A New Approach to Abstract Syntax Involving Binders

Murdoch Gabbay Andrew Pitts
Cambridge University Cambridge University
DPMMS Computer Laboratory
Cambridge CB2 1SB, UK Cambridge CB2 3QG, UK
M.J.Gabbay@cantab.com ap@cl.cam.ac.uk
Abstract types [10] (inductively defined sets), structural recursion

over such data, and proof by structural induction [1]; the

The Fraenkel-Mostowski permutation model of set the- practice can be seen in several general-purpose systems for
ory with atoms EM-set§ can serve as the semantic ba- machine-assisted proof (such as [12, 30]). This algebraic,
sis of meta-logics for specifying and reasoning about for- ‘no binders’ machinery is often applied to syntax tdaes
mal systems involving name bindimgconversion, capture involve binders; but in that case it yields overly-concrete
avoiding substitution, and so on. We show that in FM-set representations in which large numbers of essentially rou-
theory one can express statements quantifying over ‘fresh’tine constructions and proofs to do with renaming bound
names and we use this to give a novel set-theoretic inter-variables, capture avoiding substitution, and so on, must be
pretation of name abstraction. Inductively defined FM-sets done and re-done for each object-language on a case-by-
involving this name-abstraction set former (together with case basis. If only to make large, machine-checkable proofs
cartesian product and disjoint union) can correctly encode feasible, a more sophisticated approach is called for.
object-level syntax module-conversion. In this way, the One such approach involves representing object-level
standard theory of algebraic data types can be extended tovariables by variables in a meta-language based on typed
encompass signatures involving binding operators. In par- A-calculus. This shifts renaming and substitution to the
ticular, there is an associated notion of structural recursion meta-level where their properties are established once and
for defining syntax-manipulating functions (such as capture for all. This is the ‘higher order abstract syntax’ (HOAS)
avoiding substitution, set of free variables, etc) and a no- approach—an idea going back to Church [2] and Martin-
tion of proof by structural induction, both of which remain Lf [23] which has found its way into many of the current
pleasingly close to informal practice. logical frameworks and proof assistants. Its big drawback,
in its original form at least, is that one looses the ability
to define functions on syntax by structural recursion and
to prove properties by structural induction—absolutely es-
sential tools for our intended applications to operational se-
mantics. There are recent proposals to overcome this short-

The message of this paper is that a modest change t@oming [24, 5]. They result in systems which are techni-
classical set theory can yield benefits for the meta-theory ofcally very interesting but force the designer of algorithms
formal systems that involve name-binding (which most of and proofs ‘modulax-conversion’ to use forms of expres-
them do). But of course such a change is not to be under-sion in our view rather far from familiar informal practice.
taken lightly, so we begin with a critique of the current state |ndeed, the whole HOAS approach by its very nature disal-
of the art. Itis oriented towards the particular use of such ajows a feature that we regard of key practical importance:
meta-theory that most concerns us: the formalisation, quitethe ability to manipulate names of bound variables explic-
probably with machine-assistance, of proofs about the op-itly in computation and proof. Of course, one can introduce
erational semantics of programming languages. a type of ‘names’ in a HOAS signature, as for example is

done in [15]; but as the authors of that work say [p 26]

Backgrpund The theory and practice of specifying and “The main drawback of HOAS is the difficulty of deal-
reasoning about syntactical structures tthatnot involve ing with metatheoretic issues concerning names.

binding constructs is well understood. The theory involves As a consequence, some metatheoretic properties in-
such indispensable concepts as user-declared algebraic data volving substitution and freshness of namescannot

1. Introduction

be proved inside the framework and instead have to be We give examples of this in Section 5. Section 6 sketches
postulated.” the relationship of our approach to recent work on mod-
elling variable-binding abstract syntax in presheaf cate-
gories [7, 14]. Finally, Section 7 mentions some of the many

apply to approaches to binding based upon de Bruijn’s things that remain to be done to develop our set-theoretic

nameless terms or categorical combinators [4, 3, 7]: '[hesemOdeIIIng of abstract syntax involving binders. One of our

are good for machine implementations, but not, we would main motivations is to produce a meta-logic for specify-

argue, for representations intended for machine-asgisted ng and reasoning aboyt syr'1ta>'< and semantics (of program-
manreasoning ming languages involving binding constructs) that is close

Instead of the HOAS approach of moving both tct) mf;)rm;ell pract!ce /_/vr(;ent{t con\}\?s t? Fhetﬁrutctlﬁl r_r:jatterlof
conversion and substitution to the meta-level, we will just structuraf recursion/induction. VVe claim that the 1deas in-

promote the former, leaving notions of substitution to be de- troduced here provide some interesting raw material along

fined by structural recursion on a case-by-case basis. Thié.hose !lr!es; t.JUt It ShOL‘"d be empha3|.sec'i Fhat many poten-
does not seem too bad a compromise, since we show tha&'a”.y difficult ISSUes O.f proof engineering lie petween our

it permits both a nice calculus of bound names and notions.nonon of apstractlon n the FM-universe and its application
of structural recursion and structural induction for variable- " mechanised proof assistants.

binding constructs modulo renaming. We present these]]

in an extensional framework with the expressive power of 2. Permutative renaming

classical set theory which remains close to informal prac-

tice in its forms of expression. This, and the focuswn In the '20s and '30s Fraenkel and Mostowski devised
conversion, makes our work close in spirit to that of Gor- their permutation model in order to prove the independence
don and Melham [11], who axiomatise a type of untyped of the Axiom of Choice (AC) from the other axioms of
A-terms modulax-conversion within Church’s higher order set theorywith atoms(ZFA) (and three decades later Co-
logic. However, we take a more foundational approach, in hen proved the harder result of independence of AC from
that the necessary properties of renaming become part obet theory without atoms (ZF), via his celebrated forcing
the underlying set theory (or higher order logic—since we method; see [16, Section 6] for a brief survey of these mat-
believe one can use that rather than set theory as the basis ¢érs). Our application of their model is rather far from this
the approach described here, but we have yet to develop thipurpose! To motivate its use let us consider the paradig-
formulation). This results in notions of structural recursion matic example, namely the terms of the untyped lambda
and induction that seem rather simpler than those in [11] calculus, which we can take to be elements of the follow-
(cf. Example 5.8 below). ing inductively defined set of syntax trees:

It is precisely such problems with names which we claim
our approach overcomes in a simple way. Similar criticisms

Contributions of this paper We motivate our use of A pX. Var(4) | App(X x X) | Lam(A x X) (1)
Fraenkel and Mostowski's permutation model of sets (the
‘FM-universe’ as we call it) by considering the operation
of permuting the variables in an expression and its relation
to a-conversion (Theorem 2.1). The fundamental notion of
‘finite support’ is recalled in Section 3 and used to define
a quantifier for ‘fresh’ names (Definition 3.4). These con- [a'/a]M capture-avoiding substitution af for all free oc-
cepts are used in the key definition of the paper: an appar- currences ofi in M:

ently newset-theoretic notion of name-abstracti(idefini-

tion 4.2). Its importance is justified by the observation (of {¢'/a}M textual substitution oé' for all free occurrences
which Theorem 5.1 is a specific example) tliata types ofain M;

of syntax modul@-conversion can be correctly modelled
by sets in the FM-universe that are inductively defined by
operators built up using this new abstraction set-former in
combination with the usual operators for disjoint union and Although the third version is possibly unfamiliar, it is in fact
cartesian product In this way, the standard initial algebra more basic than the other two because: firstly, one does not
semantics of algebraic data types can be extended to encormeed to know whether any of the constructors defidirege

pass signatures involving binding operators. The notionsbinders in order to define it; secondly, it can nevertheless be
of finite support and quantification over fresh names in the used to define:-conversion, as the following result shows
FM-universe enable us to formulate versions of structural (cf. [13, p 36], which use$a’/a} (<) in place of(a’ a) - (<)
recursion and induction for such signatures with binders. for the same purpose).

where A is some fixed, countably infinite set whose ele-
ments we calhtoms(or ‘names’, but that term is too over-
loaded). Consider the following three versions of the notion
of variable-renaming for elements of A, wherea, o’ € A:

(a'a) - M interchange ofall occurrences (be they free,
bound, or binding) ofi anda’ in M.

Theorem 2.1. Recall that a-conversion =,, is usually

defined as the least congruence dn that identifies

Lam(a, M) with Lam(d',[a'/a]M). Then=, coincides

with the binary relation~ on A inductively generated by
the following axioms and rules.

Var(a) ~ Var(a)

My ~ M! M, ~ M}
App(My, M) ~ App(Mj, M)

(a” a) "M~ ((J,” G/I) - M’ if o'’ does not
Lam(a, M) ~ Lam(a', M") occurinM, M'.

Proof. Itis not hard to see thét' a)- (<) preserves-,, and
hence that,, is closed under the axioms and rules defining
~. Therefore~ is contained in=,. The converse follows
by proving that~ is a congruence relatingam(a, M) to
Lam(d', [a'/a]M): this follows from the facts thafa' a) -
(&) preserves-, and that ifa’ does not occur i/, then
(a"a) - M ~[a'/a]M. O

This theorem suggests that matters to do with variable
binding can be phrased in terms of the operation of variable-
transpositior(a’ a) - (&), rather than the more familiar op-
eration of variable-substitution (be it textugt'/a}M, or
capture-avoidinga’/a]M). Note that transposition is an
instance of the more general operationpgrmuting the
atoms inM according to a bijectiont : A = A, the re-
sult of which we write asr - M. This ‘permutation action’
permits one to formalise one essence of the notion of ‘vari-
able’, namely thaproperties of syntax should be sensitive
only todistinctionsbetween variable names, rather than to
the particular names themselveBut more formally, this
is the equivarianceproperty of sentencesz . ¢(r) about
syntax

(2)

the validity of which of course depends upon the nature of
¢, but also, crucially, upon the fact that all the free variables
of ¢ are listed inZ. Such notions belong to the rich math-
ematical theory of sets equipped with a permutation action,
which we draw upon next. It is important to note that much
of that theory would be inapplicable were one to try to base
the development upon arbitrary (or even injective) functions
from atoms to atoms, rather than upon permutations.

3. FM-sets

Given a grouf, recall that aG-setis a setX equipped
with a G-action, which by definition is a function mapping

pairs(m,z) € G x X to elementsr - z € X and satisfying
forallz € X andr,n' € G thatid-z =z andr - (7' -x) =

nw' - & (whereid is the group identity andr, n') — #n’

the group multiplication). We need this notion for the case
G = Sy, the group of all permutations of the s&t (In
Section 7 we need to consider products of such groups.)
Note thatA is itself anS,-set if we definer - a to ber(a);

and then the set of lambda terms from the previous section
is anSa-set via an action defined recursively from that one:

- Var(a) ¥ Var(n(a))
- App(M, M') &

App(r - M, 7 - M)

) am(n(a), 7 - M).

7 - Lam(a, M)
Sa-sets likeA have an important finiteness property: their
elements only involve finitely many different atoms. The
following key notion expresses this property purely in terms
of the action, and hence can be applied to a@hyset,
whether or not it is given concretely in terms of syntax trees.

Definition 3.1 (Finite support). Let X be anSy-set. A
subsetv C A supportse € X ifforall 7 € Sy

Va€ew.w(a) =a)=>7-v=u.

We sayz is finitely supportedf there is some finitew C A
supportinge. In fact one can prove that if is finitely sup-
ported, then there is a smallest finite subsetaupporting
it: we call this thesupportof z, and denote it byupp(x)
(leaving implicit whichSs-setX is being referred to). We
say that an atona is apart fromz, and writea # z, if

a ¢ supp(x).

Recall the usual von Neumann cumulative hierarchy of
sets,V [35]. We can build the notions of ‘permutation ac-
tion’ and ‘finite support property’ into a set-theoretic uni-
verse by replacinyy with the Fraenkel-Mostowski universe
Veum(A), which by definition is the leasi,-class (i.e. class
with anSs-action) X’ satisfying

X = A+p0wfs(X)

where+ is disjoint union, andS € powg (X) iff S € V,
S C X, andS is finitely supported for the action given by:
w-S={r-z|x €S} The elements oPr\(A) Notin A
will be calledFM-sets(over the set of atom&).

The FM-univers&’ry (A) can be built up as the union of
transfinitely many stages, where at each successor ordinal
we take all finitely supported subsets of the previous stage
and a copy ofA. Each stage, and hend&\(4) itself,
comes equipped with afs-action making all of its ele-
ments finitely supported. Note that an FM-gd$ not itself
closed under the permutation action unlesgp(xz) = 0.

The notion of support of an FM-set is quite subtle. Note in

particular thatsupp(z) may differ from the set of atoms infinite set and every element &% (A) is finitely sup-
in TC(z), the e-transitive closure ofz. For example ported.

supp(A) = 0, but TC(A) = A. Vem(A) contains a copy

of the ZF universe/, namely those FM-setg whosee-
transitive closurel'C (z) is disjoint fromA. We call such
anz apureFM-set.

The usual constructions of ZF can be carried out within
FM to build various sets. In particular we will make use of
the setN of natural numbers, and the usual constructions
of cartesian products, disjoint unions, power- and function-
sets.

Remark 3.3 (FM = —AC). Careful formulations of the
definition of capture-avoiding substitution quite often make
use of a choice function for picking out fresh variables:
see [39, Section 2], for example. The vague feeling that
such concrete choices should be irrelevant crystallises here
into the fact that such choice functions are inconsistent with
FM, because it contradicts the Axiom of Choice (AC). For
example, the axiom4 Not Finite) implies that the set of
cofinite subsets af is a set of non-empty sets; but there is
no choice function in/p\ (A)—a diagonalisation argument
Axiomatic FM-set theory To develop the properties of (using the fact that every graph of a functignu,,, (A) — A

the FM-universe further, it is convenientto work in a setting must be finitely supported) shows this. Proof assistants
where all set-theoretic constructions are guaranteed to prebased on set theory or higher order logic often include
serve the finite support property and hence keep us withinHilbert’s choice operatogz . ¢, to provide anonymous no-
Vrm(A). One can achieve that with a suitable theory of tations for terms defined by formulas (see [21, Section 2.1]).
atoms and FM-sets within classical first-order logic with Since thes-operator can be used to prove AC, we cannot
equality. This theory is based upon ZFA—ZF set theory add it to FM without inconsistency. However, it would be
with Atoms (see [8], for example). This has a signature con- both consistent and useful to augment the language of FM
taining not only a binary relation symbaot* for member- with a notation for terms that ateniquelydefined by a for-
ship, but also a constanh” for the set of atoms. ZFA has mula.

an axiom expressing the fact that only non-atoms can have
elements; its other axioms are like those of ZF set theory,
except that certain quantificatio . (<) (for Q = Vv, 3J)
have to be restricted tQz ¢ A. (<) whenz must range
just over sets rather than over sets and atoms. The axiom&deas'

of ZFA are given in an Appendix to this paper. They capture - -

the basic, set-theoretic propertiesif, (A) withoutsaying ~ The U-quantifier Many consequences of the finite sup-
anything very specific about properties of the set of atoms Port property of FM-sets are neatly expressed in terms of
itself, or of the permutation action. The properties relevant the following quantifier for ‘newness’ of atoms.

to our intended application depend upon the fact thas Definition 3.4. Let Cof (x) denote the FM-set ofofinite
(countably) infinite and that every element By (4) is subsets of an FM-se, i.e. thoses C for whichz \ s is

finitely supported in the sense of Definition 3.1. We can gét finite. For each formula of the language of FM, we write
both properties by adding the following axiom to ZFA.

In what follows we makémplicit use of the theory FM:
everything we do can be reduced to its rather spare language
and axioms, but we avoid this in order not to obscure the

NaeA. ¢
Definition 3.2 (The theory FM). Define FM to be the

first-order theory obtained from ZFA by adding the axioms for the formula expressing thét € A | ¢} is in Cof (A).

(A Not Finite) A ¢ powg, (A) So this N-quantifier means “for all but finitely many
fin atomsa, ... ”. However, the nature of the set of atoms in
(Fresh)Vz.3a € A.a # . Vem(A) endows the quantifier with very special properties.

For one thing, since every FM-subsedf A has finite sup-
Here and elsewhere we write € powg,(y)' to indicate a port, it is not hard to see thats either finite or cofinite. So
suitable formulain the language of ZFA expressing thist Cof (A) is an ultrafilter andla € A. (<) commutes with
a finite subset of;. Similarly, ‘a # 2’ stands for a suitable conjunction, disjunctiomnd negation. More is true:
formula expressing the notion of apartness given in Defi-
nition 3.1: see the Appendix (noting that the theory given
there generalises FM to many sordsof atoms). This in

Lemma 3.5. For any formula¢ and list of distinct vari-
ablesZ in the language of FM, consider the following for-

turn requires us to express in the language of ZFA the per-mU|aS'

mutation action—or at least to express the regult) - = VaeA a#Z=¢ (3)
:) :

of transposing atoma anda’ in z, which can be done NacA. ¢)

by e-recursion: once again, see the Appendix for details. .
Veum(A) is a model of the theory FM just becauseis an JacA.a#ING (5)

(wherea # ¥ is a conjunction of apartness formulas, one
for each variable in the list). Then in FM3) = (4) = (5);
and if the free variables op are contained in{Z, a}, then
also(5) = (3) and hence in this case the three formulas are
provably equivalent in FM.

Proof. The proof makes use of the finite support property
and in particular the fact thdle € A | a # Z} € Cof (A).

For the implication (5)= (3) we also need that FM satisfies
the equivariance property (2). O

Remark 3.6 (Proof rules for). One can extract intro-
duction and elimination rules for tHé-quantifier from the

It is not hard to see that, is an equivalence relation. We
denote the~,-equivalence class of a paju, z) by [a]z
and call it theA-abstractiondetermined bya € A and

z € Vem(A). (We will see below thafa]z € Vv (4).)
This is a form of ‘abstraction as information hiding’ (like
that for abstract data types [28]), singgz turns out to
behave like a paifa, z) in which the identity ofa is hid-
den. However, and quite remarkabBsabstractions also
embody a notion of ‘abstraction as function’ (analogous to
that occurring in higher order abstract syntax), as the fol-
lowing lemma shows. We writ&unyy (A) for the subclass

of Veum(A) consisting of unary partial functions: i.ef €

above lemma, provided one uses sequents tagged with set¥Fn (4) is in Funpyi (A) if and only if it satisfies

of possibly-free variables (a common practice in categorical
logic [20])—e.g. sequents of the forthi-z ¢, wherel is a
finite set of formulasg a formula, and? a finite set of vari-
ables containing those occurring freelfimnd¢. Then we
can derive an introduction rule fét of the form

Fa# b,z ¢
ThzWacA. ¢

(cf. the usual rule foiv-introduction) and an elimination
rule of the form

FFzWNacA. ¢ Ipa# T,z
L'z

(cf. 3-elimination). In these rules, Z means the finite set
properly extending’ with a variables ¢ Z.

In view of the lemma, we are justified in readiifg €
A. ¢ as ‘for some/any new atoma, it is the case thap’.
This simultaneous-V flavour of thell-quantifier seems to

exactly fit many situations where a statement about ‘fresh-

ness’ of variables is required: we choasamefresh vari-
able with a particular property, but later on may need the
fact thatany such variable will do. We see this in subse-
guent sections, where we put thequantifier to work.

4. Abstracting atoms

In Section 2 we saw that-conversion can be formulated
in terms of the two notions of permuting variables and of

fEAANYVze fIy,z. 2= (y,2) A
Vz,y,z.(z,y) € fA(z,2) € f = y=z.

Using the easily verified fact that (&,) ~4 (a,z’), then
x = 2', together with the the ZFA axiom of Collection, one
obtains the following.

Lemma 4.1 A-Abstractions are functions). Each ~ A-
abstraction [a]z is an element ofFunpy(A) and has
supportsupp ([a]z) = supp(z) \ {a}. O

Write Abs(A) for the subclass oVpy(A) consisting
of all A-abstractionda]z, asa ranges ove\ andz over
VrM(A). By the lemma, eaclf € Abs(A) is a function;
and by construction its domain of definitiafom(f) is a
subset ofA. In fact if f = [a]z, one can show thatom (f)
is the cofinite sefa} U (A\ supp (x)), which by the lemma
is A\ supp(f). Thusif f € Abs(A) we can apply the
function f to any atom: € A satisfyinga # f to obtain an
elementf(a) € Vrm(A) that we call theconcretion of the
A-abstractionf at a. An A-abstraction is in fact uniquely
determined by some/any of its concretions, since one can
prove in FM that for allf, f' € Abs(A)

(Na €A f(a) =f(a) = f=F"

Definition 4.2 (Abstraction set-former). For any FM-set
X, the FM-set ofA-abstractions of elements &f is:

AX ' {f e Abs(A) |Va € A. f(a) € X}.

the non-occurrence, or ‘apartness’, predicate. In Section 3(An application of the ZFA axiom of Collection is needed

these two notions were lifted from the particular data type
A of M\-terms to an enveloping universe of sets. So now
we can consider what-conversion of sets’ means, arriv-

to see that this is a set rather than a proper class; moreover
it is finitely supported, withsupp ([A]X) = supp(X).)

ing at a new, set-theoretic notion of abstraction. By analogy = Thus the elements ¢f\] X areA-abstractionsga]z satis-

with the relation~ used in Theorem 2.1 to characterise
conversion ofA-terms, consider the following binary rela-
tion onA x Vepm(A):

def

= !

(a,z) ~p (a',2") Na" € A.(a""a) -z =(a"d) '

fying a # X andz € X. In the rest of this paper we will
only be concerned with the case wherpp(X) = 0, in
which case the conditiom # X is vacuously satisfied. The
use of the same notatios{<] for the abstraction set for-
mer and for its elements is not ambiguous becaugenot

an atom. Using théA](«<) construct in combination with
cartesian product and disjoint union, we can form induc-
tively defined FM-sets that allow us to view sets of syntax
moduloa-conversiores algebraic data types Wi (A) of

a kind that is very close to the ‘classical’ theorylinfor

syntax without binders. We give the paradigmatic example set p.X . F/(X) is aninitial algebra for this functor.

of this, untyped\-terms module=,, in the next section.

5. Example: A/=, as an inductive FM-set

First, let us recall a little of the theory of inductively
defined sets (for the simple casefwfitary set operators).
Given a functionF' mapping FM-sets to FM-sets which
is definable by a formula in FM, monotone fa, and

that maps eaclf € [A]X to the uniqueA-abstraction
([Alg)(f) satisfyingUla € A.([Alg)(f) = [alg(f(a)).
Thus each functio” on FM-sets built up usings) x (<),

(&) + (&), and[A]() is functorial; and a standard ar-
gument shows that the associated inductively defined FM-
In
other words, for every € F(X) — X, there is a unique

f e (uX.F(X))— X such that

F(uX .F(X)) —— uX . F(X)
F(f)l lf
F(X) X

f

which preserves unions of countable ascending chains, therommutes. In particular we have:

the least fixed point off" exists; we call it theinduc-
tively defined FM-set determined Wy and denote it by
uX . F(X). It can be constructed by the familiar Tarski
formula: X . F(X) = U,,en F™(0).

Now it follows from Definition 4.2 thafA] (<) is mono-

tone and preserves unions of countable ascending chains of
FM-sets. Therefore we can use it in combination with other

such functions, such as cartesian product &nd disjoint
union (#), to form inductively defined FM-sets. For exam-
ple, consider

def

Aq X . Varg (A) | Appy (X x X) |

Lam, ([AJX). (6)

As in Section 2, here we are using a notation for dis-
joint union in which the injection functions are named
explicity—by Var,, App,,, andLam, in this case.

Theorem 5.1 (\/=,, as an inductive FM-set). Consider

the FM-setA of untyped\-terms, inductively defined as
in (1). ThenA/=,, the FM-set of equivalence classes
modulo the equivalence relation ef-conversion, is in
bijection with the inductively defined FM-skf,.

Proof. Combine the proof of Theorem 2.1 with the defini-
tion of [A](). O

Remark 5.2 (Free variables).Under the bijection of The-
orem 5.1, the set of (hames of) free variables ofcan
equivalence class of-terms is identified with the support
(in the sense of Definition 3.1) of the corresponding ele-
ment of A,: see Example 5.9 below. In particuldt, €

A, | supp(t) = 0} corresponds to the subset@bsed\-
terms modulo=,,.

Initial algebra semantics Like cartesian product and dis-
joint union, the abstraction set-formg¥] (<) is the object
part of afunctoron FM-sets and functions: its action on a
functiong € X — Y, is the functionAlg € [A]X — [A]Y

Corollary 5.3. The FM-set A/=, of A-terms modulo
alpha-conversion is an initial algebra for the functay +
(ex)+ [Al(e). O

The usefulness of the initial algebra property of induc-
tively defined FM-sets can be increased by analysing the
nature of functions out of abstraction sé4.X. For ex-
ample, specifying an algebrB(X) — X for F(&)
A + (&x ©) + [Al(«) amounts to giving functions

fEA=-X geXxX-—=X he[AlX - X

and one would like to know whehis induced via the quo-
tient mappinga,) — [a]x from a functionA x X — X.

As the following lemma shows, the concepts of finite sup-

port and-quantifier from Section 3 provide an answer.

Lemma 5.4. For all functionsh € Ax X =Y in Vem(A),
there is a (necessarily uniquéj € [A]X — Y satisfying
Na € A.Vx € X .h'([a]xr) = h(a,z) iff h satisfies the
condition

(7)
O

Na € A.Vx € X .a# h(a,z).

The condition (7) captures the idea that the value of the
induced functior’ € ([A]X) — Y at som€ga]z should be
independent of the choice af The lemma specifies what
h' does just whem is ‘fresh’, but this is enough to tell us
the effect ofa’ on any element dfA] X, because of the way
the latter is defined.

Combining the initial algebra property oA,
uX . A+ X x X + [A]JX with the above lemma, we ob-
tain the following principle of structural recursion for
terms modulax-conversion. (Compare it with the Recur-
sion Scheme of [11, Section 3.1].) A similar principle can
be derived for other inductively defined FM-sets involving
the abstraction set-former.

Theorem 5.5 (A, structural recursion). Given functions in M. The analogue foA, of this property is the state-
feA—-X,ge X xXxA, xA, » X, and ment that ifa # ¢, thena # sub(¢,a)(t') holds for all
heAxX xA, = X inVry(A) with h satisfying t'. This can be proved by structural induction ¢nby
taking S = {t' € Ay | a # sub(t,a)(t’)} in Corol-
Na € A.Vo € X .Vte Ay.a# h(a,x,t) (8) lary 5.6. Hence (by Lemma 3.%)a € A.Vt € Ay .a #
sub(t,a)(t') holds for anyt € A,. Thus by Lemma 5.4,

then there is a uniquk € A, — X such that (a,') — sub(t,a)(t') induces a functiofA]A, — A, for
eacht € A,. In this way we get a substitution function
Va € A.k(Vara(a)) = f(a) o € [AlAa x Aq— A, satisfying for all(f, ¢) € [A]Aq x Au

Vi, t' € Ao k(App,(t,1')) = g(k(t), k(t'), ¢, 1) thatWa € A.o(f,t) = sub(t,a)(f(a)). (Cf. the substitu-
Na € A.Vt € Ay . k(Lamy([a]t)) = h(a, k(t),). tion functiono : A x A = Ain [7, Section 3].)

Example 5.8 (A size function).In Theorem 5.5, taking

Moreover, the support ok is contained insupp(X) U X = N and suitable choices for the functioifisg, h, we

supp(f) U supp(g) U sup(h). O can deduce that there is a unique functiore A, — N
Corollary 5.6 (A, structural induction). Given a subset ~ Satisfying
S C A, in Vem(A), to prove thatS is the whole ofA,, Va € A.k(Vary(a)) =1
it suffices to show Vt,t' c Aa) k(Appa(t,t')) — k() + k()
Va € A.Vary(a) € S Na € AVt € Ay . k(Lama ([alt)) = k(t) + 1.
Vt,t' € S. App,(t,t') € S Condition (8) is satisfied in this case for the same reason as
Na € A.Vt € S.Lamg([a]t) € S. in the previous example. By Lemma 3.5, the last property
of k above is equivalent to
O Va € A.a#k=Vte A, k(Lama([a]t)) = k(t) + 1

This structural induction principle seems to correspond but from the last part of Theorem 5.5 we have that
very closely to informal inductive arguments abouwt supp(k) = 0 (since the particulak, f, g, h that determine
equivalence classes afterms that proceed by picking rep- & all have empty support). Therefore we can strengthen this
resentatives and applying structural induction at the level of last defining clause fak to:
abstract syntax trees, leaving mute the tedious proofs that
such choices do not affect the argument. In effect, by re- Va € AVt € Ao k(Lama([a]t)) = k(1) + 1
stricting to equivariant properties (cf. (2)), FM-set theory So the formalism allows us to express very easily the prop-
ensures that all those choices of representatives are maderties we expect a size function to have @requivalence
in a way that does not affect meaning. In the rest of this classes of\-terms. (Compare this example with the com-

section we give some simple examples. plications encountered by Gordon and Melham defining a
o o) similar function by recursion using their axiomatisation of
Example 5.7 (Capture-avoiding substitution). Givent € a-conversion [11, Section 3.3].)

A, anda € A, if in Theorem 5.5 we také&X = A, and

make suitable choices for the functiofisg, andh, we can

deduce that there is a functiemb (¢, a) that is the unique
elementt € A, — A, satisfying

The principle of structural recursion embodied in Theo-
rem 5.5 requires us not only to specify some functions of
the correct type, but also to verify the condition (8) for one
of them. In the previous two examples, this condition is sat-

Va' € A.k(Vary(a')) = (if a' = a then t else Var, (a')) isfied simply because is never in the support d&]t. Here
VEL T € A k(App, (1)) = App, (K(#'), k(")) is a different kind of example. |
Na' € A.VE' € Ay . k(Lama ([@]t)) = Lama ([a'k (). Example 5.9 (Set of free atoms)lt is not hard to see that

the support of a finite set of atonts € powg, (A) is just

Condition (8) is satisfied in this case because by Lemma 4.1,5 itself. Henceua is ”Pt in the support of \ {a}. So in
a' # [/t holds for anya’ and¢'. From the above prop- Theorem 5.5, takind{ = pows,(A) and making suitable
erties it follows that under the bijection of Theorem 5.1 choices for the functiong, g, 4, it follows that there is a
between elements of A, and a-equivalence classes of unique functiork € A, —>P0wﬁn(A) satisfying
A-tsrmsM, iUb(t’azj co/rr]e(sp;)nds to the captu;e-avoiding Va € A.k(Vary(a)) = {a}

substitution functioM /a](<). One property of capture- / ny _ /

free substitution ofA-terms is that the only free occur- Vit € Ao k(Appa(t, 1)) = K(t) U K(t)
rences ofa in [M/a]M' are due to free occurrences @f Va € AVt € Ao k(Lam,([alt)) = E(2) \ {a}

where in the last clause we have strengthdned= A. .. 6. Relation to presheaf models
toVa € A... using the same argument as in the previous
example. This functio® gives a structurally recursive def-
inition of the ‘finite set of free atoms’ for elements 4f,.
Using structural induction (Corollary 5.6) one can show for
all't € A, thatin factk(t) = supp(t) (cf. Remark 5.2).

One origin of the work presented here lies in the
calculus’, a calculus of higher order functions and dynam-
ically created names introduced by the second author and
Stark [32, 36] (see also [17]). In [37], Stark studies a model

Example 5.10 (Bound atoms).There is no functiorba € of the v-calculus based on one of Moggi's ‘dygamic allo-
Ao — powg, (A) in Ven(A) picking out the “finite set of ~ cation” monads [29] in the presheaf categ8ist™, where

bound atoms’ of elements df,, in the sense that it satisfies Z IS the category of finite ordinals and injective functions
between them. Crucial ingredients of the dynamic allo-

Va € A.ba(Var,(a)) =0 cation monad used there are the ‘object of names’, given
Vi, t' € Aq . ba(App,(t,t') = ba(t) U ba(t)) by the inclusion functoiZ — Set, and the shift func-
Va € AVt € A, . ba(Lamy ([a]t)) = {a} U ba() tor § : Set’ — Set?, given bydX(n) = X(n + 1).

' o « ' These ingredients also occur in the work on modelling
We cannot use Theorem 5.5 to define such a function be-Calculus names iet” [6, 38] and the recent work on mod-
cause in this case condition (8) would requirgt {a} U S elling variable-binding apstragt syntax [7, 14], where other
(anyS € powg, (A)), which is certainly false. Indeed, we Presheaf categories besidest™ are considered.
can argue by contradiction to see that no such function ex- Now, a somewhat overlooked model of thecalculus,
ists in Ve (A): if it did, it would necessarily have finite ~ mentioned in [33, Examples 4.3], is the full subcategory of
support, so picking any atonas# «’ not in its support, we Set” whose objects are the pullback preserving functors.

would have(a’ a) - ba = ba; thent = Lam,([a]Var,(a)) This is equivalent to a well-known topos, sometimes called
satisfiesha(t) = {a} and so the Schanuel topes-the category of continuous-sets for
the topological grougs = S, of permutations of a count-
{a'} = (d'a) - {a} ably infinite setA topologised as a subspace of Baire space:
= (a'a) - ba(t) see [18, Lemma 1.8] and [22, Section 111.9]. Put more con-

cretely, and this is the point, the objects of the Schanuel
topos areS,-sets in which every element has finite support
= {a} (Definition 3.1), and its morphisms are tlSg-equivariant
functions. Thus on the one hand, the Schanuel topos relates
to the FM-univers&’ry1(A) much as the usual cumulative
The results of this section can be extended to deal with hierarchy)’ relates to the topos of sets (see [19] for more on
signatures ofi-ary operators each of whose arguments is an the category theory of universes of sets); on the other hand,
m-ary abstraction (forn, m > 0)—the ‘binding signatures’ the Schanuel topos is a sheaf subtopos of the presheaf cate-
considered in [7, Section 2]. An FM-set inductively defined gory Set”, with the inclusion sending the FM-set of atoms
using a set operator given by a suitable sum of products ofA to the object of nameg — Set and the abstraction op-
A and iterations of théA](«<) operator is in bijection with erator[A](«) to the shift functoi (<) mentioned above.
the set of terms module-conversion over such a signature. Both the presheaf toposes used in [7, 14] and the
This FM-set is an initial algebra for the functor associated Schanuel topos (and indeed many other categories equipped
with the set operator and from the shape of the latter canwith a faithful functor taSet™) support an initial algebra se-
be read off principles of structural recursion and induction mantics for signatures with binding. So does the Schanuel
like those above. Many-sorted signatures can be dealt withtopos, and its associated FM-set theory, have any advantage
using FM-sets mutually inductively defined by several such over presheaf toposes? It is well known that toposes corre-
operators. spond to theories in extensional, higher-order, intuitionistic
Our approach seems rather well adapted to expressindogic [20]. Unlike presheaf toposes in general, the Schanuel
the ‘usual’ forms of recursion/induction for abstract syntax, topos modelslassicalrather than intuitionistic higher order
while at the same time dealing with freshness of variableslogic; furthermore, its higher order structure (function and
and variable renaming systematically, at the meta-level. Of power objects) is rather easy to calculate with, compared
course much more needs to be done to establish the utilto presheaf categories. Thus if one is looking for a single,
ity of these FM versions of structural recursion and induc- general-purpose setting for modelling variable-binding syn-
tion principles (we consider some possibilities in Section 7). tax, the logic of the Schanueltopos is both a bit more power-
However, we regard the sheer simplicity of the above ex- ful and familiar. One can view [7] as establishing, amongst
amples (compared with analogous examples in other for-other things, a very nice categorical algebra for the de Buijn
malisms) as a good sign! view of variable-binding and substitution. Here however,

= ba(t) sincea, a’ ¢ supp(ba) U supp(t)

i.e.a’ = a, contradicting the choice afanda’.

we are motivated more by the desire for a useful logic of ex- may be possible.) It is also possible that the approach pre-
plicit bound names—mainly to formalise existing common sented here will help extend the ‘functorial’ operational se-
practice, but the logic can also serve as a basis for provingmantics of [40] to encompass languages involving binders.
that de Bruijn-like formulations are correct with respect to

more concrete representations. Crucial to all this is the no-gpm type theory An extensional set theory is by no means
tion of ‘finite support’ (leading to thé!-quantifier and our the only setting in which to consider the notions of permu-
FM-set-theoretic notion of abstraction), which is present the tation action and finite support (although we believe it is the
Schanuel toposes, but not in the presheaf toposes. We haVﬁmpIest place to start). We have begun to investigate what
chosen to use a set-theoretic rather than a topos-theoretigr approach might look like in the setting of constructive
presentation here, because we think it is more accessiblefype theory [23, 30] and meta-programming [31]. For one
but the same fundamental ideas underlie Bathi (A) and thing, it is evident that Definition 4.2 generalises tdex

the Schanuel topos. pendently typedersion of abstraction

7. Further directions [a€ AlX(a) & {feAbs(A) |Ma € A. f(a) € X(a)}

which bears the same relationship to theuantifier as de-

pendent function typedl) bear to universal quantification
(V). Another interesting possibility is to build information
about the apartness relatian# « into types whose set-
theoretic interpretation is

Splitting the set of atoms To support syntax involving
(finitely many)different sorts of variablesne can use the
following mild generalisation of the FM-universe. Fix an
infinite setA of disjoint, countably infinite sets (of atoms),
and form a univers®pys(A) much as in Section 3
#a def
Venis(A) < u (U A) + powg,(X) AT e Xfade)

, This opens up the possibility of giving a decidable approxi-

except that we work witlG-sets (and -classes) fG the q4ion to the apartness relation as part of a type system. It

subgroup ofS| 4 consisting of permutations that respect ¢4 allows us to introduce a term-former generalising the
the partition.A; so G is isomorphic to the product group N-quantifier:

[I4c4Sa. Clearly, this affects the meaning of the apart-
ness relatiort # x; and we have to repladéa € A and a:AT#a |t X#a
[A](<) by Nla € A and[A](«) respectively, wherel € A.

A corresponding generalisation of the first order theory FM
to a theory ofFraenkel-Mostowski set theory with many
Sorts of atomgFMS) is given in an Appendix to this pa-
per. As an example of the use of FMS, here are mutually in-
ductively defined sets ibrys(A) for the types [ype) and
terms (Term) of Girard’s system F [9] modulo renaming of
bound type variables and bound variables. The definition is
parameterised by sets of atoffisl” € A for type variables
and variables respectively.

'k (newaint): X

wherel'#¢ = 2, : X7 ...z, : X#*if ['is the type
environmentr; : Xi,...,z, : X,. Thus, rather in the
spirit (though not the letter) of [25], one goal we are aim-
ing for is an SML-like language [27] for meta-programming
that combines user-declared data types with primitives for
atomic typesA (i.e. sorts of atoms), abstraction tygel§ X,

and apartnesX #®. A practically important part of such

a language will be pattern-matching definitions of (recur-

Type = TyVar(T) Term = Var(V) sively defined) functions out of such data types, using ‘bind-
| Fun(Type x Type) | Lam(Type x [V]Term) ing patterns’[a]p for values of abstraction types and in
| AT Type) | App(Term x Term) which ‘freshness conditions’ like (8) are enforced statically
| Gen([T]Term)
|

Spec(Term x Type). by the type system. For example, given declarations

o .] atomictype A;
Equivariant SOS We believe that FM-set theory will

be a useful setting for developing programming language datatype Alist = Nil _
semantics based on structural operational semantics [34]. | Cons of Ax Alist;
Syntax-directed, rule-based inductive definitions of rela- datatype term Var of A

tions quite often contain side-conditions to do with fresh- | App of term x term
ness of variables, and the hope is that these can be assimi- | Lam of [A]term;

lated and manipulated conveniently via thequantifier we

have introduced here. (Indeed, logic programming in the in this as yet non-existentlanguage, and given the usual dec-
style of Miller and Nadathur [26] involving this quantifier laration for a list append functiagppend : Alist x Alist —

Alist, we would want the following declarations of func- [2] A. Church. A formulation of the simple theory of types.

tions rem (for anonymously removing an atom from a list Journal of Symbolic Logic5:56-68, 1940.
of atoms) andw (for the free variables of a term) [3] P.-L. Curien. Categorical Combinators, Sequential Algo-
rithms, and Functional Programmingd3irkhauser, 1993.
fun rem = [4] N. G. de Bruijn. Lambda calculus notation with nameless
{ [a]Nz’l — Nil dummies, a tool for automatic formula manipulation, with
| [a] Cons(a,) — rem([a]x) application to the Church-Rosser theorerindag. Math,
| [a]Cons(a’, 2){a # a'} Cons (', rem([a])) 34:361-392, 1972, T
1 [5] J. Despeyroux, F. Pfenning, and C. 8aimann. Primitive re-
)

cursion for higher-order abstract syntax.TlhRCA'97, LNCS

fun fv = vol. 1210, pages 147-163. Springer-Verlag, 1997.
{ Var(a) = Cons(a, Nil) [6] M. P. Fiore, E. Moggi, and D. Sangiorgi. A fully abstract
| App(x,y) — append (fv z)(fvy) model for the_w-calculus _(e>_<tended abstrac_t). lith An-
| Lam([a]z) — rem([a](fv z)) nual Symposium on Logic in Computer Scieraages 43—
1 54. |EEE Computer Society Press, Washington, 1996.

[7] M. P. Fiore, G. D. Plotkin, and D. Turi. Abstract syntax and

to type check, with types: . TAlAlist Alist and variable binding. In this volume.
fv 'yF;ferm s Alist (c?‘/pExgn%ple[S]9) ZsNo_':e té‘; use of [8] M. P. Fourman. Sheaf models for set thealyurnal of Pure

. . . . d Applied Algebral9:91-101, 1980.
repeated variables of atomic type in patterns (equality of and Applied Algebral

. . | . o .. [9] J.-Y. Girard. Interprétation fonctionelle eelimination des
atoms is decidable!) and the use of ‘qualified patterns’ like coupures dans I'arithmetique dordre segiéur. PhD thesis,

[a]Cons(a’, x){a # a'} to enforce that anda’ are distinct. Universig Paris VII, 1972. Thse de doctorat dtat.
On the other hand, the declaration [10] J. A. Goguen, J. W. Thatcher, E. G. Wagner, and J. B.
Wright. Initial algebra semantics and continuous algebras.
fun bv = JACM, 24:68-95, 1977.
{ Var(a) — Nil [11] A. D. Gordon and T. Melham. Five axioms of alpha-
| App(z,y) — append(bv x)(bvy) conversion. INTPHOLs'96 LNCS vol. 1125, pages 173—
| Lam([a]z) — Cons(a, bv x) 191. Springer-Verlag, 1996.
}s [12] M. J. C. Gordon and T. F. Melhamintroduction to HOL

Cambridge University Press, 1993.
should not type check, for the reasons given in Exam- [13] C.A. Gunter.Semantics of Programming Languages: Struc-
ple 5.10. tures and TechniqueMIT Press, 1992.
[14] M. Hofmann. Semantical analysis of higher-order abstract
syntax. In this volume.
[15] F. Honsell, M. Miculan, and I. Scagnettor-calculus in
(co)inductive type theory. Technical report, Dipartimento di

8. Conclusion

Fraenkel and Mostowski's permutation model of ZFA is Matematica e Informatica, Univeraidegli Studi di Udine,
over sixty years old, yet the use to which we have put it here 1998.
seems new. The idea that one might want to treat syntax up[lG] T. J. Jech. About the axiom of choice. In J. Barwise, editor,
to permutative renamings of variables is hardly original, but Handbook of Mathematical Logipages 345-370. North-
the theory really takes off when one combines that idea with Holland, 1977.

the subtle notion of ‘finite support inherent in the Fraenkel- 7] f" ‘:eﬁrfy and J. IR?H.]ke' lTowardS a theory of bisimulation

Mostowski model. Using it, we introduced a useful quan- or local hames. fn this volume.) .

tifier U for fresh names and a new set-forming operation 18] P. ThJOhnStone' ngouenr:Sl of dehC'd?ble objects in a topos.
. . Math. Proc. Cambridge Philosophical Socie§s:409—-419,

for name-abstractiond|(<), whose properties seem better 1983. ’ P ¥

than the function space— (<) whichis sometimes usedto [19] A.Joyal and I. Moerdijk Algebraic Set TheoryCambridge

model name-abstraction. Amongst other things, we saw that University Press, 1995.

the theory of inductively defined FM-sets using this notion [20] J. Lambek and P. J. Scottintroduction to Higher Order

of abstraction can correctly modelequivalence classes of Categorical Logic Cambridge University Press, 1986.

variable-binding syntax, while remaining pleasantly close [21] L. Lamport and L. C. Paulson. Should your specification

to the familiar theory of first-order algebraic data types. language be typed? Technical Report 147, Digital SRC,
1998.

[22] S. MacLane and |. Moerdijk. Sheaves in Geometry and
Logic. A First Introduction to Topos Theary Springer-
Verlag, 1992.

[1] R. M. Burstall. Proving properties of programs by structural [23] P. Martin-Lof. Intuitionistic Type Theory Bibliopolis,

induction. The Computer Journall2:41-48, 1969. Napoli, 1984.

References

[24] R. McDowell and D. Miller. A logic for reasoning with
higher-order abstract syntax. I2th Annual Symposium on
Logic in Computer Sciengpages 434—-445. IEEE Computer
Society Press, Washington, 1997.

D. Miller. An extension to ML to handle bound variables

in data structures: Preliminary report. Pnoceedings of the

Logical Frameworks BRA Workshop990.

D. Miller and G. Nadathur. A logic programming approach

to manipulating formulas and programs. 4th Annual

Symposium on Logic in Computer Sciengages 379-388.

IEEE Computer Society Press, Washington, 1987.

R. Milner, M. Tofte, R. Harper, and D. MacQueérhe Def-

inition of Standard ML (RevisedMIT Press, 1997.

J. C. Mitchell and G. D. Plotkin. Abtract types have existen-

tial types. ACM Transactions on Programming Languages

and Systemd0:470-502, 1988.

E. Moggi. An abstract view of programming languages.

Lecture Notes, 46 pp, 1989.

C. Paulin-Mohring. Inductive definitions in the system Coq;

rules and properties. In M. Bezem and J. F. Groote, editors,

TLCA'93 LNCS vol. 664, pages 328—-345. Springer-Verlag,

1993.

F. Pfenning. Elf: A language for logic definition and verified

metaprogramming. ldth Annual Symposium on Logic in

Computer Sciencgages 313-321. IEEE Computer Society

Press, Washington, 1987.

A. M. Pitts and |. D. B. Stark. Observable properties of

higher order functions that dynamically create local names,

or: What's new? IlMFCS’93 LNCS vol. 711, pages 122—

141. Springer-Verlag, 1993.

A. M. Pitts and I. D. B. Stark. On the observable prop-

erties of higher order functions that dynamically create lo-

cal names (preliminary report). Workshop on State in

Programming Languages, Copenhagen, 1988jes 31-45.

ACM SIGPLAN, 1993. Yale Univ. Dept. Computer Science

Technical Report YALEU/DCS/RR-968.

G. D. Plotkin. A structural approach to operational seman-

tics. Technical Report DAIMI FN-19, Aarhus University,

1981.

J. R. Shoenfield. Axioms of set theory. In J. Barwise, editor,

Handbook of Mathematical Logipages 321-344. North-

Holland, 1977.

I. D. B. Stark. Names and Higher-Order Function®hD

thesis, University of Cambridge, 1995.

[37] I. D. B. Stark. Categorical models for local namessp and
Symbolic Computatiqrd(1):77-107, 1996.

[38] I. D. B. Stark. A fully abstract domain model for the
calculus. Inllth Annual Symposium on Logic in Computer
Sciencepages 36—42. IEEE Computer Society Press, Wash-
ington, 1996.

[39] A. Stoughton. Substitution revisitedheoretical Computer
Science59:317-325, 1988.

[40] D. Turi and G. D. Plotkin. Towards a mathematical oper-
ational semantics. 162th Annual Symposium on Logic in
Computer Sciencgages 280-291. IEEE Computer Society
Press, Washington, 1997.

(25]

(26]

[27]

(28]

[29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

Appendix: axiomatic FMS set theory

FMS is a single-sorted theory in first-order predicate cal-
culus with equality whose signature consists of a binary re-
lation € and constantd, .4, and whose axioms are as fol-
lows.

Axioms of ZFA

(Sets)Va,y.z € y =y ¢ A

(Extensionality)Vz,y ¢ A. (Vz.z €z oz €y) =
r=y.

(SeparationVz.Jy ¢ A.Vz.z €y (z€xAg)
(wherey not free ing).

(e-Induction) (Vz . (Vy € z.[y/z]¢) = ¢) = Vz . .
(Collection) V. (Vy € x.¢p) = 2. Vy € . TJw € 2. ¢.
(Pairing) Vz,y.3z.2 € 2 Ay € 2.

(Union) Vo .y .Vz.z € y & (Qw € x.z € w).
(Powerset)Ve .y .Vz.z ey Vw € z.w € x.

(Infinity) 3z .Jy.y e xAVy €z.Jw € x.y € w.
Structure of the set of atoms

A=UA) YVa.aceAeTJAec A.ac A

(Disjointness)VA, A"’ € A.Va.(a€ AhNac A') =
A=A

(A Not Finite) A ¢ powg, (A)
‘Freshness’ property

(Fresh)Vz.VAe A.Ja€ A.a#4 x.

Herea # 4 x stands for

a€ A N 3S € powg,(A).Va' € A.
a ¢S = (da) ax=2x
where the termpowg,, (A) denotes the set of finite subsets of
A and has a standard set-theoretic definition. This formula

also uses term@’ a) -4 « for the transposition ofi-atoms
a,a’ € Ain z, which can be defined by-recursion:

al

ifr=a

, . if z =d
(@a)aw = if z € A\ {a,a'}

{(d'a)-ay|lyecx} ifaxgA

