
Nominal Algebra and the HSP Theorem

Murdoch J. Gabbay1,2

Abstract

Nominal algebra is a logic of equality developed to reason algebraically in the presence of binding. In
previous work it has been shown how nominal algebra can be used to specify and reason algebraically about
systems with binding, such as first-order logic, the lambda-calculus, or process calculi. Nominal algebra
has a semantics in nominal sets (sets with a finitely-supported permutation action); previous work proved
soundness and completeness.
The HSP theorem characterises the class of models of an algebraic theory as a class closed under homomor-
phic images, subalgebras, and products, and is a fundamental result of universal algebra.
It is not obvious that nominal algebra should satisfy the HSP theorem: nominal algebra axioms are subject
to so-called freshness conditions which give them some flavour of implication; nominal sets have significantly
richer structure than the sets semantics traditionally used in universal algebra. The usual method of proof
for the HSP theorem does not obviously transfer to the nominal algebra setting.
In this paper we give the constructions which show that, after all, a ‘nominal’ version of the HSP theorem
holds for nominal algebra; it corresponds to closure under homomorphic images, subalgebras, products, and
an atoms-abstraction construction specific to nominal-style semantics.

Keywords: universal algebra, equational logic, nominal algebra, HSP or Birkhoff’s theorem, nominal sets,
nominal terms

1 Introduction

Algebra is the logic of equality. It has the virtue of simplicity; axioms assert equal-

ities between terms, validity of equality is interpreted by identity in models, and

two equal terms can be replaced in any context since they must denote the same

element in all models. This simplicity also has benefits in the theory of models:

every model of an algebraic theory can be exhibited as a homomorphic image of a

subalgebra of a product of free algebras (for definitions see elsewhere [BS81] or Sub-

section 8). This result was first proved by Birkhoff [Bir35]. It is called Birkhoff’s

theorem [BS81, Theorem 11.12] — and also the HSP theorem (Homomorphism,

Subalgebra, Product). We shall call it the HSP theorem, since Birkhoff’s name is

attached to several other results.

The HSP theorem is a useful source of negative results. To prove that a class of

structures over a signature cannot be characterised in algebra it suffices to exhibit,

for example, some structures in the class whose product is not in that class. For

1 Homepage: http://www.gabbay.org.uk
2 Thanks to Aad Mathijssen and to the anonymous referees. Supported by grant RYC-2006-002131 at the
Polytechnic University of Madrid.

http://www.gabbay.org.uk
http://www.gabbay.org.uk

Gabbay

example we obtain a one-line proof that ‘has precisely two elements’ cannot be

characterised in algebra since the product of a two-element set with itself has four

elements. The HSP theorem also guarantees that we can factor out complexity, in

much the same way that the fundamental theorem of arithmetic guarantees we can

factor large numbers into products of primes. Specific instances include the Stone

representation theorem for Boolean algebras, and the decomposition of groups into

products of simple groups.

The HSP theorem can be useful for the study of logic and computation, as has

been demonstrated for example by Salibra [MS06,Sal03] using combinators (Sxyz =

(xz)(yz) and Kxy = x).

Reasoning about systems with binding is somewhat resistent to algebraic treat-

ments. Consider for example the following ‘equalities’ which arise naturally in

informal practice:

λ-calculus: λx.(tx) = t if x 6∈ fv(t)

First-order logic: ∀x.(φ⇒ ψ) = φ⇒ ∀x.ψ if x 6∈ fv(φ)

π-calculus: νx.(P | Q) = P | νx.Q if x 6∈ fv(P)

Here fv(t) denotes the free variables of t. It is easy to extend this list with more

examples. Difficulties arise treating these ‘equalities’ algebraically. Firstly, there

are two levels of variable:

• x and y are variables of the system being axiomatised, we call these object-level

variables.

• t, u, φ, ψ, P , and Q range over terms of that system’s syntax, we call them

meta-level variables.

Equalities are subject to freshness side-conditions x 6∈ fv(t). The two levels of vari-

able, and the freshness conditions, make it impossible to translate informal ‘equali-

ties’ like those above directly into universal algebra. Formalisation of such systems

in the traditional algebraic framework can require a fair amount of emulation.

We recall De Bruijn’s words [dB91]:

“I think that in formalizing mathematics, and in particular in preparing mathe-

matics for justification, it is usually elegant as well as efficient to do everything

in the natural way.”

Nominal Algebra [GM07a,Mat07] is a logic of equality which represents the two-level

variable structure and freshness conditions noted above directly in its syntax. It uses

a semantics in nominal sets [GP01]. Informal equalities can often be represented

almost symbol-for-symbol. For example the equalities above are represented by the

following axioms in nominal algebra:

λ-calculus: a#X ` λ[a](Xa) = X

First-order logic: a#X ` ∀[a](X ⇒ Y) = X ⇒ ∀[a]Y

π-calculus: a#X ` ν[a](X | Y) = X | ν[a]Y

2

Gabbay

Here a and b are distinct atoms representing object-level variables; X and Y are

distinct unknowns representing meta-level variables; [a]t is an abstraction of an

atom a in a term t. Each equality is equipped with a freshness condition of the

form a#X that guarantees that X can only be instantiated to a term for which a

is fresh.

Nominal algebra has been used to axiomatise substitution [GM08] and first-

order logic [GM07b]. Also in other work [UPG04,FG07,CU03], nominal techniques

have proved their ability to be ‘ε away from informal practice’, following de Bruijn’s

philosophy while remaining mathematically completely rigorous.

In this paper we fill an important gap in the foundational theory of nominal

algebra; nominal algebra does indeed satisfy a version of the HSP theorem (The-

orem 9.3). The HSP result is extended in an interesting way to include nominal

abstractions; we give full details in the rest of the paper.

It is not obvious that the HSP result holds for nominal algebra: freshness side-

conditions give nominal algebra axioms a flavour of implication (this undermines

closure under homomorphic images), and nominal sets have structure which ‘normal

sets’ do not. An attempt to directly transfer proofs of the HSP theorem to the

nominal setting [BS81] fails. HSP is a fundamental result in universal algebra;

nominal algebra should satisfy a version of it, to fully earn its name ‘algebra’.

The constructions to prove the nominal HSP theorem are subtle and interesting.

The fact that this holds gives a precise mathematical sense in which nominal algebra

can be viewed as a continuation of the long mathematical tradition of universal

algebra. We hope that HSP will be as useful to the algebraic study of logic and

computation using nominal techniques, as it has been in universal algebra.

2 Nominal Algebra Syntax

Definition 2.1 Fix a countably infinite collection of atoms a, b, c, We shall

use a permutative convention that a, b, c, . . . range permutatively over atoms, so

that for example a and b are always distinct. Fix a countably infinite collection

of unknowns X,Y, Z, Fix term-formers f to each of which is associated

some unique arity n which is a nonnegative number. Assume these collections are

disjoint. A signature Σ is some set of term-formers.

Definition 2.2 Let π range over (finitely supported) permutations. So π

bijects atoms with themselves and there is a finite set of atoms S such that π(a) = a

for all atoms not in S. Write id for the identity permutation such that id(a) = a

always. Write π ◦ π′ for functional composition and write π-1 for inverse. Write P
for the set of all permutations.

It is easy to check that permutations with id and functional composition form

a group.

Definition 2.3 Let nominal terms t, u, v in some signature Σ be:

t ::= a | [a]t | π ·X | f(t1, . . . , tn),

where f : n ranges over the elements of Σ.

3

Gabbay

We write id ·X just as X, for brevity.

Definition 2.4 Write t ≡ u for syntactic identity of terms. Let a ∈ t be induc-

tively defined by:

a ∈ a π(a) 6= a

a ∈ π ·X
a ∈ ti (1 ≤ i ≤ n)

a ∈ f(t1, . . . , tn)

a ∈ t
a ∈ [b]t

a ∈ [a]t

If a ∈ t then we say that ‘a occurs in (the syntax of) t’. Let X ∈ t be inductively

defined by:

X ∈ π ·X
X ∈ ti (1 ≤ i ≤ n)

X ∈ f(t1, . . . , tn)

X ∈ t
X ∈ [a]t

If X ∈ t then we say that ‘X occurs in (the syntax of) t’. Similarly write a 6∈ t
and X 6∈ t for ‘does not occur in the syntax of t’.

Definition 2.5 A freshness (assertion) is a pair a#t of an atom a and a term t.

An equality (assertion) is a pair t = u where t and u are terms. Call a freshness of

the form a#X (so t ≡ X) primitive. Write ∆ for a finite set of primitive freshnesses

and call it a freshness context. We drop set brackets in freshness contexts, e.g.

writing a#X, b#Y for {a#X, b#Y }.

Definition 2.6 Nominal algebra has two judgement forms, a pair ∆ ` a#t of

a freshness context and a freshness assertion, and a pair ∆ ` t = u of a freshness

context and an equality assertion. We may write ∅ ` a#t as ` a#t and ∅ ` t = u

as ` t = u.

A theory T = (Σ,Ax) is a pair of a signature Σ and a possibly infinite set of

equality judgement forms Ax in that signature; we call them the axioms.

A motivation of these definitions, with example theories, is elsewhere [GM07a].

3 A Derivation System

Now we need a notion of derivation which represents freshness assumptions on meta-

variables, and permits axioms involving abstraction and conditioned on freshness

assumptions, just like we do in informal reasoning.

Definition 3.1 We define a permutation action π · t by:

π · a ≡ π(a) π · (π′·X) ≡ (π ◦ π′) ·X π · [a]t ≡ [π(a)]π · t
π · f(t1, . . . , tn) ≡ f(π · t1, . . . , π · tn)

Lemma 3.2 π · (π′ · t) ≡ (π ◦ π′) · t and id · t ≡ t.

Proof. By an easy induction on the structure of t. 2

Definition 3.3 A substitution σ is a finitely supported function from unknowns

to terms. Here, finite support means: for some finite set of unknowns σ(X) 6≡ X,

and for all other unknowns σ(X) ≡ X. Write [t1/X1, . . . , tn/Xn] for the substitution

σ such that σ(Xi) ≡ ti and σ(Y) ≡ Y , for all Y 6≡ Xi and all 1 ≤ i ≤ n.

4

Gabbay

Definition 3.4 We define a substitution action tσ on terms by:

aσ ≡ a (π ·X)σ ≡ π · σ(X) ([a]t)σ ≡ [a]tσ

f(t1, . . . , tn)σ ≡ f(t1σ, . . . , tnσ)

We need this result for later:

Lemma 3.5 π · (tσ) ≡ (π · t)σ.

Proof. By a routine induction on syntax. We consider only the case of t ≡ π′ ·X:

π · ((π′ ·X)σ) ≡ π · (π′ · σ(X)) Definition

≡ (π ◦ π′) · σ(X) Lemma 3.2

(π · (π′ ·X))σ ≡ ((π ◦ π′) ·X)σ Definition

≡ (π ◦ π′) · σ(X) Definition.

For further details see elsewhere [UPG04,Mat07]. 2

Definition 3.6 Let the derivable freshnesses by inductively defined by the rules

in Figure 1. Here in accordance with our permutative convention a and b range

over distinct atoms. We may abbreviate ‘∆ ` a#t is derivable’ to ‘∆ ` a#t’.

Definition 3.7 Let derivations be inductively defined by the rules in Figure 2.

Suppose that T = (Σ,Ax). We say that Π is a derivation in T when the following

two conditions are satisfied:

• Π mentions only terms in the signature Σ.

• Π mentions only instances of (ax∆′`t=u) such that (∆′ ` t = u) ∈ Ax (if any).

We call ∆ ` t = u derivable in T when a derivation Π exists in T concluding

in ∆ ` t = u. (Note that in particular, if ∆ ` t = u is derivable in T then t and u

must be terms in the signature Σ.)

We may abbreviate ‘∆ ` t = u is derivable in T’ to ‘∆ `
T
t = u’.

Definition 3.8 Fix a signature Σ. Call a term ground (in Σ) when it does not

mention unknowns (and mentions only term-formers in Σ). We let variables named

g and h range over ground terms; these are inductively characterised by

g, h, g′, h′ ::= a | [a]g | f(g, . . . , g)

Here f ranges over elements of Σ.

Call a derivation ground (in Σ) when:

• It does not mention any unknowns (so all terms in it are ground terms and it

uses no instance of (#X) or (fr)).

• It mentions only term-formers in Σ.

We conclude this section with Theorems 3.11 and 3.13. These are two basic

results about derivations and derivability which will be useful later.

5

Gabbay

(#ab)
∆ ` a#b

(π-1(a)#X∈∆)
(#X)

∆ ` a#π ·X
∆ ` a#t1 · · · ∆ ` a#tn

(#f)
∆ ` a#f(t1, . . . , tn)

(#[]a)
∆ ` a#[a]t

∆ ` a#t
(#[]b)

∆ ` a#[b]t

Fig. 1. Derivation rules for freshness

(refl)
∆ ` t = t

∆ ` t = u
(symm)

∆ ` u = t

∆ ` t = u ∆ ` u = v
(tran)

∆ ` t = v

∆ ` π(a)#π · σ(X) for every a#X ∈ ∆′
(ax∆′`t=u)

∆ ` π · tσ = π · uσ

∆ ` t = u
(cong [])

∆ ` [a]t = [a]u

∆ ` t = u
(congf)

∆ ` f(. . . , t, . . .) = f(. . . , u, . . .)

∆, a#X ` t = u (a 6∈ t, u)
(fr)

∆ ` t = u

∆ ` a#t ∆ ` b#t
(perm)

∆ ` (a b) · t = t

Fig. 2. Derivation rules for equality

Definition 3.9 Let X be a finite set of unknowns. Take c to be any atom. Let σ

be the substitution such that σ(X) = c for every X ∈ X and σ(Y) = Y for all other

Y .

We inductively define a translation ‘Π translates to Πσ’ on derivations Π that

do not mention c, and that mention only unknowns in X , as follows:

• The rule (#X). Suppose that π-1(a)#X ∈ ∆. Then

Π =
(π-1(a)#X ∈ ∆)

(#X)
∆ ` a#π ·X

translates to Πσ = (#ab).
` a#c

• The rule (fr).

Π =

··· Π
′

∆, a#X ` t = u
(fr)

∆ ` t = u

translates to Πσ =
··· Π
′σ

` tσ = uσ

• The rule (perm).

Π =

··· Π
′

∆ ` a#t

··· Π
′′

∆ ` b#t
(perm)

∆ ` (a b) · t = t

translates to Πσ =

··· Π
′σ

` a#tσ

··· Π
′′σ

` b#tσ
(perm)

` (a b) · tσ = tσ

(Recall that by Lemma 3.5 ((a b) · t)σ ≡ (a b) · (tσ).)

6

Gabbay

• Other cases are routine.

Lemma 3.10 Suppose that T = (Σ,Ax). Let Π be a derivation of ` g = h in T. Let

X be the (finite) set of unknowns mentioned in Π. Let c be an atom not mentioned

in Π. Let σ be the substitution such that σ(X) = c for every X ∈ X and σ(Y) = Y

for all other Y .

Then Πσ (Definition 3.9) is a derivation of ` tσ = uσ. Furthermore, Πσ

mentions only ground terms (it does not mention any unknowns).

Proof. Definition 3.9 is designed to make this true. The proof is by a routine

induction on Π. 2

Theorem 3.11 Suppose that T = (Σ,Ax). If `
T
g = h, and if g and h are ground

terms, then a ground derivation exists for ` g = h in T.

Proof. Let Π be any derivation of `
T
g = h. Let X be the unknowns mentioned

in Π. Let c be any atom not mentioned in Π. Let σ be the substitution such that

σ(X) = c for every X ∈ X and σ(Y) = Y for all other Y . It follows by Lemma 3.10

that Πσ is a ground derivation of ` gσ = hσ. Since g and h are ground, gσ ≡ g and

hσ ≡ h. The result follows. 2

Definition 3.12 Let π and π′ be two permutations. Write

ds(π, π′) for the set {a | π(a) 6= π′(a)},

the difference set of π and π′. We write ∆ ` ds(π, π′)#t for a set of proof-

obligations ∆ ` a#t, one for each a ∈ ds(π, π′).

Theorem 3.13 If ∆ ` ds(π, π′)#t then ∆ `
T
π · t = π′ · t.

Proof. By induction on the number of elements in ds(π, π′); the base case follows

by (refl). 2

4 Nominal Sets

A model of a nominal algebra theory T is a nominal set which interprets the term-

formers so as to make the axioms valid. We use nominal sets [GP01] because they

permit a direct semantic interpretation of freshness judgements a#x and permu-

tations π · x, an interpretation which is not conveniently definable on ‘ordinary’

sets.

4.1 Basic definitions

Definition 4.1 A nominal set X is a pair (|X|, ·) of a(n ordinary) set |X| with a

P-group action such that each x ∈ X has finite support, where:

• A P-group action · is a function P× |X| → |X| such that for all x ∈ |X| and all

permutations π and π′,

id · x = x and π · (π′ · x) = (π ◦ π′) · x.

7

Gabbay

• ‘Finite support’ means there is some finite set of atoms A such that

if π ∈ P and π(a) = a for every a ∈ A, then π · x = x.

We write x ∈ X as shorthand for x ∈ |X| and call x an element of X.

In [GP01, Proposition 3.4] it is shown that if an element x ∈ X has finite support,

then there is a unique least finite set of atoms that supports x.

Definition 4.2 When x ∈ X has a finite supporting set, call the least set of atoms

supporting x the support of x, and write it as supp(x).

We write a#x (read ‘a fresh for x’) when a 6∈ supp(x).

Example 4.3 The set A of all atoms with action π · a = π(a) is a nominal set; the

support of a ∈ A is {a}. Note that for x, y ∈ A, x#y when x 6= y.

4.2 Equivariant functions

Definition 4.4 Suppose that X1, . . . ,Xn,Y are nominal sets. Call a function f ∈
(|X1| × . . .× |Xn|)→ |Y| equivariant when

π · f(x1, . . . , xn) = f(π · x1, . . . , π · xn)

for all x1 ∈ |X1|, . . . , xn ∈ |Xn|.

Lemma 4.5 Suppose X1, . . . ,Xn,Y are nominal sets and f ∈ (|X1| × . . .× |Xn|)→
|Y| is equivariant. Then

supp(f(x1, . . . , xn)) ⊆ (supp(x1) ∪ . . . ∪ supp(xn)).

As a corollary, a#xi for 1 ≤ i ≤ n implies a#f(x1, . . . , xn).

Proof. By Definition 4.4 π · f(x1, . . . , xn) = f(π · x1, . . . , π · xn), so if π · xi = xi
for 1 ≤ i ≤ n then π · f(x1, . . . , xn) = f(x1, . . . , xn). The result follows.

The corollary is immediate. 2

4.3 Products

Lemma 4.6 Basic results of nominal sets are:

(i) supp(x) = {a ∈ A | {b ∈ A | (a b) · x 6= x} is not finite}.
(ii) If a#x for every a ∈ ds(π, π′) (Definition 3.12) then π · x = π′ · x.

(iii) If a#x then π(a)#π · x.

Proof. Elsewhere [GP01, Proposition 3.4] and by easy calculations. 2

Definition 4.7 Let I be a countably infinite indexing set and (Xi)i∈I an I-indexed

collection of nominal sets. Write Πi∈IXi for the nominal set with underlying set

those I-tuples (xi)i∈I ∈ Πi∈I |Xi| such that there exists some finite set of atoms A

such that supp(xi) ⊆ A for all i ∈ I.

8

Gabbay

We give this the component-wise permutation action, so π · (xi)i∈I = (π · xi)i∈I ;

it is not hard to prove that all (xi)i∈I ∈ Πi∈IXi have finite support.

We write Xn for Πi∈{1,...,n}Xi where Xi = X for 1 ≤ i ≤ n.

(Πi∈IXi is the product object in the category of nominal sets [GP01].)

Lemma 4.8 a#(xi)i∈I if and only if a#xi for every i ∈ I.

Proof. By an easy calculation using part i of Lemma 4.6 (see [GP01]). 2

4.4 Sets

Subsets of (the underlying set of) a nominal set will be important later when we

build free algebras.

Definition 4.9 X ⊆ |X| inherits a pointwise permutation action

π · X = {π · x | x ∈ X}.

We will always use the pointwise action on X ⊆ |X|.

a#X does not imply that a#x for every x ∈ X . For example A ⊆ A and it

is a fact that a#A — but a ∈ A and not a#a. Furthermore X ⊆ |X| does not

imply that X is finitely supported. For example if we order A as {a1, a2, a3, . . .}
then it is a fact that {a1, a3, a5, . . .} is not finitely supported. However, the finitely-

supported subsets of |X| form a nominal set — they have a permutation action, and

by construction they are finitely supported.

Lemma 4.10 Suppose X is a nominal set and X ⊆ |X| is finitely-supported. Sup-

pose that a1#X , . . . , an#X . There exists some x ∈ X such that a1#x, . . . , an#x.

Proof. Choose any x ∈ X . Let b1, . . . , bn be fresh (so bi#X and bi#x for 1 ≤ i ≤ n).

By part ii of Lemma 4.6 (b1 a1) · · · (bn an) · X = X . Write y = (b1 a1) · · · (bn an) · x.

By Definition 4.9 y ∈ X and we conclude ai#y for 1 ≤ i ≤ n by part iii of Lemma 4.6

and the assumption bi#x. 2

Further discussion of nominal sets is elsewhere [GP01].

5 Semantics

We use nominal sets to give a semantics to nominal algebra signatures and theories:

Definition 5.1 A Σ-algebra X consists of the following data:

• An underlying nominal set X = (|X|, ·).
• An equivariant map -X ∈ A→ |X| to interpret atoms; we write aX ∈ X.

• An equivariant map absX ∈ A× X→ X such that a#absX(a, x) always, to inter-

pret abstraction.

• An equivariant map fX ∈ |Xn| → |X| for each term-former f : n ∈ Σ to interpret

term-formers.

9

Gabbay

We tend to write X and Y for Σ-algebras.

Definition 5.2 Consider a Σ-algebra X. A valuation ς in X maps unknowns X

to elements ς(X) ∈ |X|. Suppose that t is a term in Σ. The interpretation [[t]] X
ς ,

or just [[t]] ς if X is understood, is defined inductively by:

[[a]] ς = aX [[π ·X]] ς = π · ς(X) [[[a]t]] ς = absX(a, [[t]] ς)

[[f(t1, . . . , tn)]] ς = fX([[t1]] ς , . . . , [[tn]] ς)

Interpretations are equivariant:

Lemma 5.3 Suppose that X is a Σ-algebra and ς is a valuation to |X|. Then

π · [[t]] ς = [[π · t]] ς for any π.

Proof. By induction on the structure of t, using Lemma 4.5 for the cases of a, [a]t

and f(t1, . . . , tn). 2

Definition 5.4 Suppose that X is a Σ-algebra. Define a notion of validity by:

[[∆]] ς (is valid) when a#ς(X) for each a#X ∈ ∆

[[∆ ` a#t]] ς when [[∆]] ς implies a#[[t]] ς
[[∆ ` t = u]] ς when [[∆]] ς implies [[t]] ς = [[u]] ς

Definition 5.5 Suppose that T = (Σ,Ax). A model of T is a Σ-algebra X such

that [[∆ ` t = u]] ς for every axiom ∆ ` t = u in Ax and every valuation ς.

The nominal sets semantics for nominal algebra is sound ([GM07a,Mat07]):

Theorem 5.6 (Soundness) Suppose T = (Σ,Ax) is a theory, X is a Σ-algebra

which is a model of T, and ς is a valuation to |X|. Then:

• If ∆ ` a#t then [[∆ ` a#t]] ς is valid.

• If ∆ `
T
t = u then [[∆ ` t = u]] ς is valid.

Proof. We work by induction on the length of derivations (Figures 1 and 2):

• (#ab). We must show a#bX. By Lemma 4.5 this follows from a#b, which is a

standard property of freshness (see Example 4.3).

• (#X). By inductive hypothesis we know π-1(a)#ς(X). By part iii of Lemma 4.6

we conclude a#π · ς(X).

• (#[]a). a#abs(a, [[t]] ς) holds by assumption.

• (#[]b). By Lemmas 4.5 and 4.8 and by the fact that a#b, we have that a#[[t]] ς
implies a#abs(b, [[t]] ς).

• (#f). If a#[[t1]] ς , . . . , a#[[tn]] ς then by Lemma 4.5 a#([[t1]] ς , . . . , [[tn]] ς) and we

conclude a#fX([[t1]] ς , . . . , [[tn]] ς) using Lemma 4.8.

• (refl), (symm), (tran), (cong []), (congf). By properties of equality.

• (perm). By part ii of Lemma 4.6, a#[[t]] ς and b#[[t]] ς imply (a b) · [[t]] ς = [[t]] ς . We

conclude [[(a b) · t]] ς = [[t]] ς by Lemma 5.3.

• (ax∆′`t=u). It suffices to show that if π(a)#[[π · σ(X)]] ς for every a#X ∈ ∆′ then

[[π · tσ]] ς = [[π · uσ]] ς .

10

Gabbay

So suppose π(a)#[[π · σ(X)]] ς for every a#X ∈ ∆′. By Lemma 5.3 and part iii of

Lemma 4.6 also a#[[σ(X)]] ς for all a#X ∈ ∆′. Define ς ′ by ς ′(X) = [[σ(X)]] ς for all

X. Then a#ς ′(X) for all a#X ∈ ∆′, that is, [[∆′]] ς′ holds. ∆′ ` t = u is an axiom

of T so [[t]] ς′ = [[u]] ς′ holds. Using Lemma 5.3 we deduce that [[π · t]] ς′ = [[π · u]] ς′ .

By a straightforward induction on syntax we can verify that [[π · t]] ς′ = [[π · tσ]] ς
and [[π · u]] ς′ = [[π · uσ]] ς , and we conclude [[π · tσ]] ς = [[π · uσ]] ς .

• The case of (fr). Suppose that [[∆]] ς is valid and Π is a derivation of a#X,∆ `
T

t = u.

If a#ς(X) then [[a#X,∆]] ς is valid and by hypothesis [[t = u]] ς is valid and we

are done.

Suppose a ∈ supp(ς(X)). Choose some a′ such that a′#ς(X) and also a′#ς(Y)

for every a#Y ∈ ∆. Write ∆′ for ∆ with every a#Y ∈ ∆ replaced by a′#Y .

Then ∆′ `
T
t = u; we obtain a derivation by replacing every a in Π by a′, to

obtain a derivation Π′. Now [[a′#X,∆]] ς is valid and Π′ is no longer than Π.

Therefore [[t = u]] ς is valid as required.

2

The nominal sets semantics for nominal algebra is complete:

Theorem 5.7 Fix a theory T = (Σ,Ax) and an equality-in-context ∆ ` t = u

where t and u are nominal terms in the signature Σ.

Suppose that for all models V of T and all valuations ς to |V|, if [[∆]] ς is valid

then [[t]] V
ς = [[u]] V

ς . Then ∆ `
T
t = u.

Proof. See [GM07a] or (for full details) see [Mat07]. 2

6 Free algebras

The usual technique to obtain models for a theory is to add constant symbols to

the language and to quotient the set of terms by provable equality — the extra

constant symbols ensures there are ‘enough elements’ in the model. In nominal

algebra constants have empty support; if d has arity 0 then ` a#d is derivable for

any a. Adding extra constant symbols only ensures a supply of elements with empty

support. Therefore, we add extra term-formers which may have arity greater than

0. This is consistent with methods employed in previous work, see for example

[Gab07, Theorem 9.3] and [GM07a, Section 5].

6.1 Ground terms

Fix a signature Σ and D a possibly infinite set of term-formers disjoint from Σ (the

‘extra term-formers’ mentioned above).

Definition 6.1 Let ground terms F(Σ,D) be inductively generated by

g ::= a | [a]g | f(g1, . . . , gn) | d(a1, . . . , am).

Here f : n ranges over elements of Σ, and d : m ranges over elements of D. Give this

11

Gabbay

a permutation action π · g as in Definition 3.1; in full:

π · a ≡ π(a) π · f(g1, . . . , gn) ≡ f(π · g1, . . . , π · gn)

π · [a]g ≡ [π(a)]π · g π · d(a1, . . . , an) ≡ d(π(a1), . . . , π(am)).

Lemma 6.2 If g ∈ F(Σ,D) then supp(g) = {a ∈ A | a ∈ g}. As a corollary, a 6∈ g
if and only if a#g.

F(Σ,D) with its permutation action, as defined in Definition 6.1, is a nominal

set.

Proof. Elements of F(Σ,D) are labelled trees. Structurally, [a]g′ is a tree with

a root note labelled ‘[]’ and two daughters, one is a, the other is g′; the ability

of abstraction to actually abstract comes later when we take equivalence classes

in F(T,D). supp(g) = {a ∈ A | a 6∈ g} follows by an easy induction on the tree

structure of g using Lemma 4.8. It follows that F(Σ,D) is a nominal set. 2

We need a technical lemma:

Lemma 6.3 If g ∈ F(Σ,D) then a 6∈ g implies ` a#g.

Proof. By an easy induction on syntax using the rules in Figure 1. 2

Definition 6.4 Call a derivation Π an F(T,D)-derivation when:

• Π does not use (congd) for any d ∈ D.

We discuss this condition in Remark 6.6 below.

• Π only mentions term-formers in Σ ∪ D.

That is, we should only mention terms in the signature we are working in.

• Π does not use (fr).

This can be ‘guaranteed’ in the sense given by Theorem 3.11.

• Π does not mention unknowns and in particular does not mention (#X).

This can be also ‘guaranteed’ in the sense given by Theorem 3.11.

Write Π(T,D) for the set of F(T,D)-derivations.

Definition 6.5 If g ∈ F(Σ,D) write [g]T for the set of g′ ∈ F(Σ,D) such that some

Π ∈ Π(T,D) exists of `
T
g = g′. Write F(T,D) for the nominal set such that

• |F(T,D)| = {[g]T | g ∈ F(Σ,D)}.
• π · [g]T = [π · g]T.

Remark 6.6 We exclude (congd) to avoid the following pathological situation: if

we allow (congd) and T contains the axiom ` a = b then the reader can easily verify

that supp[d(a1, . . . , an)]T = ∅. This is unwanted behaviour: the intended rôle of

d(a1, . . . , an) is to be an ‘unknown element with support {a1, . . . , an}’ in a model

we are building, and this should hold independently of the axioms in T.

This is also why our syntax of ground terms does not allow terms of the form

d(g1, . . . , gn) for general g1, . . . , gn. Note that in related work [GM06,GM08] we do

allow such terms; we use them to build a model with a substitution action.

Lemma 6.7 Suppose that x ∈ F(T,D). Then:

12

Gabbay

• id · x = x.

• π′ · (π · x) = (π′ ◦ π) · x.

• x is supported by {a ∈ A | 0 a#g} for any g ∈ x.

As a corollary F(T,D) defined in Definition 6.5 above is a nominal set, and fur-

thermore if ` a#g then a#[g]T.

Proof. Suppose that x ∈ F(T,D). By construction x = [g]T for some g ∈ F(Σ,D).

id · [g]T = [g]T and π′ · (π · [g]T) = (π′ ◦ π) · [g]T follow by Lemma 3.2.

Write A = {a | 0 a#g}. This is finite by Lemma 6.3. It suffices to show that

A supports [g]T. Let π be a permutation such that π(a) = a for all a ∈ A. We

must show π · [g]T = [g]T. By definition it suffices to show [π · g]T = [g]T, that is,

`
T
π · g = g. By Theorem 3.13 this follows from ` ds(π, id)#g. But this follows

since ds(π, id) and A are disjoint.

The corollary follows from Definition 4.2. 2

The following technical lemma will be useful later:

Lemma 6.8 Suppose that x ∈ F(T,D). Then a1#x, . . . , an#x if and only if there

exists some g ∈ x such that ` a1#g, . . . ,` an#g are all derivable.

Proof. For the left-right implication we use Lemma 4.10 to pick some g ∈ x such

that a1#g, . . . , an#g. By Lemma 6.2 this is equivalent to a1 6∈ g, . . . , an 6∈ g. We

conclude ` a1#g, . . . ,` an#g by 6.3.

The right-to-left implication is by Lemma 6.7. 2

The following example shows why Lemma 6.8 is non-trivial:

Example 6.9 Consider a theory ATOM with one axiom ` a = b. [a]T = A and

therefore a#[a]T. Also `
ATOM

a = b and ` a#b are derivable. For further discussion

see elsewhere [Mat07, 3.4.3].

Definition 6.10 is analogous to the standard construction of an algebra out of

terms-quotiented-by-derivable-equality [BS81, Definition 10.4]. We investigate its

initiality properties in Subsection 9.1.

Definition 6.10 Suppose T = (Σ,Ax) and suppose D is a set of term-formers

disjoint from Σ. The free algebra of T over D, we overload notation from Defini-

tion 6.5 and write it F(T,D), is the Σ-algebra with:

• Underlying nominal set F(T,D) as defined in Definition 6.5.

• Interpretation of atoms aF(T,D) = [a]T.

• Interpretation of abstraction absF(T,D)(a, x) = [[a]g]T for some g ∈ x.

• fF(T,D)(x1, . . . , xn) = [f(g1, . . . , gn)]T for some g1 ∈ x1, . . . , gn ∈ xn, for each term-

former f : n in Σ.

We overload F(T,D) to stand both for the Σ-algebra and its underlying nominal

set.

Lemma 6.11 F(T,D) is a Σ-algebra.

13

Gabbay

Proof. The underlying set F(T,D) is a nominal set by Lemma 6.7. For the inter-

pretation functions we must show that they are well-defined — that is, we must

show that for [-]- and fF(T,D) the choices of g ∈ x and g1 ∈ x1, . . . , gn ∈ xn do not

matter — and that they are equivariant. This is easy using the definitions of [-]T
and the permutation action.

The only slightly non-trivial part is to show that a#absF(T,D)(a, x) holds, that

is, that a#[[a]g]T. Choose b fresh (so b 6∈ g and b#[[a]g]T). Since b#[[a]g]T, also

a#(b a) · [[a]g]T by part iii of Lemma 4.6. By definition of the permutation action

also a#[[b](b a) · g]T. Since ` a#[b](b a) · g and ` b#[b](b a) · g by Lemma 6.3 and

the derivation rules of Figure 1, we know `
T

[b](b a) · g = [a]g by (perm). Then

[[b](b a) · g]T = [[a]g]T and we obtain a#[[a]g]T as required. 2

Lemma 6.12 Suppose Σ is a signature and D is a set of fresh term-formers (so

D ∩ Σ = ∅). Suppose that t is a term in Σ ∪ D. Suppose that σ(X) ∈ F(Σ,D) for

every X ∈ t. Suppose that ς is a valuation to |F(T,D)| such that σ(X) ∈ ς(X) for

every X ∈ t.
Then [tσ]T = [[t]] ς .

Proof. By an easy induction on the structure of t:

• The case a. Note that from the definitions aσ ≡ a and [[a]] ς = [a]T. It follows

that [aσ]T = [[aσ]] ς .

• The case of π ·X.

[(π ·X)σ]T = π · [σ(X)]T = π · ς(X) = [[π ·X]] ς .

• The case [a]t. We use the inductive hypothesis:

[([a]t)σ]T = [[a](tσ)]T = absF(T,D)(a, [tσ]T)

= absF(T,D)(a, [[t]] ς) = [[[a](tσ)]] ς) = [[([a]t)σ]] ς .

• The cases of f(t1, . . . , tn) for f ∈ Σ and d(a1, . . . , an) are similar, but simpler.

2

Theorem 6.13 F(T,D) is a model of T.

Proof. Suppose ∆ ` t = u is an axiom of T. Suppose that ς is a valuation to

|F(T,D)| and suppose that a#ς(X) for every a#X ∈ ∆. We must show that

[[t]] ς = [[u]] ς .

Let X be the set of all unknowns mentioned in ∆, t, or u. By Lemma 6.8, for

every X ∈ X there is an element gX ∈ ς(X) such that ` a#gX for every a#X ∈ ∆.

Let σ be the substitution such that σ(X) ≡ gX when X ∈ X and σ(X) ≡ X when

X 6∈ X . By construction ` a#σ(X) for every a#X ∈ ∆, so `
T
tσ = uσ by (ax∆`t=u).

This derivation is clearly in Π(T,D) (Definition 6.4) so [tσ]T = [uσ]T. Therefore

[tσ]T = [[t]] ς and [uσ]T = [[u]] ς by Lemma 6.12 and the result follows. 2

14

Gabbay

7 The inverse mapping

Fix a signature Σ and a finite set of fresh term-formers D = {d1, . . . , dn} (so Σ∩D =

∅). Let M be the greatest arity of the elements of D.

Definition 7.1 For each finite A ⊆ A with cardinality at least M , make a fixed

but arbitrary choice of the following data:

• For each i such that 1 ≤ i ≤ n some choice of unknown Xi; our choice is injective

in the sense that Xi = Xj implies i = j for 1 ≤ i, j ≤ n. Write X = {X1, . . . , Xn}.
We call Xi the ‘unknown corresponding to di’.

• A choice B of a set of atoms with the same cardinality as A, but disjoint from it

(so B ∩ A = ∅).
• For each i with 1 ≤ i ≤ n let

· ai1, . . . , aim be some choice of m distinct elements of A in some arbitrary order,

and

· bi1, . . . , bim be some choice of m distinct elements of B in some arbitrary order,

where m is the arity of di. We call ai1, . . . , aim, and bi1, . . . , bim the ‘choices of

atoms in order corresponding to di’.

Definition 7.2 Suppose that A ⊆ A has cardinality at least M . Write F(Σ,D,A)

for the set of g ∈ F(Σ,D) such that {a | a ∈ g} ⊆ A.

If g ∈ F(Σ,D,A) then let F(Σ,D,A)-1(g) be the tuple (∆ ` g-1, σ,B,X) where:

• ∆ ={b#X | X ∈ X , b ∈ B} ∪
{a#Xi | a ∈ A, Xi ∈ X , ` a#d(ai1, . . . , aim)}.

(Note that a#d(ai1, . . . , aim) if and only if a 6∈ {ai1, . . . , aim}.)
• σ(Xi) = di(ai1, . . . , aim).

• σ(Y) = id · Y for all Y 6∈ X .

• g-1 is defined inductively by:

a-1 ≡ a ([a]g)-1 ≡ [a]g-1 f(g1, . . . , gn)-1 ≡ f(g-1
1 , . . . , g

-1
n)

d(a′1, . . . , a
′
n)-1 ≡ (a′1 b1) · · · (a′n bn)(b1 a1) · · · (bn an) ·X

We call this construction the inverse mapping.

The following technical lemma will be useful later:

Lemma 7.3 di(ai1, . . . , ain)-1 ≡ Xi.

Proof. We unpack definitions and observe that (a1 b1) · · · (an bn)(b1 a1) · · · (bn an) =

id . 2

We may use Lemma 7.4 without comment:

Lemma 7.4 Suppose that g, h ∈ F(Σ,D,A). Suppose that

(∆ ` t, σ,B,X) = F(Σ,D,A)-1(g) and (∆′ ` u, σ′,B′,X ′) = F(Σ,D,A)-1(h).

then ∆ = ∆′, σ = σ′, B′ = B, and X ′ = X .

15

Gabbay

Proof. The construction of ∆ and ∆′ does not depend on g and h. Similarly for σ

and σ′, B′ and B, and X ′ and X . 2

Lemma 7.5 Suppose that g ∈ F(Σ,D,A) and (∆ ` g-1, σ,B,X) = F(Σ,D,A)-1(g).

Then for any T = (Σ, Ax) there is an F(Σ,D)-derivation of `
T
g-1σ = g.

Proof. We work by induction on g. All cases are routine, we consider only the case

g ≡ di(a
′
1, . . . , a

′
n) for di ∈ D where n is the arity of di. Then

g-1 ≡ (a′1 bi1) · · · (a′n bin)(bi1 ai1) · · · (bin ain) ·Xi

and σ(Xi) ≡ di(ai1, . . . , ain). The result follows by an easy calculation using the

definition of the permutation action. 2

Corollary 7.6 Suppose that g, h ∈ F(Σ,D,A). Suppose that

F(Σ,D,A)-1(g) = (∆ ` g-1, σ,B,X) and F(Σ,D,A)-1(h) = (∆ ` h-1, σ,B,X).

Then ∆ `
T
g-1 = h-1 implies `

T
g = h.

Proof. By Lemma 7.5 ∆ ` g-1σ = g and ∆ ` h-1σ = h. The result follows using

(tran). 2

Lemma 7.7 Suppose that d(a′1, . . . , a
′
m) ∈ F(Σ,D,A) and suppose a ∈ A. Then

∆ ` a#d(a′1, . . . , a
′
m)-1 if and only if a 6∈ {a′1, . . . , a′m}.

Proof. Recall our choices of a1, . . . , am and b1, . . . , bm from A and B respectively.

By construction d(a′1, . . . , a
′
m)-1 ≡ π′ ·X for some X ∈ X , were

π′ = (a′1 b1) · · · (a′m bm)(b1 a1) · · · (bm am).

By the syntax-directed structure of the rules in Figure 1, ∆ ` a#π′ ·X if and only

if ∆ ` π′-1(a)#X. The result follows by the construction of ∆. 2

Lemma 7.8 Suppose that π(c) = c for all c ∈ A \ A. Suppose that g ∈ F(Σ,D,A)

and suppose that F(Σ,D,A)-1(g) = (∆ ` g-1, σ,B,X). Then:

• ∆ ` a#(π · g)-1 if and only if ∆ ` a#π · (g-1).

• For any T = (Σ, Ax) there is an F(Σ,D)-derivation of ∆ `
T

(π · g)-1 = π · g-1,

providing that π(c) = c for all c ∈ A \ A.

Proof.

• We work by induction on g. The only non-trivial case is when g ≡ d(a′1, . . . , a
′
m)

where m is the arity of d. It suffices to show that ∆ ` a#π′ ·X if and only if

∆ ` a#π′′ ·X where X ∈ X is our choice of unknown in X to correspond to d ∈ D
and

π′ = (π(a′1) b1) · · · (π(a′m) bm)(b1 a1) · · · (bm am)

and

π′′ = π ◦ (a′1 b1) · · · (a′m bm)(b1 a1) · · · (bm am).

This follows by easy calculations using the construction of ∆ and the assumption

that π(bi) = bi for 1 ≤ i ≤ m.

16

Gabbay

• We work by induction on g. The only non-trivial case is again when g ≡ d(a′1, . . . , a
′
m)

where m is the arity of d. It suffices to derive

∆ ` π′ ·X = π′′ ·X

for X, π′, and π′′ as in the first part of this result. By Theorem 3.13 it suffices

to show ∆ ` ds(π′, π′′)#X. This follows by easy calculations as in the first part.

2

If Π is a nominal algebra derivation, write a ∈ Π when a occurs in the syntax

of Π (that is, when there exists some term t in the syntax of Π such that a ∈
t). Theorem 7.9 is an important technical result (compare with Lemma 6.18 from

[GM08] and Lemma 3.4.23 from [Mat07]):

Theorem 7.9 Suppose that g, h ∈ F(Σ,D,A). Suppose that

F(Σ,D,A)-1(g) = (∆ ` g-1, σ,B,X) and F(Σ,D,A)-1(h) = (∆ ` h-1, σ,B,X).

Then:

• If ` a#g then ∆ ` a#g-1.

• If a derivation Π ∈ Π(T,D) exists of `
T
g = h and {a | a ∈ Π} ⊆ A then

∆ `
T
g-1 = h-1.

Proof. We inductively transform Π into a derivation of ∆ `
T
t = u.

• The cases of (#ab), (#[]a), (#[]b), (cong []), (refl), (symm) and (tran) are easy.

• The case (#f). There are two possibilities:

· Suppose ` a#f(g1, . . . , gn) for f ∈ Σ.

By assumption ` a#gi for 1 ≤ i ≤ n so ∆ ` a#g-1
i by inductive hypothesis. By

construction f(g1, . . . , gn)-1 ≡ f(g-1
1 , . . . , g

-1
n) and the result follows.

· Suppose ` a#di(a
′
1, . . . , a

′
m) for di ∈ D and m the arity of di.

By assumption ` a#a′i for 1 ≤ i ≤ m. It follows that a 6∈ {a′1, . . . , a′m}. The

result follows by Lemma 7.7.

• (congf). There are two cases:

· The case of f ∈ Σ easily follows using the inductive hypothesis.

· The case of d ∈ D is impossible, since we assumed that Π does not mention

(congd).

• (perm). By inductive hypothesis ∆ ` a#g-1 and ∆ ` b#g-1. Then ∆ `
T

(a b) · g-1 = g-1

by (perm). By Lemma 7.8 ∆ `
T

((a b) · g)-1 = (a b) · g-1. The result follows.

• (ax∆′`v=w). Then ` π ·∆′τ and `
T
π · vτ = π · wτ for some permutation π and

substitution τ .

We must show ∆ `
T

(π · vτ)-1 = (π · wτ)-1 and by inductive hypothesis we may

assume ∆ `
T

(π ·∆τ)-1.

By Lemma 7.8 it suffices to show

∆ `
T
π · (vτ)-1 = π · (wτ)-1

17

Gabbay

given

∆ `
T
π · (∆τ)-1.

Define τ ′ by:

τ ′(X) ≡ τ(X)-1 (τ(X) 6≡ X)

τ ′(Y) ≡ id · Y (τ(Y) ≡ id · Y)

Then (vτ)-1 ≡ vτ ′, (wτ)-1 ≡ wτ ′ and (∆′τ)-1 ≡ ∆′τ ′, so it suffices to show

∆ `
T
π · vτ ′ = π · wτ ′.

By (ax∆′`v=w) this follows from ∆ ` π ·∆′τ ′.
2

8 Homomorphisms, Subalgebras and Product Algebras

We now establish some basic definitions required for stating the nominal HSP the-

orem.

8.1 Algebra homomorphisms

Definition 8.1 For Σ-algebras X and Y, a Σ-algebra homomorphism from X
to Y is an equivariant function θ : |X| → |Y| such that:

• θaX = aY for every atom.

• θabsX(a, x) = absX(a, θx).

• θfX(x1, . . . , xn) = fY(θx1, . . . , θxn) for every f in Σ.

Suppose X and Y are Σ-algebras. Call Y a homomorphic image of X when

there is a Σ-algebra homomorphism θ from X to Y such that θ ∈ |X| → |Y| is a

surjection onto |Y|.

Lemma 8.2 Suppose Σ is a signature and suppose that X and Y are Σ-algebras.

Suppose θ is a Σ-algebra homomorphism from X to Y.

Suppose that ς ′ is a valuation to X and ς is a valuation to Y. Finally suppose

that θ(ς ′(X)) = θ(ς(X)) for all unknowns X.

Then θ([[t]] ς′) = [[t]] ς .

Proof. By an easy induction on t. 2

Lemma 8.3 Suppose Σ is a signature and T = (Σ, Ax) is a theory. Suppose that

X and Y are Σ-algebras and suppose Y is a homomorphic image of X.

Then if X is a model of T, then so is Y.

Proof. Write θ for the Σ-algebra homomorphism from |X| to |Y|. Recall that by

assumption θ is surjective.

Choose any (∆ ` t = u) ∈ Ax and a valuation ς to Y. It suffices to show that

[[∆ ` t = u]] Y
ς is valid.

Suppose [[∆]] Y
ς is valid; unpacking definitions this means that a#ς(X) for every

a#X ∈ ∆.

18

Gabbay

For each unknown X let X = {x ∈ X | θ(x) = ς(X)}. We can verify that for any

permutation π, π · X = {x ∈ X | θ(x) = π · ς(X)}. Therefore if π ·ς(X) = ς(X) then

π · X = X and it follows that supp(X) ⊆ supp(ς(X)). We construct a valuation ς ′

to X by for each unknown X setting ς ′(X) = x for some choice of x ∈ X such that

a#x for every a#X ∈ ∆. Such a choice exists by Lemma 4.10.

By construction [[∆]] X
ς′ is valid, and so by assumption [[t]] X

ς′ = [[u]] X
ς′ . We apply θ

to both sides of the equality and use Lemma 8.2 to conclude that [[t]] Y
ς = [[u]] Y

ς as

required. 2

8.2 Subalgebras

Definition 8.4 For Σ-algebras X and Y, call X a subalgebra of Y when the fol-

lowing conditions are satisfied:

• |X| ⊆ |Y|.
• aX = aY for all atoms a.

• absX(a, x) = absY(a, x) for all atoms a and x ∈ |X|.
• For every term-former f in signature Σ, if f has arity n and x1, . . . , xn ∈ |X| then

fX(x1, . . . , xn) = fY(x1, . . . , xn).

In other words, X is closed under the interpretation of the term-formers which

it inherits from Y.

Lemma 8.5 For Σ-algebras X, Y and a theory T = (Σ,Ax), if Y is a model of T
and X is a subalgebra of Y then X is a model of T.

Proof. Suppose (∆ ` t = u) ∈ Ax and suppose ς is a valuation to |X| such that

a#ς(X) for every a#X ∈ ∆. Since ς is also a valuation to |Y|, it follows that

[[t]] ς = [[u]] ς . Therefore X satisfies all the axioms of T. 2

8.3 Products

Definition 8.6 Let I be a (possibly countably infinite) indexing set and (Xi)i∈I
be an I-indexed collection of Σ-algebras. The product algebra Πi∈IXi is the

Σ-algebra with:

• Underlying nominal set Πi∈IXi as defined in Definition 4.7, considering each Xi

as a nominal set.

Recall that this has the component-wise permutation action; π · (xi)i∈I = (π ·
xi)i∈I .

• aΠi∈IXi = (aXi
)i∈I .

• absΠi∈IXi(a, (xi)i∈I) = Πi∈IabsXi
(a, xi).

• For each term-former f of arity n the component-wise interpretation function

fΠi∈IXi((x
1
i)i∈I , . . . , (x

n
i)i∈I) = (fXi

(x1
i , . . . , x

n
i))i∈I .

It is easy to check that Πi∈IXi is a Σ-algebra:

19

Gabbay

Lemma 8.7 For any I-indexed collection of Σ-algebras (Xi)i∈I , if Xi is a model of

T = (Σ,Ax) for every i ∈ I then so is Πi∈IXi.

Proof. Suppose that ς is a valuation to |Πi∈IXi|. Suppose that (∆ ` t = u) ∈ Ax

and suppose that a#ς(X) for every a#X ∈ ∆. We must show that [[t]] ς = [[u]] ς .

For each i ∈ I we obtain a valuation ςi to |Xi| projecting to the ith component of

ς(X). By Lemma 4.8 we know that a#ςiX for every a#X ∈ ∆. It follows that the

ith projection of [[t]] ς is equal to the ith projection of [[u]] ς , and thus that [[t]] ς = [[u]] ς .2

8.4 Atoms-abstraction

Suppose X is a nominal set and suppose x ∈ X and a ∈ A.

Definition 8.8 Define atoms-abstraction by

[a]x = {(b, (b a) · x) | b#x} ∪ {(a, x)}.

Write [A]X for the nominal set such that:

• |[A]X| = {[a]x | a ∈ A, x ∈ X}.
• π · [a]x = [π(a)]π · x.

(Note that by our permutative convention b ranges over atoms not equal to a.)

It is not hard to prove that [A]X is a nominal set. This definition is known [GP01]

and has been extensively used and studied. We mention those of its properties that

we need, with references to proofs.

Lemma 8.9 If x′1, . . . , x
′
n ∈ [A]V then for any fresh c (so c#x′1, . . . , x

′
n) there exist

x1, . . . , xn ∈ V such that x′i = [c]xi for 1 ≤ i ≤ n.

Proof. By [GP01, Proposition 5.5]. 2

Lemma 8.10 If [c]x = [c]x′ then x = x′.

Proof. By [GP01, Proposition 5.5]. 2

Lemma 8.11 [c]x = [d]y if and only if y = (c d) · x and c#y.

Proof. By [GP01, Proposition 5.5]. 2

Lemma 8.12 supp([c]x) = supp(x) \ {c}.

Proof. By [GP01, Proposition 5.2]. 2

Lemma 8.13 If c#x and c′#x then [c]x = [c′]x.

Proof. By definition (c′ c) · [c]x = [c′](c′ c) ·x. By Lemma 8.12 c′#[c]x and c#[c]x.

By assumption c′#x and c#x. The result follows by part ii of Lemma 4.6. 2

Definition 8.14 Suppose that V is a Σ-algebra. Define [A]V by:

• |[A]V| = [A]|V|.
• a[A]V = [c]aV (for any c 6= a).

• abs [A]V(a, [c]x) = [c]absV(a, x) (for any c 6= a).

20

Gabbay

• f[A]V([c]x1, . . . , [c]xn) = [c]fV(x1, . . . , xn).

Lemma 8.15 [A]V is a Σ-algebra.

Proof. There are several things to check:

• a[A]V is well-defined. Suppose c, c′ 6= a. By Lemma 4.5 c#aV and c′#aV. By

Lemma 8.13 [c]aV = [c′]aV.

• abs [A]V is well-defined. Suppose that [c]x = [d]y. By Lemma 8.11 y = (c d) · x
and c#y. We reason as follows:

abs [A]V(a, [d]y) = [d]absV(a, (c d) · x) Definition 8.14

= [d](c d) · absV(a, x) absV equivariant

= [c]absV(a, x) Lemmas 4.5 and 8.11

= abs [A]V(a, [c]x) Definition 8.14

• abs [A]V is equivariant. This follows easily from the definitions:

π · abs [A]V([c]x) = π · [c]absV(x) Definition 8.14

= [π(c)]absV(π · x) Definition 8.8, absV equivariant

= abs [A]V([π(c)]π · x) Definition 8.14

= abs [A]V(π · [c]x). Definition 8.8

• f[A]V is well-defined. Suppose x′1, . . . , x
′
n ∈ |[A]V|. Suppose that x′i = [c]xi for

1 ≤ i ≤ n and also x′i = [d]yi for 1 ≤ i ≤ n. By Lemma 8.11 yi = (c d) · xi and

c#yi for 1 ≤ i ≤ n. We reason as follows:

[d]fV(y1, . . . , yn) = [d]fV((c d) · x1, . . . , (c d) · xn)

= [d](c d) · fV(x1, . . . , xn) fV equivariant

= [c]fV(x1, . . . , xn) Lemmas 4.5 and 8.11

• f[A]V is total. Suppose x′1, . . . , x
′
n ∈ |[A]V|. Choose fresh c (so c#x′1, . . . , x

′
n). By

Lemma 8.9 there exist xi ∈ |V| such that x′i = [c]xi for 1 ≤ i ≤ n. The result

follows.

• f[A]V is equivariant. This follows exactly as for abs [AV.

2

Definition 8.16 If V is a Σ-algebra and ς is a valuation to |V|, then write [c]ς for

the valuation to |[A]V| such that X maps to [c]ς(X).

Lemma 8.17 Suppose that V is a Σ-algebra and ς is a valuation to |V|. Then if

c 6∈ t then

[[t]] [A]V
[c]ς = [c]([[t]] V

ς).

Proof. By induction on t:

• The case t ≡ a. [[a]] [A]V
[c]ς = a[A]V = [c]aV = [c]([[a]] V

ς).

• The case t ≡ c. Here there is nothing to prove, since we assumed that c 6∈ t.

21

Gabbay

• The case t ≡ f(t1, . . . , tn).

[[f(t1, . . . , tn)]] [A]V
[c]ς = f[A]V([[t1]] [A]V

[c]ς , . . . , [[tn]] [A]V
[c]ς)

= f[A]V([c][[t1]] V
ς , . . . , [c][[tn]] V

ς) Inductive hypothesis

= [c]fV([[t1]] V
ς , . . . , [[tn]] V

ς) Definition 8.14

= [c][[f(t1, . . . , tn)]] V
ς

2

Corollary 8.18 Suppose that c 6∈ t and c 6∈ u. Then [[t]] V
ς = [[u]] V

ς if and only if

[[t]] [A]V
[c]ς = [[u]] [A]V

[c]ς .

Proof. Suppose c 6∈ t and c 6∈ u.

If [[t]] V
ς = [[u]] V

ς then [c][[t]] V
ς = [c][[u]] V

ς and the result follows by Lemma 8.17.

Conversely suppose [[t]] [A]V
[c]ς = [[u]] [A]V

[c]ς . By Lemma 8.17 [c][[t]] V
ς = [c][[u]] V

ς . The result

follows by Lemma 8.10. 2

Lemma 8.19 If X is a model of T = (Σ,Ax) then so is [A]X.

Proof. Suppose that ς is a valuation to |[A]X|. Suppose that (∆ ` t = u) ∈ Ax and

suppose that a#ς(X) for every a#X ∈ ∆. We must show that [[t]] [A]X
ς = [[u]] [A]X

ς .

Choose some c not mentioned in ∆, t, u, and such that c#ς(X) for every X

mentioned in ∆, t, u. Using Lemma 8.9 we can construct a valuation ς ′ to |X| such

that ς(X) = ([c]ς ′)(X) for every X mentioned in ∆, t, u, and therefore such that

[[t]] [A]X
ς = [[t]] [A]X

[c]ς′ and [[u]] [A]X
ς = [[u]] [A]X

[c]ς′ .

By Corollary 8.18

[[t]] [A]X
[c]ς′ = [c][[t]] X

ς′ and [[u]] [A]X
[c]ς′ = [c][[u]] X

ς′ .

By Lemma 8.12 a#ς ′(X) for every a#X ∈ ∆. We assumed that X is a model of T,

so [[t]] X
ς′ = [[u]] X

ς′ and therefore [c][[t]] X
ς′ = [c][[u]] X

ς′ . The result follows. 2

9 Varieties and Equational Classes of Algebras

Definition 9.1 A (nominal algebra) variety V for a signature Σ is a collection

of Σ-algebras closed under

• homomorphic images (Subsection 8.1),

• subalgebras (Subsection 8.2),

• countable products (Subsection 8.3), 3 and

• atoms-abstraction (Subsection 8.4).

That is:

• If V ∈ V and V′ is a homomorphic image of V, then V′ ∈ V.

• If V ∈ V and V′ is a subalgebra of V then V′ ∈ V.

3 It is not hard to generalise to closure under uncountable or larger products.

22

Gabbay

• If I is any countable indexing set and Vi ∈ V for all i ∈ I then Πi∈IVi ∈ V.

• If V ∈ V then [A]V ∈ V.

The notion of nominal algebra variety is standard [BS81] — except that we

insist on closure under atoms-abstraction. Atoms-abstraction leaves ‘ordinary sets’

unaffected and in that sense Definition 9.1 specialises to the usual notion of variety.

Definition 9.2 Call a collection V of Σ-algebras (nominal algebra) equational

when there is some theory T = (Σ,Ax) in nominal algebra such that V is the col-

lection of all models of T.

From now on unless stated otherwise ‘variety’ means ‘nominal algebra variety’

and ‘equational’ means ‘nominal algebra equational’.

Our main result is a version of the HSP theorem [BS81] for nominal algebra:

Theorem 9.3 A collection of Σ-algebras V is equational (the collection of all mod-

els of some theory) if and only if it is a variety (closed under homomorphic images,

subalgebras, countable products, and atoms-abstraction).

The proof is the rest of this section, up to and including Subsection 9.3.

9.1 Surjections out of free algebras

Fix a signature Σ and a collection of Σ-algebras V. In practice we care about the

case that V is a variety, but nothing in this subsection depends on that.

Lemma 9.4 Suppose Y is a model of theory T = (Σ,Ax). Suppose D is a set of

fresh term-formers (so D∩Σ = ∅). Then the following data determines a Σ-algebra

homomorphism from F(T,D) to Y: for each n-ary term-former d ∈ D
• a choice of n atoms a1, . . . , an and

• a choice of element θd(a1, . . . , an) ∈ |Y| such that

supp(θd(a1, . . . , an)) ⊆ {a1, . . . , an}.

This is an initiality property [Mac71] adapted to our particular situation of

nominal sets.

Proof. We define a function, by abuse of notation write it θ, from F(Σ,D) to |Y|
by:

• θd(π(a1), . . . , π(an)) = π · θd(a1, . . . , an).

• θa = aY.

• θ[a]g = absY(a, g).

• θf(g1, . . . , gn) = fY(θg1, . . . , θgn).

Suppose we could prove that if [g]T = [h]T then θg = θh. Then we can view θ as a

function θF(T,D) from |F(T,D)| to |Y|.
Also:

23

Gabbay

• It is easy to prove by induction on g that π · θg = θ(π · g), and it follows that

π · (θF(T,D)[g]T) = π · θg = θ(π · g) = θF(T,D)[g]T.

• θF(T,D)aF(T,D) = θa = aY.

• θF(T,D)absF(T,D)(a, g) = θ[a]g = abs(a, θg) = abs(a, θF(T,D)[g]T).

• θF(T,D)fF(T,D)([g1]T, . . . , [gn]T) = θf(g1, . . . , gn)

= fY(θg1, . . . , θgn)

= fY(θF(T,D)[g1]T, . . . , θF(T,D)[gn]T).

It follows that θ viewed as a function from |F(T,D)| to |Y| is also a Σ-algebra

homomorphism and we are done.

It remains to prove that [g]T = [h]T implies θg = θh. Suppose Π ∈ Π(T,D) (Def-

inition 6.4) is a derivation of `
T
g = h. Let A = {a | a ∈ Π} and let D′ be the

term-formers mentioned in Π. Let

(∆ ` g-1, σ,B,X) = F(Σ,D′,A)
-1

(g) and (∆ ` h-1, σ,B,X) = F(Σ,D′,A)
-1

(h).

Let ς(X) = θ(σ(X)). By an easy inductive argument we deduce that θg = [[g-1]]
Y
ς

and θh = [[h-1]]
Y
ς . By Theorem 7.9 ∆ `

T
g-1 = h-1. The result follows by Soundness

(Theorem 5.6). 2

We need some notation for the proof of Theorem 9.8:

Definition 9.5 Suppose that T = (Σ,Ax). Suppose that Σ-algebras X and Yi for

i ∈ I are models of T. Suppose θi ∈ X⇒ Yi is a family of homomorphisms. Then

write Πi∈Iθi for the natural map from X to Πi∈IYi, mapping x ∈ |X| to (θix)i∈I ∈
|Πi∈IYi|.

It is easy to verify that Πi∈Iθi above is a homomorphism.

Theorem 9.6 If V ∈ V then there exists some (sufficiently large) set of fresh term-

formers D such that there exists a Σ-algebra homomorphism θ from F(T,D) to V,

such that θ is a surjection on underlying sets.

That is: every element of V is a homomorphic image of some sufficiently large

free algebra.

Proof. Write car(V) for the cardinality of |V|. Suppose that D is a set of fresh

term-formers with at least car(V) term-formers of every arity n > 0, and with no

term-formers of arity 0. We shall exhibit a suitable θ from F(T,D) to V.

For each permutation equivalence class {πv | π ∈ P} ⊆ |V| choose a representa-

tive v ∈ |V|. For each v,

• order supp(v) as a1, . . . , an, pick a unique n-ary term-former d ∈ D (which has

not been assigned to any other v′), and

• assign θd(a1, . . . , an) = v.

24

Gabbay

For each remaining unassigned d(a, . . .) assign θd(a, . . .) = aV.
4 By Lemma 9.4 this

assignment extends to a homomorphism from F(T,D) to V.

It remains to show that this is a surjection, but this is easy: Consider any

v′ ∈ |V|. By construction there exists some representative v such that v′ ∈ {πv | π ∈ P}.
So write v′ = πv. By construction v = θd(a1, . . . , an) for some d(a1, . . . , an) and so

v′ = θd(πa1, . . . , πan). 2

9.2 Injections out of free algebras

Fix a signature Σ and a set of Σ-algebras V. As in Subsection 9.1 we care most about

the case that V is a variety, but nothing in this subsection depends on assuming

that.

Definition 9.7 Let T = (Σ,Ax) where Ax is the collection of judgements valid in

all V ∈ V for all valuations. Call T the theory generated by V.

That is, (∆ ` t = u) ∈ Ax when for every V ∈ V and every valuation ς to |V|, it

is the case that if a#ς(X) for every a#X ∈ ∆ then [[t]] V
ς = [[u]] V

ς .

Theorem 9.8 Suppose that V is a collection of Σ-algebras. Let T be the theory

generated by V. Suppose D is any set of fresh term-formers (so D ∩ Σ = ∅).

Then there exists some indexing set I and algebras Vi ∈ V for i ∈ I such that

there exists a Σ-algebra homomorphism θ from F(T,D) to Πi∈IVi such that θ is an

injection on underlying sets.

Proof. Let I be the set of pairs (g, h) of ground terms in the signature Σ∪D such

that [g]T 6= [h]T.

Choose some i = (g, h) ∈ I.

Let A = {a | a ∈ g} ∪ {a | a ∈ h}. Let D′ be the set of term-formers in D
occurring in g and h. Recalling Lemma 7.4, suppose that

F(Σ,D′,A)
-1

(g) = (∆ ` t, σ,B,X) and F(Σ,D′,A)
-1

(h) = (∆ ` u, σ,B,X).

We assumed that 6`
T
g = h so by Corollary 7.6 ∆ 6`

T
t = u. By our assumption

that T is generated by V, there exists some model Vi in V and valuation ς such that

[[∆]] Vi

ς is valid and [[t]] Vi

ς 6= [[u]] Vi

ς . Let

{c1, . . . , cp} be
(⋃
X∈X

supp(ςX)
)
\ A

in some order. Write V′i for [A]pVi and write ς ′ for [c1] . . . [cp]ς.

V is closed under atoms-abstraction so V′i ∈ V. By Corollary 8.18

[[t]] V′i
ς′ 6= [[u]] V′I

ς′ .

We construct a partial assignment θ by

θd(a1, . . . , an) = ς ′X

4 This is why we insist that the fresh term-formers d have arity at least 1, and so are applied to at least
one atom; this makes it easy to pick a default value to which to map them in V.

25

Gabbay

for each d ∈ D′, where X ∈ X is the unknown corresponding to d, and a1, . . . , an is

the choice of atoms in order corresponding to d, in the sense given in Definition 7.1.

We want to use Lemma 9.4 to obtain a homomorphism θ from F(T,D) to V′i
but in order to do so we must verify that supp(ς ′X) ⊆ {a1, . . . , an}.

Suppose that a 6∈ {a1, . . . , an}. By the rules in Figure 1 ` a#d(a1, . . . , an).

By Theorem 7.9 ∆ ` a#d(a1, . . . , an)-1. By assumption [[∆]] V′i
ς′ so by Soundness

(Theorem 5.6) a#[[d(a1, . . . , an)-1]]
V′i
ς′ . Using Lemma 7.3 we deduce that a#ς ′X. It

follows that supp(ς ′X) ⊆ {a1, . . . , an} as required.

Note that by construction θ([g]T) 6= θ([h]T).

It follows by the choice of Vi that Πi∈Iθ from F(T,D) to Πi∈IV′i is injective as

a map on underlying sets. 2

Remark 9.9 The reader might ask why we bother with [A]V when we can build

this as the subalgebra of V in the image of absV. The answer is that we cannot: absV

is not necessarily injective in the sense given by Lemma 8.10. Without this property

Corollary 8.18 is not possible and the proof of Theorem 9.8 fails. In a sorted version

of nominal algebra with abstraction sorts we can insist that absV coincide with ‘real’

nominal sets abstraction — but in fact, this just pushes technicalities elsewhere;

into the notions of algebra, subalgebra, product, and homomorphic image, and

ultimately into the fact that to map out of an abstraction sort a term-former, write

it abs, is required. This is an absV by another name.

Lemma 9.10 Suppose that V is a variety and suppose T is the theory generated by

V. Then F(T,D) ∈ V for every set of fresh term-formers D.

Proof. By Theorem 9.8 there is some indexing set I, set of Σ-algebras Vi ∈ V for

i ∈ I, and Σ-algebra homomorphism θ from F(T,D) to Πi∈IVi that is an injection on

underlying sets. V is closed under products so Πi∈IVi ∈ V. The image of |F(T,D)|
is a subalgebra of Πi∈IVi, and F(T,D) is a homomorphic image (by inverting θ) of

that subalgebra. V is closed under subalgebras and homomorphic images, and the

result follows. 2

9.3 Proof of the nominal HSP theorem

Proof. [Proof of Theorem 9.3] Suppose that V is equational. By Lemma 8.7 V
is closed under products. By Lemma 8.3 V is closed under homomorphic images.

By Lemma 8.5 V is closed under subalgebras. By Lemma 8.19 V is closed under

atoms-abstraction. Therefore V is a variety.

Conversely, suppose V is a variety. Let T be the theory on Σ generated by V
as described in Definition 9.7. Let V be any model of T. By Theorem 9.6 there

exists some D such that V is a homomorphic image of F(T,D). By Lemma 9.10

F(T,D) ∈ V. Since V is closed under homomorphisms, V ∈ V as required. Therefore

V is equational. 2

26

Gabbay

10 Conclusions

The form and intended use of nominal algebra fit squarely into the mathematical

tradition of using the logic of equalities for specification and reasoning; nominal

algebra is a flavour of universal algebra [BS81].

As discussed in the Introduction, universal algebra enjoys the HSP theorem

[BS81, Theorem 11.12]. The technical contribution of this paper is to establish

that nominal algebra satisfies a similar property. We must assume closure not only

under homomorphisms, subalgebras, and product algebras (the ‘H’, ‘S’, and ‘P’

in ‘HSP’ respectively), but also under atoms-abstraction algebras whose (rather

elegant) construction is introduced in this paper in Subsection 8.4. One might

imagine that atoms-abstraction might be built out of homomorphisms, subalgebras,

and product algebras. This may be possible, but the obvious constructions seem to

fail. It remains an open problem whether closure under abstractions does or does

not follow from the other closure properties considered in this paper.

The term-language of nominal algebra is nominal terms [UPG04]. Nominal

terms extend first-order terms (the language of universal algebra) with object-level

variables (atoms), and with constructs to support binding (nominal abstraction), α-

equivalence (permutations), and capture-avoidance (freshness conditions). Nominal

algebra was developed with Mathijssen [GM07a,Mat07]. A sound and complete

semantics in nominal sets [GP01] has been explored (for full details see [Mat07,

Section 3]).

The technical constructions used in this paper are similar to those used in the

proofs of completeness for nominal algebra [Mat07, Subsection 3.4] but they are not

a special case of them. Informally speaking, in the completeness proof we start with

open terms and create ground terms (the σ from [Mat07, Subsection 3.4]); in this

paper we start from ground terms and create open terms, a typical example is in

the last paragraph of Lemma 9.4. Therefore, a different set of technical lemmas is

required and they seem to ‘point in the other direction’ from the lemmas required

to prove completeness. It would be interesting to place the two sets of proofs in a

single development and draw out their common core. This is future work.

Another ‘nominal’ logic is nominal logic [Pit03]. This does not directly use

nominal terms and nominal algebra is not the equality fragment of nominal logic;

the two logics have different treatments of freshness [Mat07, Subsection 3.4.3] —

nominal equational logic by Pitts and Clouston [CP07] is closer to being the equality

fragment of nominal logic. To our knowledge an HSP result has not (yet) been

obtained for nominal equational logic.

Sun has developed ‘binding algebras’ [Sun99]. Like nominal algebra, binding

algebras are an algebraic framework enriched with constructs to support binding.

Binding algebras are based on a functional semantics (that is, binding is modelled

by a form of functional abstraction in syntax, and by restricted function-spaces

in the semantics). Nominal techniques are not functional; binding is modelled by

the Gabbay-Pitts model of abstraction in nominal sets [GP01]. Functional and

nominal approaches seem to tend to achieve the same things in different ways;

consider for example nominal rewriting [FG07] and combinatory reduction systems

[KvOvR93] or higher-order rewrite systems [MN98]. Therefore it is not a surprise

27

Gabbay

to find a ‘functional’ algebraic framework for binding in the literature. The precise

connection with nominal algebra is not well-understood. Concerning an HSP result

for binding algebras, this is noted as an open problem [Sun99, Discussion 9.1] and

to our knowledge it has not yet been solved.

References

[Bir35] Garrett Birkhoff. On the structure of abstract algebras. Proceedings of the Cambridge
Philosophical Society, 31:433–454, 1935.

[BS81] S. Burris and H. Sankappanavar. A Course in Universal Algebra. Graduate texts in
mathematics. Springer, 1981.

[CP07] Ranald A. Clouston and Andrew M. Pitts. Nominal equational logic. ENTCS, 172:223–257,
2007.

[CU03] J. Cheney and C. Urban. System description: Alpha-Prolog, a fresh approach to logic
programming modulo alpha-equivalence. In UNIF’03, pages 15–19. Universidad Politecnica
de Valencia, 2003.

[dB91] N.G. de Bruijn. Checking mathematics with computer assistance. Notices of the American
Mathematical Society (AMS), 38(1):8–15, 1991.

[FG07] Maribel Fernández and Murdoch J. Gabbay. Nominal rewriting (journal version). Information
and Computation, 205(6):917–965, 2007.

[Gab07] Murdoch J. Gabbay. Fresh Logic. Journal of Applied Logic, 5(2):356–387, June 2007.

[GM06] Murdoch J. Gabbay and Aad Mathijssen. Capture-avoiding Substitution as a Nominal Algebra.
In ICTAC, volume 4281 of Lecture Notes in Computer Science, pages 198–212, 2006.

[GM07a] Murdoch J. Gabbay and Aad Mathijssen. A formal calculus for informal equality with binding.
In WoLLIC’07: 14th Workshop on Logic, Language, Information and Computation, volume
4576 of Lecture Notes in Computer Science, pages 162–176, 2007.

[GM07b] Murdoch J. Gabbay and Aad Mathijssen. One-and-a-halfth-order Logic (journal version).
Journal of Logic and Computation, 18(4):521–562, November 2007.

[GM08] Murdoch Gabbay and Aad Mathijssen. Capture-Avoiding Substitution as a Nominal Algebra.
Formal Aspects of Computing, 20(4-5):451–479, January 2008.

[GP01] Murdoch J. Gabbay and A. M. Pitts. A New Approach to Abstract Syntax with Variable
Binding (journal version). Formal Aspects of Computing, 13(3–5):341–363, 2001.

[KvOvR93] J.-W. Klop, V. van Oostrom, and F. van Raamsdonk. Combinatory reduction systems.
Theoretical Computer Science, 121:279–308, 1993.

[Mac71] S. Mac Lane. Categories for the Working Mathematician, volume 5 of Graduate Texts in
Mathematics. Springer, 1971.

[Mat07] Aad Mathijssen. Logical Calculi for Reasoning with Binding. PhD thesis, Technische
Universiteit Eindhoven, 2007.

[MN98] Richard Mayr and Tobias Nipkow. Higher-order rewrite systems and their confluence.
Theoretical Computer Science, 192:3–29, 1998.

[MS06] G. Manzonetto and A. Salibra. Boolean algebras for lambda calculus. In 21th IEEE Symposium
on Logic in Computer Science (LICS 2006), pages 317–326. IEEE Computer Society, 2006.

[Pit03] A. M. Pitts. Nominal logic, a first order theory of names and binding. Information and
Computation, 186(2):165–193, 2003.

[Sal03] Antonino Salibra. Topological incompleteness and order incompleteness of the lambda calculus.
ACM Trans. Comput. Logic, 4(3):379–401, 2003.

[Sun99] Yong Sun. An algebraic generalization of frege structures - binding algebras. Theoretical
Computer Science, 211:189–232, 1999.

[UPG04] Christian Urban, Andrew M. Pitts, and Murdoch J. Gabbay. Nominal Unification. Theoretical
Computer Science, 323(1–3):473–497, 2004.

28

http://www.gabbay.org.uk/papers.html#nomr-jv
http://www.gabbay.org.uk/papers.html#frelog
http://www.gabbay.org.uk/papers.html#capasn
http://www.gabbay.org.uk/papers.html#forcie
http://www.gabbay.org.uk/papers.html#oneaah-jv
http://www.gabbay.org.uk/papers.html#capasn-jv
http://www.gabbay.org.uk/papers.html#newaas-jv
http://www.gabbay.org.uk/papers.html#newaas-jv
http://www.gabbay.org.uk/papers.html#nomu-jv

	Introduction
	Nominal Algebra Syntax
	A Derivation System
	Nominal Sets
	Basic definitions
	Equivariant functions
	Products
	Sets

	Semantics
	Free algebras
	Ground terms

	The inverse mapping
	Homomorphisms, Subalgebras and Product Algebras
	Algebra homomorphisms
	Subalgebras
	Products
	Atoms-abstraction

	Varieties and Equational Classes of Algebras
	Surjections out of free algebras
	Injections out of free algebras
	Proof of the nominal HSP theorem

	Conclusions
	References

