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Abstract

The Fraenkel-Mostowski permutation model of set the-
ory with atoms (FM-sets) can serve as the semantic ba-
sis of meta-logics for specifying and reasoning about for-
mal systems involving name binding,�-conversion, capture
avoiding substitution, and so on. We show that in FM-set
theory one can express statements quantifying over ‘fresh’
names and we use this to give a novel set-theoretic inter-
pretation of name abstraction. Inductively defined FM-sets
involving this name-abstraction set former (together with
cartesian product and disjoint union) can correctly encode
object-level syntax modulo�-conversion. In this way, the
standard theory of algebraic data types can be extended to
encompass signatures involving binding operators. In par-
ticular, there is an associated notion of structural recursion
for defining syntax-manipulating functions (such as capture
avoiding substitution, set of free variables, etc) and a no-
tion of proof by structural induction, both of which remain
pleasingly close to informal practice.

1. Introduction

The message of this paper is that a modest change to
classical set theory can yield benefits for the meta-theory of
formal systems that involve name-binding (which most of
them do). But of course such a change is not to be under-
taken lightly, so we begin with a critique of the current state
of the art. It is oriented towards the particular use of such a
meta-theory that most concerns us: the formalisation, quite
probably with machine-assistance, of proofs about the op-
erational semantics of programming languages.

Background The theory and practice of specifying and
reasoning about syntactical structures thatdo not involve
binding constructs is well understood. The theory involves
such indispensable concepts as user-declared algebraic data

types [10] (inductively defined sets), structural recursion
over such data, and proof by structural induction [1]; the
practice can be seen in several general-purpose systems for
machine-assisted proof (such as [12, 30]). This algebraic,
‘no binders’ machinery is often applied to syntax thatdoes
involve binders; but in that case it yields overly-concrete
representations in which large numbers of essentially rou-
tine constructions and proofs to do with renaming bound
variables, capture avoiding substitution, and so on, must be
done and re-done for each object-language on a case-by-
case basis. If only to make large, machine-checkable proofs
feasible, a more sophisticated approach is called for.

One such approach involves representing object-level
variables by variables in a meta-language based on typed
�-calculus. This shifts renaming and substitution to the
meta-level where their properties are established once and
for all. This is the ‘higher order abstract syntax’ (HOAS)
approach—an idea going back to Church [2] and Martin-
Löf [23] which has found its way into many of the current
logical frameworks and proof assistants. Its big drawback,
in its original form at least, is that one looses the ability
to define functions on syntax by structural recursion and
to prove properties by structural induction—absolutely es-
sential tools for our intended applications to operational se-
mantics. There are recent proposals to overcome this short-
coming [24, 5]. They result in systems which are techni-
cally very interesting but force the designer of algorithms
and proofs ‘modulo-�-conversion’ to use forms of expres-
sion in our view rather far from familiar informal practice.
Indeed, the whole HOAS approach by its very nature disal-
lows a feature that we regard of key practical importance:
the ability to manipulate names of bound variables explic-
itly in computation and proof. Of course, one can introduce
a type of ‘names’ in a HOAS signature, as for example is
done in [15]; but as the authors of that work say [p 26]

“The main drawback of HOAS is the difficulty of deal-
ing with metatheoretic issues concerning names: : : .
As a consequence, some metatheoretic properties in-
volving substitution and freshness of names: : : cannot



be proved inside the framework and instead have to be
postulated.”

It is precisely such problems with names which we claim
our approach overcomes in a simple way. Similar criticisms
apply to approaches to binding based upon de Bruijn’s
nameless terms or categorical combinators [4, 3, 7]: these
are good for machine implementations, but not, we would
argue, for representations intended for machine-assistedhu-
manreasoning.

Instead of the HOAS approach of moving both�-
conversion and substitution to the meta-level, we will just
promote the former, leaving notions of substitution to be de-
fined by structural recursion on a case-by-case basis. This
does not seem too bad a compromise, since we show that
it permits both a nice calculus of bound names and notions
of structural recursion and structural induction for variable-
binding constructs modulo renaming. We present these
in an extensional framework with the expressive power of
classical set theory which remains close to informal prac-
tice in its forms of expression. This, and the focus on�-
conversion, makes our work close in spirit to that of Gor-
don and Melham [11], who axiomatise a type of untyped
�-terms modulo�-conversion within Church’s higher order
logic. However, we take a more foundational approach, in
that the necessary properties of renaming become part of
the underlying set theory (or higher order logic—since we
believe one can use that rather than set theory as the basis of
the approach described here, but we have yet to develop this
formulation). This results in notions of structural recursion
and induction that seem rather simpler than those in [11]
(cf. Example 5.8 below).

Contributions of this paper We motivate our use of
Fraenkel and Mostowski’s permutation model of sets (the
‘FM-universe’ as we call it) by considering the operation
of permuting the variables in an expression and its relation
to �-conversion (Theorem 2.1). The fundamental notion of
‘finite support’ is recalled in Section 3 and used to define
a quantifier for ‘fresh’ names (Definition 3.4). These con-
cepts are used in the key definition of the paper: an appar-
ently newset-theoretic notion of name-abstraction(Defini-
tion 4.2). Its importance is justified by the observation (of
which Theorem 5.1 is a specific example) thatdata types
of syntax modulo�-conversion can be correctly modelled
by sets in the FM-universe that are inductively defined by
operators built up using this new abstraction set-former in
combination with the usual operators for disjoint union and
cartesian product. In this way, the standard initial algebra
semantics of algebraic data types can be extended to encom-
pass signatures involving binding operators. The notions
of finite support and quantification over fresh names in the
FM-universe enable us to formulate versions of structural
recursion and induction for such signatures with binders.

We give examples of this in Section 5. Section 6 sketches
the relationship of our approach to recent work on mod-
elling variable-binding abstract syntax in presheaf cate-
gories [7, 14]. Finally, Section 7 mentions some of the many
things that remain to be done to develop our set-theoretic
modelling of abstract syntax involving binders. One of our
main motivations is to produce a meta-logic for specify-
ing and reasoning about syntax and semantics (of program-
ming languages involving binding constructs) that is close
to informal practice when it comes to the crucial matter of
structural recursion/induction. We claim that the ideas in-
troduced here provide some interesting raw material along
those lines; but it should be emphasised that many poten-
tially difficult issues of ‘proof engineering’ lie between our
notion of abstraction in the FM-universe and its application
in mechanised proof assistants.

2. Permutative renaming

In the ’20s and ’30s Fraenkel and Mostowski devised
their permutation model in order to prove the independence
of the Axiom of Choice (AC) from the other axioms of
set theorywith atoms(ZFA) (and three decades later Co-
hen proved the harder result of independence of AC from
set theory without atoms (ZF), via his celebrated forcing
method; see [16, Section 6] for a brief survey of these mat-
ters). Our application of their model is rather far from this
purpose! To motivate its use let us consider the paradig-
matic example, namely the terms of the untyped lambda
calculus, which we can take to be elements of the follow-
ing inductively defined set of syntax trees:

�
def
= �X: Var(A ) j App(X �X) j Lam(A �X) (1)

whereA is some fixed, countably infinite set whose ele-
ments we callatoms(or ‘names’, but that term is too over-
loaded). Consider the following three versions of the notion
of variable-renaming for elementsM of�, wherea; a0 2 A :

[a0=a]M capture-avoiding substitution ofa0 for all free oc-
currences ofa in M ;

fa0=agM textual substitution ofa0 for all free occurrences
of a in M ;

(a0 a) �M interchange ofall occurrences (be they free,
bound, or binding) ofa anda0 in M .

Although the third version is possibly unfamiliar, it is in fact
more basic than the other two because: firstly, one does not
need to know whether any of the constructors defining� are
binders in order to define it; secondly, it can nevertheless be
used to define�-conversion, as the following result shows
(cf. [13, p 36], which usesfa0=ag(�) in place of(a0 a) �(�)
for the same purpose).



Theorem 2.1. Recall that �-conversion, =�, is usually
defined as the least congruence on� that identifies
Lam(a;M) with Lam(a0; [a0=a]M). Then=� coincides
with the binary relation� on � inductively generated by
the following axioms and rules.

Var(a) � Var(a)

M1 �M 0
1 M2 �M 0

2

App(M1;M2) � App(M 0
1;M

0
2)

(a00 a) �M � (a00 a0) �M 0

Lam(a;M) � Lam(a0;M 0)

if a00 does not
occur inM;M 0.

Proof. It is not hard to see that(a0 a)�(�) preserves=� and
hence that=� is closed under the axioms and rules defining
�. Therefore� is contained in=�. The converse follows
by proving that� is a congruence relatingLam(a;M) to
Lam(a0; [a0=a]M): this follows from the facts that(a0 a) �
(�) preserves�, and that ifa0 does not occur inM , then
(a0 a) �M � [a0=a]M .

This theorem suggests that matters to do with variable
binding can be phrased in terms of the operation of variable-
transposition(a0 a) � (�), rather than the more familiar op-
eration of variable-substitution (be it textualfa0=agM , or
capture-avoiding[a0=a]M ). Note that transposition is an
instance of the more general operation ofpermuting the
atoms inM according to a bijection� : A �= A , the re-
sult of which we write as� �M . This ‘permutation action’
permits one to formalise one essence of the notion of ‘vari-
able’, namely thatproperties of syntax should be sensitive
only todistinctionsbetween variable names, rather than to
the particular names themselves.Put more formally, this
is the equivarianceproperty of sentences8~x : �(~x) about
syntax

8�; ~x : (�(~x) , �(� � ~x)) (2)

the validity of which of course depends upon the nature of
�, but also, crucially, upon the fact that all the free variables
of � are listed in~x. Such notions belong to the rich math-
ematical theory of sets equipped with a permutation action,
which we draw upon next. It is important to note that much
of that theory would be inapplicable were one to try to base
the development upon arbitrary (or even injective) functions
from atoms to atoms, rather than upon permutations.

3. FM-sets

Given a groupG, recall that aG-setis a setX equipped
with aG-action, which by definition is a function mapping

pairs(�; x) 2 G�X to elements� � x 2 X and satisfying
for all x 2 X and�; �0 2 G thatid �x = x and� �(�0 �x) =
��0 � x (whereid is the group identity and(�; �0) 7! ��0

the group multiplication). We need this notion for the case
G = SA , the group of all permutations of the setA . (In
Section 7 we need to consider products of such groups.)
Note thatA is itself anSA -set if we define� � a to be�(a);
and then the set� of lambda terms from the previous section
is anSA -set via an action defined recursively from that one:

� � Var(a)
def
= Var(�(a))

� � App(M;M 0)
def
= App(� �M;� �M 0)

� � Lam(a;M)
def
= Lam(�(a); � �M):

SA -sets like� have an important finiteness property: their
elements only involve finitely many different atoms. The
following key notion expresses this property purely in terms
of the action, and hence can be applied to anySA -set,
whether or not it is given concretely in terms of syntax trees.

Definition 3.1 (Finite support). Let X be anSA -set. A
subset! � A supportsx 2 X if for all � 2 SA

(8a 2 ! : �(a) = a)) � � x = x:

We sayx is finitely supportedif there is some finite! � A

supportingx. In fact one can prove that ifx is finitely sup-
ported, then there is a smallest finite subset ofA supporting
it: we call this thesupportof x, and denote it bysupp(x)
(leaving implicit whichSA -setX is being referred to). We
say that an atoma is apart fromx, and writea # x, if
a =2 supp(x).

Recall the usual von Neumann cumulative hierarchy of
sets,V [35]. We can build the notions of ‘permutation ac-
tion’ and ‘finite support property’ into a set-theoretic uni-
verse by replacingV with theFraenkel-Mostowski universe,
VFM(A ), which by definition is the leastSA -class (i.e. class
with anSA -action)X satisfying

X = A + pow fs(X )

where+ is disjoint union, andS 2 pow fs(X ) iff S 2 V ,
S � X , andS is finitely supported for the action given by:
� � S = f� � x j x 2 Sg. The elements ofVFM(A ) not in A
will be calledFM-sets(over the set of atomsA ).

The FM-universeVFM(A ) can be built up as the union of
transfinitely many stages, where at each successor ordinal
we take all finitely supported subsets of the previous stage
and a copy ofA . Each stage, and henceVFM(A ) itself,
comes equipped with anSA -action making all of its ele-
ments finitely supported. Note that an FM-setx is not itself
closed under the permutation action unlesssupp(x) = ;.
The notion of support of an FM-set is quite subtle. Note in



particular thatsupp(x) may differ from the set of atoms
in TC (x), the 2-transitive closure ofx. For example
supp(A ) = ;, butTC (A ) = A . VFM(A ) contains a copy
of the ZF universeV , namely those FM-setsx whose2-
transitive closureTC (x) is disjoint fromA . We call such
anx a pureFM-set.

The usual constructions of ZF can be carried out within
FM to build various sets. In particular we will make use of
the setN of natural numbers, and the usual constructions
of cartesian products, disjoint unions, power- and function-
sets.

Axiomatic FM-set theory To develop the properties of
the FM-universe further, it is convenient to work in a setting
where all set-theoretic constructions are guaranteed to pre-
serve the finite support property and hence keep us within
VFM(A ). One can achieve that with a suitable theory of
atoms and FM-sets within classical first-order logic with
equality. This theory is based upon ZFA—ZF set theory
with Atoms (see [8], for example). This has a signature con-
taining not only a binary relation symbol ‘2’ for member-
ship, but also a constant ‘A ’ for the set of atoms. ZFA has
an axiom expressing the fact that only non-atoms can have
elements; its other axioms are like those of ZF set theory,
except that certain quantificationsQx : (�) (for Q = 8; 9)
have to be restricted toQx =2 A : (�) whenx must range
just over sets rather than over sets and atoms. The axioms
of ZFA are given in an Appendix to this paper. They capture
the basic, set-theoretic properties ofVFM(A ) without saying
anything very specific about properties of the set of atoms
itself, or of the permutation action. The properties relevant
to our intended application depend upon the fact thatA is
(countably) infinite and that every element ofVFM(A ) is
finitely supported in the sense of Definition 3.1. We can get
both properties by adding the following axiom to ZFA.

Definition 3.2 (The theory FM). Define FM to be the
first-order theory obtained from ZFA by adding the axioms

(A Not Finite) A =2 pow�n(A )

(Fresh)8x : 9a 2 A : a # x.

Here and elsewhere we write ‘x 2 pow�n(y)’ to indicate a
suitable formula in the language of ZFA expressing thatx is
a finite subset ofy. Similarly, ‘a# x’ stands for a suitable
formula expressing the notion of apartness given in Defi-
nition 3.1: see the Appendix (noting that the theory given
there generalises FM to many sortsA of atoms). This in
turn requires us to express in the language of ZFA the per-
mutation action—or at least to express the result(a0 a) � x
of transposing atomsa and a0 in x, which can be done
by 2-recursion: once again, see the Appendix for details.
VFM(A ) is a model of the theory FM just becauseA is an

infinite set and every element ofVFM(A ) is finitely sup-
ported.

Remark 3.3 (FM) :AC). Careful formulations of the
definition of capture-avoiding substitution quite often make
use of a choice function for picking out fresh variables:
see [39, Section 2], for example. The vague feeling that
such concrete choices should be irrelevant crystallises here
into the fact that such choice functions are inconsistent with
FM, because it contradicts the Axiom of Choice (AC). For
example, the axiom (A Not Finite) implies that the set of
cofinite subsets ofA is a set of non-empty sets; but there is
no choice function inVFM(A )—a diagonalisation argument
(using the fact that every graph of a functionpow�n(A )! A

must be finitely supported) shows this. Proof assistants
based on set theory or higher order logic often include
Hilbert’s choice operator,"x : �, to provide anonymous no-
tations for terms defined by formulas (see [21, Section 2.1]).
Since the"-operator can be used to prove AC, we cannot
add it to FM without inconsistency. However, it would be
both consistent and useful to augment the language of FM
with a notation for terms that areuniquelydefined by a for-
mula.

In what follows we makeimplicit use of the theory FM:
everything we do can be reduced to its rather spare language
and axioms, but we avoid this in order not to obscure the
ideas.

The N-quantifier Many consequences of the finite sup-
port property of FM-sets are neatly expressed in terms of
the following quantifier for ‘newness’ of atoms.

Definition 3.4. Let Cof (x) denote the FM-set ofcofinite
subsets of an FM-setx, i.e. thoses � x for whichx n s is
finite. For each formula� of the language of FM, we write

Na 2 A : �

for the formula expressing thatfa 2 A j �g is inCof (A ).

So this N-quantifier means “for all but finitely many
atomsa, : : : ”. However, the nature of the set of atoms in
VFM(A ) endows the quantifier with very special properties.
For one thing, since every FM-subsets of A has finite sup-
port, it is not hard to see thats is either finite or cofinite. So
Cof (A ) is an ultrafilter and Na 2 A : (�) commutes with
conjunction, disjunctionandnegation. More is true:

Lemma 3.5. For any formula� and list of distinct vari-
ables~x in the language of FM, consider the following for-
mulas.

8a 2 A : a# ~x) � (3)

Na 2 A : � (4)

9a 2 A : a# ~x ^ � (5)



(wherea # ~x is a conjunction of apartness formulas, one
for each variable in the list). Then in FM,(3)) (4)) (5);
and if the free variables of� are contained inf~x; ag, then
also(5)) (3) and hence in this case the three formulas are
provably equivalent in FM.

Proof. The proof makes use of the finite support property
and in particular the fact thatfa 2 A j a# ~xg 2 Cof (A ).
For the implication (5)) (3) we also need that FM satisfies
the equivariance property (2).

Remark 3.6 (Proof rules for N). One can extract intro-
duction and elimination rules for theN-quantifier from the
above lemma, provided one uses sequents tagged with sets
of possibly-free variables (a common practice in categorical
logic [20])—e.g. sequents of the form� `~x �, where� is a
finite set of formulas,� a formula, and~x a finite set of vari-
ables containing those occurring freely in� and�. Then we
can derive an introduction rule forNof the form

�; a# ~x `a;~x �

� `~x Na 2 A : �

(cf. the usual rule for8-introduction) and an elimination
rule of the form

� `~x Na 2 A : � �; �; a# ~x `a;~x  

� `~x  

(cf. 9-elimination). In these rules,a; ~x means the finite set
properly extending~x with a variablea =2 ~x.

In view of the lemma, we are justified in readingNa 2
A : � as ‘for some/any new atoma, it is the case that�’.
This simultaneous9-8 flavour of the N-quantifier seems to
exactly fit many situations where a statement about ‘fresh-
ness’ of variables is required: we choosesomefresh vari-
able with a particular property, but later on may need the
fact thatany such variable will do. We see this in subse-
quent sections, where we put theN-quantifier to work.

4. Abstracting atoms

In Section 2 we saw that�-conversion can be formulated
in terms of the two notions of permuting variables and of
the non-occurrence, or ‘apartness’, predicate. In Section 3
these two notions were lifted from the particular data type
� of �-terms to an enveloping universe of sets. So now
we can consider what ‘�-conversion of sets’ means, arriv-
ing at a new, set-theoretic notion of abstraction. By analogy
with the relation� used in Theorem 2.1 to characterise�-
conversion of�-terms, consider the following binary rela-
tion onA � VFM(A ):

(a; x) �A (a0; x0)
def
, Na00 2 A : (a0 0 a) � x = (a00 a0) � x0:

It is not hard to see that�A is an equivalence relation. We
denote the�A -equivalence class of a pair(a; x) by [a]x
and call it theA -abstractiondetermined bya 2 A and
x 2 VFM(A ). (We will see below that[a]x 2 VFM(A ).)
This is a form of ‘abstraction as information hiding’ (like
that for abstract data types [28]), since[a]x turns out to
behave like a pair(a; x) in which the identity ofa is hid-
den. However, and quite remarkably,A -abstractions also
embody a notion of ‘abstraction as function’ (analogous to
that occurring in higher order abstract syntax), as the fol-
lowing lemma shows. We writeFunFM(A ) for the subclass
of VFM(A ) consisting of unary partial functions: i.e.f 2
VFM(A ) is inFunFM(A ) if and only if it satisfies

f =2 A ^ 8x 2 f: 9y; z : x = (y; z) ^

8x; y; z : (x; y) 2 f ^ (x; z) 2 f ) y = z:

Using the easily verified fact that if(a; x) �A (a; x0), then
x = x0, together with the the ZFA axiom of Collection, one
obtains the following.

Lemma 4.1 (A -Abstractions are functions). Each A -
abstraction [a]x is an element ofFunFM(A ) and has
supportsupp([a]x) = supp(x) n fag.

Write Abs(A ) for the subclass ofVFM(A ) consisting
of all A -abstractions[a]x, asa ranges overA andx over
VFM(A ). By the lemma, eachf 2 Abs(A ) is a function;
and by construction its domain of definitiondom(f) is a
subset ofA . In fact if f = [a]x, one can show thatdom(f)
is the cofinite setfag[ (A n supp (x)), which by the lemma
is A n supp(f). Thus if f 2 Abs(A ) we can apply the
functionf to any atoma 2 A satisfyinga# f to obtain an
elementf(a) 2 VFM(A ) that we call theconcretion of the
A -abstractionf at a. An A -abstraction is in fact uniquely
determined by some/any of its concretions, since one can
prove in FM that for allf; f 0 2 Abs(A )

( Na 2 A : f(a) = f 0(a)) ) f = f 0:

Definition 4.2 (Abstraction set-former). For any FM-set
X , the FM-set ofA -abstractions of elements ofX is:

[A ]X
def
= ff 2 Abs(A ) j Na 2 A : f(a) 2 Xg:

(An application of the ZFA axiom of Collection is needed
to see that this is a set rather than a proper class; moreover
it is finitely supported, withsupp([A ]X) = supp(X).)

Thus the elements of[A ]X areA -abstractions[a]x satis-
fying a # X andx 2 X . In the rest of this paper we will
only be concerned with the case whensupp(X) = ;, in
which case the conditiona#X is vacuously satisfied. The
use of the same notation�[�] for the abstraction set for-
mer and for its elements is not ambiguous becauseA is not



an atom. Using the[A ](�) construct in combination with
cartesian product and disjoint union, we can form induc-
tively defined FM-sets that allow us to view sets of syntax
modulo�-conversionas algebraic data types inVFM(A ) of
a kind that is very close to the ‘classical’ theory inV for
syntax without binders. We give the paradigmatic example
of this, untyped�-terms modulo=�, in the next section.

5. Example:�==� as an inductive FM-set

First, let us recall a little of the theory of inductively
defined sets (for the simple case offinitary set operators).
Given a functionF mapping FM-sets to FM-sets which
is definable by a formula in FM, monotone for�, and
which preserves unions of countable ascending chains, then
the least fixed point ofF exists; we call it theinduc-
tively defined FM-set determined byF and denote it by
�X :F (X). It can be constructed by the familiar Tarski
formula:�X :F (X) =

S
n2N F

n(;).
Now it follows from Definition 4.2 that[A ](�) is mono-

tone and preserves unions of countable ascending chains of
FM-sets. Therefore we can use it in combination with other
such functions, such as cartesian product (�) and disjoint
union (+), to form inductively defined FM-sets. For exam-
ple, consider

��
def
= �X :Var�(A ) j App�(X �X) j

Lam�([A ]X): (6)

As in Section 2, here we are using a notation for dis-
joint union in which the injection functions are named
explicitly—byVar�, App�, andLam� in this case.

Theorem 5.1 (�==� as an inductive FM-set). Consider
the FM-set� of untyped�-terms, inductively defined as
in (1). Then�==�, the FM-set of equivalence classes
modulo the equivalence relation of�-conversion, is in
bijection with the inductively defined FM-set��.

Proof. Combine the proof of Theorem 2.1 with the defini-
tion of [A ](�).

Remark 5.2 (Free variables).Under the bijection of The-
orem 5.1, the set of (names of) free variables of an�-
equivalence class of�-terms is identified with the support
(in the sense of Definition 3.1) of the corresponding ele-
ment of��: see Example 5.9 below. In particular,ft 2
�� j supp(t) = ;g corresponds to the subset ofclosed�-
terms modulo=�.

Initial algebra semantics Like cartesian product and dis-
joint union, the abstraction set-former[A ](�) is the object
part of afunctoron FM-sets and functions: its action on a
functiong 2 X ! Y , is the function[A ]g 2 [A ]X ! [A ]Y

that maps eachf 2 [A ]X to the uniqueA -abstraction
([A ]g)(f) satisfying Na 2 A : ([A ]g)(f) = [a]g(f(a)).
Thus each functionF on FM-sets built up using(�)� (�),
(�) + (�), and [A ](�) is functorial; and a standard ar-
gument shows that the associated inductively defined FM-
set �X :F (X) is an initial algebra for this functor. In
other words, for everyf 2 F (X)! X , there is a unique
f 2 (�X :F (X))!X such that

F (�X :F (X))

F (f)

�X :F (X)

f

F (X)
f

X

commutes. In particular we have:

Corollary 5.3. The FM-set �==� of �-terms modulo
alpha-conversion is an initial algebra for the functorA +
(���) + [A ](�).

The usefulness of the initial algebra property of induc-
tively defined FM-sets can be increased by analysing the
nature of functions out of abstraction sets[A ]X . For ex-
ample, specifying an algebraF (X) ! X for F (�) =
A + (���) + [A ](�) amounts to giving functions

f 2 A !X g 2 X �X!X h 2 [A ]X !X

and one would like to know whenh is induced via the quo-
tient mapping(a; x) 7! [a]x from a functionA �X !X .
As the following lemma shows, the concepts of finite sup-
port and N-quantifier from Section 3 provide an answer.

Lemma 5.4. For all functionsh 2 A �X!Y in VFM(A ),
there is a (necessarily unique)h0 2 [A ]X ! Y satisfying

Na 2 A :8x 2 X :h0([a]x) = h(a; x) iff h satisfies the
condition

Na 2 A :8x 2 X : a# h(a; x): (7)

The condition (7) captures the idea that the value of the
induced functionh0 2 ([A ]X)! Y at some[a]x should be
independent of the choice ofa. The lemma specifies what
h0 does just whena is ‘fresh’, but this is enough to tell us
the effect ofh0 on any element of[A ]X , because of the way
the latter is defined.

Combining the initial algebra property of�� =
�X : A + X �X + [A ]X with the above lemma, we ob-
tain the following principle of structural recursion for�-
terms modulo�-conversion. (Compare it with the Recur-
sion Scheme of [11, Section 3.1].) A similar principle can
be derived for other inductively defined FM-sets involving
the abstraction set-former.



Theorem 5.5 (�� structural recursion). Given functions
f 2 A ! X , g 2 X � X � �� � �� ! X , and
h 2 A �X � �� !X in VFM(A ) with h satisfying

Na 2 A :8x 2 X :8t 2 �� : a# h(a; x; t) (8)

then there is a uniquek 2 ��!X such that

8a 2 A : k(Var�(a)) = f(a)

8t; t0 2 �� : k(App�(t; t
0)) = g(k(t); k(t0); t; t0)

Na 2 A :8t 2 �� : k(Lam�([a]t)) = h(a; k(t); t):

Moreover, the support ofk is contained insupp(X) [
supp(f) [ supp(g) [ sup(h).

Corollary 5.6 (�� structural induction). Given a subset
S � �� in VFM(A ), to prove thatS is the whole of��

it suffices to show

8a 2 A :Var�(a) 2 S

8t; t0 2 S :App�(t; t
0) 2 S

Na 2 A :8t 2 S : Lam�([a]t) 2 S:

This structural induction principle seems to correspond
very closely to informal inductive arguments about�-
equivalence classes of�-terms that proceed by picking rep-
resentatives and applying structural induction at the level of
abstract syntax trees, leaving mute the tedious proofs that
such choices do not affect the argument. In effect, by re-
stricting to equivariant properties (cf. (2)), FM-set theory
ensures that all those choices of representatives are made
in a way that does not affect meaning. In the rest of this
section we give some simple examples.

Example 5.7 (Capture-avoiding substitution). Givent 2
�� anda 2 A , if in Theorem 5.5 we takeX = �� and
make suitable choices for the functionsf , g, andh, we can
deduce that there is a functionsub(t; a) that is the unique
elementk 2 ��! �� satisfying

8a0 2 A : k(Var�(a
0)) = (if a0 = a then t else Var�(a

0))

8t0; t00 2 �� : k(App�(t
0; t00)) = App�(k(t

0); k(t00))

Na0 2 A :8t0 2 �� : k(Lam�([a
0]t0)) = Lam�([a

0]k(t0)):

Condition (8) is satisfied in this case because by Lemma 4.1,
a0 # [a0]t0 holds for anya0 and t0. From the above prop-
erties it follows that under the bijection of Theorem 5.1
between elementst of �� and �-equivalence classes of
�-termsM , sub(t; a) corresponds to the capture-avoiding
substitution function[M=a](�). One property of capture-
free substitution of�-terms is that the only free occur-
rences ofa in [M=a]M 0 are due to free occurrences ofa

in M . The analogue for�� of this property is the state-
ment that if a # t, then a # sub(t; a)(t0) holds for all
t0. This can be proved by structural induction ont0 by
taking S = ft0 2 �� j a # sub(t; a)(t0)g in Corol-
lary 5.6. Hence (by Lemma 3.5)Na 2 A :8t0 2 �� : a #
sub(t; a)(t0) holds for anyt 2 ��. Thus by Lemma 5.4,
(a; t0) 7! sub(t; a)(t0) induces a function[A ]�� ! �� for
eacht 2 ��. In this way we get a substitution function
� 2 [A ]�����!�� satisfying for all(f; t) 2 [A ]�����

that Na 2 A : �(f; t) = sub(t; a)(f(a)). (Cf. the substitu-
tion function� : ��� �! � in [7, Section 3].)

Example 5.8 (A size function).In Theorem 5.5, taking
X = N and suitable choices for the functionsf; g; h, we
can deduce that there is a unique functionk 2 �� ! N

satisfying

8a 2 A : k(Var�(a)) = 1

8t; t0 2 �� : k(App�(t; t
0)) = k(t) + k(t0)

Na 2 A :8t 2 �� : k(Lam�([a]t)) = k(t) + 1:

Condition (8) is satisfied in this case for the same reason as
in the previous example. By Lemma 3.5, the last property
of k above is equivalent to

8a 2 A : a # k ) 8t 2 �� : k(Lam�([a]t)) = k(t) + 1 ;

but from the last part of Theorem 5.5 we have that
supp(k) = ; (since the particularX; f; g; h that determine
k all have empty support). Therefore we can strengthen this
last defining clause fork to:

8a 2 A :8t 2 �� : k(Lam�([a]t)) = k(t) + 1:

So the formalism allows us to express very easily the prop-
erties we expect a size function to have on�-equivalence
classes of�-terms. (Compare this example with the com-
plications encountered by Gordon and Melham defining a
similar function by recursion using their axiomatisation of
�-conversion [11, Section 3.3].)

The principle of structural recursion embodied in Theo-
rem 5.5 requires us not only to specify some functions of
the correct type, but also to verify the condition (8) for one
of them. In the previous two examples, this condition is sat-
isfied simply becausea is never in the support of[a]t. Here
is a different kind of example.

Example 5.9 (Set of free atoms).It is not hard to see that
the support of a finite set of atomsS 2 pow�n(A ) is just
S itself. Hencea is not in the support ofS n fag. So in
Theorem 5.5, takingX = pow�n(A ) and making suitable
choices for the functionsf; g; h, it follows that there is a
unique functionk 2 �� ! pow�n(A ) satisfying

8a 2 A : k(Var�(a)) = fag

8t; t0 2 �� : k(App�(t; t
0)) = k(t) [ k(t0)

8a 2 A :8t 2 �� : k(Lam�([a]t)) = k(t) n fag



where in the last clause we have strengthenedNa 2 A : : :
to 8a 2 A : : : using the same argument as in the previous
example. This functionk gives a structurally recursive def-
inition of the ‘finite set of free atoms’ for elements of��.
Using structural induction (Corollary 5.6) one can show for
all t 2 �� that in factk(t) = supp(t) (cf. Remark 5.2).

Example 5.10 (Bound atoms).There is no functionba 2
�� ! pow�n(A ) in VFM(A ) picking out the ‘finite set of
bound atoms’ of elements of��, in the sense that it satisfies

8a 2 A : ba (Var�(a)) = ;

8t; t0 2 �� : ba(App�(t; t
0)) = ba(t) [ ba(t0)

8a 2 A :8t 2 �� : ba(Lam�([a]t)) = fag [ ba(t):

We cannot use Theorem 5.5 to define such a function be-
cause in this case condition (8) would requirea# fag [ S
(anyS 2 pow�n(A )), which is certainly false. Indeed, we
can argue by contradiction to see that no such function ex-
ists in VFM(A ): if it did, it would necessarily have finite
support, so picking any atomsa 6= a0 not in its support, we
would have(a0 a) � ba = ba ; thent = Lam�([a]Var�(a))
satisfiesba(t) = fag and so

fa0g = (a0 a) � fag

= (a0 a) � ba(t)

= ba(t) sincea; a0 =2 supp(ba) [ supp(t)

= fag

i.e.a0 = a, contradicting the choice ofa anda0.

The results of this section can be extended to deal with
signatures ofn-ary operators each of whose arguments is an
m-ary abstraction (forn;m � 0)—the ‘binding signatures’
considered in [7, Section 2]. An FM-set inductively defined
using a set operator given by a suitable sum of products of
A and iterations of the[A ](�) operator is in bijection with
the set of terms modulo�-conversion over such a signature.
This FM-set is an initial algebra for the functor associated
with the set operator and from the shape of the latter can
be read off principles of structural recursion and induction
like those above. Many-sorted signatures can be dealt with
using FM-sets mutually inductively defined by several such
operators.

Our approach seems rather well adapted to expressing
the ‘usual’ forms of recursion/induction for abstract syntax,
while at the same time dealing with freshness of variables
and variable renaming systematically, at the meta-level. Of
course much more needs to be done to establish the util-
ity of these FM versions of structural recursion and induc-
tion principles (we consider some possibilities in Section 7).
However, we regard the sheer simplicity of the above ex-
amples (compared with analogous examples in other for-
malisms) as a good sign!

6. Relation to presheaf models

One origin of the work presented here lies in the ‘�-
calculus’, a calculus of higher order functions and dynam-
ically created names introduced by the second author and
Stark [32, 36] (see also [17]). In [37], Stark studies a model
of the �-calculus based on one of Moggi’s ‘dynamic allo-
cation’ monads [29] in the presheaf categorySet

I , where
I is the category of finite ordinals and injective functions
between them. Crucial ingredients of the dynamic allo-
cation monad used there are the ‘object of names’, given
by the inclusion functorI ,! Set, and the shift func-
tor � : Set

I ! Set
I , given by �X(n) = X(n + 1).

These ingredients also occur in the work on modelling�-
calculus names inSetI [6, 38] and the recent work on mod-
elling variable-binding abstract syntax [7, 14], where other
presheaf categories besidesSet

I are considered.
Now, a somewhat overlooked model of the�-calculus,

mentioned in [33, Examples 4.3], is the full subcategory of
Set

I whose objects are the pullback preserving functors.
This is equivalent to a well-known topos, sometimes called
theSchanuel topos—the category of continuousG-sets for
the topological groupG = SA of permutations of a count-
ably infinite setA topologised as a subspace of Baire space:
see [18, Lemma 1.8] and [22, Section III.9]. Put more con-
cretely, and this is the point, the objects of the Schanuel
topos areSA -sets in which every element has finite support
(Definition 3.1), and its morphisms are theSA -equivariant
functions. Thus on the one hand, the Schanuel topos relates
to the FM-universeVFM(A ) much as the usual cumulative
hierarchyV relates to the topos of sets (see [19] for more on
the category theory of universes of sets); on the other hand,
the Schanuel topos is a sheaf subtopos of the presheaf cate-
gorySetI , with the inclusion sending the FM-set of atoms
A to the object of namesI ,! Set and the abstraction op-
erator[A ](�) to the shift functor�(�) mentioned above.

Both the presheaf toposes used in [7, 14] and the
Schanuel topos (and indeed many other categories equipped
with a faithful functor toSetN) support an initial algebra se-
mantics for signatures with binding. So does the Schanuel
topos, and its associated FM-set theory, have any advantage
over presheaf toposes? It is well known that toposes corre-
spond to theories in extensional, higher-order, intuitionistic
logic [20]. Unlike presheaf toposes in general, the Schanuel
topos modelsclassicalrather than intuitionistic higher order
logic; furthermore, its higher order structure (function and
power objects) is rather easy to calculate with, compared
to presheaf categories. Thus if one is looking for a single,
general-purpose setting for modelling variable-binding syn-
tax, the logic of the Schanuel topos is both a bit more power-
ful and familiar. One can view [7] as establishing, amongst
other things, a very nice categorical algebra for the de Buijn
view of variable-binding and substitution. Here however,



we are motivated more by the desire for a useful logic of ex-
plicit bound names—mainly to formalise existing common
practice, but the logic can also serve as a basis for proving
that de Bruijn-like formulations are correct with respect to
more concrete representations. Crucial to all this is the no-
tion of ‘finite support’ (leading to the N-quantifier and our
FM-set-theoretic notion of abstraction), which is present the
Schanuel toposes, but not in the presheaf toposes. We have
chosen to use a set-theoretic rather than a topos-theoretic
presentation here, because we think it is more accessible;
but the same fundamental ideas underlie bothVFM(A ) and
the Schanuel topos.

7. Further directions

Splitting the set of atoms To support syntax involving
(finitely many)different sorts of variablesone can use the
following mild generalisation of the FM-universe. Fix an
infinite setA of disjoint, countably infinite sets (of atoms),
and form a universeVFMS(A) much as in Section 3

VFMS(A)
def
= �X : (

S
A) + pow fs(X )

except that we work withG-sets (and -classes) forG the
subgroup ofSSA consisting of permutations that respect
the partitionA; soG is isomorphic to the product groupQ

A2A SA. Clearly, this affects the meaning of the apart-
ness relationa # x; and we have to replaceNa 2 A and
[A ](�) by Na 2 A and[A](�) respectively, whereA 2 A.
A corresponding generalisation of the first order theory FM
to a theory ofFraenkel-Mostowski set theory with many
Sorts of atoms(FMS) is given in an Appendix to this pa-
per. As an example of the use of FMS, here are mutually in-
ductively defined sets inVFMS(A) for the types (Type) and
terms (Term) of Girard’s system F [9] modulo renaming of
bound type variables and bound variables. The definition is
parameterised by sets of atomsT; V 2 A for type variables
and variables respectively.

Type = TyVar(T ) Term = Var(V )
j Fun(Type � Type) j Lam(Type � [V ]Term)
j All([T ]Type) j App(Term � Term)

j Gen([T ]Term)
j Spec(Term � Type):

Equivariant SOS We believe that FM-set theory will
be a useful setting for developing programming language
semantics based on structural operational semantics [34].
Syntax-directed, rule-based inductive definitions of rela-
tions quite often contain side-conditions to do with fresh-
ness of variables, and the hope is that these can be assimi-
lated and manipulated conveniently via theN-quantifier we
have introduced here. (Indeed, logic programming in the
style of Miller and Nadathur [26] involving this quantifier

may be possible.) It is also possible that the approach pre-
sented here will help extend the ‘functorial’ operational se-
mantics of [40] to encompass languages involving binders.

FM type theory An extensional set theory is by no means
the only setting in which to consider the notions of permu-
tation action and finite support (although we believe it is the
simplest place to start). We have begun to investigate what
our approach might look like in the setting of constructive
type theory [23, 30] and meta-programming [31]. For one
thing, it is evident that Definition 4.2 generalises to ade-
pendently typedversion of abstraction

[a 2 A ]X(a)
def
= ff 2 Abs(A ) j Na 2 A : f(a) 2 X(a)g

which bears the same relationship to theN-quantifier as de-
pendent function types (�) bear to universal quantification
(8). Another interesting possibility is to build information
about the apartness relationa # x into types whose set-
theoretic interpretation is

X#a def
= fx 2 X j a# xg:

This opens up the possibility of giving a decidable approxi-
mation to the apartness relation as part of a type system. It
also allows us to introduce a term-former generalising the

N-quantifier:

a : A ;�#a ` t : X#a

� ` (new a in t) : X

where�#a = x1 : X#a
1 ; : : : ; xn : X#a

n if � is the type
environmentx1 : X1; : : : ; xn : Xn. Thus, rather in the
spirit (though not the letter) of [25], one goal we are aim-
ing for is an SML-like language [27] for meta-programming
that combines user-declared data types with primitives for
atomic typesA (i.e. sorts of atoms), abstraction types[A]X ,
and apartnessX#a. A practically important part of such
a language will be pattern-matching definitions of (recur-
sively defined) functions out of such data types, using ‘bind-
ing patterns’[a]p for values of abstraction types and in
which ‘freshness conditions’ like (8) are enforced statically
by the type system. For example, given declarations

atomictype A;

datatype Alist = Nil

j Cons of A �Alist ;

datatype term = Var of A
j App of term � term
j Lam of [A]term;

in this as yet non-existent language, and given the usual dec-
laration for a list append functionappend : Alist�Alist!



Alist , we would want the following declarations of func-
tions rem (for anonymously removing an atom from a list
of atoms) andfv (for the free variables of a term)

fun rem =
f [a]Nil ! Nil

j [a]Cons(a; x)! rem([a]x)
j [a]Cons(a0; x)fa# a0g! Cons(a0; rem([a]x))
g ;

fun fv =
f Var(a)! Cons(a;Nil)
j App(x; y)! append (fv x)(fv y)
j Lam([a]x)! rem([a](fv x))
g ;

to type check, with typesrem : [A]Alist ! Alist and
fv : term ! Alist (cf. Example 5.9). Note the use of
repeated variables of atomic type in patterns (equality of
atoms is decidable!) and the use of ‘qualified patterns’ like
[a]Cons(a0; x)fa#a0g to enforce thata anda0 are distinct.
On the other hand, the declaration

fun bv =
f Var(a)!Nil

j App(x; y)! append (bv x)(bv y)
j Lam([a]x)! Cons(a; bv x)
g ;

should not type check, for the reasons given in Exam-
ple 5.10.

8. Conclusion

Fraenkel and Mostowski’s permutation model of ZFA is
over sixty years old, yet the use to which we have put it here
seems new. The idea that one might want to treat syntax up
to permutative renamings of variables is hardly original, but
the theory really takes off when one combines that idea with
the subtle notion of ‘finite support’ inherent in the Fraenkel-
Mostowski model. Using it, we introduced a useful quan-
tifier Nfor fresh names and a new set-forming operation
for name-abstraction,[A ](�), whose properties seem better
than the function spaceA! (�) which is sometimes used to
model name-abstraction. Amongst other things, we saw that
the theory of inductively defined FM-sets using this notion
of abstraction can correctly model�-equivalence classes of
variable-binding syntax, while remaining pleasantly close
to the familiar theory of first-order algebraic data types.
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Appendix: axiomatic FMS set theory

FMS is a single-sorted theory in first-order predicate cal-
culus with equality whose signature consists of a binary re-
lation2 and constantsA ;A, and whose axioms are as fol-
lows.

Axioms of ZFA

(Sets)8x; y : x 2 y ) y =2 A .

(Extensionality)8x; y =2 A : (8z : z 2 x, z 2 y))
x = y.

(Separation)8x : 9y =2 A :8z : z 2 y , (z 2 x ^ �)
(wherey not free in�).

(2-Induction) (8x : (8y 2 x : [y=x]�)) �)) 8x : �.

(Collection) 8x : (8y 2 x : �)) 9z :8y 2 x : 9w 2 z : �.

(Pairing) 8x; y : 9z : x 2 z ^ y 2 z.

(Union) 8x : 9y :8z : z 2 y , (9w 2 x : z 2 w).

(Powerset)8x : 9y :8z : z 2 y , 8w 2 z : w 2 x.

(Infinity) 9x : 9y : y 2 x ^ 8y 2 x : 9w 2 x : y 2 w.

Structure of the set of atoms

(A =
S
A) 8a : a 2 A , 9A 2 A : a 2 A.

(Disjointness)8A;A0 2 A :8a : (a 2 A ^ a 2 A0))
A = A0

(A Not Finite) A =2 pow�n(A )

‘Freshness’ property

(Fresh)8x :8A 2 A : 9a 2 A : a#A x.

Herea#A x stands for

a 2 A ^ 9S 2 pow�n(A) :8a
0 2 A :

a0 =2 S ) (a0 a) �A x = x

where the termpow�n(A ) denotes the set of finite subsets of
A and has a standard set-theoretic definition. This formula
also uses terms(a0 a) �A x for the transposition ofA-atoms
a; a0 2 A in x, which can be defined by2-recursion:

(a0 a) �A x =

8>>><
>>>:

a0 if x = a

a if x = a0

x if x 2 A n fa; a0g

f(a0 a) �A y j y 2 xg if x =2 A .


