defined on ~-equivalence
classes. We sketch the two least trivial cases:
— imag() = idypy = f(idy) = imag(idy¢). (This is slightly interesting because it

depends on our assumption that f(idy) = idy.)

— imag(s+m-m) = imag(s)+f(m)-f(m) ~ imag(s), and similarly for s-m+m.

Finally, we must check that imag(f) is monotone. To do this it suffices to show that
if p € Py then imag(p) € Py . It suffices to check the following (note that the second
case is not what one might immediately expect):
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— Ifn <y mthen f(n) <y¢ f(m). This follows since f is monotone by assumption.
— If m = my ong my then f(m) <yp f(my) oy f(my). This follows since f is lazy.

O

Example 3.28. Consider the natural numbers {0,1,2,...} with their usual ordering.
This can be regarded as an object in PoMonZ, with 0 being the additive identity. Write
this object just as IN. Consider the function f : N — IN defined by

f(n)=n+1ifn#0
f(0) =0.
Then
fn+m)=n+m+1
<n+1l4+m+1
= f(n) + f(m),
unless one or both of n and m are zero in which case f(n +m) = f(n) + f(m). So f is
an example of a monotone lazy homomorphism and is an arrow in PoMonZ from IN to
itself.
Then imag(IN) = IN* is the free group on {0,1,2,...} and imag(f) acts pointwise
on strings so that for example

imag(f)(+0+1+2) = +0+2+3.

This illustrates why in Definition 2.4 we took homomorphisms, not lazy homomor-
phisms, between the partially ordered groups; imag(f) is always a homomorphism, by
construction.

3.7. The forgetful functor from PoGrp to PoMonZ

Definition 3.29. Define a functor forg : PoGrp — PoMonZ as follows:

— G € PoGrp maps to G considered as a monoid; write this G#,
— An arrow g : § — § € PoGrp maps to itself considered as a (lazy) monoid homo-
morphism.

Theorem 3.30. imag : PoMonZ — PoGrp is left adjoint to forg : PoGrp — PoMonZ. In
symbols:

imag - forg : PoGrp — PoMonZ

Proof. We exhibit the unit and counit of the adjunction.

The unit 75,¢ : M — (M*)7 is given by the function mapping m € |M| to +m € |[M*|.
By part 1 of Lemma 3.10 this is monotone. By part 2 of Lemma 3.10 and Corollary 3.11
it is a lazy homomorphism (Definition 2.3).

The counit €g : (Si)'fI — G is given by the function inductively defined on represen-
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tatives as follows:
eg() = idg
€g(stm) = eg(s) ogm
€g(s-m) = eg(s) og m’!
By construction this is a group homomorphism. We prove inductively on the definition
of S(S‘/I)i in Figure 1 that the map is monotone, that is, if s S(g‘l)i s’ then eg(s) <g
eg(s'):
— Rule (leq). Suppose +n §(9_/I)i +m because n <gz m. Then n <g m and we are
done.
— Rule (lazy). Suppose +m g(g_l)i +mq+my because m,my,my € |9i‘ and m =
my o ny. Then by construction

eg(+m) = eg(+mytmy),

and we are done.
— Rules (norm) and (mon) follow by inductive hypothesis and by compatibility and
transitivity of <g.

It is not hard to see that the adjunction maps

— ¢:M* — G € PoGrp to §: M — G/ which takes m to g(+m), and
— f:M — G4 € PoMon to f : M* — G which acts on generators by taking +m to
f(m) and —m to f(m)™.

Verifying naturality is routine. U

Remark 3.31. In Definition 3.12 we defined the measure function 1(-) from |M*| to inte-
gers Z considered as a group under addition, for each partially ordered monoid M. It
is easy to check that i(-) is a monotone homomorphism of groups so by Theorem 3.30
it must correspond to a unique monotone lazy homomorphism from M to Z7 (i.e. to
Z. considered as a monoid under addition).

It is not hard to see that this monotone lazy homomorphism is the trivial function
mapping every m € | M| to 1 € Z. The laziness conditions from Definition 2.3 then
correspond to the arithmetic inequalities 0 <1 and 1 < 2.

One could consider other measure functions coming from different functions out of
M, discovering whether any of them are useful, is future research.

From the point of view of these general categorical observations, the injectivity and
conservative extension results Theorems 3.22, 3.24 and 3.25 are proved by a detailed
analysis of the fine structure of this measure function; we decompose it into ¢(-),, for
each m—which is not monotone and so is not an arrow in PoGrp—and then reason by
a succession of counting arguments which culminate with Proposition 3.19.

4. Commutative and nonassociative generalisation

In this brief section we make a few observations about generalising the proofs.
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4.1. Commutative and other generalisations

The key technical lemmas in Subsection 3.4 are by counting arguments, where the
counting is performed by the index function of Definition 3.12. Because of this, it is not
hard to verify that we can re-play all the proofs for the special cases where M and M*
are taken to be abelian.

That is, evenif x o5y = y oy x for all x, y € |M|, by our construction in Definition 3.2
it is not the case that +x+y ~ +y+x—what is true is that +x+y >+ +(xony) = +(yone
x). However, none of the proofs depend on this; the proofs we have seen only count
elements, and we can rearrange elements however we like. So if M is commutative we
could make M* be commutative too, just by extending ~ in Definition 3.2. Then we
would obtain an adjunction between abelian monoids and abelian groups ((mon) in
Figure 1 would become irrelevant).

Similarly, there is nothing in our proofs that depends on associativity of M, or even
on the existence of a unit (we would drop the first laziness condition Definition 2.3).

So it is not hard to generalise or specialise the results of this paper to e.g.

— abelian monoids (monoids in which x o y = y o x) and abelian groups—the theo-
rems in Subsection 3.5 should survive unchanged except that Corollary 3.23 would
have to take m; and n; up to some permutative rearrangement,

— semigroups (like monoids, but without a unit) and groups, so that we add both
inverses and a unit,

— applicative structures (like monoids, but without a unit and without associativity)
and applicative structures with inverses and a unit (but without associativity),

and so on. For instance elements of a Boolean algebra form a commutative monoid
under A; we can turn this into a commutative group.

In that sense, the proofs of this paper are robust: so long as none of the congru-
ences we choose to put in or take out of Definition 3.2 affect the index function of
Definition 3.12, then the proofs should survive.

4.2. Generalisation to categories and groupoids

It is not hard to add types to our results, i.e. to generalise from monoids to categories.
We sketch the relevant definitions:

Definition 4.1. Call a category C locally posetal when its hom-sets are enriched to be
partial orders, and this is consistent with arrow composition.
A groupoid is a category in which every arrow has an inverse.

A locally posetal category can be viewed as an instance of a 2-category [ , ,
, ] in which the hom-sets are posets.

Definition 4.2. A lazy functor on locally posetal categories F : C — D is a map from
objects of C to objects of D and from hom-posets C(X,Y) to D(F(X), F(Y)) such that:

TS0 if f/ < f are two arrows in C(X,Y) and ¢’ < g are two arrows in C(Y, Z) then fog < f' o ¢’ in C(X, Z).
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— If f/ < finC(X,Y) then F(f') < F(f) in D(F(X), F(Y)).

— idp(x) < F(idx) for every X € Obj(C).

— F(fog) <F(f)oF(g) forevery f € C(X,Y)and g € C(Y,Z).

Write PoCatZ and PoGrpoid for the categories of small locally posetal categories and
lazy functors, and small locally posetal groupoids and functors between them, respec-
tively.

Definition 4.3. Given a locally posetal category C define a locally posetal groupoid C*
as follows:

— Objects of C* are objects of C.

— An arrow is the quotiented well-typed! formal sum of arrows from C just as in
Definition 3.3, where if f € C(X,Y) then +f is given type C*(X,Y) and - is given
type CE(Y, X).

— The partial order is defined on arrows just as in Figure 1 (thus: only on well-typed
representatives).

With Definition 4.3 the adjunction of Subsection 3.7 extends to an adjunction between
PoCatZ and PoGrpoid. The proof of injectivity is no different from the case of monoids;
we just have to keep track of types. So for instance:

Definition 4.4. Define index functions /(s),, and ((s) just as in Definition 3.12.

The well-typedness conditions are orthogonal to the counting arguments that follow,
and it is easy to replay the proofs to obtain, for instance, the following:

Theorem 4.5.

— +f < +finCH(X,Y) ifand only if f' < f, for f', f € C(X,Y).

— +f < +gthin C¥(X,Z) if and only if f < goh in C(X,Z), for f € C(X,Z) and
geC(X,Y)and h € C(Y, 2).

We leave it as an exercise to the interested reader to fill in the details of the relevant
generalisations. Since our proofs are by counting arguments, the generalisation to the
typed case introduces extra richness but no essential difficulties.

5. Sets with an action

We now extend the results of Section 3 to sets with a monoid action, showing how to
extend a partially ordered set with an M monoid action to a partially ordered set with
an M* group action.

Examples of sets with a monoid action are common in computer science, including:

— Syntax acted on by a monoid of substitutions.
— Integers Z acted on by the monoid of functions from Z to Z.

I' We just do the obvious thing here: well-typed means, for instance, that we only allow ourselves to write
+f+g when f € C(X,Y) and g € C(Y, Z). It is easy to see that e.g. +f-f is well-typed and in C(X, X).
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— A domain model of the A-calculus D acted on by D = D considered as a monoid
under functional composition.

So, it is an interesting question to see how our results can be extended.

Subsection 5.1 contains the basic definitions, several key technical lemmas, and one
important result (Theorem 5.9). Subsection 5.2 defines the relevant adjunctions between
the categories of partially ordered sets with a compatible M-action and lazy functions
between them, and of partially ordered sets with an M*-action and functions between
them.

The proofs are easier than in Section 3, but they are not trivial and do not follow by
abstract nonsense. Certainly, if we can extend monoids to groups then we can extend
sets acted on by monoids to sets acted on by groups in a standard way.

Just as in Section 3, what does not follow from abstract nonsense is injectivity results
like Theorem 5.9 or Proposition 5.15, which are proved, just as in Section 3, by careful
counting.

5.1. Construction of the sets with an action
Definition 5.1. Suppose (M, <) € PoMonZ. A poset with an M-action X is a tuple
(]X], -, <x) of a carrier set |X|, a partial order <y, and an action x-ym such that:

— If x <y x’ and m <y m' then x-ocm < x'-ocm’ (the order on X is compatible with that
on M).
— x-xidye = x and (x-ocm)-pem’ = x-x (m o9 m') (the action is a monoid action).

We define a poset with a G action similarly, for (G, <g) a partially ordered group.

Suppose a poset with a compatible M-action X = (|X|, -3¢ ). We show how to extend
this to a set with an M*-action.

Definition 5.2. Define < to be the least transitive relation on |X| x |M*| such that:

X < x/ < /
(absorb) = 8 _JI/[i/g (compat)
(x-ocm, 8) < (x,+m ope+ Q) (x,8) <x+ (x,8)

(x,8) < (x,¢) (¥,¢)<(yh)
(x,8) < (y,h)

(trans)

Lemmas.3. The ordering < is compatible, in the sense that (x,g) < (y,h) implies (x, g o0p+
8") < (o= g).

Proof. By an easy induction on the rules in Definition 5.2. U

Remark 5.4. By assumption <y is reflexive and by construction so is <=, thus by
(compat) < is too. We still need to prove that <y« is antisymmetric, that is, we need to
show that X* is a partially ordered set and not only a preordered set. This we do next,
culminating with Theorem 5.9.
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Lemmas.5. If (x,g) < (y,h) then there exist my, ..., my € | M| such that +my ... +my <yp+
h Ozt g_l.

Proof. By an easy induction on the rules in Definition 5.2. U
Lemma 5.6. If (x,9) < (y,h) then 1(g) < i(h).

Proof. By induction on Definition 5.2:

— The case of (absorb). Itis a fact that ((g¢) +1 = 1(m oy ).
— The case of (compat). If ¢ <yt h then by part 2 of Lemma 3.16 1(g) < i(h).
— The case of (trans). A fact of numbers.

Lemmas.7. If (x,8) < (y,h)and (y,h) < (z,g) then g = h.

Proof. Suppose (x,g) < (y,h) and (y,h) < (z,¢). By Lemma 5.6 ((g) = i(h). Using
this fact and Lemma 5.5 it follows that § <+ h and h <+ g. Therefore by Theo-
rem 3.22 ¢ = h. U

Lemmas5.8. If (x,9) < (y,8) then x <y y.

Proof. By induction on the rules in Definition 5.2.

— (absorb) cannot be used since ¢ = +m oy+ g is impossible since ((g) # 1(+m o+
¢) = 1+(g) and this contradicts part 2 of Lemma 3.16.

— The case of (compat) is immediate.

— For (trans), suppose (x,¢) < (x,¢) and (¥, ¢') < (y,g). By Lemma 5.7 g’ = g. We
use the inductive hypothesis and transitivity of <.

O

Theorem 5.9. If (x,¢) < (y,h) and (y,h) < (x,g) then x = y and g = h.

Proof. By Lemmas 5.7 and 5.8 and the fact that XX and (by Theorem 3.22) M* are
partially ordered sets. U

5.2. The natural adjunction

Definition 5.10. Let X* have underlying set |X| x |[M*| and action -+ given by
(x,8) o = (x,g o+ h).
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Definition 5.11. Suppose M is a partially ordered monoid. Write MPoSetZ for the
category such that:
— An object X is a poset with a compatible M-action.
— Anarrow f : X — X' is a function f € |X| — |X'| such that
- x <y x’ implies f(x) <y f(x).
= flxam) <o f(x)-q0m.
Suppose § is a partially ordered group. Write GPoSet for the category such that:
— An object Y is a poset with a compatible G-action.
— Anarrow f:Y — Y is a function f € Y| — |Y| such that:
- ¥ <y implies f(y) <y f(y')-
- flyyg) =fW)ye

Definition 5.12. Let imag : MPoSetZ — M*PoSet have the following action:

— An object X maps to X* (Definition 5.10).

— An arrow f : X — X’ maps to imag(f) : XT — (X')* which is defined by (x,g)
maps to (f(x),g).

Let forg : M*PoSet — MPoSetZ have the following action:

— An object Y (which is a set with an M* group action) maps to Y considered as a set
with an M action; write this Y.

— Anarrow f:Y — Y’ e M*PoSet maps to itself considered as a monoid homomor-
phism.

We consider an example of Definition 5.12 in Section 6.
Lemma 5.13. imag from Definition 5.12 is a functor from MPoSetZ to M*PoSet.

Proof. Suppose f : X — Y € MPoSetZ. We have two things to check:

— imag(f) is monotone. That is, we need to prove that if (x,¢) < (y, h) (Definition 5.2)
in ] x [ then (£(x),g) < (F(y), k) in %] x [2T*].
We do this by induction on the derivation of (x,¢) < (y,h). The case of (absorb)
follows from the assumption that f(x-om) <y f(x)-ovm and using (compat); the
case of (compat) is a structural fact; transitivity also follows.

— imag(f) is a homomorphism. That is, we need to prove that (f(x),g)-x+h = (f(x),gon=
k). But this holds direct from Definition 5.10.

O

Proposition 5.14. imag - forg : M*PoSet — MPoSetZ.

Proof. The unit 75 maps x € |X| to (x,()) € |(XF)nt]. We check that 57y (x-ocm) <
ﬂx(x)‘(xi)MWE

7 (%) o0y, 1 = (%, ())-acxt1m = (x, +m) = (xc-ocm) = 1o (x-0cm)
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The counit ey : (Yat)™ — Y maps (x,g) to x-yey=(g). We check that ey(x,g)-yh =
ey(x,g ope= h):

ey(x,8)yh = (x-yg)yh = xy(gon=h) = ey(x, g o h)

5.3. More detailed analysis for the partial order

In this subsection we go deeper into the structure of objects in M*PoSet, asking the
following question: if x-g < y-h and +m < g, can y-h imitate this behaviour in some
compatible sense?

This is Proposition 5.15—the reader who knows about process calculi can think of
this loosely as a simulation result in the sense of e.g. [ , , Definition 3.3].

Proposition 5.15. Suppose X is a set with an M-action. Suppose (x,g) < (y,h). Then:

1 If+m <+ g then there exists n € M| such that +n <s+ h and x-ygm <x y-oqn.
2 If () <= g then either

— () <pr hand x <y y, or
— there exists n € | M| such that +n <y hand x <x y-)n.

Proof. For the first part we work by induction on the derivation of <.

— The case of (absorb). By (absorb) (x-om,g) < (x,+m og+ §). Suppose +1n <jp+ Q.
Then +(mopg 1) <gpz +m+n <y +mog= ¢, and it is a fact that (x-pm)-n =
XM (m oM n).

It follows that (x-5m) -yt <pe X (m one n).

— The case of (compat). Suppose (x,¢) < (x/,¢’) because x <y x’ and ¢ <+ ¢'.
Suppose +m <y« g. Then also +m <q= ¢’ and x-pm <y x'-p(m.

— The case of (trans). Suppose (x,g) < (y,h) because (x,¢) < (x/,¢') and (¥, ¢’) <
(y,h). Suppose +m <y+ g.

By inductive hypothesis there exists +m’ <,+ ¢’ such that x-ocm <y x'-ocm’. Also
by inductive hypothesis there exists +1n <+ h such that x'-oom’ <y y-xn. The
result follows by transitivity of <.

The second part is also by induction.

— The case of (absorb). By (absorb) (x-xm,g) < (x,+m oyt §). Suppose () <p+ g-
Then it follows that +m <;(+ +m o+ g and it is a fact that x-p¢m = x-pem. If
m <,+ g then we proceed as in the first part of this lemma.

— The case of (compat). Suppose (x,¢) < (x/,¢’) because x <y x’ and ¢ <+ ¢'.
Suppose () <y+ ¢ Then also () <= ¢’ and x <y x'. If m <j+ ¢ then we proceed
as in the first part of this lemma.

— The case of (trans) is similar.
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6. An example: substitutions

Consider some first-order syntax £ (e.g. r == a | f(r,...,r) for some term-formers f
and variables a) and consider substitution on it r[ars] [ , ].
Write X for the set of substitutions on £ with functional composition.

Let o range over elements of X. Substitutions form a submonoid of the function
space on L, that is, we can view X as a subset X C L££ that is closed under functional
composition (so if o, € X then 0 o¢’ € ¥ and maps 4 to (¢(a))c’) and contains the
identity function id.

Consider X as trivially partially ordered, so that ¢ < ¢’ if and only if ¢ = ¢’. Similarly
consider L as trivially partially ordered.

Then we can form £* the imaginary group of substitutions, and £* the set of terms
lazily acted on by substitutions.

What do these look like?

6.1. Substitutions just on variables

Consider the special case where there are no term-formers so that £ is just the set of

variables {a,b,c,...}. For brevity write e for - ;+. Then:

— ae[a—b] > b.

— be[a—b] > b.

— ae[a—b]"! > a. We deduce this by taking a  [a—b] > b and applying [a+b]™" to
both sides.

— ae[a—b] > bis deduced similarly.

In view of the inequalities above, we can think of a e [a—b]! as being ‘like the un-
ordered pair {a,b}’. However, this is only an analogy; a e [a—b]"! displays behaviour
that is not like the behaviour of {a,b}. In particular, a e [a—b]! # b e [b—a]?, yet (by
symmetry) both are ‘like {a,b}".

6.2. Substitutions on terms

Now suppose that there are term-formers. Then r e [a—s] > r[s/a| (where r[s/a] is the
term obtained by really replacing a by s in r). Also, r e [a—s]™! > ¢/ for any 7 such that
r'[s/a] =r.

Now consider a rewrite rule R = (s; — s;) in the sense of first-order rewriting
[ , ]. Then if r rewrites to ' with rule R then (r e [a—ss1]) o
[arsp] > 7.

For instance, given 0-ary term-formers 1 and 2 (i.e. constant symbols) it is easy to
verify that (1 e [a—1]") e [#—2] > 2. This encodes, in a certain sense, the rewrite rule
1—2

By combining substitutions and their lazy inverses, it is not hard to encode arbitrary
first-order rewriting in £*. As an easy corollary, <+ is undecidable—it suffices to
write out a rewrite system for combinators S and K [ , , Sec-
tion 2].
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So equality in ¥ is decidable (we just unfold the substitution) but equality in &+ is
not (given even two term-formers, lazy substitutions can encode undecidable compu-
tations).

7. Conclusions

We set off wanting to homomorphically inject every monoid into a group. This is
impossible, but we can do something similar which perhaps captures the spirit of this:
we can inject every monoid into a partially ordered group.

There is an appealing computational interpretation for this, in which the groups are
interpreted as ‘executable plans” and the monoids as ‘computation steps’.

In order to expand this observation to a categorical adjunction we discover, some-
what surprisingly, an adjunction between the category of partially ordered monoids
and lazy homomorphisms and the category of partially ordered groups and homo-
morphisms (we do not need this latter to be lazy).

We also obtain similar results for sets with an action. This is motivated by the spirit of
Cayley’s theorem which allows every monoid and group to be represented as the action
on a set." These also display the lazy homomorphism /homomorphism structure.

The technical highlights of this paper are in the very specific design of the defini-
tions, notably Definitions 3.8, 3.12, and 5.2, and in the proofs of Theorems 3.22, 3.24
and 5.9. The proofs involve some detailed combinatorial arguments, and which rely on
technical lemmas the choice of which is non-evident: specifically these are Lemma 3.14
to Proposition 3.19, and Lemma 5.5 to Lemma 5.8.1

In conclusion, let us recall why this is interesting. Monoids are an abstract model of
computation, which preserves only the idea that there are some operations (including a
‘do nothing’ identity operation) and operations can be composed. Groups are a similar
model, but for reversible operations.

We have given a sense in which any monoid can systematically be injected into a
universe of reversible operations. In that sense, the results in this paper give a new
map for moving between irreversible and reversible computation.

Related work

To the best of our knowledge the connection we have observed between partially or-
dered monoids and lazy morphisms, and partially ordered groups and morphisms, is
new. It sheds quite an interesting light on these structures and suggests a new way of
(and indeed, a new motivation for) looking at them, one coming from the theory of
logic and computation.

Conditions for being able to embed (homomorphically inject) a monoid in a group

* Some interesting historical comments on the the attribution of Cayley’s name to this family of results is in
[ , ]—Cayley certainly did not prove it for monoids. Still, ‘Cayley’s theorem’ is the standard
word for this kind of result.

# Framing the question and then finding the proof structure took two years, from start to finish.
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were considered by Mal’cev [ , , ] and Lambek [ , ]; these
are infinite sets of Horn clauses that characterise the class of monoids that inject into
some group. This was later generalised to categories and groupoids by Johnstone [
, ]. It should be clear that we are solving a distinct problem; we take all

monoids, but weaken ‘homomorphism/functor’ to ‘lazy homomorphism/functor”.5

An inverse semigroup has a natural partial order given by x < y when x = ye
for some idempotent e. A prehomomorphism of inverse semigroups is a function 6 such
that 6(xy) < 6(x)0(y). Finally, an inductive groupoid is a groupoid whose hom-sets
form a meet semilattice and an ordered functor on them is monotone on the ordering
of the hom-sets. This extends by the Ehresmann-Schein-Nambooripad theorem to an iso-
morphism between the categories of inverse semigroups and prehomomorphisms, and
inductive groupoids. For full definitions and proofs see [ , ]. This theorem
expresses an equivalence between two ways of capturing the notion of “partial symme-
try ordered by the size of the domain”; one notion expressed by semigroups (untyped)
and another by inductive groupoids (typed). There is a similarity to our results, but
they are not the same. Superficially, we use monoids (but we could drop the identity)
and we map to partially-ordered groups (but we could generalise to categories and
locally posetal groupoids). A deeper difference is that in our adjunction the unit is not
an identity map; we do not build an isomorphism. That is, our main result is not an
equivalence, it is an embedding. It remains to be seen if a variation of our result is
possible, which might be more aggressive in quotienting the partially ordered group
when mapping back to monoids, and so recover something more like the equivalence
theorem above as a special case.

A number of computational systems have been studied which bear reversibility in
mind, motivated by three facts:

— Physical systems are time-reversible, so reversible computation is, in fact, the com-
putation of the physical world as we know it. Most recently this is relevant in the
design of DNA circuits, where the possibility of a computation running ‘backwards’
in some chemical soup in the test-tube must be taken into account.

— A corollary of Landauer’s principle is that reversible computation dissipates less heat
(i.e. irreversibility is caused by increasing entropy, which corresponds to erasing
information). Thus from the point of view of designing circuits, it is relevant to
keep track of where information is lost and heat is generated.

— Quantum computation has aroused much interest and here, the basic model of
computation is again reversible (with irreversibility caused by measurement).

Relevant publications are as follows:

— [ , ] introduced the Toffoli gate, which is a universal reversible logic gate

55 One could study our construction in the special case that the Mal’cev or Lambek conditions are satisfied.
If so, then something easier would be sufficient to begin with, since our constructions are orthogonal to
whether the monoid is commutative: a commutative monoid is embeddable in a group if and only if it
satisfies cancellation: xy = xz = y = z.
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(see also [ , ], which studies universal reversible logic gates in gen-
eral). T
— Bennet’s classic paper [ , ] studied the notion of a reversible Turing ma-
chine.
— For reversible computation in biologically inspired computing see [
, , , ]; for quantum computation good places to
start reading are [ , ]Jand [ , , Section 7].

— The connection between reversibility, entropy, and computation is discussed in
[ , 1970, , 1961].

The papers above are about concrete reversible computational structures; our concern
is more abstract. We consider how, given a possibly irreversible system represented
abstractly as a monoid, we can generate a corresponding reversible system represented
as a group, which corresponds to it in some natural way.

So on the topic of reversible computation, we hope that the constructions in this
paper are interesting theoretical tools but the reader should be clear that we do not
pretend to have provided evidence that they are directly computationally useful. In
particular, we have not studied the representation of this group aside from that given
by its construction. We note that determining the partial order in the group may be
strictly more complex than determining equality in the monoid, as Subsection 6.2 il-
lustrates, where we note that <,+ may be undecidable even if <5 is decidable.

Of course, equality of most non-trivial computational systems is undecidable, so
this is to be expected and is not the end of the world. We can reasonably hope that
the constructions of this paper might be useful as a framework with which to design
invertible programming systems; the methodology would be, in principle, to design a
non-invertible one and apply (-)* (of course there is more to a programming language
than that, but the underlying idea stands). We now discuss further future work:

Future work

Briefly, we can suggest the following future work and applications:

— Generalisation to weaker monoid-like structures:
We noted in Section 4 that the proofs in this paper seem quite robust, and it should
be possible generalise the ideas in this paper to the cases of e.g. commutative
monoids, semigroups, and applicative structures. Similarly, a monoid is a special
case of a category with one element. It is natural to take the results of this paper
and extend them to categories. Thus, given an input category we can generate a
category (whose hom-sets are partially ordered) in which every arrow is invertible.
— Algorithms enriched with inverses:
Substitutions on syntax form a monoid. Therefore, it is possible to consider syntax
enriched with invertible substitutions, as hinted at in Section 6.

11 So: one can build any circuit out of NAND gates, thus a NAND gate is a universal logic gate; similarly,
one can build any reversible circuit out of Toffoli gates.
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A little more work is needed to enrich syntax with invertible substitutions, but it
can be done: we need to build inductive definitions that include inverses of substi-
tutions, but a corollary of Theorem 3.30 is that the ‘lazy’ functor preserves colimits,
thus it preserves least upper bounds of countably ascending chains, thus by gen-
eral nonsense Theorem 3.30 tells us that we can indeed interleave (-)* with the
construction of an inductive datatype.
It remains to study the properties of such syntax, e.g. whether unification has most
general unifiers. We believe that it does, because substitutions can be inverted. /!l
An algorithm would be theoretically interesting, though not necessarily practical
since equality might not be decidable.
Of course, higher-order unification [ , ] is also not decidable and that
does not stop useful heuristics from being constructed that seem to work well in
practice, e.g. [ , ]. So syntax with invertible substitutions is an interesting
topic—it might even be useful.

— Computational models:
Taking up the comments in the Related work, it remains to investigate the application
of our construction to monoids or similar structures which are specifically designed
to model computation: such as a monoid of functions of the untyped A-calculus
under functional composition; or a monoid of processes under parallel composition
[ y , , ]; or the applicative structure of a model of
the untyped A-calculus.

— Generalisation to richer structures:
Suppose the monoid has extra structure (e.g. the algebraic study of A-models has
met with some success [ , 1). This structure transfers to
the lazy case.
It remains to study how algebraic properties of the monoid carry across; how does
the ‘algebra’ of M compare with a corresponding ‘(lazy) algebra’ of M*? If the
partial order on the monoid is part of a domain [ , ], what
are the properties of the partial order on its free group?

— Lattice properties of the free group:
On a related note, we can ask whether if M is a partial order with further structure,
such as being a lattice, what further structure M= will have. For instance, elements
of a Boolean algebra B form a commutative monoid under conjunction and a lattice
under implication (x < y when x Ay = x) so it is interesting to ask what kind
of logical entity B* would be (possibly the commutative version, as discussed in
Section 4). This seems related, at least in spirit, to the anti-formulae (formulae which
when added to a database delete an item from it) considered in [ , ].
Is there some sense in which the ‘logic’ of B extends to a ‘logic’ of B*?

Il One of the original motivations for this work comes from nominal unification | , ]. This is
based on permutations, which are invertible, and because of that nominal unification has most general
solutions. The question the first author asked which motivated this line of research was: Suppose substitu-
tions had inverses too; would something like higher-order unification then have most general solutions? Preliminary
calculations suggest that the answer is yes.
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Last but not least is this: the proofs in this paper are unambiguous, but a higher-level
explanation of why they work is currently lacking. That is, the counting arguments
in this paper work, but they do so ‘by magic”: some general conceptual framework of
which the counting arguments are an instance, is an open question.
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