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ABSTRACT
We study contexts (terms with holes) by proposing a ‘λ-
calculus with holes’. It is very expressive and can encode
programming constructs apparently unrelated to contexts,
including objects and algorithms in partial evaluation. We
give proofs of confluence, preservation of strong normalisa-
tion, principal typing for an ML-style Hindley-Milner type
system, and an applicative characterisation of contextual
equivalence. We explore the limitations of the calculus in-
cluding further applications, and discuss how they might be
tackled.1

Categories and Subject Descriptors: F.4.1 [Mathemat-
ical Logic and Formal Languages]: lambda calculus and re-
lated systems

General Terms: Theory.

Keywords: Calculi of contexts, Functional programming,
Binders, Lambda-Calculi, Nominal Techniques.

1. INTRODUCTION
This is a paper about contexts. We shall study them

by proposing a “λ-calculus for contexts” which we call the
Ncalculus of contexts ( Nis pronounced ‘new’). In this

calculus, contexts are terms (first-class values) and can be
passed as arguments to functions, applied to other terms,
and so on.

We prove � confluence (using results from [36]), � preser-
vation of strong normalisation with respect to the untyped
λ-calculus, � give a Hindley-Milner style type system [9] with
subject reduction, and � an applicative characterisation of
contextual equivalence (drawing on techniques in [10] and
[29]). This small library of results is chosen to make the
NEW context calculus a respectable implementation envi-
ronment because respectively � the calculus has ‘semantic

1We are very grateful to Pierre Lescanne, Laurence Tratt,
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content’ (normal forms are unique if they exist), � is ‘con-
servative’ over a familar programming language, � can be
implemented as an extension of a (toy core of) ML without
destroying the type-system, and � programs can be opti-
mised up to preserving extensional behaviour.

What are the technical design issues? A context is a
term with a ‘hole’. The canonical example in the untyped
λ-calculus is C

�
- ��� λx.-. (We use ‘ � ’ to denote syntactic

α-equality.)
A term t may be placed in the hole -, e.g. C

�
t ��� λx.t

and if t � x then C
�
x ��� λx.x. This cannot be modelled

inside the calculus by λy.λx.y because β-reduction avoids
capture. Our idea is to treat the hole as a variable X

which is stronger than x and y and for which substitution
does not avoid capture of weaker variables. For example,�
λX.λx.X � x 	 λx.x.
But now α-equivalence is a problem; if λx.X � λy.X

then
�
λX.λx.X � x 	 λy.x, giving non-confluent reductions.

Dropping α-equivalence entirely is too drastic because some
capture-avoidance, as in

�
λy.λx.y � x, should be legitimate.

Existing calculi of contexts include λm and λM [31] by
Sato et al.2 which seems closest to ours because they have
a hierarchy of variables (see below). Some other work [22,
15, 30] use a type system which may prove related to our
freshness contexts (see below) though the connections are
unclear. Finally we mention λc of Bognar’s thesis, which
also contains [7, Section 2] an essay on the issues involved in
designing context calculi, as well as an extensive literature
survey.

How does our calculus relate to the existing literature?
The central point of all calculi of contexts we know of, in-
cluding our own, is the interaction of α-equivalence with
holes, and the resulting problems with scope and ab-
straction. Solutions include clever control of substitu-
tion and evaluation order, and types to prevent ‘bad’ α-
conversions.

Technically, this paper contains yet another solution and
we are not primarily interested in how that solution works
though of course we do describe it in detail. Broadly speak-
ing, its novelty is to imports ideas from previous work by the
author and others, known under the umbrella term of ‘Nom-
inal techniques’ (notably with Urban and Pitts on Nominal
Unification [35], and with Fernández on Nominal Rewrit-
ing [21, 11]). These ideas were designed to manage α-
equivalence; crudely put, we simply applied them to a new
problem.

2We take this opportunity to thank Sato for his hospitality
in Kyoto, and for many interesting conversations.



Why do this and why make another context calculus?
First, it has been our personal belief for some time that

contexts are significantly underrated.
Our inspiration came from specific technical issues which

arise with existential variables in the theorem-proving envi-
ronment Isabelle [27], and from technical work by Pitts [29]
on (what we can slightly inaccurately call) applicative char-
acterisations of contextual equivalence. The problem with
existential variables is that the � right sequent introduction

rule
Γ � P � t �

Γ ��� y. P � y � requires us to pick a specific fresh t to make

the rest of the proof above Γ � P � t � work. This is silly (we
want to build t interactively as we construct the rest of the
proof). Therefore the designers of Isabelle introduced ex-
istential variables ?t. These resemble ‘holes’ in λ-calculus
contexts, but this is somehow disguised because they are
Skolemised over the free variables they may contain.

With Pitts’s work, we would claim that contexts — and
not terms — are the true object of study. They occur in the
definition of contextual equivalence which Pitts uses (origi-
nally due to Lockwood Morris), and again with Pitts’s no-
tion of ‘continuation’, which is actually a structured form
of a Felleisen-style evaluation context [29, Page 15]. It al-
ways seemed to us naughty to have so many contexts around
without saying what they are in some more abstract sense.

So our answer is ‘here is a calculus of contexts’. Contexts
and ‘ordinary terms’ are on an equal footing as terms in
this calculus; indeed so are substitutions and many other
things. Results about contexts and substitutions become
results about suitable relations (such as β-equivalence or
contextual equivalence) between the contexts represented as
terms in the calculus.

This is not a denotational answer in quite the same sense
as some other work (compare with Hamana [14] and possi-
bly [28]) but for many applications a calculus is just what
we want: for example Isabelle theories are encoded in Is-
abelle/Pure, which is a typed λ-calculus with a simple the-
ory of equality.

But there is more. The NEW context calculus, with its
elements of Nominal techniques and hierarchy of variables,
gives us fine-grained control of substitution. It turns out
that we can apply this to implement constructs which a
priori have nothing to do with contexts. We shall explore
notions of global state (for general references [2]), objects
with forms of in-place update [1], and interesting interac-
tions with partial evaluation [8]; in the conclusions we look
at other potential applications such as staged programming
(MetaML [26]) and logic and unification.

We are not aware of claims for such implementations made
of other context calculi. Perhaps they could implement some
or all of our examples (or not; our hierarchy of variables is
shared only with [31] and makes a great contribution to
expressivity). A different paper might try to make a fair
comparison between the different calculi (probably by trans-
lating them into ours of course!) and in so doing gain some
measure of their relative expressivities. However, we feel it is
our small library of meta-properties listed above which dis-
tinguishes our work from other context calculi. We do not
know, for example, of any other applicative characterisation
of contextual equivalence.

Therefore, our motivation writing this paper is not really
to produce a calculus of contexts even though that was our
original motivation and this may be sufficient motivation for

some readers. We aim further for an implementation envi-
ronment with good meta-properties and fine-grained control
of substitution (thanks to the use of Nominal techniques ap-
plied to other ideas already in the literature). We hope that
this calculus or something resembling it will provide a conve-
nient environment in which to implement and prove things
about other systems which benefit from fine control of sub-
stitution including the non-capture-avoiding kind.

In summary: all computation can be coded in the untyped
λ-calculus. Some questions then are: (1) can we optimise
programs, (2) can we statically analyse them, and (3) can
we prove properties of an implementation? If not, what
extended calculus allows us to do so. This paper presents
an extension of the untyped λ-calculus with constructs to
manage capture in substitution, and our examples and meta-
properties are chosen precisely to at least suggest that we
should be able to answer (1) to (3) of some useful systems
of independent interest.

Besides Nominal Techniques mentioned above, our calcu-
lus comes out of a very long tradition of calculi for studying
programming. Our calculus has explicit substitutions, see
[19] for a survey; our particular treatment of substitution is
deliberately simple-minded but still subtle because of inter-
actions with the rest of the language. We give a translation
of possibly open terms of the untyped λ-calculus which pre-
serves strong normalisation.

We do not directly import ideas from other calculi of con-
texts because our management of α-equivalence is based on
Nominal techniques with are novel to this field; we do share
the hierarchy of variables with one other work [31] and the
separation of scope and binding in a λ-calculus appears in
one other (unpublished) work we know of [33]. For our meta-
properties, we have modelled our proofs on work which we
cited above.

2. BASIC SYNTAX AND BASIC EXAMPLE
REDUCTIONS

The syntax of the context calculus is easy to con-
struct. We formally define reductions in the next section.

We suppose a countably infinite set of disjoint infinite sets
of variables A1, A2, . . . , where we write ai, bi, ci, ni, . . . �
Ai for i � 1. We say that ai has level i. The syntax is then
given by:

s, t :: � ai 	 tt 	 λai.t 	 t � ai 
� t � 	 Nai.t.

We call s
�
ai 
� t � an explicit substitution. We call λai.t

an abstraction. We equate terms up to α-equivalence on
ai in Nai.t (but not in λai.t or t

�
ai 
� t � � ). We say ‘ Nis a

binder’ (and λ and explicit substitution are not).
For the moment we ignore N(and so α-equivalence) and

concentrate on examples of the interaction of the hierarchy
of variables with explicit substitutions.

We call a variable bj stronger than another ai when j  i,
that is, when it has a strictly higher level. We say they have
the same strength when they have the same level. For exam-
ple, b3 is stronger than a1. There is no particular connection
between variables of different levels with the same name, for
example a1 and a2.

We now consider some example reductions. We write
x, y, z for variables of level 1, and X,Y, Z for variables of
level 2.



� (Ordinary) β-reduction.
�
λx.x � y 	 x

�
x 
� y � 	 y.

The explicit substitution implements β-reduction in a stan-
dard way. Here and later we colour subterms under an ex-
plicit substitution, to help visualise the brackets.

� Context substitution. In an explicit substitution
s
�
ai 
� t � consider the case s � λx.X (a λ-abstraction of

a level 2 variable by a level 1 variable), a � X, and t � x.
The intended operational behaviour is

�
λx.X � �X 
� x � 	 λx.

�
X
�
X 
� x � � 	 λx.x.

The explicit substitution moves under the λx and acts on
the X, without capture-avoidance. This kind of substitution
(implemented here as a rewrite) is called context substi-
tution or grafting.

This example demonstrates that we cannot just equate
terms up to α-equivalence, at least not blindly; if λx.X and
λy.X were equal terms, context substitution would make no
sense.

� Explicit substitutions on variables. Canonical reduc-
tions (and non-reductions) of terms of the form a

�
b 
� t �

where a and b are variables and t is any term are:

x
�
X 
� t � 	 x x

�
x � 
� t � 	 x x

�
x 
� t � 	 t X

�
x 
� t � �	

A substitution of a strong variable on a weak variable, or
two different variables of the same strength, ‘evaporates’.
A substitution of a variable by itself is a substitution. A
substitution of a weak variable on a stronger variable does
not in general reduce; we say

�
x 
� t � is suspended on X.

(The precise rules
�
σa � and

�
σ# � are introduced below, but

first we must introduce binding, and we give some more
examples before that.)

A canonical reduction illustrating the use of suspensions, is
as follows:

X
�
x 
� t � �X 
� x � 	 X

�
X 
� x � � x 
� t �X 
� x � �
	 x

�
x 
� t �X 
� x � � 	 t

�
X 
� x � .

So we can think of bj
�
ai 
� t � for i � j as a strong hole bj

with a substitution on a weaker ai waiting for it to be filled.

� Substitutions and λ-abstraction. A λ-abstracted atom
can never get substituted for, not even by a stronger substi-
tution. For example

�
λx.x � � x 
� X � 	 λx.x.

� Substitutions as terms. Substitution
�
ai 
� t � is not a term

and so cannot be made an argument of a function. Using
suspensions we can express this: for example λX.X

�
x 
� y �

encodes
�
x 
� y � as a term.

Reduction is not possible since X is stronger than x. Con-
trast this with λX.

�
X
�
X 
� y � � , which reduces in one step to

λX.y.

Define true � λx, y.x, false � λx, y.y, and Id � λx.x. Here
is a program which takes a substitution, a truth value, and
an argument, and applies the substitution or not according
to the truth value: f � λx, y, z. � yxId � z.
Here is an example of reduction using f :

f
�
λX.X

�
x 
� y � � true x 	�� y

f
�
λX.X

�
x 
� y � � false x 	 � x.

To encode substitutions for stronger variables
�
ai 
� s � (we

call these stronger substitutions), the general scheme is
λai � 1.

�
ai � 1

�
ai 
� s � � . This is the first real use of level three

variables, which are useful to encode the ‘context substitu-
tion’

�
X 
� s � as a term.

We hope this clarifies everything except for binding. We
shall now give a formal definition of the syntax and opera-
tional semantics of the context calculus, all in a block, and
then we return to the examples.

3. FORMAL DEFINITION OF THE NEW
CONTEXT CALCULUS

We inherit the definitions, notation, and terminology of
the beginning of the last section. Briefly, assume an infinity
of disjoint sets of variables ai, bi, ci, ni, . . . � Ai for i � 1 and
say that ai has level i. The syntax is:

t :: � ai 	 tt 	 λai.t 	 t � ai 
� t � 	 Nai.t.

Nis the only binder and we work up to α-equivalence be-
tween variables of the same level bound by N. So for instance

Na1.a1 � Nb1.b1 but Na1.a1 � Na2.a2. It may also be conve-
nient to allow constants, e.g. for arithmetic or truth-values.
They behave much like variables which we do not abstract
or substitute for and we tend to ignore them. Note that�
ai 
� t � is not a term.
Reduction rules are given on terms as follows:

�
β � �

λai.s � u 	 s
�
ai 
� u ��

σa � ai
�
ai 
� u � 	 u � j, cj . j � i � cj#ai 	 cj#u�

σ# � s
�
ai 
� u � 	 s ai#s�

σp � �
ait1 . . . tn � � bj 
� u � 	 �

ai
�
bj 
� u � � . . . � tn � bj 
� u � ��

σσ � s
�
ai 
� u � � bj 
� v � 	 s

�
bj 
� v � � ai 
� u � bj 
� v � � j  i�

σλ � �
λai.s � � ck 
� u � 	 λai.

�
s
�
ck 
� u � � ai#u, ck k 
 i�

σλ � � �
λai.s � � bj 
� u � 	 λai.

�
s
�
bj 
� u � � j  i�

σtr � s
�
ai 
� ai � 	 s�

Np � �
Nnj .s � t 	 Nnj .

�
st � nj � t�

Nλ � λai. Nnj .s 	 Nnj .λai.s nj � ai�
Nσ � �

Nnj .s � � ai 
� u � 	 Nnj .
�
s
�
ai 
� u � � nj � u nj � ai�

N� � Nnj .s 	 s nj � s

nj � ai means ‘nj and ai are distinct symbols’. nj � t
means ‘nj does not occur in t’. We use these conventions
silently henceforth. The intuition of a#t is ‘a cannot occur
free in t’; defining and explaining its formal meaning is for
the rest of this subsection. j in � j varies over all levels and
cj in � cj varies over all variables of that level, so the side-
condition on

�
σa � is ‘for all variables cj weaker than i, if

cj#ai then cj#u (see the end of §4.1 for further discussion).
In
�
σp � and henceforth we write

� � � �
mu � p � p � e � t as muppet,

associating application to the left (as is standard).
Many of these rules are familiar from λ-calculi of explicit

substitutions (see [19] for examples).
�
σ# � is reminiscent of

Bloo’s ‘garbage collection’ [6] and we refer the reader there
for a further discussion. The rules involving Nare scope
extrusion rules, e.g. as in the π-calculus [24].

Call a pair of a variable and a term ai#t a freshness as-
sertion, we let φ vary over them. If t � bj is a variable and
i � j it a primitive freshness assertion. Call a possibly
infinite set Γ of primitive freshness assertions a freshness
context.



Define a notion of entailment between freshness contexts
and freshness assertions by:

j  i
bj#ai

ai � bi
ai#bi ai#λai.u

bj#u

bj#λai.u

ai#s ai#t

ai#st

ai#u

ai#s
�
ai 
� u �

ai#s bj#s

bj#s
�
ai 
� u �

bj#s bj#u

bj#s
�
ai 
� u �

ai#s

ai# Nbj .s

We say a#s is entailed by Γ and write Γ � a#s, when a#s
can be derived from Γ using these rules.

Read bottom-up these are rewrite rules on (sets of) fresh-
ness assertions. They reduce assertions to a normal form Sol

which is a set of freshness contexts. For example a1#a1a1

reduces to a1#a1, and a1#b1 reduces to the empty set.
Γ � a#s holds when Sol � Γ.

Here are some examples/comments.

� Γ � bj#ai always if j  i, or if j � i but bj � ai. This
expresses the intuition that a stronger hole can never ‘occur
in’ a weaker one, and that two different holes of the same
strength are different.

� Γ � ai#λai.s. We say that λ abstracts and this expresses
a natural intuition.

� Γ � ai#s
�
ai 
� t � if Γ � ai#t. This expresses an intuition

that substitution abstracts away all ai in s.

� Γ � a1#b2c2 is derivable from Γ if � a1#b2, a1#c2 � � Γ.
This expresses the intuition that ‘if a1 is not free in b2 and
a1 is not free in c2, then a1 is not free in b2 applied to c2’.
Here b2 and c2 are stronger variables which may for example
‘become’ a1, in the sense that b2c2 may occur in a subterm
of a larger term containing substitutions

�
b2 
� a1 � .

A freshness context Γ induces a reduction relation Γ � s 	
t, we may just write s 	 t, on the syntax of the calculus.
It is given by reading the conditions ai#bj and nj#t as
Γ � ai#bj and Γ � nj#t.

Lemma 3.1 (Subject reduction for #). If Γ �
ai#s and Γ � s 	 t then Γ � ai#t.

Proof. By case-analysis on the rewrites defining s 	 t

and on the position in which the rewrite occurs in s.

# controls abstraction; what a variable can be replaced by,
and what can be done under a λ and an explicit substitution.
This is distinct from from scope (and literal binding in the
syntax), which remains relatively simple and is controlled by

N( Nis the only binder, in the traditional sense of renaming
variables). We discuss this further in the rest of the paper.

We note that
�
σ# � resembles Bloo and Rose’s ‘garbage

collection rule’ [6]. The deduction rules for # and explicit
substitutions implement a notion of unabstracted variable
which they reject [6, Remark 2.3] for reasons we seem to
avoid because of the separation of binding and abstraction.

3.1 Freshness #, α-equivalence, and N

Why is all the apparatus of # necessary; why not use � ?

The following two rewrites would be valid:

�
λx.y � � y 
� X � �X 
� x � � σλ �	 �

λx.y
�
y 
� X � � �X 
� x �

� σλ ���	 λx.
�
y
�
y 
� X � �X 
� x � �

� σa �	 � λx.x�
λx.y � � y 
� X � �X 
� x � � σσ �	 �

λx.y � �X 
� x � � y 
� X �X 
� x � �
� σa �	 �

λx.y � �X 
� x � � y 
� x �
� σλ � �	 λx.

�
y
�
X 
� x � � � y 
� x � �	

These rewrites are not confluent (and we want confluence).
The problem rewrite is the first one, where the strong vari-
able X (which contains only X in its raw syntax, and in
particular does not contain x) comes under an abstraction
by a weak variable x and is then substituted for by non-
capture-avoiding context substitution.

We use freshness assumptions to manage abstraction. Fix
some freshness context Γ and read the side-conditions φ �
� nj#u, nj#t, ai#bj , . . . � , in the definition of reduction
from the previous subsection, as meaning Γ � φ. Each
freshness context induces a different reduction relation.

By way of example, we re-consider the example reductions
above in the universal freshness context Θ ��� ai#bj 	 i �
j � , and the empty freshness context Φ �	� .

In the universal freshness context Θ the term above
rewrites as follows:

Θ � � λx.y ��
 y � X ��
 X � x � � σλ � x#X� � λx.y 
 y � X � ��
 X � x �
� σλ � �� λx. � y 
 y � X ��
 X � x � �
� σa �� λx. � X 
 X � x � � ��

Θ � � λx.y ��
 y � X ��
X � x � � σσ �� � λx.y ��
 X � x ��
 y � X 
X � x ���
� σλ � �� � λx. � y 
 X � x � � ��
 y � X 
X � x ���

� σ# � X#y� � λx.y ��
 y � X 
 X � x ���
� σλ � x#X �X �� x �� λx. � y 
 y � X 
X � x ��� �

� σa �� λx.X 
X � x ��� ��
Here X

�
X 
� x � cannot reduce (by

�
σa � ) because Θ � x#X

and Θ � x#x.
In the empty freshness context Φ,

Φ � � λx.y ��
 y � X ��
 X � x � � σλ �� � λx.y 
 y � X � ��
 X � x �
Φ � � λx.y ��
 y � X ��
 X � x � � σσ �� � λx.y ��
 X � x ��
 y � X 
X � x ���

� σλ � �� � λx. � y 
 X � x � � ��
 y � X 
X � x ���
� σ# � X#y� � λx.y ��
 y � X 
 X � x ���

� σa �� � λx.y ��
 y � x � ��
The first reduction cannot take place because Φ � y#X.

(We note in passing that we can emulate a constant with
a variable a such that b#a always.)

Is there a canonical freshness context between the ex-
tremes of Θ and Φ? We need some notation: given a set
of variables S write max

�
S � for the level of a strongest vari-

able, if such a variable exists, and min
�
S � for the level of

the weakest. For example, maxΦ � 0 and max � a2, b3 � � 3.
maxΘ is not well-defined. Given any set of variables I write
bj#I for the set � bj#ai 	 ai � I � . Write Γ � bj#I for the
assertion � ai � S. Γ � bj#ai.

A freshness context Γ has sufficient freshnesses when
for all finite sets of variables S and all i, there exists bi � S
with Γ � bi#S, and for all i 
 min

�
S � , there exists ai � S

with Γ � ai#S.



So Γ has two kinds of freshness: internally, for any finite
set we can find a variable which Γ promises is fresh for them,
but also externally we can find a variable fresh in the sense
that Γ knows nothing about its relation to S (provided the
variable is no stronger than any element of S, in which case
its freshness may be deducible from the derivation rules, e.g.
a2#a1).

It is not hard to inductively construct a Γ with sufficient
freshnesses inductively:

� Let Γ0 � � � and U0 � � � .
� Given Γl and Ul, enumerate all subsets S1, . . . , Sn of
Ul. For each Sj and i 
 max

�
Ul � � 1 choose distinct

fresh b
j
i . For each Sj and i 
 min

�
S � choose distinct

fresh aji . Let Γi � 1 � Γi � � bji#Sj 	 i, j � and let Ul � 1 �
Ul � � aji , bji 	 i, j � .

Iterate and let Γ ���
i
Γi (actually, we must take the normal

form with respect to the deduction rules for #).

Lemma 3.2. If Γ has sufficient freshnesses then for any
term t and any i there exists ai such that Γ � ai#t. Simi-
larly for a finite set of terms. We may say ai is sufficiently

fresh, in the case that the other parameters are fixed or un-
derstood.

Proof. Let S be all variables mentioned in t and choose
ai such that Γ � ai#S. It is not hard to prove by induction
on t that Γ � ai#t is derivable.

For the rest of this paper, we silently fix a context Γ with
sufficient freshnesses. Thus when we write ‘a#s’ we mean
‘Γ � a#s’. This is just the usual assumption that ‘we can
always find a fresh variable’. The hierarchy of strengths of
variables created problems which we solved with an explicit
freshness context, so we make explicit assumptions about it;
but the associated technical details work as we would expect
so we tend to retain informal practice and terminology.

3.2 Intuitive ‘facts’ and silly reductions
We might expect that if x � s then x#s. This is not true;

x#X is not true in general, only for those x and X such
that x#X is in the context.

Conversely, it is not true that if x#s then x � s, a coun-
terexample is X

�
x 
� y � . We leave it to the reader to check

the derivation of x#
�
X
�
x 
� y � � using the rules defining #.

Why do rules
�

N� � for � � � p, λ, σ, � � all use inequality

� and � , whereas rules
�
σ � � for � � � a,#, λ � use #? In-

tuitively, Nregulates α-equivalence, which has to do with
occurrences and scope, and # regulates abstraction, which
has to do with what can be substituted or moved where!
For illustration we propose silly (=non-confluent) reductions
based on (false) rules consistently using only # and only �
respectively:

�
Nx.X

�
x 
� y � � �X 
� x � � Nσ � x#X � x �� y �	

Nx.
�
X
�
x 
� y � �X 
� x � � 	�� Nx.x

This is silly, because we can α-rename the N-bound x to
some x � and (as we can easily verify) reduce to Nx � .x.

X
�
x 
� 0 � �X 
� x � � σ# � x � X	 X

�
X 
� x � 	 X.

This is silly, because we can also reduce with
�
σσ � to obtain

0.

A rule s
�

Na.t � 	 Na.
�
st � (if a � s) would be silly:

�
λx.xx � Ny.y 	 Ny.

�
λx.xx � y 	 � Ny.yy�

λx.xx � Ny.y 	 � Ny.y Ny � .y � 	 Ny, y � .yy � .
For this reason, Nremains trapped in any position where it
might be copied.

4. PROGRAMMING IN THE CALCULUS
Having defined and motivated the formal design of the

calculus, we explore its expressivity, at first with respect
to existing calculi in the literature but also with respect to
some interesting applications.

4.1 Some simple reductions
We start by seeing how some familiar reductions work:
Consider variables x1, y1, X2 (with levels 1, 1, and 2 re-

spectively; we may state levels as subscripts for the first use
of a variable, then drop them). We might expect

�
λx.s � x to

reduce to s. This is so:

�
λx.s � x � β �	 s

�
x 
� x � � σtr �	 s.

Note however that λ does not bind; does
�

Nλx.s � x reduce to
s? Here and henceforth we write Nλx.s for Nx.λx.s. The
answer is ‘yes’, but for more complex reasons. We consider
the first part of its reduction:

�
Nλx.s � x � Np � y#x	 Ny.

� �
λy.s

�
y � x � � x � � β �	 Ny.

�
s
�
y � x � � y 
� x � �

Write
�
t � x � for term substitution avoiding capture by N-

bound variables. We choose y such that y#x so we can
extend the scope of N; here we assume the context has suf-
ficient freshnesses.

Note that s
�
y � x � � y 
� x � does not in general reduce to

s
�
x � y � . A counterexample is s � X2

�
y 
� x � (X

�
y � x � � X).

y is weaker than X, so reductions stop. However:

Lemma 4.1. If the level of a is no less than that of the
other variables mentioned in s then s

�
a 
� t � 	 � s � t � a � and

as a corollary,
�

Nλx.s � x 	 � s.
Proof. By induction on the reduction rules.

We would expect
�
λx.s � t and

�
Nλx.s � t to reduce to s if x

does not occur in s. In fact, the first statement is not true!

A counterexample is
�
λx.X � y � β �	 X

�
x 
� y � . This does not

reduce further unless x#X. Of course, this is the point of
the context calculus; X is stronger than x and a substitution
may arrive from elsewhere in the term to instantiate it to
another term, such as x, unless the context prohibits this.
The second statement is true. The reductions are:

�
Nλx.s � t � Np � x#t	 Nx.

� �
λx.s � t � 	 � Nx.s

�
x 
� t �

� σ# � x#s	 Nx.s � N� � x � s	 s.

The conditions on x annotating the reductions can be met
by successive α-renamings, because the context has sufficient
freshness.

We never use the following result in this paper because
we always work with reductions of a fixed term, but it is
important because it expresses something about the sense
in which variables represent terms:



Lemma 4.2. Suppose s is a term mentioning ai whose
level (i) is no less than that of the other variables in s. Sup-
pose u is a term such that for all variables c, if Γ � c#ai
then Γ � c#u. Then if s 	 t then s

�
u � ai � 	 t

�
u � ai � .

Proof. By exhaustively checking the reduction rules.

With regards to
�
σa � , the two canonical cases are: (a)

x
�
x 
� y � σa	 y always; the side-condition is vacuous because

x and y have the same strength. (b) X
�
x 
� y � reduces if x#X

and y#X or �
�
x#X � and �

�
x#X � , but not if x#X and

�
�
y#X � . This rule is the crunch case, where name-capture

(encoded by freshness conditions) can block a substitution
actually occurring. Intuitively, a term t can only be sub-
stituted for a variable, X say, if it satisfies the intentional
conditions on use of variables which the freshness context
associates to X.

4.2 The untyped lambda-calculus
Terms of the untyped λ-calculus are given by

e :: � x 	 ee 	 λx.e.
λ binds x in λx.e. This is standard [3]. A translation into
the context calculus is given by:

��
x �� � x ��

ee � �� � �� e �� �� e � �� ��
λx.e �� � Nλx.

��
e �� .

(Recall Nλx.blah is shorthand for Nx.λx.blah.) We also as-
sume some injection from the variables in the untyped λ-
calculus to variables of level 1 in the context calculus. We
may silently assume these injections henceforth.

Since λ does not bind in the context calculus we need
an explicit N. Otherwise, the translation is as one would
expect. We omit the operational semantics e � e � of the
untyped λ-calculus; a simulation result is easy to prove:

Lemma 4.3. If e � e � then �� e �� 	 � �� e � �� .
Multiple reductions 	 � , because the context calculus is
an explicit substitution calculus. The proof is routine but
subtle for reasons similar to the issues discussed in the last
subsection. We use the fact that all variables in

��
e �� have

level 1, and the corollary of the previous subsection.
Another correctness result is:

Lemma 4.4 (Preservation of strong normalisation).
If e is any (possibly open) untyped λ-term then e has a nor-
mal form if and only if

��
e �� does.

Proof. Confluence of the untyped λ-calculus means that
we can choose a strict left-to-right � -reduction strategy and
be confident of arriving at the normal form if it exists. This
particular rewrite strategy is easily simulated by the context
calculus, one β-reduction corresponding to one instance of�
β � followed by other rules (other reduction strategies can

be less obvious because of the particular form of
�
σp � ). It

is easy to verify that if e is a normal form (has no valid β-
reducts) then

��
e �� has no valid instances of

�
β � . Finally, the

reductions of the context calculus without
�
β � are strongly

normalising.

4.3 The qν-calculus
Baro and Maurel’s qν-calculus [33] shares the context cal-

culus’s unusual feature of spliting λ into a binder ν and an
abstractor q. (We are not aware of this idea anywhere else in
the literature except for our work with Fernández on exten-
sions of Nominal Rewriting [11].) This translates perfectly
into the context calculus, with ν mapping to Nand q to λ.

4.4 Records
Say a record is a term of the form bj

�
a1
i1 
� t1 � �����

�
anin 
� tn �

where j  ik for 1 
 k 
 n. In words, a record is a set of
substitutions suspended on a ‘big hole’ bj .

Consider variables X2, l1, and p1, and terms tl, tp (think
of them as ‘data’). For convenience drop the subscripts on
variables, a convention we shall use silently hence-
forth.

So R � X
�
l 
� tl � � p 
� tp � is a simple record, we say it has

two data elements tl and tp which are stored at l and p

on X. Call the term Nλa3.a3

�
X 
� l � record lookup at l

and Nλa3.a3

�
X 
� X � l 
� t �l � � record update at l.

We observe the following reductions:

� Nλa3 .a3 
 X � l � � R � β ��
Na3.a3 
 X � l ��
 a3 � R �

� σσ � , � σa �� � Na3.R 
 X � l � � σσ �� � Na3.l 
 l � tl 
 X � l ����
 p � tp 
 X � l ���
� σa � , � N# �� � tl 
 X � l � .

We leave it to the reader to verify similar reductions for
record update.

So record lookup at l is a term which, when applied to a
record, almost retrieves the data element — except for that
troublesome

�
X 
� l � . We call this name capture.

If we suppose for the sake of argument that X#tl, then we
can use

�
σ# � to drop the troublesome substitution. There

are two ways of looking at this: either X#tl is a desirable
feature, or an undesirable restriction.

To avoid name capture it is not enough to insist that X
not occur in tl and tp. For example suppose tl � O4. Then
the substitution

�
O 
� X � may arrive from the outside con-

text, transforming tl into X! Of course we can simply insist
that X#tl be provable, but there is also a more elegant way:

We can call a R � � NλX.X
�
l 
� tl � � p 
� tp � (say X is pro-

tected). Then protected record lookup at l is encoded
by Nλa3.a3l and record update by Nλa3. NλX.a3

�
X
�
l 
� t �l � � .

Then the variable X is bound by a Nand will avoid capture
(assuming, of course, that X does not actually occur in the
syntax of tl when R � is created).

More sophisticated programming with records is possi-
ble, for example in-place update. Suppose the calculus
contains basic arithmetic and consider X

�
l 
� 1 � , a simple

record 1 stored at l on X. We can apply the substitution�
X 
� X � l 
� l � 1 � . The reader can verify the reduction

�
X
�
l 
� 1 � � �X 
� X � l 
� l � 1 � � 	 � X � l 
� l � 1 � � l 
� 1 �

— the l in l
�

1 is carried by the strong substitution for X
under the weak substitution

�
l 
� 1 � . This does not reduce

further as-is, but a later lookup for l will return 2. Thus
Nλa3.a3

�
X 
� X � l 
� l � 1 � � implements a command ‘increment

the value stored at l’. This term clearly relies on not using
protected records, since X is free in it (later, we show how
to obtain the same effect for protected records).

We call this ‘in-place update’ because to increment l we
do not build a new record which is a copy of the old one
only with an incremented value; we actually directly modify
the original item of data. This is significant from an imple-
mentational standpoint. In full generality we can replace X
by any term we wish.

These constructions and our notation should remind us of
objects in the sense of ‘object-oriented programming’. First
we consider global state, then we return to records to gen-
eralise them to objects.



4.5 Global state (with calculus)
Consider an untyped λ-calculus with general references.

Terms are generated by the grammar

e :: � x 	 !l 	 l : � e 	 Nl.e 	 skip 	 ee 	 λx.e.
Here l is drawn from a set of location variables and x from
a set of program variables. The intended semantics of !l
is ‘the value which the global state associates to l’, of l : � e
is ‘set l to e in the global state’, and of Nl.e is ‘allocate a
fresh local location (with some unspecified or default value
associated) and evaluate e in the extended state’. The rest
is standard as for the untyped λ-calculus.

This calculus is roughly similar to others in the literature,
for example L [2, Fig. 1 and Fig. 2] and to ReFS [29, Fig. 1
and Fig. 4]. The focus of study for L is a fully abstract game
semantics; that of ReFS is how to prove contextual equiva-
lences between programs. Both L and ReFS are typed. For
brevity we have considered an untyped calculus.

[2] contains a construction of the Y combinator using gen-
eral references in a typed system, thus obtaining the power of
recursion. Therefore the absence of types does not make the
calculus above obviously more powerful than L, though it is
more powerful than ReFS, which has recursion but integer-
only references.

An encoding in the context calculus is given as follows:
Fix a level 3 variable W, a level 2 variable S, and a level
1 variable r. Continuing the discussion of records above,
write t.l for t

�
S 
� l � . Write t.l : � s for t

�
S 
� S

�
l 
� s � � . (In

particular, we write W.r for W
�
S 
� r � .)

��
x �� � NλW.W.r : � x ��

!l �� � NλW.W.l��
l : � e �� � NλW.

�
W.l : � e � .r : � � ��

skip �� � NλW.W.r : � �
��
λx.e �� � NλW, x.

��
e �� W��

ee � �� � NλW.
��
e �� � � �� e � �� W � .r : � � � � � �� e � �� W � .r �

The definitions above faithfully simulate the reductions we
would expect of a language with references, and in particular
those from [2], though we have no space to give them.

The reader may have noticed that our interpretation of
global state is a ‘state transformer’;

��
e �� is a function which

transforms states into other states:

4.6 Global state (with state-transformer)
As observed by Moggi [25], monads can model state in

a purely functional setting. Following [18], and continuing
notation from the last subsection, we define macros:

newVar � Nλx,W. Nl.W.l : � x
readVar � Nλl,W.W.r : � �W.l �
writeVar � Nλl, x,W.

�
W.l : � x � .r : � �

runST � λP. NW.
�
PW � .r

For detailed explanations see [18, §2.2, 2.4] and [17, 16].
Intuitively, newVarx takes a state W (represented by a big
hole!), allocates a new reference l in it, assigns l to x, and re-
turns the new state. readVarl takes a state W and extracts
the value assigned to l to the distinguished result record
r. writeVar takes a reference l and a value x, and given a
state W returns W with l allocated to x. If x evaluates to
some term t containing readVar

�
l,W � then l will be linked

to the old value of l, before writeVar (this is not worthy of
comment in [18] because the types make it quite clear how
states are passed around). Finally, runST takes a program
P , applies it to a fresh empty state, and returns the result.

4.7 Objects
We propose terms for method invocation and method up-

date which behave like constructs of the same name in the
imp-ς calculus of Abadi and Cardelli [1]. For brevity we
must assume the reader has some familiarity with it.

� Call NλO3, l1.O3O3l1 method invocation. Write O.l
for it applied to terms O and l.

� Call NλO3, P3. NλS3, Y2. � O3S3

�
Y2

�
l1 
� � P3S3 � � ��� method

update (at l) and write O.l � P for it applied to terms
O and P .

To see how these definitions relate to daily life and in par-
ticular to imp-ς say a term t is an (Abadi-Cardelli style)
object when it has the form

NλS3, X2.
�
X2

�
l
1
1 
� s1 � ����� � l1n 
� sn � � .

We have typeset the levels of the variables li as superscripts
and not subscripts. S may occur in the syntax of the si and
plays the rôle of the self parameter in [1]. We call the terms
si the data.

Consider t � NλS,X.X
�
p 
� S � � q 
� 0 � . Then t.p �

�
NλO, l.

�
OO � l � tp 	 � ttp

	 � NS,X.
� �
X
�
p 
� S � � q 
� 0 � � � S 
� t � �X 
� p � �

	 � NS,X.
�
X
�
p 
� t � � q 
� 0 � �X 
� p � � 	 � t

Similarly, t.q 	 � 0. For the same t, consider
�
t.p ��� � NλS. � p, p � � 	 � NλS, Y.tS

�
Y
�
p 
� � p, p � � �

	 � NλS, Y.
�
Y
�
p 
� � p, p � � � p 
� S � � q 
� 0 � �

We can verify that
� �
t.p ��� � NλS. � p, p � � � .p 	 � � t, t � .

Similarly,
� �
t.q ��� � NλS.q

�
1 � � .q 	 � 1.

Recalling the discussion of records above, we have a notion
of protected record with a ‘self’ parameter with implemen-
tations of method invocation and update. Note a technical
feature of our presentation is that S the self parameter is
abstracted at top level, and not in every data item, for ex-
ample NλX.X

�
p 
� NλS.sp � , which would be more similar to

imp-ς. Both ways are possible in our calculus and our choice
seemed the simpler.

Note that imp-ε is a purpose-built abstract machine with
a strong notion of global state whereas the context calculus
is a purely functional rewrite system (so: no state and no
control of evaluation order). So we have not ‘implemented
imp-ε’. We have shown that some of the behaviour it was
designed to study exists in the context calculus. And this in
a strong sense that for example a term ‘method invocation’
exists which when applied to a record s and a location l ob-
tains in a suitable sense the data stored at l in s. There is no
need to use a family of macros encoding ‘method invocation
for s at l’ for each s and l.

We could continue with dynamic rebinding and mustering
[5, 10] or modules and linking [20]. But now for something
completely different:

4.8 Partial evaluation
Partial evaluation seeks strategies to optimally specialise

code when some of the parameters are known. If s and
t are programs (closed terms) then partial evaluation can
be viewed as the search for algorithms to efficiently (in a
suitable sense) compute an optimal (in a suitable sense) term



u which is equivalent (in a suitable sense) to st (s applied
to t).

See [8] for a short but efficient survey of this huge field.
The context calculus may have something to contribute; we
use an example adapted from [8, §6.1]. Write

if � λa, b, c.abc true � λab.a false � λab.b
not � λa.if a false true.

in the untyped λ-calculus. It is easy to verify β-equivalences
showing these terms model truth values in a suitable sense.
Now suppose we want to calculate

s � λf, a.if a � f a � a specialised to s not.

A näıve method β-reduces snot and obtains a term β-
equivalent to λa.if a

�
not a � a — a more intelligent method

with access to a type system and which performs static anal-
ysis of dynamic values, may recognise that the program will
always return false.

Now choose level 1 variables a, b and level 2 variables and
B,C and define context calculus terms

true � λab.a false � λab.b
if � λa,B,C. a � B � a 
� true � � � C � a 
� false � �

not � λa.if a false true.

Here B and C are variables which just happen to be stronger
than a. This enables to directly encode in the term knowl-
edge we have about execution flow, e.g. (very informally)
that if we get to B, a must equal true.

If we want to partially evaluate

s � λf, a.if a � f a � a specialised to s not.

we can näıvely reduce to obtain

s not
� � λa.a � � notB ��
 a � true ��
 B � a � � � C 
 a � false ��
 C � a � �� � λa.a � � nota ��
 a � true � � � a 
 a � false � �� � λa. � a false false � .

This is more efficient and with types a must be true or
false so the term can be specialised to false by standard
techniques. So with strong variables and explicit substitu-
tion we ‘suspend information’ about a on B and C.

5. CONFLUENCE
We use an attractive result in Van Oostrom’s thesis [36,

Thm 2.3.5], but we need some notation to state it.
Take X a set and 	 � X � X a reduction relation on

it. In connection with X we shall always write r � � x 	 y �
and s � �

x 	 z � for pairs in 	 . Take � a well-founded
partial order on reductions r � s. We write r � s when
r � s and s �� r, and r � s when r � s and s � r.

Call a sequence c1 � �
x1 	 x2 � , c2 � �

x2 	 x3 � , . . . ,
cn � 1 � � xn � 1 	 xn � , a chain and write it namelessly just

as x 	 � y (n may equal 0). In the case that the chain has

at length at most one (so n 
 1) we write x 	�� y.
When ci � s for all elements of the chain, we write�
x 	 � y ��� s. To assert the existence of such a chain, we

write x
�
s	 � y. Similarly for � and � . When there is some

pair r and s of reductions such that at least one of ci � r

or ci � s always holds, we write
�
x 	 � y �	� � r, s � , and to

assert the existence of such a chain we write
�
x

��

r,s �
	 � y � .

Given x and z, to assert the existence of two chains

x
φ

	 � y and y
ψ

	 � z (satisfying conditions φ and ψ as dis-

cussed above) for some y, we write namelessly x
φ

	 �
ψ

	 � z.
Call a pair r � �

x 	 y � and s � �
x 	 z � a local di-

vergence, and call a pair of chains y 	 � u and z 	 � u a
convergence

Theorem 5.1 (Van Oostrom). Suppose for every
pair of local divergences r � �

x 	 y � and s � �
x 	 z �

there exists a convergence of the form y

�
r	 �

s	 �
��

r,s �
	 � u

and z
�
s	 �

r	 �
��

r,s �
	 � u. Then 	 is confluent.

The partial order we impose on reductions is as follows: In-
stances of. . .

� � σσ � are ranked according to the size of s:

s
�
a 
� u � � b 
� v � �

σσ �
	 � s � b 
� v � � a 
� u � b 
� v � ���

� s, s � � a 
� u � � b 
� v � �
σσ �
	 � � s, s � � b 
� v � � a 
� u � b 
� v � � .

� � σλ � and
�
σλ � � are ranked according to the size of the con-

text in which they occur:

�
λa.
�
s
�
c 
� u � � � � d 
� v � �

σλ �
	 � λa. � s � c 
� u � � d 
� v � ���

�
λa.s � � c 
� u � � d 
� v � �

σλ �
	 � � λa. � s � c 
� u � � � � d 
� v �

� � σp � are ranked according to the size of ait1 . . . tn.

� � β � , � σa � , � σ# � , and
�
σtr � , are ranked together inversely

according to the size of the context in which they occur:

� s 
 b � a 
 a � u ��� � t � σa �� � � s 
 b � u � � t � � st ��
 b � a 
 a � u ��� � σa �� � � st ��
 b � u �
� �

Np � , � Na � , � Nσ � , and
�

N� � , are ranked according to the
size of the context in which they occur. For example,

� Na.s � t � Np �� � Na. � st ��� u 
 b ��� Na.s � t � � Np �� � u 
 b � Na. � st ���
� � is reflexive; s � s. Everything else is incomparable:

a 
 a � � λb.s � t � � σa �� � � λb.s � t �� a 
 a � � λb.s � t � � β �� � a 
 a � s 
 b � t ��� �
The proof is now by the theorem above, verifying that every
divergence has a suitable convergence. When closing a diver-
gence involving scope-extrusion for N,

�
Na.s � t 	 Na.

�
st �

say, the side-condition a � t does not ensures a#t. However
we may α-rename to some a � such that a �#t; we assumed
the context has enough freshnesses so this can be done.

Let � be the transitive symmetric reflexive closure of 	 .

Corollary 5.2. � does not relate all terms to all other
terms (we say the calculus is consistent).

Proof. If s and t are two terms and s � t then by con-
fluence there exists some u with s 	 u and t 	 u. To
prove consistency, it suffices to exhibit two different nor-
mal forms; for example λa1.a1 and λa2.a2 (or, if the reader
prefers, λa1, b1.a1 and λa1, b1.b1).



6. HINDLEY-MILNER TYPES
Some basic motivation: a type system is a logic (often a

decidable logic) on terms, which allows us to reason on terms
without having to evaluate them. For example, in ML if a
term types has type integer, by Subject Reduction the term
will always have type integer no matter how we evaluate it,
and if it reduces to a normal form that normal form will
be an integer. So there is no ‘one’ type system; it depends
what properties we are interested in.

Hindley-Milner typing [9] is a simple and successful poly-
morphic type system which underlies ML. As such it is both
a ‘working (functional) programmer’s’ tool and a starting
point for more complex schemes. If the context calculus
interacts well with it, then it is that bit less difficult to im-
plement, e.g. as an extension of ML.

Fix infinitely many type variables α, β � TyVar. Types
and type schemes are defined by:

τ :: � α 	 � τ, τ � 	 τ � τ σ :: � τ 	 � α. σ.
Let a type substitution, we generally write S or T , be a
function from type variables α to types τ such that Sα � α
for all but finitely many α. Type substitutions act on types
in the standard way. Write τ � σ when σ � � α1. ����� � αn. τ �
(we shall just write σ � � α. τ here and τ � Sτ � . Also write
tyv τ for the type variables appearing in τ . Write Γ,∆ for
(finite) type contexts in the standard sense.

Then typing rules are as follows:

x : σ � Γ τ � σ

Γ � x : τ

Γ, ai : τ � s : τ �
Γ � λai.s : τ � τ �

Γ � s � : τ � Γ, ai : � α. τ � � s : τ α � tyv τ ��� tyv Γ

Γ � s � ai 
� s � � : τ

Γ, nj : α � s : τ nj , α � Γ

Γ � Nnj .s : τ

Γ � s : τ � τ � Γ � t : τ

Γ � st : τ �
Lemma 6.1 (Weakening for type judgements). If

Γ � s : τ then Γ,∆ � s : τ .

Proof. By induction on the derivation.

Theorem 6.2 (Soundness). If Γ � s : τ and s 	 s �
then Γ � s � : τ .

Proof. We exhaustively check all rules for 	 (we con-
sider just two cases).

Suppose Γ � �
λnj .t � � ai 
� u � : τ � τ � is derivable. By

following the derivation rules we see that

Γ � u : τ � and Γ, ai : � α. τ � , nj : τ � t : τ �
must be derivable, where α � tyv τ � � tyv Γ. Without loss of
generality we rename elements of α to be disjoint from tyv τ .
It is now not hard to derive Γ � λnj .

�
t
�
ai 
� u � � : τ � τ � ,

using weakening for type judgements above to weaken Γ �
u : τ � to Γ, nj : τ � u : τ � .

Suppose
�

Nnj .s � t 	 Nnj .
�
st � and Γ � � Nnj .s � t is deriv-

able. Then for some τ � , Γ, nj : α � s : τ � τ � and Γ � t : τ ,
where α � Γ. It is now easy to derive Γ � Nnj .

�
st � : τ � .

We use the following technical lemma in the theorem
which follows:

Lemma 6.3. If Γ � s : τ then SΓ � s : Sτ .

Proof. By induction on the derivation of Γ � s : τ .

Theorem 6.4. For all Γ and s there exists a pair
�
S, τ �

such that S � Γ � s : τ � if and only if
�
S � , τ � ��� � S, σ � .

Proof.
�
S, τ � is calculated by the following algorithm —

the rules are read bottom-up, and we write Γ � ? s for the
pair

�
S, τ � which is being calculated:

�
Γ, ai : α � ? s � � � S, τ ��

Γ � ? λai.s � � � S, Sα � τ ��
Γ � ? s � � � S, τ � S � � mgu � S � τ, τ � � α ��
SΓ � ? s � ��� � S � , τ � � α � S, S � ,Γ, s, s ��

Γ � ? ss � � � � S � S � S, S � α �
�
Γ � ? s � ��� � S � , τ � � α � tyv τ � � tyv � S � ,Γ ��
S � Γ, ai : � α. τ � � ? s ��� � S, τ ��

Γ � ? s
�
ai 
� s � � � � � SS � , τ ��

Γ, ai : α � ? s � � � S, τ � α � Γ
�
Γ � ? Nai.s ��� � S, τ �

ai : � α. τ � Γ

Γ � ai : τ

We prove by induction on the syntax of s that for all Γ, if�
Γ � ? s � � � S, τ � and α � tyv τ � tyv � SΓ � then

�
S, � α. τ � is

a principal solution to
�
Γ � ? t � .

The case t � ai . . . is simple.
Suppose t � ss � . . . is complex but standard straight out
of [9] .
Suppose t � Nai.s Let

�
S, τ � and α be as in the inference

rule, so that SΓ, ai : α � s : τ . Suppose TΓ � Nai.s : µ.
Following the typing rules, TΓ, ai : α � s : µ. By the
universal property of

�
S, τ � , T � US and µ � Uτ for some

U . The case t � s � ai 
� s � � is also simple.

In conclusion, the type system is almost completely stan-
dard Hindley-Milner polymorphic types. The typing rule
for explicit substitutions is identical to that of ML let-
statements, so we are justified in viewing the explicit sub-
stitution as a let, and viewing the context calculus as an
extension of a core of ML with a hierarchy of context vari-
ables (and a separation of abstraction and binding).

7. APPLICATIVE CHARACTERISATION
OF CONTEXTUAL EQUIVALENCE

It is interesting to ask what an appropriate theory of con-
textual equivalence between programs is, since our system
has programs which are contexts.

7.1 Programs, contexts, evaluations, and
equivalences

It is convenient to introduce a constant
�

. a#
�

always
and

�
engages in no reductions (e.g.

�
s is a normal form

for all s).
Call a term s with no free variables a program. λx.x is

not a program, and Nλx.x and Nx.x are. (Recall: we write
Nλx.s for Nx.λx.x.)

If s is a program write s � when s 	 � �
and say s

evaluates.
Say C is a context when (a) C is a program and (b)

C � Nλdl.D where dl is stronger than all other variables in
D. We may abuse notation and also call D a context.

For example NλX2.X2, Nf1. NλX2.λf1.
�
f1X2 � X2, and

NλX2.
�

are contexts. λX.a1 and λX2.X2 are not a con-
texts since they are not closed. NλX2. NλY2.Y2X2 is not a



context because Y2 has level 2 and so does X2, so X2 is not
strictly stronger than Y2.

An equivalence relation is a transitive symmetric re-
flexive relation. Call an equivalence relation X on programs
contextual (or a congruence) when

� s, t. s X t 	 � C. Cs X Ct � s, t. s X t � s � 	 t �
Here C varies over contexts. Write � ctx for the greatest con-
textual equivalence, which (abusing notation) we call con-
textual equivalence. We discuss this definition below.

Call an equivalence relation P on programs applicative
when

� s, t. s P t 	 � u. su P tu � s, t. s P t � s � 	 t � .

Here u varies over programs. Write � ap for the greatest ap-
plicative equivalence and abuse notation calling it applica-
tive equivalence.

The main result of this section is

Theorem 7.1. � ctx and � ap are equal.

. . . but we need some technical machinery to prove it:

Lemma 7.2 (Technical lemma). Write s � t when s
and t are related by the transitive symmetric closure of 	 .
Then � � � ap and � � � ctx.

Also,
�
s1 . . . sn � ap �

t1 . . . tn always, for n  0.

Proof. Suppose s � t. By confluence, su � if and only
if tu � , and similarly for Cs and Ct. The second part follows
from the observation that

�
s1 . . . sn � is impossible unless

n � 0.

Note that when we define � ctx we consider C applied to
s. From the first part of the technical lemma above and
from the definition of context, this is clearly equivalent to
a definition in more traditional form D

�
dl 
� s � . In the proof

below we tend to use traditional notation of D
�
dl 
� s � rather

than
�
λdl.D � s.

7.2 Proof that � ctx equals � ap
Proof ( � ctx equals � ap). It is easy to show that � ctx

implies � ap.
Conversely suppose s � ap t. We work by induction on the

tuple
�
ocD, nfD, siD � where

� ocD is the number of occurrences of dl in the normal
form of D and ω otherwise (=the first uncountable
ordinal; if D has no normal form there will be nothing
to prove),

� nfD is the least number of 	 -reductions to reduce D
to its normal form and ω otherwise, and

� siD is the size of D,

proving that

� � Nas.D
�
dl 
� s � , Nas.D

�
dl 
� t � � 	 D, dl, as �

is a contextual relation, where as varies over possibly empty
lists of variables no stronger than dl. We work by cases on
the form of D.

In the the cases below we may implicitly use the first part
of the technical lemma above, along with confluence and the
inductive hypothesis, to suppose that D is in 	 -normal

form. We also silently strip leading Ns, writing for example
dl for Nas.dl.
Suppose D � dl. Then dl

�
dl 
� s � � s � ap t � dl

�
dl 
� t � .

We use the first part of the technical lemma above and the
fact that � ap is by construction an equivalence.
Suppose D � �

λnj .D � � . Then D
�
dl 
� s � and D

�
dl 
� t �

cannot evaluate to
�

so there is nothing to prove.
Suppose D � D � D � , and suppose dl occurs in D � and
D � . We reason as follows:�

D � D � � � dl 
� s � �
�
D � � dl 
� s � � � D � � dl 
� s � �

� ap �
D � � dl 
� t � � � D � � dl 
� s � �

�
�
λx1.x1D � � � dl 
� s � � D � � dl 
� t � �

� ap �
λx1.x1D � � � dl 
� t � � D � � dl 
� t � �

�
�
D � D � � � dl 
� t �

Here x1 is chosen fresh. We use the inductive hypothesis for
D � and λx1.

�
x1D � � , both of which have fewer occurrences

of dl then D � D � . Then D
�
dl 
� s � � ap D � dl 
� t � follows using

the technical lemma and the fact that � ap is by construc-
tion an equivalence and also closed under application on the
right.
Suppose D � D � D � , and suppose dl occurs in D � but
not D � . We reason as follows:�

D � D � � � dl 
� s � �
�
D � � dl 
� s � � D �

� ap �
D � � dl 
� t � � D �

�
�
D � D � � � dl 
� t �

Suppose D � D � D � , and suppose dl does not occur
in D � and may or may not occur in D � . Then D �
is closed. If D � is a λ-abstraction and D � D � reduces with�
β � so we use the inductive hypothesis. Otherwise, D � D �

cannot ever evaluate and there is nothing to prove.
Suppose D � D � � nj 
� D � � . If this is not a normal form,
we reduce and use the inductive hypothesis. If this is a
normal form we reason by cases. If dl occurs in D � and
D � , or in D � and not in D � , we can proceed as we did for
applications above.

Suppose dl does not occur in D � and does occur in D � .
We have supposed this is a normal form, so (checking cases)
it must be that:

� D � � λe.E for some e and E, where e#D � does not
hold but e#nj does (so

�
σλ � does not apply). Then

D � � nj 
� D � � � dl 
� u � cannot possibly evaluate to
�

for any u.

� D � � Ne.E, where e#D � does not hold but e#nj does.
Since Nbinds, e can always be renamed to some atom such
that e#D � does hold. Therefore, this is not a normal form.

� D � � nj and for some e, e#D � does not hold but e#nj
does.

dl is stronger than nj and because nj is assumed bound by
a top-level Nwhich we silently omitted, we can assume that
nj#dl does not hold. Then for u � � s, t � we can reduce as
follows:

nj
�
nj 
� D � � � dl 
� u � � σσ �	 nj

�
dl 
� u � � nj 
� D � � dl 
� u � �

� σb �	 nj
�
nj 
� D � � dl 
� u � � .

Recall that s and t are both closed so � a. a#s and � a. a#t.
By the technical lemma below, e#D � � dl 
� s � if and only if
e#D � � dl 
� t � . Write u for s and/or t. If e#D � � dl 
� u � do
not hold then nj

�
nj 
� D � � dl 
� u � � do not reduce for u � � s, t �

and there is nothing to prove. If e#D � � dl 
� u � do hold then



nj
�
nj 
� D � � dl 
� u � � 	 D � � dl 
� u � . D � is in normal form,

has the same number of occurrences of dl as nj
�
nj 
� D � � , and

is strictly smaller. So we use the inductive hypothesis.

Note how the most fiddly case is nj
�
nj 
� D � � , which might

look ‘simplest’. But of course, this is the crunch case, where
calculation actually gets done.

Lemma 7.3 (Technical lemma). Suppose d is a vari-
able and s and t are terms. Suppose a#s if and only if a#t
for all variables (a variable is fresh for s if and only if it is
fresh for t). Then a#E

�
e 
� s � if and only if a#E

�
e 
� t � , for

all terms E and variables e.

Proof. By routine induction on the syntax of E.

It may be that this result can be ‘lifted’ to calculi trans-
lated into the context calculus. We only need check that
at points in the proof above where we convert contexts into
applicative contexts, every manipulation keeps us within the
image of the translation. We have in mind results similar
to those by Pitts [29] characterising contextual equivalence
for languages with global state, or perhaps analogous results
for MetaML (see the Conclusions). We must defer this for
a later paper.

8. CONCLUSIONS AND FUTURE WORK
Our NEW calculus of contexts is a little different, be-

cause of its freshness contexts and separation of abstraction
(λ) and binding ( N) — but it is not so complicated and has
standard (and nontrivial) meta-properties motivated in the
introduction. We have programmed interesting things in it
including of course contexts, but also objects, general refer-
ences, and we have made some observations about tracing
values variables must have as a construction encoded di-
rectly in terms, which we applied to partial evaluation. We
do not believe that this exhausts the possibilities.

We now explore what we cannot do in the calculus, since
it is a prototype and there is plenty of ways to extend it.

The Ncontext calculus can express ‘s with x substituted
for t’ as s

�
x 
� t � ; this is a primitive of the calculus. We can

abstract over s and t to obtain NλP,X.X
�
x 
� P � (X stronger

than x, and P stronger thanX); call this term substitution

for x, because
�

NλP,X.X
�
x 
� P � � tx 	 � s � x 
� t � . However,

we cannot abstract over x;

�
NλP,X, x.X

�
x 
� P � � tsy

x,P,X � t,s,y
	 � Nx,P,X.X

�
x 
� P � � P 
� t � �X 
� s � � x 
� y �

	 Nx,P,X.X
�
x 
� t � �X 
� s � � x 
� y �

	�� Nx.s
�
x 
� t � � x 
� y �
� σ# �	 Nx.s

�
x 
� t � � σ# � , � N� �	 s.

This is not the intended operational behaviour. This is no
surprise: variables can be substituted for at any time, so it
should not possible to pass a variable as a first-class value.
However we believe things are not quite so clear-cut now be-
cause of the context Γ, into which we already put assertions
such as a#X (X is a hole that should not contain a). We
may be able to also place assertions such as vara, meaning
‘a is a variable’. If that seems far-fetched, the reader can
look at [12] where the author carries out a similar exercise
to the one described in the context of first-order logic.

The Ncontext calculus cannot express ‘substitute all vari-
bles of level 1 for blah in s’, which we might write as
s
� � 
� blah � . This idea appears in work by Dami [10] on

dynamic binding. We do believe that our context calcu-
lus could have something to say about dynamic binding and
linking, but we leave that for future work.

Now we recall the problem of implementing proof-search
in first-order logic. The sequent right-introduction rules for
� and � are [4]:

Γ � P � y 
� x �
Γ � � y. P

Γ � P � y 
� t �
Γ � � y. P

Here x � Γ, P and t is any term. This can be a problem, for
example for the design of a theorem-prover such as Isabelle
[27], since it may become apparent only further up in the
proof-tree (if at all) which t is appropriate. Isabelle uses,
instead of t, an existential variable which behaves much
like a level 2 variable only function-application is used to
control scope.

We can certainly model existential variables using vari-
ables of level 2; for example � ?t. P � ?t � is modelled by a term
of the form � λX.PX where � is some constructor. Substi-
tutions on X can be discovered deep in a proof, e.g. when
we arrive at a leaf Γ � X � 1, and the substitution can be
passed upwards and applied directly to the proof-state as a
whole to specialise X. However, there is no way to write
a unification algorithm in the Ncontext calculus precisely
because variables can be instantiated randomly by explicit
substitutions from outside.

It is of significant long-term interest to present proof-
search and programming (if the reader prefers; unification
and tactics) in a unified framework, so we should definitely
consider whether anything can be done here. We can intro-
duce judgements of the form vara into the context, and con-
structors into the calculus which detect when a variable is
‘known’ to be a variable in that sense. We can impose types
and build the terms of the logic in an inductive datatype. A
more-or-less strict evaluation order would avoid issues with
confluence. We could try to solve only higher-order pat-
terns [23], or restrict substitutions to be fresh renamings
(substitutions of atoms for fresh atoms, similar in power to
FM swapping [13]). Nominal Unification [35] already imple-
ments an algorithm which can be viewed as a special case
of unifiers and the author’s a-logic [12] introduces a logical
judgement ‘this is a variable’ into first-order logic; so there
is hope.

(We should mention that even in purely propositional
logic, the Cut rule can be programmed in a similar way
using a meta-variable for the formula introduced by the cut.
So the issues just discussed arise in many logics and on many
levels.)

We mention staged computation, as in for example
MetaML [26, 28], Template Haskell [32], and Converge [34].
These languages offer a program enough control of its own
execution that it can suspend its own execution, compose
suspended programs into larger (suspended) programs, pass
suspended programs as arguments to functions, and evalu-
ate them. This raises issues similar to those surrounding
contexts.

The context calculus cannot model staged computation,
simply because it is a pure rewrite system with no control
of evaluation order. However, it is possible to design a pro-
gramming language based on the Ncontext calculus which



can model staged computation. We have explored the idea
in detail but have no space to do more than indicate the
idea: in the term s

�
a 
� t � , restrict evaluations in t to those

involving variables that are at least as strong as a. So for ex-
ample a3

�
a1 
� � λa2.1 � 0 � 	 a3

�
a1 
� 1 � , but a3

�
a2 
� � λa1.1 � 0 �

does not reduce. a3

�
a2 
� � λa2.λa1.a2 � 11 	 � a3

�
a2 
� λa1.1 � ,

because a2 is strong enough to reduce under a substitution
by a2, but a1 is not. This to give enough control of execu-
tion flow to encode the brackets, escape, and run of MetaML
(as well as other less exotic constructs, such as call-by-name
and call-by-value versions of function application).

This programming language is as expressive as the Ncon-
text calculus; we just have control of execution flow. We
expect it has the same good meta-properties as the smaller
and simpler calculus of this paper, but proving that is for
future work. We can hope the language might provide a se-
mantics and common intermediate language for comparing
additional features related to control of execution flow.

Other obvious extensions of the calculus include enrich-
ing the structure and treatment of levels. Finally, it is in-
teresting to ask what kind of abstract machine is suitable
for executing the Ncontext calculus (or the staged version
discussed above). We have some promising results in this
direction but they too must remain for another paper.
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