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Abstract

We present the Lambda Context Calculus. This simple lambda-calculus features variables ar-
ranged in a hierarchy of strengths such that substitution of a strong variable does not avoid
capture with respect to abstraction by a weaker variable. This allows the calculus to express
both capture-avoiding and capturing substitution (instantiation). The reduction rules extend the
‘vanilla’ lambda-calculus in a simple and modular way and preserve the look and feel of a stan-
dard lambda-calculus with explicit substitutions.

Good properties of the lambda-calculus are preserved. The LamCC is confluent, and a natural
injection into the LamCC of the untyped lambda-calculus exists and preserves strong normalisa-
tion.

We discuss the calculus and its design with full proofs. In the presence of the hierarchy of
variables, functional binding splits into a functional abstraction λ (lambda) and a name-binder

N(new). We investigate how the components of this calculus interact with each other and with
the reduction rules, with examples. In two more extended case studies we demonstrate how
global state can be expressed, and how contexts and contextual equivalence can be naturally
internalised using function application.

Keywords: Lambda-calculus, calculi of contexts, functional programming, binders, nominal
techniques, explicit substitutions, capturing substitution.
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1. Introduction

1.1. An outline of the LamCC as a λ-calculus with capturing substitution
In this paper we present the Lambda Context Calculus (LamCC). To a first approximation

the LamCC is a λ-calculus with explicit substitutions. However, variables are arranged into a
hierarchy of levels; we call variables higher up in the hierarchy stronger, and we call variables
lower down in the hierarchy weaker. An explicit substitution for a strong variable acts without
avoiding capture with respect to weaker variables. That is, strong variables undergo capturing
substitution, which we will also call instantiation.

Here are two example LamCC reductions exemplifying this behaviour (full definitions follow
in the body of the paper; these examples are taken from Subsection 2.5):

X[x 7→t][X 7→x]
(σσ)
 X[X 7→x][x 7→t[X 7→x]]

(σa)
 x[x 7→t[X 7→x]]

(σa)
 t[X 7→x].

(λx.X)[X 7→x]
(σλ)
 λx.(X[X 7→x])

(σa)
 λx.x.

X is a variable of level 2 and x is a variable of level 1. t denotes any term.
The substitutions of different levels are compatible with β-reduction; here is a typical exam-

ple:

((λx.X)t)[X 7→x]
(σp)
 (λx.X)[X 7→x](t[X 7→x])

(σλ)
 (λx.(X[X 7→x]))(t[X 7→x])

(σa)
 (λx.x)(t[X 7→x])

(β)
 x[x 7→t[X 7→x]]

(σa)
 t[X 7→x]

((λx.X)t)[X 7→x]
(β)
 X[x 7→t][X 7→x]

(σσ)
 X[X 7→x][x 7→t[X 7→x]]

(σa)
 x[x 7→t[X 7→x]]

(σa)
 t[X 7→x].

The infinite hierarchy of levels guarantees that for every variable there is a stronger one. Thus
for any abstraction by a variable, we can always find a stronger variable and ensure capturing
substitution. We shall see how we can choose our levels carefully and mix capture-avoiding and
capturing substitution. We shall also see that if a term mentions variables of only one level, then
that term behaves like an ‘ordinary λ-term’; thus, the usual programming power of the λ-calculus
remains undisturbed within each level.

We intend the LamCC as a simple λ-calculus within which to study the combination of
capture-avoiding substitution and capturing substitution in the context of functional program-
ming.

The LamCC turns out to be expressive in unexpected ways — see the example reductions in
Subsection 2.5, the analysis of contexts in Section 6, and the case study of global state in Sub-
section 7.3. The LamCC also has some unexpected new behaviour. In particular a split emerges
between functional abstraction and name binding which manifests itself as λ (a well-known con-
struct) and N. Nis related to the Gabbay-Pitts ‘new’ quantifier [21], but is not identical to it; see
Section 7. We take care to give examples and in particular to justify the inclusion of Nin our
calculus.

Capture-avoiding substitution is well-known and well-studied; it is the ‘native’ notion of
substitution of the untyped λ-calculus. Some readers may ask why we should study capturing
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substitution (instantiation). We devote the next two subsections to a discussion of two examples
where instantiations naturally arise, both of which have become the topic of full investigation
since this paper was first drafted [16, 19]. In the body of this paper the reader can also find many
example programs showing things that can be done, given a capturing substitution.

1.2. Motivation for considering capturing substitution: nominal terms and nominal algebra
The authors became interested in capturing substitution because this is the substitu-

tion needed to directly model meta-variables at the ‘informal meta-level’. The reduction of
(λx.X)[X 7→x] to λx.x (given above) models what happens when we say ‘let - be x is λx.-’;
meta-variables are instantiated with respect to object-level variables.

We came to this via nominal techniques [21]. Nominal techniques are, amongst other things,
an approach to reasoning on abstract syntax with binding. This is in one sense a very simple
situation; we are reasoning on abstract syntax trees up to binding, thus, the only equality we
care about is α-equivalence. Yet a two level hierarchy of variables naturally manifests itself. For
example consider the nominal term [a]X which we read as ‘abstract a in X’ [45]. X is equipped
with a capturing substitution, such that if X is instantiated to a we obtain [a]a.

The first author with Mathijssen has developed a logical theory based on two levels of variable
and capturing substitution, nominal algebra [14, 16, 31] (the same ideas also appear in Pitts and
Clouston’s nominal equational logic [8]). There, capturing substitution of strong variables happens
at the meta-level; it is a universal algebra system, so variables are implicitly universally quantified.

This behaviour is explicitly modelled in the LamCC, for example in the reduction of
(λx.X)[X 7→x] above. That is, with the LamCC we internalise and study the computational
action of instantiating a meta-variable. Of course, once we have internalised the informal meta-
level once we still need another informal meta-level to discuss the extended language. If we
repeat this process we arrive an a kind of fixed point where we have an infinite hierarchy of vari-
ables 1, 2, 3, 4, . . . Thus, intuitively, if we internalise meta-variables, then allow λ-abstraction to
internalise computing on those variables, then internalise meta-variables again, and then repeat
this indefinitely — then we arrive at the LamCC.

1.3. Motivation for considering capturing substitution: incomplete derivations
We continue the motivational discussion of the previous subsection.
Consider formalising mathematics in a logical framework based on Higher-Order Logic

(HOL) [46]. Typically we have a goal and some assumptions and we want a derivation of one
from the other. This derivation may be represented by a λ-term (the Curry-Howard correspondence).
But the derivation is arrived at by stages in which it is incomplete.

A⇒B⇒C [A]i

B⇒C

?

B

C
i

A⇒C

(1)

A⇒B⇒C [A]i

B⇒C

A⇒B [A]i

B

C
i

A⇒C

(2)

Above are two derivations ofA⇒B⇒C,A⇒B ` A⇒C.2 (1) is incomplete, (2) has been completed
by instantiating ? to A⇒ B A

B
.

2This example ‘borrowed’ from [22].
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In the incomplete derivation (1), the right-most [A]i is discharged by the bottom-most infer-
ence step; thus, in general we require the ability to instantiate ? for a derivation some of whose
assumptions are discharged. Discharge corresponds in the Curry-Howard correspondence with
λ-abstraction. The complete derivation in (2) can be represented by the λ-term

λx.yA⇒B⇒C xA (zA⇒B xA).

(We add types to make as explicit as possible the connection with the derivation.) The incomplete
derivation can be represented by

λx.yA⇒B⇒C xA XB .

Completing the derivation corresponds with the capturing substitution

(λx.y x X)[X 7→z x] ∗ λx.y x (z x).

Similar issues arise with existential variables [22, Section 2, Example 3].
The LamCC is an untyped λ-calculus; we will not address Curry-Howard for incomplete

derivations in this paper. However, the basic technology developed in this paper has been used
to investigate this elsewhere [18].3 In fact [18] (a conference paper) is just a start because we only
consider how to represent incomplete proofs, and we do not give a reduction system — but it
exists, it is based on a fragment of the LamCC reduction system, and it is contained in a journal
version.

We would like the reader to understand the LamCC as distilling capturing and capture-
avoiding substitution into a relatively simple untyped-λ-calculus-like package (indeed, it con-
tains infinitely many copies of the untyped λ-calculus, one for each level). Other notable features
are its expressivity, the separation of functional abstraction and name-binding, and an infinite
hierarchy of variables. This combination seems novel and the results seem elegant.

In the next section, we ask what issues arise when we internalise strong variables and design
a multi-level λ-calculus.

1.4. Outline of the technical issues
The central issue, if we internalise strong variables, is with α-equivalence. Let x, y, z be have

level 1 and let X have level 2. If λx.X is α-equivalent with λy.X (because ‘x and y do not occur
in X’) then (λX.λx.X)x reduces to λy.x. This gives non-confluent reductions. This observation
goes back at least to [29].

Dropping α-equivalence entirely is too drastic; we need λy.λx.y to be α-convertible with
λz.λx.z so that we can reduce a term such as (λy.λx.y)x.

The LamCC is not the first attempt to address these issues in the context of a λ-calculus.
Solutions include clever control of substitution and evaluation order [39], types to prevent ‘bad’
α-conversions [37, 24, 38], explicit labels on meta-variables [22, 26], and more [6, Section 2]. The
complexity of the LamCC, the results we are able to prove of it, and the programs we find we
can write in it, all compare favourably with previous work. The LamCC may be the closest to
the untyped λ-calculus that anybody has so far managed to come with a reduction system with
more than one level of variable. We discuss this further in the Conclusions.

The first author previously developed the NEWcc [11], with similar goals. The LamCC has
simpler and more intuitive reduction rules. Indeed there is now only one non-obvious side-
condition, which is on (σp) (see the discussion of the side-conditions in Subsection 2.6). Technical
aspects of the previous work have been simplified, clarified, or eliminated altogether. Notably
we dispense entirely with the freshness contexts and freshness logic of the NEWcc.

The result is a clean and simple system which is powerfully expressive yet which preserves
the look and feel of an ordinary λ-calculus with explicit substitutions, along with many of the
properties which make the λ-calculus so nice to work with. These include confluence (Section 4)

3Note to the referees: [18] was written and published after this paper.
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and a natural translation of the untyped λ-calculus which preserves strong normalisation (Sec-
tion 5). Because of the hierarchy of variables, contexts and contextual equivalence can be inter-
nalised (Section 6), and the LamCC is interestingly expressive in other ways; aside from express-
ing contexts (Section 6) we give example reductions in Subsection 2.5 and as an extended case
study we express global state in Subsection 7.3.

2. Syntax, freshness, reductions

2.1. Syntax
Definition 2.1. We suppose a countably infinite set of disjoint infinite sets of variables4 A1, A2, . . . ,
where we write ai, bi, ci, ni, . . . ∈ Ai for i ≥ 1.

We shall use a permutative naming convention; we shall always assume that variables that
we give different names, are different. Thus ai and bi range permutatively over elements of Ai. In
particular, when we write ai and ck we do not assume (unless stated otherwise) that i 6= k, but
we do assume that even if i = k, ai and ck are different variables, because we have given them
different names.

There is no particular connection between variables of different levels with the same name.
For example a1 and a2 are different variables to which we happen to have given similar names.

Definition 2.2. The syntax of the lambda context calculus (LamCC) is given by:

s, t ::= ai | tt | λai.t | t[ai 7→t].

Note that in Subsection 2.3 we develop a notion of α-equivalence; from that point on we will
equate terms up to α-equivalence.

We use the following conventions:

• As is standard, application associates to the left. For example tt′t′′ is (tt′)t′′.

• We say that the variable ai has level i.

• We call bj stronger than ai when j > i, that is, when bj has higher level than ai. If j < i we
call bj weaker than ai.

If i = j we say that bj and ai have the same strength.

• We call s[ai 7→t] an explicit substitution of level i (for the atom a, acting on s).

• We call λai.t an abstraction of level i (over the term t).

• Later on we shall use the convention that x, y, z are variables of level 1,X,Y, Z are variables
of level 2, andW has level 3.

This syntax has no constant symbols. We might like to have constants like 1, 2, 3, . . . for
arithmetic, or > and ⊥ for truth-values. These behave much like variables ‘of level 0’ which we
do not abstract over and for which we do not substitute. We may add them where convenient for
illustrative examples. Adding them formally to the syntax causes no particular difficulties aside
from adding extra cases to a few proofs.

2.2. Levels and free variables
The hierarchy of variables induces a hierarchy of terms, characterised by their levels:
Suppose that i, j, and k are numbers. Write max(i, j) for the greater of i and j, and max(i, j, k)

for the greatest of i, j, and k.

4It might be better to call these variable symbols, but we shall not bother.
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level(ai) = i

level(ss′) = max(level(s), level(s′))

level(λai.s) = max(i, level(s))

level(s[ai 7→t]) = max(i, level(s), level(t))

Figure 1: Level level(s)

fv(ai) = {ai}
fv(λai.s) = fv(s) \ {ai}

fv(s[ai 7→t]) = (fv(s) \ {ai}) ∪ fv(t)

fv(st) = fv(s) ∪ fv(t)

Figure 2: Free variables fv(s)

Definition 2.3. Define the level level(s) by the rules in Figure 1, and the free variables fv(s) by the
rules in Figure 2.

If we ignore levels then fv(s) is intuitively just the usual notion of ‘free variables of’ in the
untyped λ-calculus, if we read s[a1 7→t] as (λa1.s)t, and fv(s) is directly the usual notion of ‘free
variables of’ of the calculus with explicit substitutions λx [5]). When in Section 5 we encode the
untyped λ-calculus in LamCC using only variables of level 1, this intuition finds formal expres-
sion in Lemma 5.1.

For the reader’s convenience we mention now that we write ‘level(s1, . . . , sn) ≤ i’ as short-
hand for ‘level(s1) ≤ i and . . . and level(sn) ≤ i’, similarly for ‘level(s1, . . . , sn) < i’; this will be
useful later.

2.3. α-equivalence
The hierarchy of variables introduces subtleties to the management of variable renaming and

introduces a non-trivial notion of α-equivalence. (In return, we will then be able to formalise the
capturing substitution mentioned in the Introduction.) First, we must define notions of congru-
ence and of variable (symbol) swapping.

Definition 2.4. A congruence on LamCC terms is a binary relation s R s′ satisfying the conditions of
Figure 3.

It is easy to show that a congruence is reflexive, so perhaps a better name would be ‘congruent
equivalence relation’ — but ‘congruence’ is shorter so we use that.

Definition 2.5. Define an (atoms) swapping (ai bi)s action inductively by the rules in Figure 4.

ai R ai

s R s′ t R t′

st R s′t′

s R s′ t R t′

s[ai 7→s′] R t[ai 7→t′]

s R s′

λai.s R λai.s
′

s R s′

s′ R s

s R s′ s′ R s′′

s R s′′

Figure 3: Rules for a congruence
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(ai bi)ai = bi

(ai bi)bi = ai

(ai bi)c = c (c any atom other than ai or bi)
(ai bi)(ss

′) = ((ai bi)s)((ai bi)s
′)

(ai bi)(λc.s) = λ(ai bi)c.(ai bi)s (c any atom)
(ai bi)(s[c7→t]) = ((ai bi)s)[(ai bi)c7→(ai bi)t] (c any atom)

Figure 4: Rules for swapping

λai.s =α λbi.(bi ai)s if bi#fv(s)

s[ai 7→t] =α ((bi ai)s)[bi 7→t] if bi#fv(s)

Figure 5: Rules for α-equivalence

Note that the definition of the swapping action is uniform, swapping ai and bi in swithout regard
for binders (and without capture-avoidance conditions or capture-avoiding renaming substituti-
nos). This is characteristic of the underlying ‘nominal’ method of this paper [21, 45].

We will use swapping (ai bi) on sets of variables S acting pointwise by

(ai bi)S = {(ai bi)c | c ∈ S}.

Here c ranges over all elements of S, including ai and bi (if they are in S).

Lemma 2.6. fv((ai bi)s) = (ai bi)fv(s) and level((ai bi)s) = level(s).

Proof. By easy inductions on the definition of (ai bi)s. 2

Definition 2.7. If S is a set of variables write ai#S for

• ai 6∈ S, and

• there exists no variable bj ∈ S such that j > i.

Definition 2.8. Let α-equivalence be the least congruence relation s =α s
′ satisfying the conditions of

Figure 5.

Suppose that x and y have level 1 and X has level 2. We can easily verify that:

• ai may be α-converted in λai.s if level(s) ≤ i. In particular λx.x =α λy.y.

• ai may be α-converted in s[ai 7→t] if level(s) ≤ i. In particular x[x 7→X] =α y[y 7→X].

• It is not possible to α-convert ai in s if bj ∈ fv(s) for j > i. For example λx.X 6=α λy.X . This
is consistent with a reading of strong variables as unknown terms with respect to weaker
variables.

• We can never α-convert variables to variables of other levels.

Remark 2.9. It is easy to see that in the fragment of LamCC syntax consisting of terms mention-
ing variables of level 1 only, the condition bi#fv(s) collapses to bi 6∈ fv(s), and α-equivalence
collapses to the usual α-equivalence on untyped λ-terms plus an explicit substitution as in the
calculus λx [5].

8



Remark 2.10. The definitions above are descended from the notion of α-equivalence for nominal
terms from [45]. In the terminology used here, [45] considered a syntax with a hierarchy with
just levels 1 and 2 and no abstraction over variables of level 2. However LamCC is weaker in
the sense that nominal terms include swappings in the syntax of terms. We use swappings as an
operation on LamCC syntax (Definition 2.5) but we have not included them in the syntax of the
LamCC itself.

Extending LamCC syntax with swappings is future work. To do that it would help to have a
better understanding of LamCC models (this paper is purely syntactic) and of freshness #. Two
other papers explore the notion of freshness in the presence of a hierarchy [12], and the notion
of full nominal-terms style α-equivalence based on swappings in the syntax [20]. Much future
work is possible here.

Theorem 2.11. If s =α s
′ then fv(s) = fv(s′) and level(s) = level(s′).

Proof. The proof is by an easy induction on the derivation rule defining a congruence. We give
only the base cases:

• If bi#fv(s) then fv(λai.s) =α fv(λbi.(bi ai)s).

Suppose level(s) ≤ i. By Lemma 2.6 level((bi ai)s) ≤ i as well. Then using Lemma 2.6 we
have

fv(λai.s) = fv(s) \ {ai} fv(λbi.(bi ai)s) = ((bi ai)fv(s)) \ {bi}.

It follows by easy set calculations that

fv(λai.s) = fv(λbi.(bi ai)s).

We also observe that swapping ai and bi in s has no effect on the levels of the variables
occurring in s, and it follows easily that

level(λai.s) = level(λbi.(bi ai)s).

• If bi#fv(s) then fv(s[ai 7→t]) = fv(((bi ai))s[bi 7→t]).

Note that
fv(s[ai 7→t]) = fv(λai.s) ∪ fv(t) and

fv(((bi ai))s[bi 7→t]) = fv(λbi.(bi ai)s) ∪ fv(t).

We use the previous part.

2

From now on we shall consider terms up to α-equivalence, as for the standard λ-calculus
(without levels). Theorem 2.11 allows us to discuss the levels and sets of free variables of α-
equivalence classes.

2.4. Reductions
Definition 2.12. Define the reduction relation on terms (modulo α-equivalence) inductively by the
rules in Figure 6.

In Figure 6, consistent with our conventions, variables with different names are assumed distinct.
For example in (σλ′) we assume that ai and ci are distinct.

We shall see in Section 5 that our rewrite system refines β-reduction. Indeed, when only
variables of level 1 are present, LamCC becomes isomorphic to the explicit substitution calculus
λx with garbage collection [5].

Our side-conditions allow us to generalise the rules to the full hierarchy of variables. These
side-conditions are mostly natural; we give brief intuitions.
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(β) (λai.s)t s[ai 7→t]
(σa) ai[ai 7→t] t
(σfv) s[ai 7→t] s ai#fv(s)
(σp) (ss′)[ai 7→t] (s[ai 7→t])(s′[ai 7→t]) level(s, s′, t) ≤ i
(σσ) s[ai 7→t][bj 7→u] s[bj 7→u][ai 7→t[bj 7→u]] i < j
(σλ) (λai.s)[bj 7→u] λai.(s[bj 7→u]) i < j
(σλ′) (λai.s)[ci 7→u] λai.(s[ci 7→u]) ai#fv(u)

s s′

(Rapp)
st s′t

t t′

(Rapp′)
st st′

s s′

(Rλ)
λai.s λai.s

′

s s′

(Rσ)
s[ai 7→t] s′[ai 7→t]

t t′

(Rσ′)
s[ai 7→t] s[ai 7→t′]

Figure 6: Reduction rules of the LamCC

• (σfv) features a garbage side-condition that ‘ai does not occur in s, even if stronger variables
are instantiated.’

• (σσ) and (σλ) feature natural side-conditions for the new capturing propagation of substi-
tution.

• (σλ′) has the usual capture-avoidance side-condition of (single-level) λ-calculi.

• The side-condition for (σp) is non-trivial and plays a key role in ensuring confluence. It
disambiguates the semantics of substitutions competing to instantiate the same variable.

Subsection 2.5 illustrates with examples how these rules and their side-conditions interact. Sub-
section 2.6 discusses the side-conditions in greater detail, including the side-condition on (σp),
with examples of what goes wrong if we relax them.

We take a moment to collect some standard notation for reductions, which will be useful in
the rest of this paper:

• We write ∗ for the transitive reflexive closure of .

• We write s 6 when there exists no t such that s t. If s 6 we call s a normal form, as is
standard.

• We write s
(ruleset)
 t when we can deduce s t but using only rules in (ruleset) where

(ruleset) ⊆ {(β), (σa), (σfv), (σp), (σσ), (σλ), (σλ′)}.

(Later in Section 7 we extend reduction with rules for a binder N.)

• We call terminating when there is no infinite sequences

t1  · · · ti  · · · .

Similarly for
(ruleset)
 .

• We call confluent when if s  ∗ t and s  ∗ t′ then there exists some u such that t  ∗ u
and t′  ∗ u. Similarly for

(ruleset)
 .

This is all standard [43, 2].
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2.5. Example reductions
The LamCC is a λ-calculus with explicit substitutions [30]. The general form of the σ-rules is

familiar from the literature though the conditions, especially those involving levels, are not; we
discuss them in Subsection 2.6 below.

First, we consider some example reductions. Recall our convention that we write x, y, z for
variables of level 1, and X,Y, Z for variables of level 2.

• β-reduction. This is a standard β-reduction rule for a calculus with explicit substitutions:

(λx.x)y
(β)
 x[x 7→y]

(σa)
 y.

• Substitutions on variables. The behaviour of a substitution on a variable depends on the relative
strengths of the variable being substituted on, and the variable being substituted for:

x[X 7→t] (σfv)
 x x[x′ 7→t] (σfv)

 x x[x7→t] (σa)
 t X[x 7→t] 6 

We can summarise the behaviour of substitutions on variables as follows:

• A strong substitution acting on a weak variable ‘evaporates’.

• A substitution of a variable acting on itself acts ‘normally’.

• A substitution of a variable acting on another variable of the same strength ‘evaporates’.

• A weak substitution on a strong variable ‘stays put’.

• Traversing weak variables.

We reprise the examples discussed in the Introduction (before we had formally introduced
LamCC syntax and operational semantics).

An explicit substitution for a relatively strong variable may distribute using (σσ) under an ex-
plicit substitution for a relatively weaker variable, without avoiding capture:

X[x 7→t][X 7→x]
(σσ)
 X[X 7→x][x 7→t[X 7→x]]

(σa)
 x[x7→t[X 7→x]]

(σa)
 t[X 7→x].

Similarly, an explicit substitutions for a relatively strong variable can traverse a λ-abstraction by
a relatively weaker variable, using (σλ), without avoiding capture:

(λx.X)[X 7→x]
(σλ)
 λx.(X[X 7→x])

(σa)
 λx.x.

This makes strong variables behave like ‘holes’. Instantiation of holes is compatible with β-
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reduction; here is a typical example:

((λx.X)t)[X 7→x]
(σp)
 (λx.X)[X 7→x](t[X 7→x])

(σλ)
 (λx.(X[X 7→x]))(t[X 7→x])

(σa)
 (λx.x)(t[X 7→x])

(β)
 x[x 7→t[X 7→x]]

(σa)
 t[X 7→x]

((λx.X)t)[X 7→x]
(β)
 X[x 7→t][X 7→x]

(σσ)
 X[X 7→x][x 7→t[X 7→x]]

(σa)
 x[x 7→t[X 7→x]]

(σa)
 t[X 7→x].

• Substitutions on no weaker substitutions. These terms do not reduce:

X[x 7→z][y 7→z] 6 X[x 7→y][y 7→z] 6 .

Here (σa) and (σfv) are not applicable because X has level 2 and x has level 1, and (σσ) is not
applicable because both x and y have level 1. So weak substitutions are ‘suspended’ — until a
stronger substitution turns X into something with internal structure which they can act on.

We imagine stronger versions of the LamCC (i.e. with more reductions) in the Conclusions.

• Substitutions for stronger terms There is no restriction in s[ai 7→t] that level(t) < i or level(t) ≤ i;
for example the terms X[x 7→Y ] and X[x 7→W] are legal (recall thatW has level 3).

Terms like X[x 7→Y ] are useful. Examples ‘in nature’ appear in the ∃-introduction rule in logic

Γ ` φ[a7→t]

Γ ` ∃a.φ

where it is understood that φ and t are meta-variables — and in the β-reduction rule

(λa.s)t s[a7→t]

where it is understood that s and t are meta-variables.

A term such as X[a7→W] is useful if there is a surrounding binder which we would like to con-
veniently link to. For example in the term λX.(X[x 7→W]) the variableW can be bound to X by a
substitution arriving from some enclosing context:

(λX.(X[x 7→W]))[W7→X] ∗ λX.(X[x 7→X]).

• Substitution-as-term [x 7→y] is not a term; it cannot be the argument to a function. However
λX.X[x 7→y] is a term, and it acts like a substitution in the following sense:

(λX.X[x 7→y])t
(β)
 X[x 7→y][X 7→t] (σσ)

 X[X 7→t][x 7→y[X 7→t]]
(σfv)
 X[X 7→t][x 7→y]

(σa)
 t[x 7→y].

12



As a general scheme, λbj .bj [ai 7→s] encodes the substitution [ai 7→s] if level(s) ≤ j and i < j.

We know of no other work in the literature which represents substitutions by λ-terms by ab-
stracting on variables of higher levels. Representations of substitutions as first-class citizens in
λ-calculi in the literature use a specific syntactic category, distinct from (though interacting with)
that of λ-terms (see for example [30]).

• Records using substitution We obtain a model of records using the hierarchy of levels. Sup-
pose x and y are variables of level 1, W is a variable of level 2, and suppose 2 and 3 are constants
(just for convenience). Write t.ai (‘lookup ai’) for t[W 7→ai] and t.ai := u (‘bind ai to u’) for
t[W 7→W[ai 7→u]]. Then

((W.x := 2).y := 3).x ∗ 2 and ((W.x := 2).x := 3).x ∗ 3.

For the reader’s convenience we expand this a little; full details are easy to verify:

W[W 7→W[x 7→2]][W 7→W[y 7→3]][W 7→x] ∗W[y 7→3][x 7→2][W 7→x]

 ∗2

W[W 7→W[x 7→2]][W 7→W[x 7→3]][W 7→x] ∗W[x 7→3][x 7→2][W 7→x]

 ∗3

This is the behaviour we expect if we view W with some suspended level 1 substitutions as
a record binding the variables to the expressions substituted for. This model can be refined
in a number of ways, for example using λW.(W[substitutions]) and application, instead of
W[substitutions] and substitution for W.

More on this in Subsection 7.3.

2.6. Comments on the side-conditions
The side-conditions of the LamCC reduction rules are where much of the technical ‘magic’

happens.

• The side-condition ai#fv(s) in (σfv).

(σfv) is a form of garbage-collection. For example with (σfv) we can garbage-collect [x 7→2]
in (λX.X)[x 7→2]:

(λX.X)[x 7→2]
(σfv)
 λX.X.

In a calculus of explicit substitutions we can usually ‘push substitutions into a term until
they reach variables’. Therefore, we can make do with a rule of the form b[a7→t]  b. A
version of (σfv) appears in the literature as Bloo’s ‘garbage collection’ [5]. There the rule is
dispensable — removing it does not affect the transitive symmetric closure of the reduction
relation — but the designers had other reasons to include it [5, Remark 2.15]. In the LamCC
we cannot always push substitutions into a term (in particular we cannot push [x 7→2] under
λX above) because of the conditions on (σp) and (σλ′). Thus, if we want (λX.X)[x 7→2] to
be related with λX.X by the transitive reflexive closure of the reduction relation, then (σfv)
seems indispensable.

Note that we do not garbage-collect [x 7→2] inX[x 7→2] because (σσ) could turnX into some-
thing with x free — for example x itself.

This is why the side-condition is not ai 6∈ fv(s). For example x 6∈ fv(X) = {X} and so if we
change our rewrite system by removing the reduction rule (σfv) and replacing it with a false
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version of the rule with a side-condition that uses 6∈ instead of #, then we have reductions

X[x 7→2][X 7→x]
(σfvFALSE)
 X[X 7→x]
σa
 x

X[x 7→2][X 7→x]
(σσ)
 X[X 7→x][x 7→2[X 7→x]]

(σa),(σfvFALSE)

 ∗ 2.

This is blocked in LamCC, because x#X does not hold.

• The side-condition level(s, s′, t) ≤ i in (σp).

Recall that the level of a term is the level of the strongest variable it contains, free or bound.
Recall also that the side-condition level(s, s′, t) ≤ i in (σp) means that level(s) ≤ i and
similarly for s′ and t.

Capturing substitution allows two substitutions [x 7→2] and [x 7→3] to compete to instantiate
of x. Here is what happens if we drop the side-condition level(s, s′, t) ≤ i:

((λX.X[x 7→3]) x)[x 7→2]
(σpFALSE)
 (λX.X[x 7→3])[x 7→2] (x[x 7→2])
(σa)
 (λX.X[x 7→3])[x 7→2] 2

((λX.X[x7→3]) x)[x 7→2]
(β)
 X[x 7→3][X 7→x][x 7→2]
(σσ)
 X[X 7→x][x 7→3[X 7→x]][x 7→2]

 ∗ x[x 7→3][x 7→2]

 ∗ 3

Our intuition is that, to disambiguate this situation, the inner redex should take priority
over the distribution of [x 7→3] because it involves X which has level 2 and is stronger. This
intuition is implemented by the side-condition of (σp), which acts crucially in our proofs to
guarantee confluence. Investigating whether this side-condition can be sensibly weakened,
while still ensuring confluence, remains future work.

• The side-conditions on (σσ), (σλ), and (σλ′).

These rules express that a relatively strong substitution can capture, and that substitution
for variables of the same level avoids capture. There is no rule

(σσ′FALSE) s[ai 7→t][ck 7→u] s[ci 7→u][ai 7→t[ci 7→u]] ai#fv(u), k ≤ i

since that would destroy termination of the part of the LamCC without λ — and we have
managed to get confluence without it.

• More on (σλ) and (σλ′).

There is no rule permitting a weak substitution to propagate under a stronger abstraction,
even if we avoid capture:

(σλ′FALSE) (λai.s)[ck 7→u] λai.(s[ck 7→u]) ai#fv(u), k ≤ i.

Such a rule would cause the following problem for confluence:

(λY.(xZ))[x 7→3][Z 7→W]
(σλ′FALSE)
 (λY.(xZ)[x 7→3])[Z 7→W]

(λY.(xZ))[x 7→3][Z 7→W]
(σσ)
 (λY.(xZ))[Z 7→W][x 7→3[Z 7→W]]

(σfv)
 (λY.(xZ))[Z 7→W][x 7→3]
14



Neither of these terms reduces further.

As is the case for the side-condition of (σp), any stronger form of (σλ′) seems to provoke a
cascade of changes which make the calculus more complex.

Investigation of these side-conditions is linked to strengthening the theory of freshness and
α-equivalence, and possibly to developing a good semantic theory to guide us. This is future
work and some details are mentioned in the Conclusions.

3. Properties of the explicit substitution s[ai 7→t]

Definition 3.1. Let (sigma) be equal to the set of rewrite rules other than (β), namely,

(sigma) = {(σa), (σfv), (σp), (σσ), (σλ), (σλ′)}.

(See Definition 4.5 for (beta), the sister-set to (sigma).)
This is the part of the LamCC that handles substitution — the ‘λ-free’ part of the calculus.
We expect the λ-free part of other calculi of explicit substitutions to be terminating [5, 30]

and this is useful behaviour — but now we have a hierarchy of variables. Do we lose this good
behaviour? No, and in this section we prove it.

3.1. Termination of (sigma)

We show that (sigma)-reduction decreases terms with respect to a well-founded ordering
based on mapping LamCC terms to first-order terms (no variables, no binders), and using a
lexicographic path ordering [27, 2] on them.

We use first-order terms in the following infinite signature:

Σ = {?/0,Abs/1,App/2} ∪ {Subi/2 | i is an integer}.

Here f/n indicates that f has arity n. Symbols have the following precedence:

Subj � · · · � Subi � · · · � App � Abs � ? if j > i

We define the lexicographic path ordering by:

ti � f(t1, . . . , tn)

s� ti

s� f(t1, . . . , tn)

(t′1, . . . , t
′
n)� lex(t1, . . . , tn)

f(t′1, . . . , t
′
n)� f(t1, . . . , tn)

ui � f(t1, . . . , tn) for 1 ≤ i ≤ m

g(u1, . . . , um)� f(t1, . . . , tn)
(g ≺ f)

Here g/m and f/n are first-order symbols and t1, . . . , tn, t
′
1, . . . , t

′
n, u1, . . . , um, s are first-order

terms.
It is a fact [27, 2] that � is a well-founded order on first-order terms satisfying the subterm

property, i.e. if s is a subterm of t then s� t.
We define a translation from LamCC to first-order terms as follows:

x = ?

λai.s = Abs(s)
s t = App(s, t)

s[ai 7→t] = Subi(s, t)

Theorem 3.2. If t
(sigma)
 u then t� u.
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s[ai:=t] = s if ai#fv(s), and otherwise. . .
ai[ai:=t] = t

(ss′)[ai:=t] = (s[ai:=t])(s
′[ai:=t]) level(s, s′, t) ≤ i

s[ck 7→u][ai:=t] = s[ai:=t][ck:=u[ai:=t]] k < i

(λck.s)[ai:=t] = λck.(s[ai:=t]) k < i

(λci.s)[ai:=t] = λci.(s[ai:=t]) ci#fv(t)

s[ai:=t] = s[ai 7→t] otherwise

Figure 7: Substitution action

Proof. We check for each reduction rule that the corresponding first-order term on the left, is
higher in the lexicographic path ordering than the one on the right. This is routine:

(σa) Subi(?, t) � t

(σfv) Subi(s, t) � s

(σp) Subi(App(s, s′), t) � App(Subi(s, t),Subi(s′, t))

(σσ) Subj(Subi(s, t), u) � Subi(Subj(s, u),Subj(t, u)) i < j

(σλ) Subj(Abs(s), u) � Abs(Subj(s, u))

(σλ′) Subk(Abs(s), u) � Abs(Subk(s, u))

2

Corollary 3.3. (sigma)-reduction terminates.

We can now make a useful observation. Let x have level 1. It is easy to show that
(λx.xx)(λx.xx) has an infinite series of reductions if we allow rules in (sigma) and (β). It fol-
lows that — even with a hierarchy of variables — (β) strictly adds to the power of the reduction
system.

Definition 3.4. Call s (sigma)-normal when s
(sigma)

6 .

By Corollary 3.3, any chain of (sigma)-reductions must terminate, and by definition it terminates
at a (sigma)-normal form.

Note that in Subsection 3.3 we give an algorithm for calculating a (sigma)-normal form.

3.2. A meta-level substitution action: s[ai:=t]
In the ‘normal’ λ-calculus, β-reduction is an atomic step. This is because substitution is a

meta-level operation.
In the LamCC substitution is managed by the reduction relation, but this was a design choice

which could have been made differently. We could have used a substitution action at the meta-
level, which we would write as s[ai:=t]. This would avoid proving confluence of (sigma), at
the expense of (not proving confluence of (sigma) and) a less intuitive and more powerfully
reducing β-reduction rule using s[ai:=t].

In any case, to prove confluence it is useful to define s[ai:=t]:

Definition 3.5. Define a substitution action s[ai:=t] by the rules in Figure 7. In Figure 7 the prece-
dence of which equality to use is from top to bottom. When we try to apply the equality (λci.s)[ai:=t] =
λci.(s[ai:=t]) we rename ci where possible to satisfy the side condition ci#fv(t).

Lemma 3.6 is an important basic correctness property:
16



Lemma 3.6. s[ai 7→t]
(sigma)

 ∗ s[ai:=t].

Proof. By induction on i and then s. We inspect the definition of := and see that each clause can
be imitated by a rule for [ai 7→t]. 2

Theorems 3.10 and 3.12 are technical properties of meta-level substitution; they reflect well-
known properties of ‘ordinary’ substitution and they will be useful later.

We need some technical lemmas:

Lemma 3.7. If level(t) < j then bj#fv(t).

Proof. By a routine induction on the definition of level(t) (Figure 1) using the definition of fv(t)
(Figure 2). 2

We need two technical lemmas for Theorem 3.10:

Lemma 3.8. If level(t) < j then t[bj :=u] = t.

Proof. By Lemma 3.7 if level(t) < j then bj#fv(t). The result follows from the definition of [bj :=u].
2

Lemma 3.9. If s s′ then level(s′) ≤ level(s).

Proof. By a series of easy calculations on the rules in Figure 6 and an inductive argument. 2

Theorem 3.10. If i < j then

s[ai:=t][bj :=u] = s[bj :=u][ai:=t[bj :=u]].

(Note the lack of capture-avoidance condition; this is because i < j.)
Proof. By induction on i and then on the structure of s.

• Suppose s[ai:=t] = s[ai 7→t]. We then have

s[ai:=t][bj :=u] = s[ai 7→t][bj :=u]

= s[bj :=u][ai:=t[bj :=u]]

This covers the cases s = ck with k > i, s = s1s2 with level(s1, s2, t) > i, s = s1[ck 7→s2] with
k ≥ i, s = λck.s1 with k > i, or k = i without ck#fv(t).

• Suppose k ≤ i < j. Note that by our permutative convention, ck is distinct from ai. Then:

ck[ai:=t][bj :=u] = ck[bj :=u]

= ck

ck[bj :=u][ai:=t[bj :=u]] = ck[ai:=t[bj :=u]]

= ck.

• The cases of ai[ai:=t][bj :=u] and bj [ai:=t][bj :=u] are easy.

• Suppose that level(s, s′, t) ≤ i < j. By Lemma 3.6 we have (ss′)[ai 7→t]  ∗ (ss′)[ai:=t]. By
Lemma 3.9 we have

level((ss′)[ai:=t]) ≤ level((ss′)[ai 7→t]) = level(s, s′, t, ai) < j.

Finally by Lemma 3.8 we have

(ss′)[ai:=t][bj :=u] = (ss′)[ai:=t]

(ss′)[bj :=u][ai:=t[bj :=u]] = (ss′)[ai:=t]

17



• Suppose k < i. Then

s[ck 7→s′][ai:=t][bj :=u] = s[ai:=t][ck:=s′[ai:=t]][bj :=u]

ind. hyp.
= s[ai:=t][bj :=u][ck:=s′[ai:=t][bj :=u]]

ind. hyp.
= s[bj :=u][ai:=t[bj :=u]][ck:=s′[bj :=u][ai:=t[bj :=u]]]

s[ck 7→s′][bj :=u][ai:=t[bj :=u]] = s[bj :=u][ck:=s′[bj :=u]][ai:=t[bj :=u]]

ind. hyp.
= s[bj :=u][ai:=t[bj :=u]][ck:=s′[bj :=u][ai:=t[bj :=u]]]

• Suppose k < i. Then

(λck.s)[ai:=t][bj :=u] = λck.(s[ai:=t][bj :=u])

ind. hyp.
= λck.(s[bj :=u][ai:=t[bj :=u]])

(λck.s)[bj :=u][ai:=t[bj :=u]] = λck.(s[bj :=u][ai:=t[bj :=u]])

• Suppose (renaming ci where possible) that ci#fv(t). Then

(λci.s)[ai:=t][bj :=u] = (λci.s[ai:=t][bj :=u])

ind. hyp.
= (λci.s[bj :=u][ai:=t[bj :=u]])

(λci.s)[bj :=u][ai:=t[bj :=u]] = (λci.s[bj :=u][ai:=t[bj :=u]])

2

We need a technical lemma for Theorem 3.12:

Lemma 3.11. If s is (sigma)-normal and level(s) ≤ i then there is no substitution of level i in s.

Proof. By a routine induction on s. 2

Theorem 3.12. Suppose that level(s, t, u) ≤ i and ai#fv(u) (which in view of the condition on levels,
means just ai 6∈ fv(u)). Suppose also that s, t, and u are (sigma)-normal. Then

s[ai:=t][bi:=u] = s[bi:=u][ai:=t[bi:=u]].

Proof. By induction on the structure of s.

• Suppose k ≤ i. Recall that by our permutative convention ck is distinct from ai and bi.
Then:

ck[ai:=t][bi:=u] = ck[bi:=u]

= ck

ck[bi:=u][ai:=t[bi:=u]] = ck[ai:=t[bi:=u]]

= ck.

• The cases of ai[ai:=t][bi:=u] and bi[ai:=t][bi:=u] are easy.

• We do not need to consider the case ck[ai:=t][bi:=u] for k > i, because then level(ck) > i.

• (ss′)[ai:=t][bi:=u] = ((s[ai:=t])(s
′[ai:=t]))[bi:=u]

= (s[ai:=t][bi:=u])(s′[ai:=t][bi:=u])

ind. hyp.
= (s[bi:=u][ai:=t[bi:=u]])(s′[bi:=u][ai:=t[bi:=u]])

(ss′)[bi:=u][ai:=t[bi:=u]] = ((s[bi:=u])(s′[bi:=u]))[ai:=t[bi:=u]]

= (s[bi:=u][ai:=t[bi:=u]])(s′[bi:=u][ai:=t[bi:=u]])
18



• For the case of s[ck 7→s′], assumed to be be (sigma)-normal, we know from the assumption
level(s[ck 7→s′]) ≤ i and Lemma 3.11 that k < i. Hence,

s[ck 7→s′][ai:=t][bi:=u] = s[ai:=t][ck:=s′[ai:=t]][bi:=u]

Thm.3.10
= s[ai:=t][bi:=u][ck:=s′[ai:=t][bi:=u]]

ind. hyp.
= s[bi:=u][ai:=t[bi:=u]][ck:=s′[bi:=u][ai:=t[bi:=u]]]

s[ck 7→s′][bi:=u][ai:=t[bi:=u]] = s[bi:=u][ck:=s′[bi:=u]][ai:=t[bi:=u]]

Thm.3.10
= s[bi:=u][ai:=t[bi:=u]][ck:=s′[bi:=u][ai:=t[bi:=u]]]

• Suppose k ≥ i. Since level(λck.s, t, u) ≤ i we can rename ck so that ck#fv(t) ∪ fv(u). Then

(λck.s)[ai:=t][bi:=u] = (λck.(s[ai:=t]))[bi:=u]

= (λck.(s[ai:=t][bi:=u]))

ind. hyp.
= (λck.(s[bi:=u][ai:=t[bi:=u]]))

(λck.s)[bi:=u][ai:=t[bi:=u]] = (λck.(s[bi:=u]))[ai:=t[bi:=u]]

= (λck.(s[bi:=u][ai:=t[bi:=u]]))

k ≥ i so level(s) ≤ level(λck.s), and this is why we can use the inductive hypothesis.

• The case of (λck.s)[ai:=t][bi:=u] where k < i is similar, but easier.

2

3.3. Calculating (sigma)-normal forms: s∗

We now have everything we need to calculate (sigma)-normal forms:

Definition 3.13. Define the catchily-named ‘the star’ function s∗ inductively by:

a∗i = ai
(λai.s)

∗ = λai.(s
∗)

(s[ai 7→t])∗ = s∗[ai:=t
∗]

(st)∗ = (s∗)(t∗)

Remark 3.14. A precedent for Definition 3.13 has been observed by an anonymous referee: A
similar function, also called -∗, is used by Takahashi in a compact but extensive analysis of prop-
erties of reduction of the untyped λ-calculus [42]. Takahashi works with the (plain, normal) un-
typed λ-calculus; this does not have an explicit substitution, but unreduced β-reducts are used
to emulate explicit substitution.

We were led to consider s∗, for reasons which we describe in Remark 4.2 and a surrounding
discussion; although we do not prove or attempt to prove that our proof-method is the only way
of proving confluence of the LamCC, it is the one that we could find.

We suspect that the underlying reason why Takahashi’s use of -∗ leads to (in her words) a par-
ticularly direct and short proof, must have to do with an underlying mechanism also exploited by
the proof-method we use here, even though for the case of the untyped λ-calculus other methods
also work. Perhaps understanding this more deeply is future research.

Lemma 3.15. If s and t are (sigma)-normal then s[ai:=t] is (sigma)-normal.

Proof. By induction on i and then s. 2

Theorem 3.16. s∗ is a (sigma)-normal form of s.
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Proof. There are two results to prove. The first is s
(sigma)

 ∗ s∗, which is proved by an easy
induction on the definition of s∗ (the case of (∗σ) uses Lemma 3.6). The second is that s∗ is a
(sigma)-normal form, which is proved by a routine induction on s, using Lemma 3.15. 2

We conclude with a useful lemma:

Lemma 3.17. 1. (ai[ai 7→t])∗ = t∗.
2. (ck[ai 7→t])∗ = ck where k ≤ i.
3. ((ss′)[ai 7→t])∗ = ((s[ai 7→t])(s′[ai 7→t]))∗ where level(s, s′, t) ≤ i.
4. (s[ai 7→t][bj 7→u])∗ = (s[bj 7→u][ai 7→t[bj 7→u]])∗ if i < j.
5. ((λai.s)[bj 7→u])∗ = (λai.(s[bj 7→u]))∗ if i < j.
6. ((λai.s)[ci 7→u])∗ = (λai.(s[ci 7→u]))∗ if (renaming ai where possible) ai#fv(u).

Proof.

1. (ai[ai 7→t])∗ = ai[ai:=t
∗] = t∗.

2. Recall that we assume k ≤ i.

(ck[ai 7→t])∗ = ck[ai:=t
∗] = ck = c∗k.

3. Recall that we assume that level(s, s′, t) ≤ i.

((ss′)[ai 7→t])∗ = (s∗[ai:=t
∗])(s′

∗
[ai:=t

∗])

((s[ai 7→t])(s′[ai 7→t]))∗ = (s∗[ai:=t
∗])(s′

∗
[ai:=t

∗]).

4. Recall that we assume that i < j. Using Theorem 3.10

(s[ai 7→t][bj 7→u])∗ = s∗[ai:=t
∗][bj :=u

∗]

= s∗[bj :=u
∗][ai:=t

∗[bj :=u
∗]]

(s[bj 7→u][ai 7→t[bj 7→u]])∗ = s∗[bj :=u
∗][ai:=t

∗[bj :=u
∗]]

5. Recall that we assume that i < j.

((λai.s)[bj 7→u])∗ = (λai.s
∗)[bj :=u

∗]

= λai.(s
∗[bj :=u

∗])

(λai.(s[bj 7→u]))∗ = λai.(s
∗[bj :=u

∗])

6.
((λai.s)[ck 7→u])∗ = (λai.s

∗)[ck:=u∗]

= λai.(s
∗[ck:=u∗])

(λai.(s[ck 7→u]))∗ = λai.(s
∗[ck:=u∗])

2

4. Confluence

A few words of overview. The LamCC is a set of terms (Definition 2.2) and a reduction relation
 (Definition 2.12). The main result of this section is confluence:

Theorem 4.1.  is confluent. That is, if s ∗ t1 and s ∗ t2 then there is some u such that t1  ∗ u and
t2  ∗ u.

The proof of Theorem 4.1 occupies this section. First, we comment on the overall design of
the proof, which is slightly unusual and, in some respects original.
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Remark 4.2. Roughly speaking there are two standard ways to prove confluence:

• Method 1. Define a so-called parallel reduction relation⇒. such that⇒⊆ ∗ and⇒∗= ∗.
It then suffices to show that if s⇒ t1 and s⇒ t2 then there is some u such that t1 ⇒ u and
t2 ⇒ u.

• Method 2. Define for each term s a canonical form s↓ such that s  ∗ s↓ and then prove that
for all possible reductions s s′ it is the case that s′  ∗ s↓.

Both of these methods are standard [43]. But which to use for the LamCC? It seems that reduc-
tions using (β) admit method 1 above, whereas (sigma)-rules do not (see Remark 4.3).

Therefore, to prove confluence of the LamCC, we split the reduction relation into two sets:
(sigma) (see Section 3, Definition 3.1 above) and (beta) (see Definition 4.5 below). We prove
independent confluence results for (sigma) and (beta), using method 1 for (beta) and using
method 2 for (sigma) (the normal form is s∗ from Definition 3.13). Then, we show that (sigma)
and (beta) commute. This suffices to prove confluence of the entire rewrite system [43, Exercise
1.3.4].

Remark 4.3. We briefly describe why method 1 from Remark 4.2 is not appropriate for proving
confluence of (sigma)-reduction. Consider the following divergence, where j > i:

(s′s)[ai 7→t][bj 7→u]
(σp)
 ((s′[ai 7→t])(s[ai 7→t]))[bj 7→u]

(s′s)[ai 7→t][bj 7→u]
(σσ)
 (s′s)[bj 7→u][ai 7→t[bj 7→u]]

We close this as follows:

((s′[ai 7→t])(s[ai 7→t]))[bj 7→u]
(σp)
 (s′[ai 7→t][bj 7→u])(s[ai 7→t][bj 7→u])

(σσ)

 ∗ (s′[bj 7→u][ai 7→t[bj 7→u]])(s[bj 7→u][ai 7→t[bj 7→u]])

(s′s)[bj 7→u][ai 7→t[bj 7→u]]
(σp)
 ((s′[bj 7→u])(s[bj 7→u]))[ai 7→t[bj 7→u]]

(σp)
 (s′[bj 7→u][ai 7→t[bj 7→u]])(s[bj 7→u][ai 7→t[bj 7→u]])

In a parallel moves proof-method, the last two instances of (σp) are problematic because they
both occur at the same level in the term (at the top).

Remark 4.4. One way to prove confluence is to split the reduction system into smaller modules,
to prove confluence of each module separately, and then to put them together proving that con-
fluence is preserved [43, Exercise 1.3.4]. Our confluence proof is modular; this is not original.
However, our method of splitting reductions into (β)- and (sigma)-rules so as to apply meth-
ods 1 and 2 separately, and the rather subtle distribution of the rules into (sigma) and (beta) is
original to this research as far as we know.

Recall from Definition 3.1 that (sigma) is the set of rules defined by

(sigma) = {(σa), (σfv), (σp), (σσ), (σλ), (σλ′)}.

It is convenient to define:

Definition 4.5. Let (beta) be the set

(beta) = {(β), (σλ), (σλ′), (σfv)}.

Note that (sigma) ∪ (beta) is equal to the set of all reduction rules of the LamCC.
Note also that (sigma) ∩ (beta) is non-empty. We mention the technical reasons for this in

Remark 4.16 just after Lemma 4.15 — it seems to be vital for the proofs to work. Understanding
the deeper mathematical reasons for this, if any, is future work.
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4.1. Confluence of (sigma)

Given the constructions in Subsections 3.2 and 3.3, confluence of (sigma) is relatively easy:

Lemma 4.6. s∗[ai 7→t∗]
(sigma)

 ∗ (s[ai 7→t])∗.

Proof. By definition (s[ai 7→t])∗ = s∗[ai:=t
∗]. We use Lemma 3.6. 2

Lemma 4.7. If s
(sigma)
 s′ then s′

(sigma)

 ∗ s∗.

Proof. We work by induction on the derivation of s
(sigma)
 s′, see Figure 6.

• (Rapp) Suppose s
(sigma)
 s′ so that st

(sigma)
 s′t.

By inductive hypothesis s′
(sigma)

 ∗ s∗ and by Theorem 3.16 t
(sigma)

 ∗ t∗, so also s′t
(sigma)

 ∗ s∗t∗ =
(st)∗. The case of (Rapp′) is similar.

• (Rλ) Suppose s
(sigma)
 s′ so that λai.s

(sigma)
 λai.s

′. By inductive hypothesis s′
(sigma)

 ∗ s∗,

and so λai.s′
(sigma)

 ∗ λai.(s
∗) = (λai.s)

∗.

• (Rσ) Suppose s
(sigma)
 s′ so that s[ai 7→t]

(sigma)
 s′[ai 7→t].

By inductive hypothesis s′
(sigma)

 ∗ s∗ and by Theorem 3.16 t
(sigma)

 ∗ t∗, so also s′[ai 7→t]
(sigma)

 ∗ s∗[ai 7→t∗].

By Lemma 4.6 s∗[ai 7→t∗]
(sigma)

 ∗ (s[ai 7→t])∗.
The case of (Rσ′) is similar.

• Now suppose that s
(sigma)
 s′ is derived using one of the rules (σa), (σc), (σp), (σσ), (σλ),

or (σλ′). In these cases we use Theorem 3.16 and the relevant part of Lemma 3.17.

2

Theorem 4.8.
(sigma)
 is confluent.

Proof. By an easy inductive argument using Lemma 4.7. 2

4.2. (beta)-reduction
Definition 4.9. Inductively define the parallel reduction relation =⇒ (for (beta)) by the rules in
Figure 8.

In rules (Pσε) and (Pappε), s′t′ Rε u and s′[ai 7→t′]
Rε u indicate a top-level rewrite with any

R ∈ (beta) — that is, s′t′ R u and s′[ai 7→t′]
R
 u respectively are derivable without using (Rapp),

(Rapp′), (Rλ), (Rσ), or (Rσ′).

Lemma 4.10. 1. s =⇒ s.

2. If s =⇒ s′ then s
(beta)

 ∗ s′.

3. If s
(beta)
 s′ then s =⇒ s′.

As a corollary, s =⇒∗ s′ if and only if s
(beta)

 ∗ s′.

Proof. All parts are by routine inductions:

1. By induction on the syntax of s.
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(Pa)
ai =⇒ ai

s =⇒ s′ t =⇒ t′

(Pσ)
s[ai 7→t] =⇒ s′[ai 7→t′]

s =⇒ s′ t =⇒ t′

(Papp)
st =⇒ s′t′

s =⇒ s′

(Pλ)
λai.s =⇒ λai.s

′

s =⇒ s′ t =⇒ t′ s′[ai 7→t′]
Rε u

(Pσε)
s[ai 7→t] =⇒ u

(R ∈ (beta))

s =⇒ s′ t =⇒ t′ s′t′
Rε u

(Pappε)
st =⇒ u

(R ∈ (beta))

Figure 8: Parallel reduction relation for the LamCC

2. By induction on the derivation of s =⇒ s′.

3. By induction on the derivation of s
(beta)
 s′.

2

Lemma 4.11. If s s′ then fv(s′) ⊆ fv(s). As a corollary, if s ∗ s′ then fv(s′) ⊆ fv(s).

Proof. We work by induction on the derivation of s s′. The base cases are:

• fv(s[ai 7→t]) = (fv(s) \ {ai} ∪ fv(t)) = fv((λai.s)t).

• fv(ai[ai 7→t]) = fv(t) and fv(t) is a subset of itself.

• Suppose that ai#fv(s). By definition

fv(s[ai 7→t]) = (fv(s) \ {ai}) ∪ fv(t).

By Definition 2.7 since ai#fv(s) also ai 6∈ fv(s) so fv(s) \ {ai} = fv(s) and fv(s) is a subset
of fv(s[ai 7→t]).

• Suppose that level(s, s′, t) ≤ i. Then

fv((ss′)[ai 7→t]) = ((fv(s) ∪ fv(s′)) \ {ai}) ∪ fv(t)

fv(s[ai 7→t]s′[ai 7→t]) = ((fv(s) \ {ai}) ∪ fv(t))∪
((fv(s′) \ {ai}) ∪ fv(t)).

The subset inclusion follows by easy calculations on sets.

Other cases are no harder. The inductive argument is straightforward, relying on Lemma 3.9.
The corollary is immediate. 2

Corollary 4.12. If s =⇒ s′ then fv(s′) ⊆ fv(s) and level(s′) ⊆ level(s).

Proof. From Lemma 4.10 and Lemma 4.11. 2

Lemma 4.13. =⇒ satisfies the diamond property. That is, if s′ ⇐= s =⇒ s′′ then there is some s′′′ such
that s′ =⇒ s′′′ ⇐= s′′.

Proof. We work by induction on the depth of the derivation of s =⇒ s′ proving

∀s′′.s =⇒ s′′ ⇒ ∃s′′′.(s′ =⇒ s′′′ ∧ s′′ =⇒ s′′′).

For simplicity we just consider possible pairs of rules which could derive s =⇒ s1 and s =⇒ s2.
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• (Pa) and (Pa). There is nothing to prove.

• (Pσ) and (Pσ).

s =⇒ s′ and t =⇒ t′ and also s =⇒ s′′ and t =⇒ t′′ so that by (Pσ) and (Pσ)

s′[ai 7→t′]⇐= s[ai 7→t] =⇒ s′′[ai 7→t′′].

By inductive hypothesis there are s′′′ and t′′′ such that

s′ =⇒ s′′′ ⇐= s′′ and t′ =⇒ t′′′ ⇐= t′′.

It follows that
s′[ai 7→t′] =⇒ s′′′[ai 7→t′′′]⇐= s′′[ai 7→t′′].

• (Pσ) and (Pσε) for (σλ).

Suppose s =⇒ s′ and t =⇒ t′ and also s =⇒ s′′ and t =⇒ t′′. Suppose also that i < j so that
by (Pσ) and (Pσε) for (σλ)

(λai.s
′)[bj 7→t′]⇐= (λai.s)[bj 7→t] =⇒ λai.(s

′′[bj 7→t′′]).

By inductive hypothesis there are s′′′ and t′′′ such that

s′ =⇒ s′′′ ⇐= s′′ and t′ =⇒ t′′′ ⇐= t′′.

Using (Pσε) for (σλ) and (Pσ)

(λai.s
′)[bj 7→t′] =⇒ λai.(s

′′′[bj 7→t′′′])⇐= λai.(s
′′[bj 7→t′′]).

• The case of (Pσε) for (σλ) and (Pσ) is similar.

• (Pσ) and (Pσε) for (σλ′).

Suppose s =⇒ s′ and u =⇒ u′ and also s =⇒ s′′ and u =⇒ u′′. Suppose also that (renaming
ai where necessary) ai#fv(u′′) so that by (Pσ) and (Pσε) for (σλ′)

(λai.s
′)[ci 7→u′]⇐= (λai.s)[ci 7→u] =⇒ λai.(s

′′[ci 7→u′′]).

By inductive hypothesis there are s′′′ and u′′′ such that

s′ =⇒ s′′′ ⇐= s′′ and u′ =⇒ u′′′ ⇐= u′′.

By Corollary 4.12 ai#u′′′. Using (Pσε) for (σλ′) and (Pσ)

(λai.s
′)[ci 7→u′] =⇒ λai.(s

′′′[ci 7→u′′′])⇐= λai.(s
′′[ci 7→u′′]).

• (Pλ) with (Pλ).

Suppose s′ ⇐= s =⇒ s′′ so that λai.s′ ⇐= λai.s =⇒ λai.s
′′. By inductive hypothesis there

is some s′′′ such that s′ =⇒ s′′′ ⇐= s′′. By (Pλ) also

λai.s
′ =⇒ λai.s

′′′ ⇐= λai.s
′′.

Other cases are similar and no harder. 2

Theorem 4.14.
(beta)
 is confluent.

Proof. By Lemma 4.10 and Lemma 4.10 and a standard argument [3]. 2
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4.3. Combining (sigma) and (beta)

Lemma 4.15. If s =⇒ s′ and s
(sigma)
 s′′ then there is some s′′′ such that s′

(sigma)

 ∗ s′′′ and s′′ =⇒ s′′′.

Proof. We work by induction on the derivation of s =⇒ s′. For brevity we merely indicate the
non-trivial parts.

We always assume that s =⇒ s′, t =⇒ t′, and u =⇒ u′, where appropriate.

• (β) has a divergence with (σp) in the case that i < j and level(s, t, u) ≤ j:

((λai.s)t)[bj 7→u] =⇒ s′[ai 7→t′][bj 7→u′]

((λai.s)t)[bj 7→u]
(σp)
 (λai.s)[bj 7→u](t[bj 7→u])

This can be closed by:

s′[ai 7→t′][bj 7→u′]
(σσ)
 s′[bj 7→u′][ai 7→t′[bj 7→u′]]

(λai.s)[bj 7→u](t[bj 7→u]) =⇒ s′[bj 7→u′][ai 7→t′[bj 7→u′]]

• (β) has a divergence with (σp) in the case that i = j and level(s, t, u) ≤ i:

((λai.s)t)[bi 7→u] =⇒ s′[ai 7→t′][bi 7→u′]

((λai.s)t)[bi 7→u]
(σp)
 (λai.s)[bi 7→u](t[bi 7→u])

We suppose, renaming ai if necessary, that ai#u.

By Corollary 4.12 level(s′, t′, u′) ≤ i. By Lemma 3.6 and Theorem 3.16,

s′[ai 7→t′][bi 7→u′]
(sigma)

 ∗ (s′)∗[ai:=t
′][bi:=u

′]

and by Theorem 3.12 this is equal to (s′)∗[bi:=u
′][ai:=t

′[bi:=u
′]].

On the other hand (also using Lemma 3.6 and Theorem 3.16):

(λai.s)[bi 7→u](t[bi 7→u]) =⇒ s′[bi 7→u′][ai 7→t′[bi 7→u′]]
(sigma)

 ∗ (s′)∗[bi:=u
′][ai:=t

′[bi:=u
′]]

which closes the divergence above.

• (σσ) has a divergence with (σλ). Suppose that k < i < j:

(λck.s)[ai 7→t][bj 7→u] =⇒ (λck.(s
′[ai 7→t′]))[bj 7→u′]

(λck.s)[ai 7→t][bj 7→u]
(σσ)
 (λck.s)[bj 7→u][ai 7→t[bj 7→u]]

This can be closed by:

λck.(s
′[ai 7→t′])[bj 7→u′]

(σλ)
 λck.(s

′[ai 7→t′][bj 7→u′])
(σσ)
 λck.(s

′[bj 7→u′][ai 7→t′[bj 7→u′]])
(λck.s)[bj 7→u][ai 7→t[bj 7→u]] =⇒ λck.(s

′[bj 7→u′][ai 7→t′[bj 7→u′]])
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• (σσ) has a divergence with (σλ′). Suppose that i < j and (renaming ci where possible)
ci#fv(t):

(λci.s)[ai 7→t][bj 7→u] =⇒ (λci.(s
′[ai 7→t′]))[bj 7→u′]

(λci.s)[ai 7→t][bj 7→u]
(σσ)
 (λci.s)[bj 7→u][ai 7→t[bj 7→u]]

We know that bj#fv(t) because ci#fv(t) and i < j. We then deduce bj#fv(t′) using Corol-
lary 4.12. We use this to justify the =⇒-rewrite which uses (σfv) in a moment.

This can be closed by:

λci.(s
′[ai 7→t′])[bj 7→u′]

(σλ′)
 λci.(s

′[ai 7→t′][bj 7→u′])
(σσ)
 λci.(s

′[bj 7→u′][ai 7→t′[bj 7→u′]])
(σfv)
 λci.(s

′[bj 7→u′][ai 7→t′])
(λci.s)[bj 7→u][ai 7→t[bj 7→u]] =⇒ λci.(s[bj 7→u][ai 7→t])

2

Remark 4.16. We promised to explain why (sigma)∩(beta) 6= ∅. We can now do so by reference
to the details of the proof of Lemma 4.15.

• (σλ) ∈ (beta) and (σλ′) ∈ (beta) because otherwise the two cases of (σp) and (β) above
would not work.

• (σfv) ∈ (beta) because otherwise the case of (σσ) with (σλ′) would not work.

We can easily generalise this lemma to several σ-steps:

Lemma 4.17. If s =⇒ s′ and s
(sigma)

 ∗ s′′ then there is some s′′′ such that s′
(sigma)

 ∗ s′′′ and s′′ =⇒ s′′′.

Proof. We work by induction on the length of the path s
(sigma)

 ∗ s′′. The case of the empty path

is trivial. Otherwise we have s
(sigma)

 ∗ t
(sigma)
 s′′ and the induction hypothesis provides t′ such

that s′
(sigma)

 ∗ t′ and t =⇒ t′. Lemma 4.15 then provides s′′′ such that t′  ∗ s′′′ and s′′ =⇒ s′′′. 2

We now generalise this lemma even further:

Lemma 4.18. If s =⇒ s′ (respectively s
(sigma)

 ∗ s′) and s  ∗ s′′, then there is some s′′′ such that

s′  ∗ s′′′ and s′′ =⇒ s′′′ (respectively s
(sigma)

 ∗ s′).

Proof. Again, we work by induction on the length of the path s  ∗ s′′. The case of the empty

path is trivial. Otherwise we have s  ∗ t
(sigma)
 s′′ or s  ∗ t

(β)
 s′′. In both cases, the induction

hypothesis provides t′ such that s′  ∗ t′ and t =⇒ t′ (respectively s
(sigma)

 ∗ s′). In the former
case, Lemma 4.15 (respectively Theorem 4.8) provides s′′′ such that t′  ∗ s′′′ and s′′ =⇒ s′′′

(respectively s′′
(sigma)

 ∗ s′′′). In the latter case, Lemma 4.13 (respectively Lemma 4.17) provides

s′′′ such that t′  ∗ s′′′ and s′′ =⇒ s′′′ (respectively s′′
(sigma)

 ∗ s′′′). 2

We can now prove Theorem 4.1:
Proof. Suppose that s  ∗ t and s  ∗ t′. We prove that there exists s′ such that t  ∗ s′ and

t′  ∗ s′, by induction on the length of the reduction path s  ∗ t. In the case of the empty path,
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t = s  ∗ t′. Otherwise, we have either s  ∗ s′′
(sigma)
 t or s  ∗ s′′

(beta)
 t. In both cases, the

induction hypothesis provides t′′ such that s′′  ∗ t′′ and t′  ∗ t′′, and then Lemma 4.18 provides

s′′′ such that t  ∗ s′′′, and t′′ =⇒ s′′′ or t′′
(sigma)

 ∗ s′′′, and in both cases we have t′′  ∗ s′′′ as
required. 2

5. The untyped lambda-calculus

We show how to translate the untyped λ-calculus into the LamCC.
For convenience, we identify the variables of level 1 in the LamCC as the variables used in

λ-calculus; when we translate the λ-calculus into the LamCC, we will use this identification.
Terms of the untyped λ-calculus are given by

e ::= x | ee | λx.e.

λ binds x in λx.e. This is standard [3].
We define a free variables of fv(t) function in the usual way:

fv(x) = {x} fv(ee′) = fv(e) ∪ fv(e′) fv(λx.e) = fv(e) \ {x}.

Call e open when there exists some x such that x ∈ fv(e).
Define a capture-avoiding substitution action inductively by:

x[x:=e] = x y[x:=e] = y (e1e2)[x:=e] = (e1[x:=e])(e2[x:=e])

(λx′.e′)[x:=e] = λx′.(e′[x:=e]) (x′ 6∈ fv(e))

Here we may assume x′ does not occur in e because we have equated syntax up to binding by λ.
Define a reduction relation inductively by:

(λx.e)e′ → e[x:=e′]

e1 → e′1 e2 → e′2

e1e2 → e′1e
′
2

e→ e′

λx.e→ λx.e′

We call e a normal form or value when there is no e′ such that e → e′. Note that normal forms
may be open.

A translation into the LamCC is given by:

[[x ]] = x [[ ee′ ]] = [[ e ]] [[ e′ ]] [[λx.e ]] = λx.[[ e ]]

The following results are very easy to prove:

Lemma 5.1. fv(e) = fv([[ e ]] ).

Proof. We consider the clauses of the definition of fv above, and of the definition of fv from
Figure 2, and we see that they coincide in the special case that only variables of level 1 appear. 2

Lemma 5.2. [[ e[x:=e′] ]] = [[ e ]] [x:=[[ e′ ]] ].

Proof. We work by induction on the structure of e.

• [[x[x:=e′] ]] = [[ e′ ]] = x[x:=[[ e′ ]] ].

• [[ (e1e2)[x:=e′] ]] = [[ e1[x:=e′](e2[x:=e′]) ]]

= [[ e1[x:=e′] ]] [[ e2[x:=e′ ]] ])

ind.hyp.
= [[ e1 ]] [x:=[[ e′ ]] ]([[ e2 ]] [x:=[[ e′ ]] ])

= ([[ e1 ]] [[ e2 ]] )[x:=[[ e′ ]] ]

= [[ e1e2 ]] [x:=[[ e′ ]] ].
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• [[ (λy.e)[x:=e′] ]] = [[λy.(e[x:=e′]) ]]

= λy.[[ e[x:=e′] ]]

= λy.([[ e ]] [x:=[[ e′ ]] ])

= (λy.[[ e ]] )[x:=[[ e′ ]] ]

Lemma 5.1
= [[λy.e ]] [x:=[[ e′ ]] ].

Here we assume that y 6∈ fv(e′).

2

Theorem 5.3. If e→ e′ then [[ e ]]  ∗ [[ e′ ]] .

Proof. We work by induction on the derivation of e→ e′.

• The case (β). Then (λx.e)e′ → e[x:=e′], where (renaming x if necessary) we choose
x 6∈ fv(e′).

[[ (λx.e)e′ ]] = (λx.[[ e ]] )[[ e′ ]]

 [[ e ]] [x 7→[[ e′ ]] ]

Lemma 3.6
 ∗ [[ e ]] [x:=[[ e′ ]] ].

Lemma 5.2
= [[ e[x:=e′] ]] .

The other cases are easy. 2

Write e 6→when there is no e′ such that e→ e′. If e 6→ call e a normal form.

Lemma 5.4 (Preservation of normal forms). If e is a normal form then [[ e ]] is a normal form.
As a corollary, if e is any untyped λ-term, then if e has a normal form then so does [[ e ]] .

Proof. The corollary follows by Theorem 5.3.
It is a fact [3] that the normal forms of the untyped λ-calculus are inductively characterised

(as a subset of the set of terms of the untyped λ-calculus) by:

V ::= x | xV . . . V | λx.V.

The proof is by induction on V .

• [[x ]] = x and we check the reduction rules of the LamCC and observe that x is a normal
form.

• [[xV1 . . . Vn ]] = x[[V1 ]] . . . [[Vn ]] . We check the reduction rules of the LamCC and observe that
if [[V1 ]] , . . . , [[Vn ]] are normal forms, then so is x[[V1 ]] . . . [[Vn ]] .

• [[λx.V ]] = λx.[[V ]] . By assumption [[V ]] is a normal form. We check the reduction rules of the
LamCC and observe that if [[V ]] is a normal form then so is λx.[[V ]] .

2

The encoding of and the results in this section can be factored through the explicit substitution
calculus λx with garbage collection [5], to which LamCC is isomorphic when only variables of
level 1 are considered. From this we obtain the following theorem for free:

Theorem 5.5 (Preservation of strong normalisation). If e is λ-term that is strongly normalising for
β-reduction, then [[ e ]] is strongly normalising in LamCC.

Proof. Since level([[ e ]] ) = 1, the reductions to which [[ e ]] is subject are precisely those of λx with
garbage collection, for which the theorem holds [5]. 2
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6. Contexts and contextual equivalence

In this section we consider contextual equivalence of the LamCC. The hierarchy of variables
in LamCC allows us to internalise capturing substitution, and one consequence of this is that we
can express contexts as terms, and internalise context-closed equivalences (i.e congruences) as
described in Theorem 6.2.

Recall that an equivalence relation is a transitive symmetric reflexive relation, and recall from
Definition 2.4 that a congruence is an equivalence relation between terms that is closed under the
rules of Figure 3.

Definition 6.1. Write s ↔ t for the least equivalence relation containing  (the transitive reflexive
symmetric closure of ).

Theorem 6.2. Suppose X is an equivalence relation containing↔.
Then X is a congruence if and only if ∀s, t.s X t⇒ ∀C.C s X C t.

Proof. The only if part is straightforward; the desired property is one of the rules defining the no-
tion of congruence. For the if part we have to show thatX is closed under the rules of congruence:

• Suppose s X s′, then by assumption (λdi+1.λai.di+1) s X (λdi+1.λai.di+1) s′. Since↔⊆ X ,
we have λai.s X λai.s

′.

• Suppose s X t and s′ X t′ and let i = level(s, s′, t, t′);
then by assumption (λdi+1.di+1 d

′
i+1) s X (λdi+1.di+1 d

′
i+1) t

and thus (λd′i+1.(λdi+1.di+1 d
′
i+1) s) s′ X (λd′i+1.(λdi+1.di+1 d

′
i+1) t) t′.

Since↔⊆ X , we have s s′ X t t′.

• The case for s[ai 7→s′] X t[ai 7→t′] is similar, combining the arguments of the two cases above.

• The cases for reflexivity, transitivity, and symmetry are given by the fact that X is an equiv-
alence relation.

Hence X is a congruence. 2

Now we apply Theorem 6.2 to a particular congruence:

Definition 6.3. Let > = λx.x (we could also take > to be a new constant such that > 6 ). Write s↘
when s ∗ >.

Define contextual equivalence =ctx as the greatest congruence such that

∀s, t.(s X t ∧ s↘)⇒ t↘

We can characterise =ctx as follows:

Theorem 6.4. =ctx is the greatest equivalence relation X such that

∀s, t.s X t⇒ ∀C.C s X C t and ∀s, t.(s X t ∧ s↘)⇒ t↘.

Proof. We show that X ⊆=ctx. It suffices to check that X is a congruence. This follows by
Theorem 6.2 if we show that↔⊆ X . To do this, we need only show that

∀s, t.s↔ t⇒ ∀C.C s↔ C t and ∀s, t.(s↔ t ∧ s↘)⇒ t↘.

This follows from confluence (Theorem 4.1).
We show that =ctx⊆ X . It suffices to show that =ctx is an equivalence relation and

∀s, t.s =ctx t⇒ ∀C.C s =ctx C t and ∀s, t.(s =ctx t ∧ s↘)⇒ t↘.

This is easy from the definitions. 2

The applicative characterisation of contextual equivalence between closed terms only as fol-
lows

∀s, t.s P t⇒ ∀u.su P tu
requires the development of too many technicalities for this paper introducing the LamCC.
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( Np) ( Nai.s)t Nai.(st) ai 6∈ fv(t)
( Nσ) ( Nck.s)[ai 7→t] Nck.(s[ai 7→t]) k ≤ i, ck 6∈ fv(t)
( N6∈) Nai.s s ai 6∈ fv(s)

s s′

(R N)
Nai.s Nai.s′

Figure 9: New clauses

7. A NEW part for the LamCC

7.1. Some NEW rules
LamCC λ-abstraction is weak in the sense that for example x is not α-convertible in λx.X , if

x has level 1 and X has level 2.
In the presence of only one level of variable this difference between binding and abstraction is

invisible. The LamCC of Definition 2.2 has abstraction, but it does not have binding. To recover
it we introduce a dedicated binder Ninto the syntax, with appropriate reduction rules as follows:

Definition 7.1. Extend the syntax of the LamCC (Definition 2.2):

s, t ::= . . . | Nai.t.

Extend the definition of level and fv (Definition 2.3) with the clauses

level( Nai.s) = max(i, level(s)) fv( Nai.s) = fv(s) \ {ai}.

Extend the definition of congruence (Definition 2.4) with a clause

s R s′

Nai.s R Nai.s′
.

Extend the definition of swapping (Definition 2.5 ) with a clause

(ai bi) Nc.s = N(ai bi)c.(ai bi)s

where c is any atom.
Extend the definition of α-equivalence (Definition 2.8) with a clause

Nai.s =α Nbi.(bi ai)s if bi 6∈ fv(s).

Note the difference that in α-equivalence for λ-abstraction we check bi#fv(s) (Definition 2.7), and
in α-equivalence for N-binding we check bi 6∈ fv(s).

Variables bound by Nrename regardless of whether stronger variables are present. Take x
and y to be variables of level 1, and X and Y to be variables of level 2. Here are some example
α-(non-)equivalences:

λx.(Xx) 6=α λy.(Xy) but Nx.λx.(Xx) =α Ny.λy.(Xy)

and Nx.(Xx) =α Ny.(Xy).

Definition 7.2. Extend the reduction rules (Definition 2.12) with the clauses in Figure 9.
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Here is an example reduction which exploits N:

(λX. Nx.λx.X)x
(β)
 ( Nx.λx.X)[X 7→x]

( Nσ)
 Nx′.((λx′.X)[X 7→x])

( Nλ)
 Nx′.λx′.(X[X 7→x])

( Na)
 Nx′.λx′.x

Compare with a pair of related rewrites in the syntax without N:

(λX.λx.X)x ∗ λx.x (λX.λy.X)x ∗ λy.x

So Nbinds, and this is separated from the functional abstraction, which is managed using λ.
LamCC syntax permits Nalso not directly above λ, for example in Nx.x. This behaves like a

constant symbol, and indeed
fv( Nx.x) = ∅

— note however that level information is preserved; level( Nai.ai) = i. The Nwhich binds x
ensures that x cannot be substituted for:

( Nx.x)[x 7→t] ( Nσ)
 Nx′.(x′[x 7→t]) (σfv)

 Nx′.x′ =α Nx.x.

(Recall that we take terms up to α-equivalence when discussing reductions.) See Subsection 7.3
for an example which makes non-trivial use of Nindependently of λ.

Remark 7.3. Choosing the symbol ‘ N’ and calling it ‘new’, is an obvious quote of the Gabbay-
Pitts Nquantifier [21]. The Nbinder here is not the Nquantifier. Firstly, it is not a logical con-
nective (we are in a λ-calculus!). Secondly, it does not just generate a fresh name (as does the

N-quantifier) — the Nof this paper generates a fresh variable. To see the distinction observe that
in Nx.(x[x7→2]) the variable x is substituted for 2 — we can also write Nx.(λx.x)2; its LamCC
reduction passes through Nx.(x[x 7→2]).

Therefore any denotational semantics for the entity ‘x’ that is generated by ‘ Nx’ in the LamCC
must be an entity which can be λ-abstracted and substituted for. This behaviour is not displayed
by the atoms generated by the N-quantifier introduced in [21].

This extension of Nbeyond logic and beyond binding names, is part of a broader programme
by the first author to enrich ‘nominal techniques’ from a basket of techniques for manipulating
syntax-with-binding (of which the Nquantifier is a part), in the direction of a general strategy for
coping with other name-like entities in computer science. The multiple levels of variable in the
LamCC and its operational semantics, including the Nbinder, are part of this thinking.

Remark 7.4. The behaviour of Nis comparable with some of the behaviour of ∀ in logic. If we
read st and s[ai 7→t] as ‘t⇒ s’, and s t as ‘t entails s’ then rules ( Np) and ( Nσ) look structurally
like

∀x.(φ⇒ ψ) entails φ⇒ ∀x.ψ if x 6∈ fv(φ),

and ( N6∈) looks structurally like

φ entails ∀x.φ if x 6∈ fv(φ).

This similarity comes from the fact that those properties of ∀ necessary to prove the entailments
above in first-order logic (everything to do with right-introduction) are precisely those properties
of ∀ that stem from the way its sequent right introduction rule introduces a fresh variable on the
right [4]. Refining this observation a more formal mathematical result, if any, is for future work.
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7.2. Some false NEW rules
We do not admit a rule

( NpFALSE) s( Na.t) Na.(st) a 6∈ fv(s).

With ( NpFALSE) we can reduce as follows:

(λx.xx) Ny.y
( NpFALSE)
 Ny.(λx.xx)y

(β),(σp),(σa),(σa)

 ∗ Ny.yy

(λx.xx) Ny.y
(β),(σp),(σa),(σa)

 ∗ ( Ny.y) Ny′.y′
( Np),( NpFALSE)

 ∗ Ny. Ny′.(yy′).

It is a fact that these terms are normal forms and they are not equal.
We can have an intuition of Nas ‘generating a fresh variable’. Then ( NpFALSE) (with the

other rules of the LamCC) lets us make a non-confluent choice of whether to generate a name,
then copy, or copy and then generate.

For similar reasons we do not admit ( NσFALSE):

( NσFALSE) s[b7→ Na.t] Na.(s[b7→t]) a 6∈ fv(s).

Why the side-conditions on ( Nσ)? Clearly the condition ck 6∈ fv(t) comes from the intuition
of Nas defining a scope. We insist on k ≤ i to guarantee confluence:

( NX.x)[x 7→2]
(σfv)
 NX.x
( N6∈)
 x

( NX.x)[x 7→2]
( NσFALSE)
 NX.(x[x 7→2])
(σa)
 2.

Proofs extend smoothly to the calculus extended with rules for N, including confluence and
termination of (sigma) extended with the rules for N.

7.3. Global state using NEW
Consider an untyped λ-calculus with general references.

Definition 7.5. Terms are generated by the grammar

e ::= x |!l | l := e | Nl.e | skip | ee | λx.e.

Here l is drawn from a set of location variables and x from a set of program variables. We read
through informal intended meanings of !l, l := e, and Nl.e:

• !l means ‘the value which the global state associates to l’.

• l := e means ‘set l to e in the global state’.

• Nl.e means ‘allocate a fresh local location (with some unspecified or default value associ-
ated) and evaluate e in the extended state’.

The rest is standard as for the untyped λ-calculus.
This calculus is based on others in the literature, for example L [1, Fig. 1 and Fig. 2] and ReFS

[35, Fig. 1 and Fig. 4]. The focus of study for L is a fully abstract game semantics; that of ReFS
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is how to prove contextual equivalences between programs. Both L and ReFS are typed. For
brevity we have considered an untyped calculus.

[1] contains a construction of the Y combinator using general references in a typed system,
thus obtaining the power of recursion. Therefore the absence of types does not make the calcu-
lus above obviously more powerful than L, though it is more powerful than ReFS, which has
recursion but integer-only references.

We encode this in the LamCC as follows: Fix a level 2 variable W ‘the state’ and a level 1
variable r ‘the result’. Equate location variables l and λ-variables x in the syntax of Definition 7.5
with disjoint classes of level 1 variables, which do not include r. Consistent with the final example
from Subsection 2.5 (records) we write

t.l for t[W 7→l] and t.l := s for t[W 7→W[l 7→s]].

Then we define a translation to the LamCC as follows:

[[x ]] = λW.W.r := x ‘Bind r to x’
[[ !l ]] = λW.W.r := W.l ‘Bind r to dereference l’

[[ l := e ]] = λW.(W.l := e).r := > ‘Bind l to e, bind r to >’
[[ skip ]] = λW.W.r := > ‘Bind r to > (no-op)’
[[λx.e ]] = λW. Nx.λx.([[ e ]]Wx) ‘Input x, run e applied to x’

[[ ee′ ]] = λW.[[ e ]] ([[ e′ ]] ([[ e′ ]]W)(W.r)) ‘Run e′, run e in updated state
applied to result of e′’

[[ Nl.e ]] = λW. Nl.([[ e ]] (W.l := >)) ‘Create new reference l,
run e in updated state’

[[ e ]] is a ‘state transformer’, that is, a function which transforms states into other states. By con-
vention the results of computations are placed in r. It is not hard to verify that the definitions,
along with the reductions of the LamCC, simulate the reductions we expect of a language with
references and in particular those from [1].

The example of Nl.e illustrates a Nquantifier used independently of λ-abstraction, to generate
a fresh variable without functionally abstracting it.

Here is a program which ‘encapsulates’ [[ e ]] ; it creates a global state, runs e in that state, throws
away the state and returns the final result:

NW.([[ e ]]W).r

Note that λW.([[ e ]]W.r) does not give the desired behaviour and is incorrect (the abstraction
we need is not a functional abstraction). The ideas behind this program find expression in the
monadic style of programming with global state described for example in [28] (see for example
runST in [28, Subsection 2.4]) which uses ideas going back to [33].

We conclude this subsection with two detailed remarks about N, λ, and binding:

Remark 7.6. Nadds expressivity. When in λai.t levels of variables in t are low enough with
respect to the level of the abstracted variable λai, the λ-abstractor integrates binding behaviour;
see Definition 2.8. Thus the binding behaviour of λ coincides with the ‘usual’ binding behaviour
in the λ-calculus as mentioned in Section 5, and with the binding behaviour of Nas described in
Definition 7.1.

In other words, if the variables mentioned in t are not too strong, then Na.λa.t has the same
behaviour as λa.t.

In the case of λa.X and Na.λa.X where X is stronger than a, this ceases to be the case and the
notions of abstraction and name-binding part company to become discernably distinct elements
of the language’s structure.

In order to emulate references we need to be in the latter case, i.e. we need to use strong (level
2, in our examples) variables — even though the source language only has one level of variable
(level 1, in our examples).
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It is future work to consider non-operational semantics for the LamCC, which might throw
further light on this distinction. A denotational semantics would be very useful here and is
currently lacking.

Remark 7.7. In presence of NTheorem 6.2 no longer holds. The context Nx.[ ] cannot be rep-
resented in LamCC syntax and reductions by application of the form C [ ]. This is because, by
design, Nforbids the capture of the variable that it binds regardless of the strength of other vari-
ables.

We can recover Theorem 6.2 without defeating the purpose of introducing N, and without
even going to too much effort. Perhaps the simplest way is to consider a transfinite hierarchy of
variables. For example, we can take levels to be 1, 2, 3, . . . , ω where ω is the first infinite ordinal.
We let Navoid capture only by variables that are not transfinitely stronger. According to this
paradigm, substitution for bj in Nai.bj avoids capture of ai if i and j are finite (even if j > i),
but it does not avoid capture if i is finite and j = ω. This is an easy extension of the LamCC.
Indeed, there are other ways to order our levels of variable, and the basic ideas on which LamCC
reductions are based seem quite robust and amenable to extension. We discuss this further in
Subsection 8.1.

8. Design variations

As is very often the case, design decisions have been made which could plausibly have been
made differently. We sketch some of them now.

8.1. Different schemes of levels
We briefly explore to what extent the LamCC depends on it having levels 1, 2, 3, . . . (instead

of some other ordered set of levels). This continues an issue touched on in Remark 7.7.
Recall from Definition 2.1 that Ai is the set of variables of level i.

Definition 8.1. Let f be an injective order-preserving map from numbers 1, 2, 3, . . . to numbers (so
f(i) = f(j) implies i = j, and i ≤ j implies f(i) ≤ f(j)).

For each pair of distinct numbers i and j make a fixed but arbitrary choice of bijection ιij between Ai
and Aj . By convention, if ai ∈ Ai then we shall write ιij(ai) as aj .

Define tf inductively by:

(ai)
f = af(i) (t′t)f = (t′)f tf (λai.t)

f = λaf(i).t
f

(u[ai 7→t])f = uf [af(i) 7→tf ] ( Nai.t)f = Naf(i).tf

Technically we should show that tf is well-defined on α-equivalence classes, but it is.

Lemma 8.2. Suppose f is an injective order-preserving map from numbers to numbers. Then:

• level(tf ) = f(level(t)).

• ai#fv(t) if and only if af(i)#fv(tf ).

Proof. By routine inductions using the definitions of level(t) and fv(t) in Figures 1 and 2. We
consider only the two very slightly non-trivial cases:

• The case of bj where j ≤ i. level((bj)
f ) = level(bf(j)). The first part follows.

fv((bj)
f ) = {bf(j)}. Also f(j) ≤ f(i). By injectivity, we know that af(i) and bf(j) are

distinct variables, because ai and bj are distinct variables. It is then a fact that ai#fv(bj)
and af(i)#fv(bf(i)).
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• The case of bj where i < j. level((bj)
f ) = level(bf(j)). The first part follows.

fv((bj)
f ) = {bf(j)}. Also f(i) < f(j). It is a fact that ai#fv(bj) is false, and af(i)#fv(bf(i)) is

false.

2

Theorem 8.3. s t if and only if sf  tf .

Proof. By a routine induction on derivations, using Lemma 8.2 to verify that no side-conditions
change validity under the translation. 2

Theorem 8.3 gives a formal sense in which the precise scheme of levels does not matter, so
long as it is a total order and we have ‘enough levels’. In this paper we have taken 1, 2, 3, . . ., but
other total orders would do as well. Considering orders that are not total is future work.

8.2. LamCC with only one binder
The LamCC has three binders; Nwhich always binds, λ which binds only if there are no

stronger variables in scope, and the explicit substitution which also binds only if there are no
stronger variables in scope. For example, if x and y have level 1 and X has level 2, then in the
LamCC we have that

• Nx.x =α Ny.y and Nx.X =α Ny.X , and

• λx.x =α λy.y and λx.X 6=α λy.X .

• x[x 7→y] =α y[y 7→y] and X[x 7→y] 6=α X[y 7→y].

We can consider a variant LamCC′, identical to the LamCC except that it has a less sophisti-
cated functional abstraction λ′x.t which never binds, replacing the λ which sometimes does, and
similarly an explicit substitution u[ai 7→t]′ which never binds, so that

• Nx.x =α Ny.y and Nx.X =α Ny.X , and

• λ′x.x 6=α λ
′y.y and λ′x.X 6=α λ

′y.X .

• x[x 7→y]′ 6=α y[y 7→y]′ and X[x 7→y]′ 6=α X[y 7→y]′.

That is, there is only one binder in LamCC′, and that is N.
We can then translate LamCC into LamCC′ such that:

• λai.t translates to Nai.λ′ai.t, if fv(t) contains no variables of level greater than i, and

• λai.t translates to λ′ai.t, if fv(t) contains a variable of level greater than i.

• u[ai 7→t] translates to Nai.u[ai 7→t]′, if fv(u) contains no variables of level greater than i and
(renaming if necessary) ai 6∈ fv(t), and

• u[ai 7→t] translates to u[ai 7→t]′, if fv(u) contains a variable of level greater than i.

The definitions and basic properties of LamCC reductions transfer smoothly to LamCC′, as does
the proof of confluence.

A notable difference is that in the LamCC′, ‘ordinary’ terms (only one level of variable, no N)
can fail to reduce simply because an α-conversion cannot take place. For example (λ′y.(λ′x.y))x
will not reduce to λ′z.x (in the LamCC it will, because λ binds in (λy.(λx.y))x). Accordingly, the
translation of the untyped λ-calculus described in Section 5 must be changed, so that

[[λx.e ]] = Nx.λ′x.[[ e ]] .

It is a fact that Theorem 5.5 is still true, but we must prove it from scratch; we cannot so directly
exploit the work in [5].
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For these reasons we have allowed λ to bind in the LamCC; it makes for an easier presenta-
tion and better properties. However, there is a good argument that LamCC′ is the more primitive
underlying system, because the LamCC can be translated into it, and LamCC′, unlike LamCC,
more clearly separates functional abstraction and name-binding. The first author made this de-
sign choice in the NEWcc [11], which is previous related work; see the Conclusions.

For the purposes of this paper, we use the LamCC. In further work, LamCC′ may be the more
convenient system, because there would be no need to case-split in proofs on whether functional
abstraction λ and explicit substitution bind, or not — and binding becomes just another term-
former, like functional abstraction or application, which is explicitly marked in the syntax by a

N, and there is no need to examine inside a term to check whether variables are strong or weak
in order to decide whether a variable is bound or not.

8.3. LamCC with nominal terms style alpha-equivalence
We briefly mention one more design variant of the LamCC. In this paper we cannot α-convert

x in λx.X . Nominal terms can: swappings are in the syntax (here swappings are purely a meta-
level) and also freshness contexts [45].

In separate work [20] based partly on experience from this paper, the first author with Mulli-
gan considers a two-level λ-calculus with a full nominal terms theory of α-equivalence. We call
the calculus of [20] ‘two level λ-calculus’, because it has two levels of variable, versus the infinite
hierarchy of the LamCC, but the two level λ-calculus has a far stronger theory of α-equivalence;
in the two level λ-calculus, it is possible to α-convert x in λx.X to λy.(y x) ·X (this is in nominal
terms style, following [45, 10]).

In [20] swappings only exist for level 1 variables. We can envisage a calculus with the nomi-
nal terms theory of α-equivalence from [20], and the infinite hierarchy of variables of the LamCC.
What blocks us from doing so, as much as anything else, is that we do not yet understand the the-
ory of swappings for stronger variables (what we might write as ‘(X Y )’), or how swappings of
different levels interact. We also do not yet fully understand how freshness contexts [45] interact
with evaluations.

For the moment what we can say is that — so it seems to us — the LamCC strikes a sweet spot
between complexity versus simplicity, and expressiveness versus good mathematical properties.
However, the LamCC exists in a space of related λ-calculi, which remain to be properly explored.

9. Related work, conclusions, and future work

Related work (using nominal techniques)
In a previous conference paper we presented the NEW calculus of contexts [11]. The LamCC

of this journal paper updates and improves that that work. The LamCC is simpler than the
NEWcc. Compare the side-condition of (σa) (there is none) with that of (σa) from [11]. The
notion of freshness is simpler and intuitive; we no longer require a logic of freshness, or the
‘freshness context with sufficient freshnesses’, see most of page 4 in [11]. A key innovation in
attaining this simplicity is our use of conditions involving level(s) the level of s, which includes
information about the levels of free and bound variables, and the condition on rule (σp).

In the LamCC we permit α-conversion of an abstracted variable if no stronger variables are in
the scope of the abstraction. In the NEWcc we did not do this. For example, if x and y have level 1
then λx.x and λy.y are equated in the LamCC, but not in the NEWcc. (If X has level 2, then λx.X
and λy.Y are not equated in either system.) When we designed the NEWcc we wanted to make a
point, by letting functional abstraction be managed exclusively by λ, and letting variable symbol
name binding be managed exclusively by N. As discussed in Subsection 8.2, we could have done
the same in the LamCC and this would have caused no essential difficulties — indeed, things
would become simpler, because there would be exactly one binder to consider, N. The advantage
of setting things up as in this paper is just for usability, relative to what the reader is likely to
expect; if there is only one level of variable in a term then λ-abstraction is ‘normal’ and binds.
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The LamCC does have fewer reductions than the NewCC in the sense that (σλ′) will not
reduce (λai.s)[ck 7→u] where k < i whereas a rule (σλ) in [11] does.5 The stronger version of
the rule turns out to be a major source of extra complexity, and we seem not to miss the extra
reductions; empirically, we observe that the reductions that we need in order to express our
examples and case studies, including those inherited from [11], are unaffected.

Still, it seems clear that we are approximating something larger. Other papers on nominal
techniques have useful elements which we can import, now that we have a solid basis to work
from. For example:

• As discussed in Subsection 8.3, we cannot α-convert x in λx.X . Nominal terms can: swap-
pings are in the syntax (here swappings are purely a meta-level) and also freshness contexts
[45]. A problem is that we do not yet understand the theory of swappings for strong vari-
ables; the underlying Fraenkel-Mostowski sets model [21] only has (in the terminology of
this paper) one level of variable. A semantic model of the hierarchy of variables would be
useful and this is current work.

• In this paper we cannot deduce x#fv(λx.X) even though for every instance this does hold
(for example x#λx.x and x#λx.y). Hierarchical nominal rewriting [12] has a more power-
ful notion of freshness which can prove the equivalent of x#fv(λx.X). Note that hierarchi-
cal nominal rewriting does have the conditions on levels which we use to good effect in this
paper.

• We cannot reduce (λx.y)[y 7→Y ] because there is no z such that z#Y . We can allow programs
to dynamically generate fresh variables in the style of FreshML [36] or the style of a sequent
calculus for Nominal Logic by Cheney [7].

• Finally, we cannot reduce X[x 7→2][y 7→3] to X[y 7→3][x 7→2]. Other work [15, 17] gives an
equational system which can do this, and more.

Desirable meta-properties of the λ-calculus survive in the LamCC: the LamCC is confluent and,
although the LamCC is a calculus with an explicit substitution, the λ-calculus naturally translates
into it in a way which supports strong normalisation.

More related work (not using nominal techniques)
The calculi of contexts λm and λM [39] also have a hierarchy of variables. They use carefully-

crafted scoping conventions to manage problems with α-conversion. Other work [37, 24, 38] uses
a type system; connections with this work are unclear. λc of Bognar’s thesis contains [6, Section
2] an extensive literature survey on the topic of context calculi.

A separation of abstraction λ and binding Nappears in one other (unpublished) work we
know of [41], where they are called q and ν. In this vein there is [25], which manages scope
explicitly in a completely different way, just for the fun. Finally, the reduction rules of Nlook
remarkably similar to π-calculus restriction [32], and it is probably quite accurate to think of Nas
a ‘restriction in the λ-calculus’.

Hamana takes a semantic approach to meta-variables [23]. We have not developed the seman-
tic theory of the LamCC. We should do this in future work, and when we do we would expect to
arrive at something similar to Hamana’s construction. However we do not expect the semantics
to be identical; ours it will be phrased in terms of sets and permutation actions (in keeping with
the first author’s previous work [21]). These have slightly stronger, and in our opinion more
desirable, properties than the categories of presheaves which Hamana uses.

Ours is a calculus with explicit substitutions. See [30] for a survey. Our treatment of substi-
tution is simple but still quite subtle because of interactions with the rest of the language. The

5(σλ) in this paper corresponds with (σλ′) in [11] and (σλ′) in this paper corresponds with (σλ) in [11] — the rule
names have been switched. This maintains consistency, in this paper, with (σσ) which distributes a strong substitution
under a weaker substitution; now the rule called (σλ) also distributes a strong substitution, under a weaker λ-abstraction.
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translation of possibly open terms of the untyped λ-calculus into the LamCC preserves strong
normalisation. The reduction rule (σfv) is a little unusual amongst such calculi, though it ap-
pears as Bloo’s ‘garbage collection’ [5], but the reasons why we include it come naturally from
the hierarchy of variables.

The look and feel of the LamCC is squarely that of a λ-calculus with explicit substitutions.
All the real cleverness has been isolated in the side-condition of (σp); other side-conditions are
obvious given an intuition that strong variables can cause capturing substitution (in the NEWcc
[11] complexity spilled over into other rules and into a logic for freshness). Nis only necessary
when variables of different strengths occur, and the hierarchy of variables only plays a role to
trigger side-conditions.

Further work
We discussed above how to add off-the-shelf elements of nominal techniques, if we want to

give ourselves more reductions.
Another possibility is in the direction of logic, treating equality instead of reduction and im-

itating higher-order logic, which is based on the simply-typed λ-terms enriched with constants
such as ∀ : (o → o) → o and ⇒: o → o → o where o is a type of truth-values [47], along with
suitable equalities and/or derivation rules. It is easy to impose a simple type system on terms.
Thus, we see no problem with writing down a ‘context higher-order logic’. This takes the LamCC
in the direction of calculi of contexts for incomplete proofs [26, 22], and also in the direction of
giving semantics to existential variables in logic-programming (unpublished work by Lipton and
Mariño). The non-trivial work (in no particular order) is to investigate cut-elimination, develop a
suitable theory of models, and to check whether and how usefully the LamCC can be used as-is
to model incomplete proofs of some theorem-proving system.

One important element is the denotation semantics of the hierarchy of variables — we do not
yet have one; this is current work.

Certain specific ideas appear elsewhere in the literature which the LamCC cannot express, but
they might be accommodated with a relatively straightforward extension.

As discussed, the LamCC can express [ai 7→t] using the term λbj .(bj [ai 7→t]) where i < j and
level(t) ≤ j. However we cannot abstract over ai. For example consider λP.λX.λx.(X[x 7→P ])
and the reduction

(λP.λX.λx.X[x 7→P ])2xy  ∗ X[x 7→P ][P 7→2][X 7→x][x 7→y]
 X[x 7→2][X 7→x][x 7→y]

 ∗ x[x 7→2][x 7→y]

 ∗ 2.

This is not the intended operational behaviour (if we intended to abstract over the name of x and
replace it by y). Variables can be substituted for so it should not possible to pass a variable name
as a first-class value. An extension of the LamCC based on atom from [13] may be possible and
useful.

The LamCC cannot express ‘substitute all variables of level 1 for t in s’, which we might write
as s[? 7→t]. This idea appears in work by Dami [9] on dynamic binding. We do believe that the
LamCC could have something to contribute to dynamic binding and linking, since they seem to
have to do with capturing substitution, but that is future work.

Languages for staged computation, for example MetaML [34], Template Haskell [40], and
Converge [44], have a hierarchy (of stages) reminiscent of our hierarchy of levels. They offer a
program enough control of its own execution that it can suspend its own execution, compose
suspended programs into larger (suspended) programs, pass suspended programs as arguments
to functions, and evaluate them. This raises issues similar to those surrounding contexts. The
LamCC cannot model staged computation because it is a pure rewrite system with no control
of evaluation order. Even if we choose some evaluation order on the LamCC to make it into
a programming language, the deeper problem is that the LamCC has no first-class construct to
promote variables between levels. Adding this extension is interesting future work.
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In conclusion, the LamCC of this paper is expressive and yet it remains simple and quite clear,
and it has good properties. It seems to hit a technical sweet spot. Often in computer science the
trick is to find a useful balance between simplicity and expressivity. Perhaps the LamCC does
that.
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Paris VII, 2003. Extended Abstract, Prépublication PPS//03/11//n16.
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