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Abstract

We propose nominal terms as the syntax of a theorem-prover, instead of first- or higher-order terms.
Then term-formers can bind, so we can handle binding, but we do not take syntax up to β-equivalence or put functions

directly into our syntax.
This gives us expressivity to axiomatise and reason about higher-order data, the π-calculus, locality, substitution,

specification languages with binding—whose common attribute is the use of binding—but our theorem-prover remains
based on a first-order framework.

1 Nominal terms
Binding naturally appears for instance in axiomatisations involving locality, name-restriction, functions, substitution, and
instantiation. Here are examples:∫

x
f(x) =

∫
y
f(y) (∀x.φ)[x::=t] = ∀x.(φ[x::=t]) provided that x is not free in t

λx.f(x) = λy.f(y) P | νa.Q = νa.(P | Q) provided that a is not free in P

In addition, we often want to reason intensionally about inequality of names (e.g. when specifying α-inequality) or
about renaming names (e.g. when α-converting).

If we use higher-order terms then binding is identified with functional abstraction via λ-abstraction. Thus λx.f(x) is a
term denoting ‘input x, then output f(x)’, and

∫
, ∀, and ν are considered as higher-order constants. This is the approach

taken e.g. by Isabelle, HOL, and mCRL2 (and also by Coq). But this introduces functions directly as primitive in the
meta-language. Furthermore, if names are identified with functional abstraction then we have no intensional access to the
name of a variable; only to the functional argument it represents. We invited binding into our syntax; we did not necessarily
want to invite its friends, simple type theory and even set theory, to the party too.

I argue that nominal terms give us the power to reason intuitively about binding, and intensionally on names, while
remaining first-order. Recent advances have extended nominal terms with first-order quantification. Thus, a theorem-
prover based on nominal terms would be a practical basis for mechanised mathematics.

2 An example: axiomatise functional abstraction
Here, for instance, are axioms for the λ-calculus as they might be specified in a nominal terms theorem-prover e.g. based
on nominal algebra Gabbay and Mathijssen (2009):

(βvar) (λa.a)X = X
(β#) a#Z ` (λa.Z)X = Z
(βapp) (λa.(Z ′Z))X = ((λa.Z ′)X)((λa.Z)X)
(βabs) b#X ` (λa.(λb.Z))X = λb.((λa.Z)X)
(βid) (λa.Z)a = Z

Points to note here are:

• λ is just a term-former, like application, and λa.X decomposes as λ applied to a nominal atoms-abstraction a.x
which is a mathematically strictly smaller and simpler structure than a function.

• We have just axiomatised functions. From a ‘nominal’ point of view, this is just an axiomatic theory. Axioms can
express arbitrary complexity, if we want it.

• a#Z and b#X are freshness side-conditions corresponding to conditions like ‘provided x is not free in t’. Nominal
terms axioms tend to closely parallel informal axioms; reasoning in a theorem-prover based on nominal terms is
likely to be intuitive.
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For completeness, here are the axioms above written out again as they might be written informally:

(λx.x)r = r
(λx.t)r = t provided that x is not free in t
(λx.(t′t))r = ((λx.t′)r)((λx.t)r)
(λx.(λy.t))r = λy.((λx.t)r) provided that y is not free in r
(λx.t)x = t

This kind of example invites us to think afresh about what it is we are doing when we axiomatise a system with binding,
and about the relationship between syntax and semantics. Axiomatisations in nominal terms are different from those using
higher-order terms, but in what I would argue is a good way: unfamiliar perhaps, but reasonable.

3 Two more examples: inequality of names and on-the-fly renaming
I mentioned that nominal terms are more expressive than higher-order terms. Here are two simple examples of how:

a 6= b φ⇒ π·φ

The first example observes that the name a is not equal to the name b. Nominal terms permit direct intensional reasoning
on names. Higher-order terms cannot not permit this, since variables can always be bound by an outer λ-abstraction (in
other words: ‘variables vary; names do not’).

The second example is a form of α-equivalence, or equivariance. Whenever we write ‘choose some variables x and
y, and prove φ’, we are using equivariance implicitly to say ‘where it does not matter what the names of x and y are’.
Higher-order terms cannot permit direct reasoning on renaming variables—once the user has chosen names for variables
those names are fixed and they cannot be accessed from within the system.1

4 The theorems so far
So far, we have rewriting, equality, and first-order frameworks, called nominal rewriting, nominal algebra, and permissive-
nominal logic (Fernández and Gabbay, 2007; Gabbay and Mathijssen, 2009; Dowek and Gabbay, 2010).

We have used them to axiomatise substitution, the λ-calculus, first-order logic, and arithmetic. But that is not all: we
have also proved these theories correct (Gabbay and Mathijssen, 2008a, 2010, 2008b; Dowek and Gabbay, 2010). That
is, the axioms do not just look like they axiomatise what they look like they axiomatise, but it has also been proved by
arguments on models that they do axiomatise what they look like they axiomatise.

Since substitution, the λ-calculus, first-order logic, and arithmetic are a basis for computer science—at least in theory—
this can be read as a proof-of-concept for nominal mechanised mathematics. Put another way: a nominal theorem-prover
is feasible.
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