
Leaving the Nest: Nominal techniques for
variables with interleaving scopes
Murdoch J. Gabbay1, Dan R. Ghica2, and Daniela Petrişan3

1 Heriot-Watt Univesity, UK
2 University of Birmingham, UK
3 Radboud University, Netherlands

Abstract
We examine the key syntactic and semantic aspects of a nominal framework allowing scopes of
name bindings to be arbitrarily interleaved. Name binding (e.g. λx.M) is handled by explicit
name-creation and name-destruction brackets (e.g. 〈xMx〉) which admit interleaving. We define
an appropriate notion of alpha-equivalence for such a language and study the syntactic structure
required for alpha-equivalence to be a congruence. We develop denotational and categorical se-
mantics for dynamic binding and provide a generalised nominal inductive reasoning principle. We
give several standard synthetic examples of working with dynamic sequences (e.g. substitution)
and we sketch some preliminary applications to game semantics.
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1 Introduction and motivation

In the syntax of formal languages it is common to see names created by locally-scoped
operators such as λa.(st) and ∀a.(φ⇒ψ). The binders λ and ∀ have scope from the left-hand
( to the matching right-hand ) and scope is determined at the site of binding in the structure
of the term. However, dynamically-scoped binding is an often encountered phenomena
occurring whenever resources are allocated and freed explicitly. The most common situation
is that of memory in C-like languages, but this also applies to other resources such as opening
and closing files or network sockets. In general, a physical resource will be handled using a
name which can be used by the program. The choice of name, between the allocation and the
release of the resource, is irrelevant, leading to notions similar to binding and α-equivalence,
but more finely grained, to account for possible scope interleaving.

Nominal techniques [15, 12, 24] provide a state-of-the-art formalism for reasoning about
abstract syntax with statically-scoped binding. However, existing techniques do not ac-
commodate syntax with dynamically-scoped binding. This paper addresses this issue by
introducing a syntactic notion of dynamic sequences and suitable denotational and categorical
models.

In dynamic sequences, scope is managed by name-creation and name-destruction brackets
‘create a’ and ‘destroy a’, written as 〈a and a〉, respectively. These may be interleaved and
need not match up; 〈a〈ba〉b〉, 〈a〈bb〉a〉, and indeed just 〈a and a〉 are perfectly valid sequences.
In the special case of a well-matched name-creation/-destruction pair the theory specialises
back to something that models nominal-style atoms-abstraction. For instance, 〈aaa〉, just as
the nominal atoms-abstraction [a]a, models the α-equivalence behaviour of λa.a.
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2 Nominal techniques for variables with interleaving scopes

To define a mathematically well-behaved notion of α-equivalence, the basic notions
of free and bound names require generalisation, and a notion of freshness arity emerges
(Sec. 2), generalising the freshness side-conditions of nominal terms. In Sec. 3 we provide
a relational semantics for dynamic sequences and in Sec. 4 we take stock of the monoid
structure on dynamic sequences. We give an equational axiomatisation for a notion of
dynamic binding monoid, that is, a monoid equipped with compatible nominal set structure
and with left and right binders. We then prove that dynamic sequences form a free such
dynamic binding monoid and obtain as a corollary a structural induction principle and a
simpler characterisation for the α-equivalence relation.

Dynamic sequences have a ‘flat’ monoid structure, as opposed to the syntax trees one
encounters in nominal abstract syntax. We use this ‘flatness’ to our advantage, as it allows
us to interpret the non-hierarchical structure of interleaved scope. Thus one interpretation
of dynamic sequences is as the structures used in game semantics. As an application, Sec. 6
gives a resource-sensitive formulation of pointer sequences as used in game semantics. We
conclude in Sec. 7 with an overview of related work and directions for future research.

2 Dynamic sequences

2.1 Preliminaries
Let A be a countably infinite set of names or atoms. Given a bijection (permutation)
π : A→ A define its support by supp(π) = {a ∈ A | πa 6= a}. Write Perm(A) for the set of
all permutations with finite support. Write ι for the identity permutation and (a b) for
the swapping or transposition of a and b.

If X is a set with a Perm(A)-action, write this action infix as −·−. An element x ∈ X
is supported by A ⊆ A when for all π ∈ Perm(A), ∀a ∈ A.πa = a implies π ·x = x. Given
π ∈ Perm(A) and x ∈ X, we say that π fixes x when π ·x = x. A nominal set is a set
with a Perm(A)-action where every element x has finite support. It is a fact that if X is a
nominal set then every x ∈ X has a least finite support, which we write supp(x).1 We are
interested in elements with finite support. If a ∈ A such that a 6∈ supp(x) we write a#x. If
X,Y are sets with Perm(A)-action, call f : X → Y equivariant when f(π ·x) = π ·(fx) for
every π ∈ Perm(A) and x ∈ X. Finally, if φ(c) is a predicate on names, write Nc.φ for “φ(c)
holds for all but finitely many c ∈ A”; this is the NEW-quantifier and we may read it as
“for fresh c, φ(c)”. For more on the theory above see [15, 12, 24].

I Definition 1. Fix disjoint sets A of atoms and K of constants, writing a, b, c ∈ A and
k ∈ K. Define sets T of tokens and RSeq of raw sequences, writing m ∈ T and e ∈ RSeq,
inductively by: m ::= a | a〉 | 〈a | k, e ::= ε | em.

RSeq is equivalently the set of lists of tokens and is the free monoid on T. The set K can be
equipped with a trivial Perm(A)-action: every permutation fixes all the elements of K. The
permutation actions on A and K can be extended pointwise on the elements of raw sequences;
for instance, (c a) ·cc〉b〉a〉〈c = aa〉b〉c〉〈a. Then RSeq is a nominal set and the support of a
sequence is the set of names occurring in it. The set RSeq also has a monoid structure given
by concatenation, which is compatible with the permutation action (monoid multiplication
is equivariant and ε has empty support and thus is fixed by all permutations.)

1 The set Perm(A) can also be seen as a nominal set with the Perm(A)-action given by conjugation. The
support of a permutation π is indeed the set supp(π) as defined in the previous paragraph.
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Our notation and terminology suggest we should read the raw sequence 〈aaa〉 as “create
a, use a (in some manner), then destroy it”—so if we assume a constant λ ∈ K then λ〈aaa〉
shall, informally, model the syntax λa.a.

We can call the binding of raw sequences, which we will make formal shortly, dynamic in
the sense that scope is not determined by a single binder but by bracket-pairs; 〈a does not
‘know’ where its matching a〉 is, or vice versa, and indeed 〈a on its own and unpaired with
any a〉 is also a valid raw sequence, as are a〉, 〈aa〈aaa〉, and so forth.

We endow raw sequences with a binding structure using the following ideas, which will
be illustrated in Ex. 6:

Bound: An atom is bound if it is in the scope of a creation well-paired with a destruction.
Created: An atom may appear following a creation operation which is not followed by a
matching destruction.
Destructed: Conversely, a destruction operation may appear without a matching creation.
Free: An atom may be used without being created or destructed.

An atom occurrence cannot be characterised as merely ‘free’ or ‘bound’, but we need the
more refined notion of freshness arities. We define a freshness arity as an element of a
monoid B, which we call the binding monoid, and which is the free monoid over carrier
{c, f, d} modulo the following equations:

f ··· f = f absorption (1)
c··· f = c pre-absorption (2)
f ···d = d post-absorption (3)
c···d = ε cancellation (4)

The freshness arity is assigned by a monoid homomorphism Fa : RSeq→ B defined by:

Fa = {〈a 7→ c, 〈b 7→ ε, a 7→ f, b 7→ ε, a〉 7→ d, b〉 7→ ε, k 7→ ε} where (a 6= b ∈ A, k ∈ K).

The set of finitely supported functions denoted by BA has a nominal monoid structure, with
the multiplication of functions defined pointwise. The proof of the next lemmas is immediate.

I Lemma 2. The map F : RSeq→ BA defined by e 7→ λa.Fa(e) is an equivariant monoid
morphism.

I Lemma 3. For any β ∈ B there are unique m, p ∈ N and n ∈ {0, 1} such that β =B
dm ··· fn ···cp.

I Definition 4. Call the unique representation of β ∈ B its normal form.

I Definition 5. Given a sequence e and a name a it is helpful to introduce some notational
shortcuts regarding the arity of a in e:

We write a�e when Fae = dm ··· fn, for some m,n ∈ N, i.e. there are no pending unmatched
name creations 〈a in e.
We write a�e when Fae = fn ···cm, for some m,n ∈ N, i.e. there are no pending unmatched
destructors a〉 in e.
We write a3 e, and call a balanced in e, when a � e ∧ a � e. That is, there are no
un-matched a-creations or a-destructions, so any occurrence of a is, informally, either
‘bound’ (Fae = ε) or ‘free’ (Fae = f) in the conventional sense.
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Figure 1 Pointer sequence illustration of dynamic sequences with Fa(e) = ε

I Example 6. Here are some 3-long sequences involving atom a, showing various arities.

Fa(〈a〈a〈a) = c3 Fa(a〉〈a〈a) = dc2

Fa(〈aa〉a〉) = d Fa(a〉aa〉) = d2

Fa(a〉a〉a) = d2f Fa(aaa) = f
Fa(〈aa〉a) = f Fa(〈aaa〉) = ε

2.2 α-equivalence
The pairing of atom creation and atom destruction operations creates a phenomenon similar
to binding. The concrete choice of a name, between its creation and its destruction, should
not matter. This leads directly to a dynamic version of the α-equivalence relation, illustrated
by the following examples and non-examples.

〈aa〉〈bb〉 =α 〈aa〉〈aa〉 (5)
〈a〈ba〉b〉 =α 〈b〈cb〉c〉 (6)
〈a〈aa〉a〉 =α 〈b〈cc〉b〉 (7)
〈a〈ca〉〈bc〉b〉 =α 〈a〈ca〉〈ac〉a〉 (8)
〈a〈bba〉b〉 6=α 〈a〈bbb〉a〉 (9)
〈a〈babb〉a〉 6=α 〈a〈bbab〉a〉. (10)

These sequences, in general sequences where Fa(e) = ε for any atom occurring in the sequence,
can be informally illustrated using “pointer sequences”: a node with a left-pointing arrow
corresponds to a name creation, one with a right-pointing arrow to a name destruction, and
an arrow-less dot to a name mention. Thus the pairs of α-equivalent sequences in (5)–(8) can
be represented as the pointer sequences on the left column in Fig. 1, while the inequivalent
pairs of sequences in (9) and (10) are represented on the right column in Fig. 1.

We now give a syntax-directed definition of α-equivalence.

I Definition 7. Define alpha-equivalence =α⊆ RSeq×RSeq inductively by:

ε =α ε
(αε) e1 =α e2 m ∈ T

e1m =α e2m
(αm)

Nc. e1〈c (c a) ·e2 =α e
′
1〈c (c b) ·e′2 a3 e2, b3 e′2

e1〈ae2a〉 =α e
′
1〈be′2b〉

(αα)

(In (αα) (c a) ·e2 denotes the action of the permutation (c a) on e2, and similarly for (c b) ·e′2.)
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For other characterisations of =α see Thm. 18 and Cor. 24.
The next two lemmas are instrumental in establishing that =α is an equivalence relation

and a congruence.

I Lemma 8. If e1 =α e2 then F(e1) = F(e2).

I Lemma 9. e1〈ae2a〉=e′1〈ae′2a〉 and a3 e2, e
′
2 imply e1=e′1 and e2=e′2.

I Lemma 10. =α is an equivalence relation.

Proof sketch. Transitivity is proved inductively using a case analysis of the possible rules
ending the derivations. For example, assume that ea〉 =α ga

′〉 and ga′〉 =α ha
′′〉 are both

obtained using (αα). Then we have e = e1〈ae2, g = g1〈a′g2 with a3 e2, a′3 g2 such that
Nc.e1〈c (c a) ·e2 =α g1〈c (c a′) ·g2. Similarly, g = g′1〈a′g′2, h = h1〈a′′h2 with a′3 g′2, a′′3h2

such that Nc.g′1〈c (c a′) ·g′2 =α h1〈c (c a′′) ·h2. Using Lem. 9 it follows that gi = g′i from
which we derive Nc.e1〈c (c a) ·e2 =α h1〈c (c a′′) ·h2 with a3 e2, a′′3h2. Thus ea〉 =α ha

′′〉
is obtained using (αα). J

I Theorem 11 (=α is a congruence). If e1 =α e
′
1 and e2 =α e

′
2 then e1e2 =α e

′
1e
′
2.

Proof sketch. By induction on e′2 with the only interesting case being when the second
equivalence was obtained using (αα). In this case, we have e2 = g1〈ag2a〉 and e′2 = g′1〈bg′2b〉
such that a3 g2, b3 g′2 and Nc. g1〈c (c a) ·g2 =α g

′
1〈c (c b) ·g′2. By the induction hypothesis

we have Nc. e1g1〈c (c a) ·g2 =α e
′
1g
′
1〈c (c b) ·g′2, hence by (αα) we obtain e1e2 =α e

′
1e
′
2. J

I Definition 12. Let DSeq = (RSeq/=α) be the nominal set of sequences quotiented by
α-equivalence, with the natural permutation action given by the action on representatives;
call these dynamic sequences.

Note that Lem. 8 ensures that we can extend the notations of a3 e, a� e, a� e to dynamic
sequences.

I Lemma 13. If e ∈ DSeq and a ∈ A then Fae = ε if and only if a#e.

2.3 On the congruence property of α-equivalence
The congruence of α-equivalence is an essential mathematical property which has motivated
design decisions in our definition of dynamic scope. We take a moment to discuss them, and
so perhaps gain a better perspective on the design space in which dynamic sequences exist.
Consider the raw sequence 〈aa〈aaa〉. Which of the two occurrences of 〈a should match the
destructor a〉? Rem. 9 and the equations of the binding monoid (1)–(4) uniquely identify it
as the most recent unpaired 〈a before the a〉 (so above, the rightmost 〈a matches a〉). We
call this late binding.

Some diagrams for the slightly more complex example of 〈a〈aa〉a〉 illustrate this. We
prefer the upper diagram to the lower diagram:

〈a〈aa〉a〉 =α 〈a〈bb〉a〉 = • xx &&•
�� ��

• •
〈a〈aa〉a〉 6=α 〈a〈ba〉b〉 = • ee 99• ee 99• •

The lower diagram (which we might call early or eager binding) is not obviously math-
ematically wrong, but it is unreasonable in the sense that it invalidates congruence of
α-equivalence:
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I Remark. For any binding policy other than late binding, any reasonably defined =α is not
a congruence.

Informal argument. Whatever α-equivalence is, we require 〈aa〉 =α 〈bb〉. If =α is a congru-
ence then 〈a〈aa〉 =α 〈a〈bb〉. Given a binding policy which does not match a destructor for
a with the most recent creation preceding it, it follows that 〈a〈aa〉 =α 〈b〈ab〉 6=α 〈a〈bb〉, a
contradiction. J

Late binding preserves existing dynamic bindings whereas other binding policies do not,
thus α-equivalence is a congruence with late binding (Thm. 11), whereas other dynamic
binding policies are, in this sense, ill-behaved.

3 Relational semantics

We now give a concrete semantics in relations. This relational semantics is sound, complete,
and compositional.

Call a stack a list of pairs of atoms, i.e., an element of the set Stacks = (A2)∗. Elements
of A2 will be written as (a 7→b). For each S ∈ Stacks we define stack-like operations read, add
and remove, written as S(a), S :: (a 7→b) and, respectively, S \a. Both reading and removal of
a record involve the most recent record (a 7→b) in the stack. Formally, if S = S1 :: (a 7→b) :: S2
for stacks S1, S2, and (a 7→c) does not occur in S2 for any c, then S(a) = b and S \a = S1 :: S2.
Otherwise S(a) and S \a are undefined.

I Definition 14. Define a relational semantics

J-K : RSeq→ P((Stacks × (A + K)∗)2).

on raw sequences as follows:

JεK ={((S,X), (S,X)) | ∀S,X} (11)
JeaK ={((S,X), (S′, X ′ :: S′(a))) | ((S,X), (S′, X ′)) ∈ JeK} (12)
JekK ={((S,X), (S′, X ′ :: k)) | ((S,X), (S′, X ′)) ∈ JeK} (13)

Je〈aK ={((S,X), (S′ :: (a 7→b), X ′ :: b)) | ((S,X), (S′, X ′)) ∈ JeK, b # S′, X ′} (14)
Jea〉K ={((S,X), (S′\a,X ′ :: S′(a))) | ((S,X), (S′, X ′)) ∈ JeK} (15)

In (12) and (15) it is assumed that S′(a) and S′\a respectively are well-defined.
The intuition behind (S,X) JeK (S′, X :: X ′) is quite operational. The stack S is to be

thought of as a stack of name replacements, and the sequence X as a context in which e
is interpreted. S′ is an updated stack, since creation and destruction of names cause it to
change and X ′ is a sequence which “interprets” e given the updated stack S′ and the context
X. Using a name a (see (12)) extends the current sequence with its stack value S(a); creating
a name 〈a (see (14)) adds a new entry (a 7→b) to the stack and extends the current sequence
with b; destroying a name a〉 (see (15)) removes it from the stack and extends the current
sequence with its dictionary value. A constant k is simply added to the sequence (see (13)).

The interpretation J-K is compositional, using pointwise relational composition - ◦ -.

I Lemma 15. For any sequence e ∈ RSeq and token m ∈ T: JemK = JeK ◦ JmK.

Proof. Immediate from definitions. J

I Theorem 16. For any e, e′ ∈ RSeq, Jee′K = JeK ◦ Je′K
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Proof sketch. By Lemma 15 we have that for any token m ∈ T we have JemK = JeK ◦ JmK.
Then we can use induction on the structure of e′. J

I Proposition 17. If e1, e2 ∈ RSeq and m ∈ T then JemK = Je′mK implies JeK = Je′K.

Proof. By Lem. 15 and simple calculations. J

I Theorem 18. If e1, e2∈RSeq then e1=αe2 iff Je1K=Je2K.

In view of soundness and completeness (Thm. 18) we can also use J-K to interpret dynamic
sequences rather than raw sequences, i.e. J-K : DSeq→ P((Stacks × (A + K)∗)2).

4 Equational axiomatisation

We give an equational axiomatisation of the interleaved dynamic binding of this paper
(Def. 19). The dynamic sequences of Def. 12 form a free dynamic binding monoid (Thm. 23),
and α-equivalence gets a purely equational characterisation as an equality subject to freshness-
arity side-conditions (Cor. 24).

The central idea is to use a monoid structure equipped with a compatible permutation
action, left and right ‘binders’ and a function with co-domain BA that encompasses the
interleaved binding laws—which we will call the freshness arity map, see Def. 19 below.
We will call such structures dynamic binding monoids.

Several approaches in the literature investigate notions of algebraic theories and equational
reasoning in a nominal setting [14, 7, 6, 21]. A common denominator is that equations are
presented with freshness side-conditions. For example, the η-rule in untyped λ-calculus can
be captured by a#x ` lam([a]app(x, a)) = x. An algebraic theory of dynamic binding monoids
must interpret interleaved scope, and so the freshness side-conditions familiar from e.g.
nominal unification, rewriting, and universal algebra must be suitably enriched to interpret
freshness-arity side-conditions. Thus, some equations in Def. 19 have side-conditions on the
freshness arity of variables specified using the binding monoid B—if the reader prefers, these
can also be seen as typing conditions.

I Definition 19. A dynamic binding monoid is a tuple (M, ::, 1, · ,‹,›, γ) where (M, ·)
is a nominal set, (M, ::, 1) is a monoid such that the binary operation is equivariant and
1 is an element of M with empty support, ‹,› : A → M are equivariant functions, and
γ : M → BA is an equivariant monoid morphism, satisfying equations:

γa(‹a) =c, γa(a›) = d, a#x ` γa(x) = ε, and

b#m, γa(m)=fn ` ‹a :: m :: a› = ‹b :: (b a) ·m :: b›, n ∈ {0, 1}. (16)

Above, given a ∈ A we write γa : M → B for the map λm.γ(m)(a), and a› for › at a (instead
of ›a). We may omit the monoid multiplication :: when clear from the context.

I Lemma 20. The set DSeq can be equipped with a dynamic binding monoid structure.

A morphism between dynamic binding monoids (M, ::, 1, · ,‹,›, γ) and (M ′, ::, 1, · ,‹′,›′, γ′)
is an equivariant monoid morphism f : M → M ′ that preserves the left and right binders
and the freshness arity map, that is, f ◦ ‹ = ‹′, f ◦ › = ›′, respectively γ′ ◦ f = γ.

Thus dynamic binding monoids form a category denoted by DBMon. Categories of
nominal algebras described for example in [11, 21] have a forgetful functor to the category of
underlying nominal sets Nom, and admit a free construction. That is, the forgetful functor
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from a category of nominal algebras to Nom has a left adjoint. Such a free construction allows
for deriving structural induction principles in the presence of binding, see for example [24,
Cor. 8.22]. Because of the side-conditions involving the freshness arities, dynamic binding
monoids lie outside the scope of nominal universal algebra. If we consider as the underlying
structure of a binding monoid, not only the carrier nominal set, but also the freshness arity
map, we can still obtain a free construction and hence a structural induction principle, see
Thm. 22 below.

We introduce the category BNom of underlying nominal sets with a freshness arity map:

I Definition 21. Let BNom be the full subcategory of the slice category Nom/BA with
objects pairs (X, γ) where X is a nominal set and γ : X → BA is an equivariant function
such that a#x ` γa(x) = ε.

A morphism in BNom from (X, γ) to (X ′, γ′) is an equivariant function f : X → X ′

such that γ′ ◦ f = γ.
Let the forgetful functor U : DBMon → BNom send a dynamic binding monoid

(M, ::, 1, · ,‹,›, γ) to (M,γ).

I Theorem 22. The forgetful functor U : DBMon→ BNom has a left adjoint F .

Proof. Consider (X, γ) ∈ BNom, the set X + A + A = X ∪ {〈a|a ∈ A} ∪ {a〉|a ∈ A}. We
define an equivariant map γ : X +A+A→ BA that acts as γ on X and such that γa(〈a) = c,
γa(a〉) = d, γa(〈b) = ε and γa(b〉) = ε for b 6= a. Then γ can be extended uniquely to a
monoid morphism γ∗ : (X + A + A)∗ → BA. Define a relation ≡ on (X + A + A)∗ as the
congruence generated by 〈awa〉 = 〈b(b a) ·wb〉, where a, b ∈ A, w ∈ (X + A + A)∗, b#w and
γ∗a(w) ∈ {ε, f}.

Construct F (X, γ) as a dynamic binding monoid on the carrier nominal set (X+A+A)∗/≡.
Left and right binders are defined in the obvious way and the freshness arity map function is
induced by γ∗. It is easy to check that whenever w ≡ w′ then γ∗(w) = γ∗(w′). We must
exhibit an isomorphism DBMon((X + A + A)∗/≡,M) ∼= BNom((X, γ), (M,γM )). Starting
with a morphism f : X →M in BNom, we can uniquely extend f + ‹+ › : X + A + A→M

to an equivariant monoid morphism f# : (X + A + A)∗ →M . We have that γ ◦ f# = γ∗. It
follows that for every w,w′ ∈ (X +A+A)∗ such that w ≡ w′ then f#(w) = f#(w′). Hence, f#
factors through a dynamic binding monoid morphism f : (X + A + A)∗/≡ →M . Conversely,
given g ∈ DBMon((X + A + A)∗/≡,M) we consider g[ ∈ BNom((X, γ), (M,γM )) given by
g[(x) = g([x]) where [x] is the ≡-equivalence class of x. J

I Theorem 23. DSeq is the free dynamic binding monoid on (A∪K, γA) where γA(a)(a) = f,
γA(a)(b) = ε for b 6= a and γA(k)(a) = ε.

Proof Sketch. We have that DSeq = RSeq/=α and RSeq = (A∪K+A+A)∗. Thus it suffices
that =α is equal to the relation ≡ described in the proof of Thm. 22. That ≡⊆=α follows
from the proof of Lem. 20. For the other inclusion, we prove by induction on the length of
e that whenever e =α e

′ then e ≡ e′. If the former equivalence was derived using the rules
(αε) or (αm) then the proof is immediate by induction. Assume that e =α e

′ was derived
using (αα). That is, e = e1〈ae2a〉, e′ = e′1〈be′2b〉 such that a3 e2, b3 e′2 and for any fresh c
we have e1〈c (c a) ·e2 =α e

′
1〈c (c b) ·e′2. By inductive hypothesis e1〈c (c a) ·e2 ≡ e′1〈c (c b) ·e′2

for fresh c; we must prove e1〈ae2a〉 ≡ e′1〈be′2b〉.
We consider the case when e1〈c (c a) ·e2 = h1〈dhd〉h2 and e′1〈c (c b) ·e′2 = h′1〈d′(d′ d) ·hd′〉h′2

such that h1 ≡ h′1, h2 ≡ h′2, d′#h and d3h. The most interesting case is when h = g1〈cg2.
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We have that

e1〈ae2a〉 = h1〈dg1〈a(a c) ·g2d〉(a c)h2a〉
≡ h1〈dg1〈cg2d〉h2c〉
≡ h′1〈d′(d′ d) ·g1〈c(d′ d) ·g2d

′〉h′2c〉
≡ h′1〈d′(d′ d) ·g1〈b(b c)(d′ d) ·g2d

′〉(b c)h′2b〉
= e′1〈be′2b〉.

It might be the case that e1〈c (c a) ·e2 ≡ e′1〈c (c b) ·e′2 was obtained using the transitivity
of ≡, for example 〈d1〈d2〈cd2〉d1〉 ≡ 〈d′1〈d′2〈cd′2〉d′1〉 can only be derived using the transitivity
of ≡. For this case the proof that e1〈ae2a〉 ≡ e′1〈be′2b〉 requires several steps and transitivity,
but it reduces to the basic case resolved above. J

From the proof of Thm. 23 we obtain a new characterisation of =α from Def. 7:

I Corollary 24. The α-equivalence relation =α on RSeq is the least congruence closed under
the following rule (a3 e is from Definition 5):

b#e a3 e
〈aea〉 =α 〈b (b a) ·eb〉

(α).

Proof. From the proof of Thm. 23 it follows that α-equivalence on RSeq is equal to a relation
≡, defined as the least congruence closed under the rule (α). J

5 Examples

In the examples to follow we see our formalism at work. These examples are elementary and,
because of the way our framework is set up, the definitions are suitably simple.

Def. 12 defines a data type DSeq as the quotient of an inductive data type by an α-
equivalence relation. We can reason on it by taking representatives of equivalence classes
and working inductively on those representatives. This comes from how we define the set.

The reader familiar with nominal techniques might ask why we do not use nominal
abstract syntax [15], where α-equivalence is built into the inductive definition of the data type
at every inductive stage (using atoms-abstraction; a type constructor naturally present in
the nominal universe), so we can work inductively up-to-α with no need for representatives.

That is impossible for us here because by design we do not know a priori when we write
〈a in a dynamic sequence where (if anywhere) the matching a〉 will occur, and conversely,
if we find a〉 in a dynamic sequence then we do not a priori know where (if anywhere) a
matching 〈a will occur.

Instead we will use a technique from [10] which allows us to lift function definitions
from raw terms (in our case: raw sequences) to α-equivalence classes of raw terms (in
our case: dynamic sequences). The required condition for this method to work is that
what we call α-equivalence has the property of being Barendregt-abstractive; that every
equivalence class must contain a member with maximum support. In our case it means
that in the set of all raw sequences that represent the same dynamic sequence, there is
one with a maximum number of atoms. We may call a representative of such an orbit a
Barendregt representative, due to the intended similarity with the Barendregt variable
naming convention [2]. Def. 25 will help us to calculate Barendregt representatives:

I Definition 25. Suppose e ∈ RSeq is a raw sequence and N ⊆ A is a finite set of atoms.
Define a function freshen(N, e) : RSeq→ RSeq inductively by:
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freshen(N, ε) = ε,
freshen(N, e1〈ae2a〉) = freshen(N, e1)〈c freshen(N, (c a) ·e2) c〉 for a fresh c ∈ A (so c#e1, e2
and c 6∈ N) provided that a3 e2 holds, and
freshen(N, em) = freshen(N, e)m otherwise.

It is easy to check that freshen(N, e) is well-defined, freshen(N, e) =α e, it has maximal
support, and fresh atoms are distinct from N ; the reason for this last condition will become
clear in a moment.

It is convenient now to make a notational distinction between e ∈ RSeq and its equivalence
class [e]α ∈ DSeq. We have:

I Lemma 26. Given k, l ≥ 0, the map α(k, l) : (RSeqk × Al)→ (DSeqk × Al) defined by

(e1, . . . , ek, n1, . . . , nl) 7−→ ([e1]α, . . . , [ek]α, n1, . . . , nl)

is Barendregt-abstractive.

Proof. We must construct a Barendregt representative of ([e1]α, . . . , [ek]α, n1, . . . , nl). Write
N = {n1, . . . , nl}. Then we take e′1 = freshen(N, e1), and e′2 = freshen(N∪supp(e′1), e2),
and e′3 = freshen(N∪supp(e′1)∪supp(e′2), e3), and so on. It clear that (e′1, . . . , e′k, n1, . . . , nl)
has maximal support and that it is a Barendregt representative of (the inverse image of)
([e1]α, . . . , [ek]α, n1, . . . , nl). Write this representative freshen(e1, . . . , ek, n1, . . . , nl). J

I Definition 27 ([22]). Suppose X and Y are nominal sets and f : Y → X is a function.
Define bvf (y) = supp(y) \ supp(f(y)).

For instance bvα(1,0)(〈aa〉) = {a}.
Lem. 26 allows us to tailor [10, Thm. 27] to functions taking k dynamic sequences and l

atoms as input (all our examples below will have this form) as follows:

I Theorem 28. Suppose X is a nominal set and k, l ≥ 0 and F : RSeqk × Al → X, and
suppose for every e1, . . . , ek ∈ RSeq and n1, . . . , nl ∈ A that

bvα(k,l)(freshen(e1, . . . , ek, n1, . . . , nl))#F (freshen(e1, . . . , ek, n1, . . . , nl)).

Then the map NF : DSeqk × Al → X defined by

NF ([e1]α, . . . , [ek]α, n1, . . . , nl) = F (freshen(e1, . . . , ek, n1, . . . , nl))

is well-defined.

Proof. From Lem. 26 and [10, Thm. 27]. J

We specialise Thm. 28 to k=l=1 for illustration’s sake: NF ([e]α, n) is equal to F (e′, n) where
bound atoms in e′ are chosen distinct and not equal to n, and NF ([〈aa〉]α, a) = F (〈bb〉, a).
An equivalent phrasing of the condition in Thm. 28 is this:

supp(F (freshen(e1, . . . , ek, n1, . . . , nl))) ⊆ supp([e1]α, . . . , [ek]α, n1, . . . , nl).

When we use Thm. 28 we will tend to write NF just as F , thus, notationally identifying
the function-on-α-equivalence-classes with the function-on-representatives. We obfuscate the
distinction between e and [e]α and write our definitions ‘as if’ they were by induction on
dynamic sequences. Doing this is consistent with informal practice: for instance, we are used
to writing size(λa.a) and saying “size of λa.a” but actually meaning “pick a representative
and calculate the size of that representative”. Thus, the reader who cares about such things
can unpick this obfuscation back to the raw sequences and maximally distinct representatives;
the reader who does not care, should be able to read the text just as they would any ‘inductive’
definition on syntax quotiented by α-equivalence.
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5.1 Operations on dynamic sequences
I Example 29 (Counting name creation-destruction pairs). Define a function |-| : DSeq→ N
using Thm. 28 by:

|ε| = 0 a� e⇒ |ea〉| = |e|.
|e〈a| = |e| a3 e′ ⇒ |e〈ae′a〉| = |ee′|+ 1
|ek| = |e|

To apply Thm. 28 we must check that any maximally distinct choice of bound names in the
argument is fresh for the result. This is indeed the case (since a#n for any atom and any n∈Z).
|e| counts the number of pairs of matched creation-destructors in e. The side-conditions
ensure that the clauses pick out the correct creation for each destructor. We calculate |-| for
an example sequence; in this example we mark instances of the atom a with subscripts to
see how the answer is calculated (so a1 and a2 are the same atom; just different instances):

|〈a1a2〈a3a4a5〉a6〉| = |a2〈a3a4a5〉|+ 1 = |a2a4|+ 2 = 2.

In fact, the side-condition a3 e′ is superfluous, but it ensures that brackets are consumed in
well-matched pairs.

I Remark. The clauses above actually define an inductive function on raw sequences. Thm. 28
gives us freshness-based conditions to verify that this induces a function on dynamic sequences
(formally, N|e|).

Function |e| happens to make sense for all raw sequences whether bound names are
maximally distinct or not; for an example of where this not the case, see Ex. 31.

I Example 30 (Counting bound occurrences). Define a function ‖-‖ : DSeq → N using
Thm. 28 as follows:

‖ε‖ = 0 a#e′ ⇒ ‖e〈ae′a〉‖ = ‖ee′‖
‖ek‖ = ‖e‖ a#e′, a3 e′′ ⇒ ‖e〈ae′ae′′a〉‖ = ‖e〈ae′e′′a〉‖+ 1
‖e〈a‖ = ‖e‖ a� e⇒ ‖ea〉‖ = ‖e‖.

To apply Thm. 28 we must check that any maximally distinct choice of bound names in the
argument is fresh for the result. This is indeed the case.
‖ek‖ counts how many names occur ‘bound’ in a dynamic sequence, i.e. between a

matched pair of a creation and destructor. For example ‖a〈aaa〉a‖ = 1 because there is only
one occurrence of a between its creation and destruction. Two other occurrences of a are
outside the scope. For the same example sequence as above we have:

‖〈a1a2〈a3a4a5〉a6〉‖ = ‖〈a1〈a3a4a5〉a6〉‖+1 = ‖〈a3a4a5〉‖+1 = ‖〈a3a5〉‖+2 = ‖ε‖+2 = 2

The side-conditions ensure that brackets get ‘eaten’ in well-matched pairs, and are also used
to identify the first free occurrence of the bound name.

I Example 31 (Capture-avoiding substitution). We define -[-/-] : DSeq× A× A→ DSeq by:

ε[a/b] = ε c6=a⇒ ec[a/b] = e[a/b]c
ek[a/b] = e[a/b]k c 6=a⇒ e〈c[a/b] = e[a/b]〈c
ea[a/b] = e[a/b]b a� e⇒ ea〉[a/b] = e[a/b]b〉
e〈a[a/b] = e[a/b]〈b Nc.b3 e′ ⇒ e〈ce′c〉[a/b] = e[a/b]〈c(e′[a/b])c〉
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Previous examples made sense on raw sequences even if bound names were not chosen
maximally distinct, but this function uses more of the power of Thm. 28, licensing us in
effect to rename bound atoms and so avoid accidental name-clashes: 〈aa〉[a/b] = 〈cc〉[a/b] =
〈cc〉 = 〈aa〉.

In fact, no rule above can be applied in 〈aa〉[a/b], but we do not care because we only
care about Barendregt representatives of triples (e, a, b) and such a representative will choose
the bound names in e distinct from a and b. If we wish to notice that we are technically
working with raw sequences and not dynamic sequences then we choose some junk value for
the non-maximally-distinct cases.

For the final example we first introduce some notation, a regular-expression-like language for
dynamic sequences.

I Definition 32. Define functions

+, · : P(DSeq)× P(DSeq)→ P(DSeq)
−∗ : P(DSeq)→ P(DSeq) by

e ∈ E + F iff e ∈ E or e ∈ F
e ∈ E · F iff ∃e1, e2 ∈ DSeq.e = e1e2 and e1 ∈ E, e2 ∈ F
e ∈ E∗ iff e = ε or e ∈ E · E∗.

I Example 33 (Capture-avoiding interleaving). Another phenomenon resembling variable
capture can occur when interleaving sequences. When we interleave a raw sequence such
as 〈aa〉 with itself, we obtain the set of sequences {〈aa〉〈aa〉, 〈a〈aa〉a〉}. If we represent
them diagrammatically, we have the interleaving of • •**tt producing the sequences
• •**tt • •**tt and • • •**tt •,,ss . What happened to the sequence
• • •,,rr •,,rr ? Because the names are equal the wrong creation is ‘captured’
by the wrong destructor in the course of interleaving. This can be avoided if we interleave
the sequences up to α-equivalence.

Define ‖ : DSeq× DSeq→ P(DSeq) using Thm. 28 and the notations from Def. 32:

ε ‖ e = e = e ‖ ε m#e′m′,m′#em⇒ em ‖ e′m′ = (em ‖ e′) ·m′ + (e ‖ e′m′) ·m.

To use Thm. 28 it suffices to check of each clause that maximally distinct choice of bound
names do not affect the result, and we can assume that bound names in e1 are chosen distinct
from those in e2, since this is a Barendregt representative of the input (e1, e2) to ‖. Therefore

〈aa〉 ‖ 〈aa〉 = {〈aa〉〈aa〉, 〈a〈aa〉a〉, 〈a〈ba〉b〉}

6 Application: Games with pointer sequences

In this section we sketch a potential application of dynamic sequences, a more formal and more
resource-sensitive representation of pointer sequences in game semantics. Space restrictions
prevent us from fully working this out but we hope it illustrates the potential of dynamic
sequences to rigorously representat semantic models that require interleaved name scopes.

One of the original presentations of game semantics, by Hyland and Ong, represented
plays as sequences of moves annotated with arrows between moves [18]. Formally, plays
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were formalised as sequences equipped with a function f from natural numbers to natural
numbers indicating that the move at index n points at move at index f(n). 2

Ghica and Gabbay [9] already gave a formulation of plays using raw sequences, which
turned out to streamline key definitions and simplified many proofs. This paper did not
consider α-equivalence and dynamic sequences, although some of our ideas are foreshadowed.

A pointer sequence is represented diagrammatically as an ordinary sequence decorated
with pointed arrows, for example

m0
ttss

m1
ss m2

ss
m3
tt

m4 m5

would be represented using HO integer indices as the pair

(m0m1m2m3m4m5, (1 7→0, 2 7→0, 3 7→2, 4 7→1, 5 7→3)).

The raw sequence representation is m0[a]∗ :: m1[b]a :: m2[c]a :: m3[d]c :: m4[e]b :: m5[f ]d.
Each move has a name, freshly introduced, indicated in square brackets, serving as an address,
and it uses a previously introduced name to indicate the point of the arrow.

Game semantics requires complex operations on pointer sequences, such as swapping moves
(while preserving pointers) to model reordering of actions in asynchronous concurrency [16]
or extracting sub-sequences to model restricted history sensitiveness in languages without
effects (innocence [18]). With integer indices, the pointer map needs to be re-indexed, an
awkward operation which can be formalised in principle but it never was in practice due
to sheer tedium. Using names, the same definitions are straightforward, as the names stay
attached to the moves, making a more precise formalisation possible.

Although the raw sequence formalisation is from a mathematical point of view effective,
from a conceptual and operational point of view is too profligate in its use of names. This
is best illustrated with a simple example. The standard interpretation of the sequencing
operator in HO games for Algol-like languages [1] is the set of even-length prefixes of this

pointer sequence: r uu ttss r1
tt d1 r2

tt d2 d . The operational intuition
is as follows, where P is ‘the program’ and E is ‘the environment’:

r E asks P to start sequencing the two commands;
r1 P in reply to r (see arrow) asks E to execute the first command;
d1 E in reply to r1 (see arrow) eventually reports the first command’s termination;
r2 P, justified by r (see arrow), asks E to execute the second command;
d2 E, in reply to r2, eventually reports the first command’s termination;
d P, in reply to r, reports that sequencing is completed.

The raw sequence representation of this play is r[a]∗ :: r1[b]a :: d1b :: r2[d]a :: d2d :: da,
which requires 3 names. Certain moves, called answers, are never pointed at, so they need
not introduce a name (they can, but it will simply be wasted). In certain game models
answers have the additional property that after they point to a move no other subsequent
move can ever point to it either—like name destructors, in fact! Using dynamic sequences
with explicit name creation and destruction and late binding, the same sequence can be
represented as: r∗〈a :: r1a〈a :: d1a〉 :: r2a〈a :: d2a〉 :: da〉. The raw sequence representative of
the dynamic sequence above uses just the name a. This is more aesthetically pleasing but it

2 This section is best understood by readers familiar with Hyland-Ong-style game semantics, but it is
written so that it can be also accessible to the casual reader.
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is also helpful for two reasons related to representing game models for program verification
or compilation: Dynamic sequences allow an improvement of the mathematical presentation
of game semantics as well, beyond the raw-sequence formalisation. For example, in [9]:

Def. 2.12, formalises the concept of “enabled sequence” e, in which any name of a move
must be introduced before being used. This definition becomes just a� e.
Def. 2.15(iii) “Call a play e strictly scoped when aa[b]e′ ∈ e implies a 6∈ supp(e′).” says
that once the “answer” move a uses a name a, that name should never be used again.
This condition can be removed now and plays be made strictly scoped by construction,
because a can be destructed by the answer move: aa〉〈b :: e′.

Note that, as detailed in Sec. 5, the various raw-sequence operations used in game semantics
can be lifted to dynamic sequences in an elegant way.

7 Related and future work

The main contribution of this paper is the syntactic notion of dynamic sequence that models
interleaved scope by splitting binding into two more primitive syntactic constructs: a name-
creation bracket 〈a, and a name-destruction bracket a〉. By interleaved we mean that
brackets need not be perfectly nested, as in 〈a〈baba〉b〉.

The idea of splitting local binding into two brackets has been seen before. The Adbmal
syntax from [17] splits λ-binding specifically in the λ-calculus into an opening bracket λa and
a closing bracket λa. However that paper is focused on scope-balanced terms and assumes
a jump semantics, that is, λa closes the scope of all intermediate λs occurring before the
matching λa in order to avoid interleaved scope. By contrast, in this paper a〉 lazily matches
only the single most recent unmatched 〈a. It would be interesting to develop a categorical
semantics for the λ-calculus and to explore further connections with dynamic sequences. It
would be certainly interesting to extend the ideas of dynamic scope to trees, as Adbmal is
set up to do, but this presents significant conceptual challenges, even before considering the
technical ones. For example, matching brackets in a non-linear structure seems to require a
notion of traversal for the structure. This remains to be investigated.

Dynamic scope also appears in natural languages, in semantic models for indefinite
articles [28]. An opening bracket corresponds to the creation of a new ‘file’ for storing
subsequent information and anchoring references. A closing bracket corresponds to the
deletion of the ‘file’ and the destruction of the context. That paper takes a radically different
approach based on a variation of monoidal categories and Grothendieck constructions.
Working out the precise connection with our setting is left as future work.

In Sec. 5 we introduced a number of concepts such as regular expressions over dynamic
sequences (Def. 32). Regular expressions and Kleene algebras with statically scoping nominal-
style name-binding and -generation have been studied [13, 23, 20] and it would be interesting
to investigate versions with dynamic scope. Languages with allocation have been extensively
studied, including in the nominal setting (e.g. [3, 25]), but those with deallocation not so
much as far as we know. This too could be future work. It would also be interesting to
extend nominal automata [26, 4, 19] to handle name destruction. We could then investigate
whether dynamic binding monoids play a similar role in understanding the algebraic theory
of languages accepted by such automata, just as orbit-finite nominal monoids do for nominal
languages, see [5].

Our original motivation was to apply dynamic sequences as a notation for the pointer
sequences of game semantics, to simplify the formalisation of definitions of operations on
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pointer sequences and proofs of their properties. Raw nominal sequences are a step in
this direction [9]; dynamic sequences take this further by introducing appropriate rules
for scope and α-equivalence. This may help to formalise parts of game semantics—think
“game semantics in Nominal Isabelle” analogously to the current extensive implementation
of nominal abstract syntax in Isabelle [27], or “rewriting on game semantics using nominal
rewriting” (or a suitable generalisation with freshness side-conditions generalised to freshness-
arity side-conditions) similar to [8]—and to tighten the connection between the game-semantic
and abstract-machine models.

Perhaps the most significant challenge, but also the most exciting opportunity, is the use
of dynamic sequences to model explicit resource management in C-like languages. Intuitively,
a call to malloc() introduces a new name for a memory location, which in a dynamic
trace corresponds to 〈a, whereas a call to free() removes that name, which in a dynamic
trace corresponds to a〉. Clearly the scopes of the memory locations thus managed can
be arbitrarily interleaved. However, the nominal aspects are only one aspect required to
understand malloc/free. The stateful effects, the possibility of dangling pointers and garbage
require significant amounts of further work. To conclude, we believe that interleaved name
scopes are an interesting phenomenon which appears in several contexts: game semantics
(our initial motivation), natural languages and low-level languages with explicit resource
management. However, beyond these actual and potential applications, dynamic sequences
seem to also be a novel nominal phenomenon, interesting in its own right.
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