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The λ-context calculus

Murdoch J. Gabbay Stéphane Lengrand

Abstract

We present a simple but expressive lambda-calculus whose syntax is populated by variables which behave
like meta-variables. It can express both capture-avoiding and capturing substitution (instantiation). To do
this requires several innovations, including a key insight in the confluence proof and a set of reduction rules
which manages the complexity of a calculus of contexts over the ‘vanilla’ lambda-calculus in a very simple
and modular way. This calculus remains extremely close in look and feel to a standard lambda-calculus
with explicit substitutions, and good properties of the lambda-calculus are preserved.

Keywords: Lambda-calculus, contexts, meta-variables, capture-avoiding substitution, capturing
substitution, instantiation, confluence, nominal techniques, calculus of explicit substitutions.

1 Introduction

This is a paper about a λ-calculus for contexts. A context is a term with a ‘hole’.

The canonical example is probably C[-] = λx.- in the λ-calculus. This is not λ-

calculus syntax because it has a hole -, but if we fill that hole with a term t then

we obtain something, we usually write it C[t], which is a λ-calculus term.

For example if C[-] = λx.- then C[x] = λx.x and C[y] = λx.y. This cannot be

modelled by a combination of λ-abstraction and application, because β-reduction

avoids capture. Formally: there is no λ-term f such that ft = C[t]. The term

λz.λx.z is the obvious candidate, but (λz.λx.z)x =α λx
′.x. (Here =α is α-equality.)

Contexts arise often in proofs of meta-properties in functional programming.

They have been substantially investigated in papers by Pitts on contextual equiv-

alence between terms in λ-calculi (with global state) [18,20]. This work was about

proving programs equivalent in all contexts — contextual equivalence. The idea

is that two programs, represented by possibly-open λ-terms, are equivalent when

one can be exchanged for another in code (without changing whichever notion of

observation we prefer to use).

This suggests that we should call holes context variables X (say they have ‘level

2’) distinct from ‘normal’ variables x (say they have ‘level 1’) and allow λ-abstraction

over them to obtain a λ-calculus of contexts, so that we can study program contexts

with the full panoply of vocabulary, and hopefully with many of the theorems, of

the λ-calculus. For example λx.- may be represented by λX.λx.X. Substitution for

X does not avoid capture with respect to ‘ordinary’ λ-abstraction, so (λX.λx.X)x
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reduces to λx.x.

The Lambda Context Calculus internalises context variables (as variables of

‘level 2’, which we write X,Y, Z). X, Y , and Z are now variables which can occur

any number of times anywhere in a term — and they can be λ-abstracted. The

Lambda Context Calculus therefore goes further and internalises another level of

contexts (variables of ‘level 3’, which we write W,W ′) — and so on. There are

several possibilities where such a calculus might be applied.

Consider formalising mathematics in a logical framework based on Higher-Order

Logic (HOL) [28]. Typically we have a goal and some assumptions and we want a

derivation of one from the other. This derivation may be represented by a λ-term

(the Curry-Howard correspondence). But the derivation is arrived at by stages in

which it is incomplete.

A⇒B⇒C [A]i

B⇒C

?

B

C
i

A⇒C

A⇒B⇒C [A]i

B⇒C

A⇒B [A]i

B

C
i

A⇒C

To the right are two derivations of A⇒B⇒C,A⇒B `
A⇒C. The bottom one is complete, the top one is in-

complete. 1 An issue arises because the right-most [A]i in

the bottom derivation is discharged, which means that we

have to be able to instantiate ? in a sub-derivation for an

assumption which will be discharged. Discharge corre-

sponds in the Curry-Howard correspondence precisely to

λ-abstraction, and this instantiation corresponds to cap-

turing substitution. Similar issues arise with existential

variables [10, Section 2, Example 3].

The central issue for any calculus of contexts is the interaction of context vari-

ables with α-equivalence. Let x, y, z be ‘ordinary’ variables and let X be a context

variable. If λx.X =α λy.X then (λX.λx.X)x =α (λX.λy.X)x  λy.x, giving

non-confluent reductions. Dropping α-equivalence entirely is too drastic; we need

λy.λx.y to be α-convertible with λz.λx.z to reduce a term like (λy.λx.y)x.

Solutions include clever control of substitution and evaluation order [23], types

to prevent ‘bad’ α-conversions [21,11,22], explicit labels on meta-variables [10,13],

and more [4, Section 2]. More on this in the Conclusions.

We took our technical ideas for handling α-equivalence, not from the literature

on context calculi cited above, but from nominal unification [27]. This was designed

to manage α-equivalence in the presence of holes, in unification — ‘unification of

contexts of syntax’, in other words. Crudely put, we obtained the λ-context calculus

(LCC) by allowing λ-abstraction over the holes and adding β-reduction.

This work has similar goals to previous work by the first author [6] which pre-

sented a calculus called NEWcc. The LCC possesses a significatnly more elementary

set of reduction rules; notably, we dispense entirely with the freshness contexts and

freshness logic of the NEWcc. Indeed, the LCC has only one single non-obvious

side-condition, it is on (σp) in Figure 5.

The result is a system with a powerful hierarchy of context variables and which

still manages to be clean and, we hope, easy to use and to study.

In Section 2 we present the syntax and reductions of the LCC. The look-and-feel

is of a λ-calculus with explicit substitutions, except that each variable has a ‘level’

1 This example ‘borrowed’ from [10].
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which determines how ‘strongly’ binders by that variable resist capture. We give

example reductions and discuss the technical issues which motivated our design. In

Section 3 we discuss the λ-free part of the language, prove strong normalisation,

and give an algorithm for calculating normal forms. In the usual λ-calculus this

normal form is calculated in big-step style and written s[a7→t]; as is standard for a

calculus of explicit substitutions, here this part of evaluation is dissected in detail.

In Section 4 we treat confluence, first of the λ-free part of the language, then of

the full reduction system. The proof may look elementary but it is not, and we

give enough technical detail to show how all the side-conditions interact to ensure

confluence. It is not sufficient to give a λ-calculus without binding, but the hierarchy

of levels means that λ itself is no longer necessarily a binder. We address that issue

with a new Nin Section 5. We conclude with brief discussions of programming in

Section 6, and then discuss related and future work.

2 Syntax and reductions

2.1 Syntax

We suppose a countably infinite set of disjoint infinite sets of variables A1, A2,

. . . . i, j, k range over levels; we usually maintain a convention that k ≤ i < j, where

we break it we clearly say so. We always use a permutative convention that

ai, bj , ck, . . . range permutatively over variables of level i; so ai, bj , and ck are always

distinct variables. There is no particular connection between a1 and a2; we have

just given them similar names.

Definition 2.1 LCC syntax is given by s, t ::= ai | tt | λai.t | t[ai 7→t].

Application associates to the left, e.g. tt′t′′ is (tt′)t′′. We say that ai has level i.

We call bj stronger than ai, and ai weaker than bj , when j > i. If i = j we say

that bj and ai have the same strength. We call s[ai 7→t] an explicit substitution

(of level i). We call λai.t an abstraction (of level i).

By convention x, y, z,X, Y, Z,W are distinct variables; x, y, z have level 1, X,Y, Z

have level 2, andW has level 3. Note that levels are 1, 2, 3, . . . but our proofs would

work as well for levels being integers, reals, or any totally ordered set.

The stronger a variable, the more ‘meta’ its behaviour. The intuition of λx.X is

of the context λx.- where - is a hole; this is because, as we shall see, substitution for

the relatively strong X does not avoid capture by the relatively weak λx. Strong

variables can be abstracted as usual; the intuition of λX.X is of the ‘normal’ identity

function; the intuition of λX.λx.X is of the mapping ‘t maps to λx.t’.

Our syntax has no constant symbols though we shall be lax and use them where

convenient, for example 1, 2, 3, . . .. This can be accommodated by extending syntax,

or by declaring them to be variables of a new level 0 < 1 which we do not abstract

over or substitute for.

Definition 2.2 Define the level level(s) and the free variables fv(s) by the rules

in Figure 1.

Here max(i, j) is the greater of i and j, and max(i, j, k) is the greatest of i, j, and

k. Later we shall write ‘level(s1, . . . , sn) ≤ i’ as shorthand for ‘level(s1) ≤ i and . . .
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level(ai) = i

level(ss′) = max(level(s), level(s′))

level(λai.s) = max(i, level(s))

level(s[ai 7→t]) = max(i, level(s), level(t))

fv(ai) = {ai}
fv(λai.s) = fv(s)\{ai}

fv(s[ai 7→t]) = (fv(s)\{ai}) ∪ fv(t)

fv(st) = fv(s) ∪ fv(t)

Fig. 1. Levels level(s) and free variables fv(s)

aiRai

sRs′ tRt′

st R s′t′

sRs′ tRt′

s[ai 7→s′] R t[ai 7→t′]
sRs′

λai.s R λai.s
′

sRs′

s′Rs

sRs′ s′Rs′′

sRs′′

Fig. 2. Rules for a congruence

(ai bi)ai = bi

(ai bi)bi = ai

(ai bi)c = c (c any atom other than ai or bi)

(ai bi)(ss
′) = ((ai bi)s)((ai bi)s

′)

(ai bi)(λc.s) = λ(ai bi)c.(ai bi)s (c any atom)

(ai bi)(s[c7→t]) = ((ai bi)s)[(ai bi)c7→(ai bi)t] (c any atom)

Fig. 3. Rules for swapping

λai.s =α λbi.(bi ai)s if bi#fv(s)

s[ai 7→t] =α ((bi ai)s)[bi 7→t] if bi#fv(s)

Fig. 4. Rules for α-equivalence

and level(sn) ≤ i’, similarly for ‘level(s1, . . . , sn) < i’.

Lemma 2.3 If level(s) = 1 then fv(s) coincides with the usual notion of ‘free vari-

ables of ’ for the λ-calculus, if we read s[a1 7→t] as (λa1.s)t.

We shall see that the operational behaviour of such terms is the same as well.

A congruence is a binary relation s R s′ satisfying the conditions of Figure 2.

Define an (atoms) swapping (ai bi)s by the rules in Figure 3. Swapping is char-

acteristic of the underlying ‘nominal’ method we use in this paper [9,27]. We let

swapping (ai bi) act pointwise on sets of variables S: (ai bi)S = {(ai bi)c | c ∈ S}.
Here c ranges over all elements of S, including ai and bi (if they are in S).

Lemma 2.4 fv((ai bi)s) = (ai bi)fv(s) and level((ai bi)s) = level(s).

If S is a set of variables write ai#S when ai 6∈ S and also there exists no variable

bj ∈ S such that j > i.

Definition 2.5 Call the two rules in Figure 4 α-conversion of ai. Let α-equivalence

=α be the least congruence relation containing α-conversion.
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Note that: ai may be α-converted in λai.s if level(s) ≤ i, so λx.x =α λy.y.

ai may be α-converted in s[ai 7→t] if level(s) ≤ i, so x[x 7→X] =α y[y 7→X]. We

cannot α-convert ai in s if bj ∈ fv(s) for j > i. For example λx.X 6=α λy.X. This

is consistent with a reading of strong variables as unknown terms with respect to

weaker variables. We cannot α-convert variables to variables of other levels.

Lemma 2.6 If s mentions only variables of level 1, then α-equivalence collapses to

the usual α-equivalence on untyped λ-terms (plus an explicit substitution).

Theorem 2.7 If s =α s
′ then fv(s) = fv(s′) and level(s) = level(s′).

Proofs of all results above are by easy inductions.

In the rest of this paper we find it convenient to work on terms up to α-

equivalence (=α-equivalence classes of terms). When later we write ‘s = t’, the

intended reading is that the α-equivalence classes of s and t are equal.

2.2 Reductions

Definition 2.8 Define the reduction relation by the rules in Figure 5.

Recall our permutative convention; for example in (σλ′) ai and ci are distinct.

Subsection 2.3 shows examples of these rules at work, and Subsection 2.4 discusses

their design. We shall use the following notation:

• We write  ∗ for the transitive reflexive closure of  .

• We write s 6 when there exists no t such that s t. If s 6 we call s a normal

form, as is standard.

• We write s
(ruleset)
 t when we can deduce s t using only rules in (ruleset) and the

rules (Rapp) to (Rσ′), where (ruleset)⊆{(β), (σa), (σfv), (σp), (σσ), (σλ), (σλ′)}.
(Later in Section 5 we extend reduction with rules for a binder N.)

• Call  terminating when there is no infinite sequence t1  · · ·  ti  · · ·
Similarly for

(ruleset)
 . Call  confluent when if s  ∗ t and s  ∗ t′ then there

exists some u such that t ∗ u and t′  ∗ u. Similarly for
(ruleset)
 .

This is all standard [25,1].

We note two easy but important technical properties: reductions does not in-

crease the level of a term or its set of free variables.

Lemma 2.9 If s s′ then level(s′) ≤ level(s).

Lemma 2.10 If s s′ then fv(s′) ⊆ fv(s), and if s ∗ s′ then fv(s′) ⊆ fv(s).

2.3 Example reductions

The LCC is a λ-calculus with explicit substitutions [15]. The general form of the σ-

rules is familiar from the literature though the conditions, especially those involving

levels, are not; we discuss them in Subsection 2.4 below. First, we consider some

example reductions. Recall our convention that we write x, y, z for variables of level

1, and X,Y, Z for variables of level 2.

• (β) is standard for a calculus with explicit substitutions.
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(β) (λai.s)t s[ai 7→t]

(σa) ai[ai 7→t] t

(σfv) s[ai 7→t] s ai#fv(s)

(σp) (ss′)[ai 7→t] (s[ai 7→t])(s′[ai 7→t]) level(s, s′, t) ≤ i

(σσ) s[ai 7→t][bj 7→u] s[bj 7→u][ai 7→t[bj 7→u]] i < j

(σλ) (λai.s)[bj 7→u] λai.(s[bj 7→u]) i < j

(σλ′) (λai.s)[ci 7→u] λai.(s[ci 7→u]) ai#fv(u)

s s′

(Rapp)
st s′t

t t′

(Rapp′)
st st′

s s′

(Rλ)
λai.s λai.s

′

s s′

(Rσ)
s[ai 7→t] s′[ai 7→t]

t t′

(Rσ′)
s[ai 7→t] s[ai 7→t′]

Fig. 5. Reduction rules of the LCC

• The behaviour of a substitution on a variable depends on strengths:

x[X 7→t] (σfv)
 x x[x′ 7→t] (σfv)

 x x[x 7→t] (σa)
 t X[x7→t] 6 

The term X[x 7→t] will not reduce until a suitable strong substitution [X 7→t] arrives

from the surrounding context, if any.

• Substitutions for relatively strong variables may distribute using (σσ) or (σλ) under

substitutions or λ-abstractions for relatively weaker variables:

X[x 7→t][X 7→x]
(σσ)
 X[X 7→x][x 7→t[X 7→x]]

(σa)
 x[x 7→t[X 7→x]]

(σa)
 t[X 7→x]

(λx.X)[X 7→x] λx.(X[X 7→x]) λx.x

This makes strong variables behave like ‘holes’. Instantiation of holes is compatible

with β-reduction; here is a typical example:

((λx.X)t)[X 7→x]
(σp)
 (λx.X)[X 7→x](t[X 7→x])
(σλ)
 (λx.(X[X 7→x]))(t[X 7→x])
(σa)
 (λx.x)(t[X 7→x])

(β)

 x[x7→t[X 7→x]]
(σa)
 t[X 7→x]

((λx.X)t)[X 7→x]
(β)

 X[x7→t][X 7→x]
(σσ)
 X[X 7→x][x7→t[X 7→x]]
(σa)
 x[x 7→t[X 7→x]]

(σa)
 t[X 7→x]

• There is no restriction in s[ai 7→t] that level(t) < i; for example the terms X[x 7→Y ]

and X[x 7→W] are legal.

• [ai 7→t] is not a term, but the term λbj .bj [ai 7→t] where j > i and j > level(t) will

achieve the effect of ‘the substitution [ai 7→t] as a term’:

(λbj .bj [ai 7→t])s
(β)

 bj [ai 7→t][bj 7→s]
(σσ)
 bj [bj 7→s][ai 7→t[bj 7→s]]

(σfv)
 bj [bj 7→s][ai 7→t]

(σa)
 s[ai 7→t].

2.4 Comments on the side-conditions

• (σfv) is a form of garbage-collection. We do not want to garbage-collect [x 7→2] in

X[x 7→2] because (σσ) could turn X into something with x free — for example x
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itself; this is why the side-condition is not ai 6∈ fv(s) but ai#fv(s).

It is unusual for a garbage collection rule to appear in a calculus of explicit

substitutions; we might hope to ‘push substitutions into a term until they reach

variables’ and so make do with a rule of the form ck[ai 7→t]  ck (for k ≤ i). In

the LCC this will not do because side-conditions (such as that of (σp)) can stop

a substitution going deep into a term. Without (σfv) we lose confluence (see the

second case of Theorem 4.10). A version of (σfv) appears in the literature as ‘garbage

collection’ [3].

• Recall that the level of a term is the level of the strongest variable it contains, free

or bound. The side-condition level(s, s′, t) ≤ i in (σp) seems to be fundamental for

confluence to work; we have not been able to sensibly weaken it, even if we also

change other rules to fix what goes wrong when we do. Here is what happens if we

drop the side-condition entirely:

X[x 7→y][y 7→x]
(β)
 ((λx.X)y)[y 7→x]

(σpFALSE)
 ((λx.X)[y 7→x])(y[y 7→x])

(σa)
 ((λx.X)[y 7→x])x

• The side-conditions on (σσ), (σλ), and (σλ′) implement that a strong substitution

can capture. There is no (σσ′) since that would destroy termination of the part of

the LCC without λ — and we have managed to get confluence without it.

• There is no rule permitting a weak substitution to propagate under a stronger

abstraction, even if we avoid capture:

(σλ′FALSE) (λai.s)[ck 7→u] λai.(s[ck 7→u]) ai#fv(u), k ≤ i

Such a rule causes the following problem for confluence:

(λY.(xZ))[x 7→3][Z 7→W]
(σλ′FALSE)
 (λY.(xZ)[x 7→3])[Z 7→W]

(λY.(xZ))[x 7→3][Z 7→W]
(σσ)
 (λY.(xZ))[Z 7→W][x 7→3[Z 7→W]]

(σfv)
 (λY.(xZ))[Z 7→W][x 7→3]

As is the case for the side-condition of (σp), any stronger form of (σλ′) than what

we admit in the LCC seems to provoke a cascade of changes which make the calculus

more complex.

Investigation of these side-conditions is linked to strengthening the theory of

freshness and α-equivalence, and possibly to developing a good semantic theory to

guide us. This is future work and some details are mentioned in the Conclusions.

3 The substitution action

Define (sigma) = {(σa), (σfv), (σp), (σσ), (σλ), (σλ′)} (so (sigma) is ‘everything

except for (β)’). It would be good if this is is terminating [3,15]. Do we sacrifice

this property because of the hierarchy of variables? No. To prove it we translate
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s[ai:=t] = s ai#fv(s), and otherwise

ai[ai:=t] = t

(ss′)[ai:=t] = (s[ai:=t])(s
′[ai:=t]) level(s, s′, t) ≤ i

s[ck 7→u][ai:=t] = s[ai:=t][ck:=u[ai:=t]] k < i

(λck.s)[ai:=t] = λck.(s[ai:=t]) k < i

(λci.s)[ai:=t] = λci.(s[ai:=t]) ci#fv(t)

s[ai:=t] = s[ai 7→t]

a∗i = ai

(λai.s)
∗ = λai.(s

∗)

(s[ai 7→t])∗ = s∗[ai:=t
∗]

(st)∗ = (s∗)(t∗)

Fig. 6. Substitution s[ai:=t] and (sigma)-normal form s∗

LCC syntax to first-order terms (terms without binding [1,25]) in the signature

Σ = {?,Abs,App} ∪ {Subi | i}

as follows:

x = ? λai.s = Abs(s) s t = App(s, t) s[ai 7→t] = Subi(s, t)

Here ? has arity 0, Abs has arity 1, App has arity 2, and Subi has arity 2 for all i (i

ranges over levels). Give symbols precedence (lowest precedence on the right)

. . . ,Subj , . . . ,Subi, . . . ,App,Abs, ? (j > i).

Define the lexicographic path ordering [14,1] by:

ti � f(t1, . . . , tn)

s� ti

s� f(t1, . . . , tn)

(t′1, . . . , t
′
n)� (t1, . . . , tn)

f(t′1, . . . , t
′
n)� f(t1, . . . , tn)

ui � f(t1, . . . , tn) for 1 ≤ i ≤ m

g(u1, . . . , um)� f(t1, . . . , tn)

Here g and f are first-order symbols, g has strictly lower precedence than f , and

t1, . . . , tn, t
′
1, . . . , t

′
n, u1, . . . , um, s are first-order terms. It is a fact [14,1] that � is

a well-founded order on first-order terms satisfying the subterm property, i.e. if s is

a subterm of t then s� t.

Theorem 3.1 If t
(sigma)
 u then t� u. Thus (sigma)-reduction terminates.

The proof is by checking that a (sigma)-reduction strictly reduces the lexicographic

path order of the associated first-order term; this is not hard.

Let x have level 1. (λx.xx)(λx.xx) has an infinite series of reductions in the LCC.

It follows that — even with a hierarchy of variables — (β) strictly adds power to

the LCC.

Call s (sigma)-normal when s
(sigma)

6 . What does a (sigma)-normal form look

like? Define a substitution action s[ai:=t] and using it define s∗, by the rules in

Figure 6. Rules are listed in order of precedence so that a later rule is only used

if no earlier rule is applicable. We apply the rule (λci.s)[ai:=t] renaming where

possible to ensure ci#fv(t).

Lemma 3.2 s[ai 7→t]
(sigma)

 ∗ s[ai:=t].
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Proof. Each clause in the definition of s[ai:=t] is simulated by a (sigma)-rule. 2

Theorem 3.3 s
(sigma)

 ∗ s∗ and s∗ is a (sigma)-normal form.

Proof. The first part is by an easy induction on the definition of s∗; the case of

(s[ai 7→t])∗ uses Lemma 3.2. The second part is by a routine induction on s. 2

4 Confluence

Let (beta) be the set {(β), (σλ), (σλ′), (σfv)}. (sigma) ∩ (beta) is non-empty; we

discuss why at the end of Subsection 4.3.

Theorem 4.1  is confluent.

The proof of Theorem 4.1 occupies this section. Two standard proof-methods are:

(1) Use a parallel reduction relation ⇒, and (2) for all s define a s↓ such that s ∗ s↓

and if s s′ then s′  ∗ s↓. Both methods are standard [25]. Which to use for the

LCC? It seems that λ ‘wants’ method 1 — but σ ‘wants’ method 2. Confluence is

(relatively) easy to prove if we split the reduction relation into (sigma) and (beta)

and apply different methods to each — and then join them together.

4.1 Confluence of (sigma)

Note there is no capture-avoidance condition in Lemma 4.2, because i < j. The full

proofs also contain another version where i = j and ai#fv(u).

Lemma 4.2 If i < j then s[ai:=t][bj :=u] = s[bj :=u][ai:=t[bj :=u]].

Proof. By induction on i, then on s. We illustrate the induction with two cases.

• Suppose i < j < k. Note that usually we take k ≤ i; this is an exception. Then:

ck[ai:=t][bj :=u] = ck[ai 7→t][bj :=u]

= ck[bj :=u][ai 7→t[bj :=u]]

= ck[bj 7→u][ai 7→t[bj :=u]]

ck[bj :=u][ai:=t[bj :=u]] = ck[bj 7→u][ai:=t[bj :=u]]

= ck[bj 7→u][ai 7→t[bj :=u]]

• Suppose that level(s, s′, t) < j. By Lemma 3.2 we have (ss′)[ai 7→t] ∗ (ss′)[ai:=t].

By Lemma 2.9 we have level((ss′)[ai:=t]) ≤ level((ss′)[ai 7→t]) = level(s, s′, t) < j.

Then by our assumptions on levels,

(ss′)[ai:=t][bj :=u] = (ss′)[ai:=t] = (ss′)[bj :=u][ai:=t[bj :=u]].

2

Lemma 4.3 (i) (ai[ai 7→t])∗ = t∗.

(ii) (ck[ai 7→t])∗ = ck where k ≤ i.
(iii) ((ss′)[ai 7→t])∗ = ((s[ai 7→t])(s′[ai 7→t]))∗ where level(s, s′, t) ≤ i.
(iv) (s[ai 7→t][bj 7→u])∗ = (s[bj 7→u][ai 7→t[bj 7→u]])∗ if i < j.

(v) ((λai.s)[bj 7→u])∗ = (λai.(s[bj 7→u]))∗ if i < j.

(vi) ((λai.s)[ci 7→u])∗ = (λai.(s[ci 7→u]))∗ if (renaming where possible) ai#fv(u).
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(Pa)
ai =⇒ ai

s =⇒ s′ t =⇒ t′

(Pσ)
s[ai 7→t] =⇒ s′[ai 7→t′]

s =⇒ s′ t =⇒ t′

(Papp)
st =⇒ s′t′

s =⇒ s′

(Pλ)
λai.s =⇒ λai.s

′

s =⇒ s′ t =⇒ t′ s′[ai 7→t′]
Rε
 u

(Pσε)
s[ai 7→t] =⇒ u

s =⇒ s′ t =⇒ t′ s′t′
Rε
 u

(Pappε)
st =⇒ u

(R ∈ (beta))

Fig. 7. Parallel reduction relation for the LCC

Proof. Most cases are easy; we consider only the fourth one. Recall that we assume

i < j. Using Lemma 4.2

(s[ai 7→t][bj 7→u])∗ = s∗[ai:=t
∗][bj :=u

∗] = s∗[bj :=u
∗][ai:=t

∗[bj :=u
∗]]

= (s[bj 7→u][ai 7→t[bj 7→u]])∗.

2

Lemma 4.4 If s
(sigma)
 s′ then s′

(sigma)

 ∗ s∗.

Proof. By induction on the derivation of s
(sigma)
 s′, using Lemma 4.3. 2

Theorem 4.5
(sigma)
 is confluent.

Proof. By an easy inductive argument using Lemma 4.4. 2

4.2 (beta)-reduction

Define the parallel reduction relation =⇒ by the rules in Figure 7.

In rules (Pσε) and (Pappε), s′t′
Rε
 u and s′[ai 7→t′]

Rε
 u indicate a rewrite with

R ∈ (beta) derivable without using (Rapp), (Rapp′), (Rλ), (Rσ), or (Rσ′).

Lemma 4.6 s =⇒∗ s′ if and only if s
(beta)

 ∗ s′.

Corollary 4.7 If s =⇒ s′ then fv(s′) ⊆ fv(s) and level(s′) ≤ level(s).

Proof. From Lemma 4.6 and Lemma 2.10. 2

Lemma 4.8 =⇒ satisfies the diamond property. That is, if s′ ⇐= s =⇒ s′′ then

there is some s′′′ such that s′ =⇒ s′′′ ⇐= s′′.

Proof. We work by induction on the depth of the derivation of s =⇒ s′ proving

∀s′′. s =⇒ s′′ ⇒ ∃s′′′. (s′ =⇒ s′′′ ∧ s′′ =⇒ s′′′). We consider possible pairs of rules

which could derive s =⇒ s1 and s =⇒ s2. All cases are very easy, we only sketch

that of (Pσ) and (Pσε) for (σλ′), which is the least trivial.

Suppose s =⇒ s′ and u =⇒ u′ and also s =⇒ s′′ and u =⇒ u′′. Suppose also

that (renaming where necessary) ai#u
′′ so that by (Pσ) and (Pσε) for (σλ′)

(λai.s
′)[ci 7→u′]⇐= (λai.s)[ci 7→u] =⇒ λai.(s

′′[ci 7→u′′]).

By inductive hypothesis there are s′′′ and u′′′ such that s′ =⇒ s′′′ ⇐= s′′ and

u′ =⇒ u′′′ ⇐= u′′. By Corollary 4.7 ai#u
′′′. Using (Pσε) for (σλ′) and (Pσ)

(λai.s
′)[ci 7→u′] =⇒ λai.(s

′′′[ci 7→u′′′])⇐= λai.(s
′′[ci 7→u′′]).

10
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2

Theorem 4.9
(beta)
 is confluent.

Proof. By Lemmas 4.6 and 4.8 and a standard argument [2]. 2

4.3 Combining (sigma) and (beta)

Theorem 4.10 If s =⇒ s′ and s
(sigma)
 s′′ then there is some s′′′ such that s′

(sigma)

 ∗ s′′′

and s′′ =⇒ s′′′.

Proof. We work by induction on the derivation of s =⇒ s′. For brevity we merely

indicate the non-trivial parts. We always assume that s =⇒ s′, t =⇒ t′, and

u =⇒ u′, where appropriate.

• (β) has a divergence with (σp) in the case that i < j and level(s, t, u) ≤ j. This

can be closed using a =⇒-rewrite which uses (σλ):

(λai.s)[bj 7→u](t[bj 7→u])
(σp)
 ((λai.s)t)[bj 7→u] =⇒ s′[ai 7→t′][bj 7→u′]

(λai.s)[bj 7→u](t[bj 7→u]) =⇒ s′[bj 7→u′][ai 7→t′[bj 7→u′]]
(σσ)
 s′[ai 7→t′][bj 7→u′]

• (σσ) has a divergence with (σλ′). Suppose i<j and (renaming if necessary)

ci#fv(t):

(λci.s)[bj 7→u][ai 7→t[bj 7→u]]
(σσ)
 (λci.s)[ai 7→t][bj 7→u] =⇒ (λci.(s

′[ai 7→t′]))[bj 7→u′]

We know bj#fv(t) because ci#fv(t) and i < j. We deduce bj#fv(t′) using Corol-

lary 4.7. This justifies the =⇒-rewrite below, which uses (σfv):

λci.(s
′[ai 7→t′])[bj 7→u′]

(σλ′)
 λci.(s

′[ai 7→t′][bj 7→u′])
(σσ)
 λci.(s

′[bj 7→u′][ai 7→t′[bj 7→u′]])
(σfv)
 λci.(s

′[bj 7→u′][ai 7→t′])⇐= (λci.s)[bj 7→u][ai 7→t[bj 7→u]]

2

(σλ) is in (sigma)∩ (beta) to make the case of (σp) with (β) work. (σλ′) is in

(sigma) ∩ (beta) to make a similar divergence of (σp) with (β) work. (σfv) is in

(sigma) ∩ (beta) to make the case of (σσ) with (σλ′) work.

Theorem 4.1 now follows by an easy diagrammatic argument using Theorem 4.10,

Theorem 4.5, and Lemma 4.8.

5 A NEW part for the LCC

x is not α-convertible in λx.X. Suppose we really do want to bind x; we can do

so with N. We extend syntax: s, t ::= . . . | Nai.t. We extend the notions of level,
fv, congruence, and swapping with cases for Nwhich are identical to those for λ

(except that we write Ninstead). For example fv( Nai.s) = fv(s) \ {ai}.
The difference is in the α-equivalence: Nai.s =α Nbi.(bi ai)s if bi 6∈ fv(s).

11
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Note the bi 6∈ fv(s) instead of bi#fv(s) as in the clause for λ. This lets variables

bound by Nα-convert regardless of whether stronger variables are present. For

example λx.X 6=α λy.X but Nx.λx.X =α Ny.λy.X. We add reduction rules:

( Np) ( Nai.s)t Nai.(st) ai 6∈ fv(t)

( Nσ) ( Nck.s)[ai 7→t] Nck.(s[ai 7→t]) k ≤ i, ck 6∈ fv(t)

( N6∈) Nai.s s ai 6∈ fv(s)

s s′

(R N)
Nai.s Nai.s

′

x is not bound in λy.s if s mentions a strong variable, for example in λy.(Xy)

substitution for X can capture y. We may want y to be really local and avoid

capture by substitutions for X. We can increase the level of y; λY.(XY ) will do

in this case. This has a hidden cost because side-conditions (especially on (σp))

look at strengths of variables, so having strong variables can block reductions in the

context. Navoids this, for example Ny.λy.(Xy) has the behaviour we need:

( Ny.λy.(Xy))[X 7→y]
( Nσ)
 Ny′.((λy′.(Xy′))[X 7→y])

( Nλ)
 Ny′.λy′.(Xy′)[X 7→y]) ∗ Ny′.λy′.yy′

Nis reminiscent of π-calculus restriction [16]. ( Np) and ( Nσ) are reminiscent of

scope-extrusion. ( N6∈) is reminiscent of ‘garbage-collection’.

We do not admit a rule ‘s( Na.t) Na.(st) if a 6∈ fv(s)’:

Ny. Ny′.(yy′)  ∗ ( Ny.y) Ny′.y′  ∗ (λx.xx) Ny.y  Ny.(λx.xx)y  ∗ Ny.yy

For similar reasons we do not admit a rule ‘s[b7→ Na.t] Na.(s[b7→t]) if a 6∈ fv(s)’.

Why the side-conditions on ( Nσ)? ck 6∈ fv(t) comes from the intuition of Nas

defining a scope. We need k ≤ i for confluence:

NX.(X[x 7→2])  ( NX.X)[x 7→2]
(σfv)
 NX.X

The proof of termination of (sigma) extends smoothly if we add the rules for N
to (sigma) (to make a set (sigmanew)). The proof of confluence for the system as

a whole also extends smoothly. We see some examples of the use of Nin a moment.

6 Programming in the calculus

Call t single-leveled of level i when all variables in it (free or bound) have level i.

Then it is easy to prove that notions of free variable and substitution coincide with

the ‘traditional’ definitions and we have:

Theorem 6.1 For any i the single-leveled terms of level i, with their reductions,

form an isomorphic calculus to λx with garbage collection [3].

As a corollary, the trivial mapping from the untyped λ-calculus to single-leveled

terms of level 1 (say), preserves normal forms and strong normalisation.

We can exploit the hierarchy to do some nice things. Here is one example:

R = X[x 7→2][y 7→3] can be viewed as a record with ‘handle’ X and with 2 stored

at x and 3 at y. Then λW.(W[X 7→x]) applied to R looks up the data stored at

x, and λW.(W[X 7→X[x 7→3]]) updates it. In fact these terms do a little more than

12
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this, because their effect is the same when applied to a term in which a record with

‘handle’ X is buried deep in the term, perhaps as part of a β-redex or substitution.

λW.(W[X 7→ (W[X 7→x])+1]) increments the value stored at x.

Here is an example reduction:

(λW.W[X 7→X[x 7→3]]) R
(β)

 W[X 7→X[x 7→3]][W7→R]
(σσ), (σa), (σfv)

 ∗ R[X 7→X[x7→3]] = X[x 7→2][y 7→3][X 7→X[x 7→3]]
(σσ)

 ∗ X[X 7→X[x 7→3]][x7→2[X 7→X[x 7→3]]][y 7→3[X 7→X[x7→3]]]
(σa), (σb)

 ∗ X[x 7→3][x 7→2][y 7→3].

There is some garbage here, but a later look-up on x returns 3, not 2:

(λW.W[X 7→x])(X[x 7→3][x 7→2][y 7→3]) ∗ x[x 7→3][x7→2][y 7→3] ∗ 3

We can use Nto assign fresh storage. The following program, if applied to a value

and R, extends R with a fresh location and returns the new record together with a

lookup function for the new location:

λZ. Nx.λY.(Y [x 7→Z], λW.W[X 7→x]).

Here we use a pairing constructor (-, -) just for convenience.

Note that we access data in R by applying a substitution for X; in this sense the

‘handle’ X in R is externally visible. We can hide it by λ-abstracting X to obtain

λX.(X[x 7→2][y 7→3]). Then lookup at x becomes λW.(Wx) and update becomes

λW.λX.(W[X 7→X[x 7→1]]).

We can parameterise over the data stored in the record: λX ′.(X ′[x 7→X][y 7→Y ]).

Furthermore a term of the form λX.(X[x 7→X][y 7→X]) can capture a form of self-

reference within the record. Finally, λX.(X[x7→W][y 7→W ′]) makes no committment

about the data stored.

7 Related work, conclusions, and future work

The LCC of this paper is simpler than the NEWcc [6]. Compare the side-condition

of (σa) (there is none) with that of (σa) from [6]. The notion of freshness is simpler

and intuitive; we no longer require a logic of freshness, or the ‘freshness context with

sufficient freshnesses’, see most of page 4 in [6]. A key innovation in attaining this

simplicity is our use of conditions involving level(s) the level of s, which includes

information about the levels of free and bound variables.

But there is a price: this calculus has fewer reductions. Notably (σλ′) will not

reduce (λai.s)[ck 7→u] where k < i; a rule (σλ′) in [6] does. That stronger version

seems to be a major source of complexity.

Still, the LCC is part of something larger yet to be constructed. Other papers

on nominal techniques contain elements of the developments we have in mind when

we imagine such a system. So for example:

In this paper we cannot α-convert x in λx.X. Nominal terms can: swappings

are in the syntax (here swappings are in the meta-level) and also freshness contexts
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[27]. A problem is that we do not yet understand the theory of swappings for

strong variables; the underlying Fraenkel-Mostowski sets model [9] only has (in the

terminology of this paper) one level of variable. A semantic model of the hierarchy

of variables would be useful and this is current work.

In this paper we cannot deduce x#fv(λx.X) even though for every instance this

does hold (for example x#λx.x and x#λx.y). Hierarchical nominal rewriting [7] has

a more powerful notion of freshness which can prove the equivalent of x#fv(λx.X).

Note that hierarchical nominal rewriting does not have the conditions on levels

which we use to good effect in this paper.

We cannot reduce (λx.y)[y 7→Y ] because there is no z such that z#Y . We can

allow programs to dynamically generate fresh variables in the style of FreshML [19]

or the style of a sequent calculus for Nominal Logic by Cheney [5].

We cannot reduce X[x 7→2][y 7→3] to X[y 7→3][x 7→2]. Other work [8] gives an

equational system which can do this, and more.

There is no denotational semantics for the LCC. This is current work.

More related work (not using nominal techniques). The calculi of con-

texts λm and λM [23] also have a hierarchy of variables. They use carefully-crafted

scoping conventions to manage problems with α-conversion. Other work [21,11,22]

uses a type system; connections with this work are unclear. λc of Bognar’s thesis

contains [4, Section 2] an extensive literature survey on the topic of context calculi.

A separation of abstraction λ and binding Nappears in one other work we know

of [24], where they are called q and ν. In this vein there is [12], which manages scope

explicitly in a completely different way, just for the fun. Finally, the reduction rules

of Nlook remarkably similar to π-calculus restriction [16], and it is probably quite

accurate to think of Nas a ‘restriction in the λ-calculus’.

Ours is a calculus with explicit substitutions. See [15] for a survey. Our treat-

ment of substitution is simple-minded but still quite subtle because of interactions

with the rest of the language. We note that the translation of possibly open terms of

the untyped λ-calculus into the LCC preserves strong normalisation. One reduction

rule, (σfv), is a little unusual amongst such calculi, though it appears as ‘garbage

collection’ of λx [3].

The look and feel of the LCC is squarely that of a λ-calculus with explicit

substitutions. All the real cleverness has been isolated in the side-condition of

(σp); other side-conditions are obvious given an intuition that strong variables can

cause capturing substitution (in the NEWcc [6] complexity spilled over into other

rules and into a logic for freshness). Nis only necessary when variables of different

strengths occur, and the hierarchy of variables only plays a rôle to trigger side-

conditions.

Further work. Desirable and nontrivial meta-properties of the λ-calculus sur-

vive in the LCC including confluence, and preservation of strong normalisation for a

natural encoding of the untyped λ-calculus into the LCC. It is possible, in principle

at least, to envisage an extension of ML or Haskell [17,26] with meta-variables based

on the LCC’s notion of strong and weak variables.

We can go in the direction of logic, treating equality instead of reduction and

imitating higher-order logic, which is based on the simply-typed λ-terms enriched

with constants such as ∀ : (o → o) → o and ⇒: o → o → o where o is a type
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of truth-values [29], along with suitable equalities and/or derivation rules. There

should be no problem with imposing a simple type system on LCC and writing

down a ‘context higher-order logic’. This takes the LCC in the direction of calculi of

contexts for incomplete proofs [13,10]. The non-trivial work (in no particular order)

is to investigate cut-elimination, develop a suitable theory of models/denotations,

and possibly to apply it to model incomplete proofs.

An implementation is current work.

The LCC is simple, clear, and it has good properties. It seems to hit a technical

sweet spot: every extension of it which we have considered, provokes significant

non-local changes. Often in computer science the trick is to find a useful balance

between simplicity and expressivity. Perhaps the LCC does that.
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Université Paris VII, 2003, Extended Abstract, Prépublication PPS//03/11//n16.
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