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Abstract

The lambda-calculus is fundamental in computer science. It resists an algebraic treatment because of capture-avoidance
side-conditions.
Nominal algebra is a logic of equality designed for specifications involving binding. We axiomatise the lambda-calculus
using nominal algebra, demonstrate how proofs with these axioms reflect the informal arguments on syntax, and we prove
the axioms sound and complete. We consider both non-extensional and extensional versions (alpha-beta and alpha-beta-eta
equivalence).
This connects the nominal approach to names and binding with the view of variables as a syntactic convenience for describing
functions. The axiomatisation is finite, close to informal practice, and it fits into a context of other research such as nominal
rewriting and nominal sets.
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1 Introduction

Functions are widely used in what we now call computer science; a development which
can be traced back to Church [Chu41]. They are the basis of functional programming lan-
guages [Pau96,Tho96]; they also find application in logic [Bar77,Lei94], theorem-provers
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[ABI+96,Pau89], rewriting [BN98], and more. Functions are a basic mathematical entity
of computer science.

Functions have been studied in different ways. Models include Scott domain models,
graph and filter models, game models, and more [CDHL84,KNO02,Ber00,Ber06]. There
is much study using rewriting, starting with the proof of confluence of β-reduction (a par-
ticularly neat proof is in [Tak95]). There are also axiomatisations, including axioms by
Andrews [And86], λ-algebras [Sel02], Salibra’s lambda-abstraction algebras [Sal00], and
(if one does not care about representing λ-abstraction, which we do) λ-lifting [Joh85].

This paper will axiomatise the λ-calculus using a recent logic by the authors: nominal
algebra [GM06,Mat07,GM07,GM09]. Nominal algebra extends universal algebra [Coh65]
with support for names and binding, while preserving much of its flavour and its good
mathematical properties. Using nominal algebra to axiomatise the λ-calculus brings several
benefits:

• Nominal algebra seems quite good at bringing us close to informal practice. It is easy to
write down plausible axioms for the λ-calculus; they look just like well-known informal
αβ(η)-equivalences. In this paper we shall consider two nominal algebra theories:
· ULAM (Figure 1). This axiomatises the λ-calculus up toαβ-equivalence (Theorems 4.3

and 4.7).
· ULAME (Figure 5). This axiomatises the λ-calculus up to αβη-equivalence (Theo-

rems 5.3 and 5.4).
• The sets of axioms ULAM and ULAME are finite. Figures 1 and 5 do not describe

infinite schemes of axioms (unlike is the case for example in [Sal00] or [And86]; see
Remark 2.13). This is because name-binding are handled by nominal algebra itself. 4

• Nominal algebra is not a stand-alone logic; it is part of a body of research which includes
nominal unification and nominal rewriting [UPG04,FG07b] (both of which have good
computational properties) — and nominal sets:

• ULAM and ULAME are nominal algebra theories, and so they take models in nominal
sets [GM07,GP01]. 5

The theory of these nominal sets models is investigated in [Gab09]. They have prop-
erties that sets models of universal algebra theories do not have. The notion of variety
is richer, and nominal sets models are inherently finite-dimensional and exclude infinite-
dimensional models. 6 Thus, using nominal techniques give us the option of working
purely (nominal) algebraically in a finite-dimensional world, which is an option that uni-
versal algebra does not offer.

So we can write down axioms which look plausibly like they axiomatise functional
abstraction, in an algebraic logic which looks plausibly like universal algebra and which is
compatible with a broader body of research. But ... in what sense are the axioms correct?
We can ask three questions:

4 See [NPP08, Section 7] for an outline of how a similar idea can be implemented in a completely different kind of language.
5 For the impatient: a nominal set is a set with a name-permutation action. Name-binding is formed by a construction very
similar to taking α-equivalence classes; we use the permutation action to ‘rename’ the name to be bound and taking an
equivalence class of all the renamed variants.
Nominal sets can be considered as sheaves, or as algebraic structures. They were introduced in [GP01]; see that paper for
full details.
6 This is terminology from cylindric techniques (see [Sal00, Definition 7] or [HMT85]). Nominal sets terminology calls
this finitely-supported and infinitely-supported respectively.
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(βvar) ` (λa.a)X = X

(β#) a#Z ` (λa.Z)X = Z

(βapp) ` (λa.(Z ′Z))X = ((λa.Z ′)X)((λa.Z)X)

(βabs) b#X ` (λa.(λb.Z))X = λb.((λa.Z)X)

(βid) ` (λa.Z)a = Z

Figure 1: Axioms of ULAM

• If we quotient λ-terms by αβ-equivalence (respectively, αβη-equivalence) do we obtain,
in some natural way, a model of ULAM (respectively, ULAME)?

• Are the equalities which are valid in all models of ULAM, precisely the equalities de-
scribed by that one set or is there something missing? (Is ULAM complete for αβ?)
Similarly for ULAME.

• Does nominal algebra reasoning capture a useful fragment of the kind of reasoning steps
we would like to represent?

In this paper we explore to what extent our two theories ULAM and ULAME capture
‘the λ-calculus and its theory’. We will demonstrate that ULAM and ULAME are theories
for the untyped λ-calculus, in the sense that they are sound and complete for λ-terms quo-
tiented by αβ-equivalence and αβη-equivalence respectively. We will demonstrate with
examples how they can express informal reasoning as formal derivations.

Nota bene:
Nominal techniques were first applied to construct datatypes of syntax-with-binding [GP01]
with good inductive reasoning principles. One datatype often used is λ-term (up to α-
equivalence). This paper is not another such study, like those in nominal sets [GP01],
higher-order abstract syntax [PE88], de Bruijn terms [dB72], and so on — which are about
collections of syntax trees.

Overview of the paper
We introduce nominal algebra in Section 2, with a syntax specialised to our application to
the λ-calculus (a general treatment is elsewhere [Mat07]). In Section 3 we provide a brief
formal treatment of the λ-calculus. In Section 4 we show that the nominal algebra theory
ULAM is sound and complete with respect to αβ-equality. In Section 5 we show that the
nominal algebra theory ULAME is sound and complete with respect to αβη-equality. In the
Conclusions (Section 6) we discuss related and future work. In Appendix A we include, for
the reader’s convenience, statements and proofs of some underlying properties of nominal
algebra; these do not depend on ULAM or ULAME but they are relevant background, in
much the same way as the definitions and results in Section 3 are relevant background.

2 Nominal algebra

In this section, we present the proof theory of nominal algebra. It consists of an equational
logic on nominal terms, and has built-in support for binding, freshness and meta-variables.
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2.1 Nominal terms

We define a syntax of nominal terms tailored to our λ-calculus application; general treat-
ments are elsewhere [GM08a,Mat07].

Definition 2.1 Fix the following disjoint sets:

• A countably infinite set of atoms A. Atoms represent object-level variables.
a, b, c, . . . will range over atoms. We use a permutative convention that a, b, c, . . .

range over distinct atoms. Thus for example in (#ab) and (#λb) from Figure 2, and in
(perm) from Figure 3, a and b represent two distinct atoms. 7

• A countably infinite collection of unknowns. Unknowns represent meta-variables (as in
‘take a term t’; t is a meta-variable ranging over terms).
X,Y, Z, . . . will range over distinct unknowns.

• a possibly infinite collection of constant symbols. c will range over constant symbols
(we will never need to consider more than one at a time).

We set about constructing the machinery of nominal algebra.

Definition 2.2 A permutation π of atoms is a bijection on atoms with finite support,
which means that the set supp(π), defined by {a | π(a) 6= a}, is finite. In words: For
‘most’ atoms π is the identity.

The following notation will prove convenient:

• Write id for the identity permutation on atoms, π-1 for the inverse of π, and π ◦ π′ for
the composition of π and π′, i.e. (π ◦ π′)(a) = π(π′(a)).

• Write (a b) for the permutation that swaps a and b, i.e. (a b)(a) = b, (a b)(b) = a, and
(a b)(c) = c. We may omit ◦ between swappings, writing (a b) ◦ (b c) as (a b)(b c).

Definition 2.3 Terms t, u, v are inductively defined by:

t ::= a | π ·X | λa.t | tt | c

We will use the following conventions:

• Application is left-associative, so for example ‘tuv’ means ‘(tu)v’.
• Abstraction extends as far to the right as possible, so for example ‘λa.tu’ means ‘λa.(tu)’.
• We may write id ·X just as X . However, note that ‘X’ is an unknown and not a term —

‘id ·X’ is a term.
• We write ≡ for syntactic identity. That is, ‘t ≡ u’ means ‘t and u denote the same

term’.

A typed syntax is possible; see [FG07a]. Types would cause no essential difficulties for
the results to follow.

We now give some basic definitions; of the atoms-permutation action and of the captur-
ing substitution action, which are characteristic of nominal terms [UPG04].

7 Besides being useful in what follows, this models common practice: if we ask the reader to ‘consider two variable symbols
x and y’ then we have no control over, for example, their handwriting, and thus over the symbols which they actually commit
to the page. What matters is that the two variable symbols are different.

4



Gabbay and Mathijssen

Definition 2.4 Define the set atoms(t) of atoms that occur anywhere in t inductively by:

atoms(a) = {a} atoms(π ·X) = supp(π) atoms(λa.t) = atoms(t) ∪ {a}

atoms(t′t) = atoms(t′) ∪ atoms(t) atoms(c) = ∅

We also write atoms(t1, . . . , tn) as a shorthand for atoms(t1) ∪ · · · ∪ atoms(tn).

For example,

atoms(λa.a) = {a} atoms((b a) ·X) = {b, a} atoms(f(a, a)) = {a}.

Definition 2.5 Define a permutation action π · t by:

π · a ≡ π(a) π · (π′ ·X) ≡ (π ◦ π′) ·X π · λa.t ≡ λ(π(a)).(π · t)

π · (t′t) ≡ (π · t′)(π · t) π · c ≡ c

In the clause for λ, π acts also on the ‘a’. For example (a b) · λa.X ≡ λb.(a b) · X .
In the clause for π′ ·X , π′ ·X is a term (recall that ‘X’, on its own, is not a term; it must
always be paired with a permutation, even if it is id ).

Definition 2.6 A substitution σ is a function from unknowns to terms.

Definition 2.7 Define a substitution action tσ by:

aσ ≡ a (π ·X)σ ≡ π · σ(X) (λa.t)σ ≡ λa.(tσ) (t′t)σ ≡ (t′σ)(tσ) cσ ≡ c

Note that substitution does not avoid capture; note also that when σ encounters π ·X , the
permutation π is applied to σ(X). For example if σ(X) ≡ a then:

(λa.X)σ ≡ λa.(Xσ)

≡ λa.σ(X)

≡ λa.a

(λb.(a b) ·X)σ ≡ λb.(((a b) ·X)σ)

≡ λb.(a b) · σ(X)

≡ λb.(a b) · a

≡ λb.b

2.2 Freshness, equality, axioms, theories

Definition 2.8 A freshness is a pair a#t of an atom and a term. Call a freshness of the
form a#X (so t ≡ X) primitive. Write ∆ and ∇ for (finite, and possibly empty) sets of
primitive freshnesses and call them freshness contexts.

We may drop set brackets in freshness contexts. For example we may write a#X, b#Y

for {a#X, b#Y }.

Definition 2.9 Define derivability on freshnesses by the rules in Figure 2. In this fig-
ure, a and b permutatively range over atoms, t and t′ range over nominal terms, π over
permutations of atoms, X over unknowns, and c over constants.

Write ∆ ` a#t when a derivation of a#t exists using these rules such that the assump-
tions are elements of ∆. We usually write ∅ ` a#t as ` a#t.
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(#ab)
a#b

π-1(a)#X
(#X)

a#π ·X
(#λa)

a#λa.t

a#t
(#λb)

a#λb.t

a#t′ a#t
(#app)

a#t′t

(#c)
a#c

Figure 2: Freshness derivation rules for nominal terms

For example from the rules in Figure 2, ` a#λb.b, ` a#λa.a, and a#X ` a#X(λa.Y )

are all derivable.

Remark 2.10 Freshness has an accepted technical denotation as a notion in nominal sets,
introduced in [GP01], but it has a broader pedigree and it might be convenient to briefly
mention it here. Freshness is a notion of independence. Notions of dependence and in-
dependence have been studied abstractly before; two different examples are in [Coh65,
Chapter VII, Section 2] or [Fin85]. Freshness is also related with specific constructions
studied for example by Salibra (consider for example the function ∆ in Definition 3 of
[Sal00]).

Definition 2.11 An equality is a pair t = u. An axiom is a pair ∇ ` t = u of a freshness
context ∇ and an equality t = u. We may write ∅ ` t = u as ` t = u.

Call a set of axioms T a theory. The theories considered in this paper are:

• CORE: the empty set of axioms.
• ULAM: the axioms from Figure 1. In Section 4 we give a formal sense in which this is a

nominal algebra theory of the λ-calculus (with αβ).
In Figure 1, note that the a and b are specific atoms and the X , Z and Z ′ are specific

unknowns.
• ULAME: the axioms from Figure 1, plus an extra axiom a#Z ` λa.(Za) = Z.

This is, of course, an η-equality. In Section 5 we give a formal sense in which this is
a nominal algebra theory of the λ-calculus with αβη.

Definition 2.12 Define derivability on equalities by the rules in Figure 3. In this figure,
a and b permutatively range over atoms, t, t′, u and u′ range over nominal terms, X over
unknowns,∇ over freshness contexts, π over permutations, and σ over substitutions.

Write ∆ `
T
t = u when a derivation of t = u exists using these rules such that:

• for each instance of (ax∇`t=u), ∇ ` t = u is an axiom from T;
• in the derivations of freshnesses (introduced by instances of (ax∇`t=u) and (perm))

the freshness assumptions used are from ∆ only.

We write ∅ `
T
t = u as `

T
t = u.

Remark 2.13 We discuss the most interesting rules of Figure 3:

• (ax∇`t=u). This axiom rule expresses how we obtain instances of axioms: we in-
stantiate unknowns by terms using substitutions (using the substitution action defined
in Definition 2.7) and also we rename atoms using permutations (using the permutation
action defined in Definition 2.5).
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(refl)
t = t

t = u
(symm)

u = t

t = u u = v
(tran)

t = v

a#t b#t
(perm)

(a b) · t = t

t = u
(cngλ)

λa.t = λa.u

t′ = u′ t = u
(cngapp)

t′t = u′u

{a#σ(X) | a#X ∈ ∇}
(ax∇` t=u)

π · (tσ) = π · (uσ)

[a#X]
···

t = u
(fr) (a 6∈ atoms(t, u))

t = u

Figure 3: Derivation rules for nominal equality

This allows ULAM to have finitely many axioms; Figure 1 does not describe axiom-
schemes. For example consider the axiom (βvar) = (` (λa.a)X = X). This uses
an arbitrary, but fixed atom a and an arbitrary, but fixed unknown X . We deduce
`

ULAM
(λb.b)X = X using (ax(βvar)) taking π = (b a) and σ mapping X to (b a) ·X

(and all other Y to id · Y ) as follows:

(ax`(λa.a)X=X)
(λb.b)(b a) · ((b a) ·X) = (b a) · ((b a) ·X)

The reader can easily check from Definition 2.5 that (b a) · ((b a) ·X) ≡ id ·X .
We might expect the premises of the instance of the axiom rule to be

{π(a)#π · σ(X) | a#X ∈ ∇}, rather than {a#σ(X) | a#X ∈ ∇}.

Both versions are correct, because of a known property of nominal terms which we have
called object-level equivariance:

∆ ` a#t if and only if ∆ ` π(a)#π · t

for any ∆, a, t and π. This is characteristic of nominal techniques (e.g. [UPG04, Lemma
2.7], [FG07b, Lemma 20], [GM08b, Appendix A], [GP01, Lemma 4.7]).

• (fr). This introduces a fresh atom into the derivation. Square brackets denote dis-
charge of the assumption. We can always find a fresh atom no matter how unknowns are
instantiated, since our syntax is finite and must mention finitely many atoms.

(fr) adds no deductive power to CORE but it does in the presence of axioms; a full
discussion with an example is in [Mat07, Lemma 2.3.18].

• (perm). This rule expresses α-equivalence (see Lemma 2.16 and Theorem 3.10). For
instance, (perm) allows us to show the following standard α-equivalence property:

(#ab)
a#b

(#λb)
a#λb.b

(#λa)
b#λb.b

(perm) (λa.a ≡ (a b) · λb.b)
λa.a = λb.b

7
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(#ab)
a#b

(#λb)
a#λc.b

(#λa)
c#λc.b

(perm)
λa.b = λc.b

(cngλ)
λb.λa.b = λb.λc.b

(refl)
a = a

(cngapp)
(λb.(λa.b))a = (λb.(λc.b))a

(#ab)
c#a

(axβabs)
(λb.(λc.b))a = λc.((λb.b)a)

(axβvar)
(λb.b)a = a

(cngλ)
λc.((λb.b)a) = λc.a

(tran)
(λb.(λc.b))a = λc.a

(tran)
(λb.(λa.b))a = λc.a

Figure 4: β-equality with an α-conversion

(perm) captures several rules from [UPG04, Figure 2] (but not in a syntax-directed
manner).

• (refl). Choosing a, b 6∈ atoms(t) we can construct the derivation sketched below:

···
a#(a b) · t

···
b#(a b) · t

(perm)
t = (a b) · t

···
a#t

···
b#t

(perm)
(a b) · t = t

(tran)
t = t

(fr) (introducing a#X, b#X for all unknowns X in t)
t = t

So we can view (refl) as sugar, but (if only for cleaner example derivations) we retain
it. All our proofs treat (refl) as a ‘real’ rule. 8

Remark 2.14 Nominal algebra is algebraic (even though the judgement-form ∆ ` t = u

has ‘∆ `’, which looks like an implication) in the following two senses:

• Nominal algebra is sound and complete for models in nominal sets [GM07,Mat07].
• These models are closed under notions of product, subalgebra, quotient (just like for

traditional algebra) — and a nominal sets notion we call atoms-abstraction. A version
of the HSP theorem (Birkhoff’s theorem) holds; any class of nominal algebra models
closed under product, subalgebra, quotient, and atoms-abstraction, is characterised by a
nominal algebra theory [Gab09].

So, perhaps unexpectedly, nominal algebra retains much of the flavour and mathematical
properties of universal algebra.

Example 2.15 In ULAM we can prove β-equivalences as illustrated in Figure 4 — we
choose one requiring an α-conversion.

We now consider some useful examples of derivations in the presence of unknowns:

Lemma 2.16 b#X `
CORE

(λa.X)Y = (λb.((b a) ·X))Y .

8 It is a fact that (symm) and (tran) are admissible rules in CORE (a proof can be constructed using Theorem 2.19
below). This property fails in the presence of axioms, for instance, the axioms of ULAM and ULAME. On the other hand,
we can view (refl) as sugar for the derivation given above using (perm), in any theory.
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Proof We give the derivation in full:

b#X
(#X)

a#(b a) ·X
(#λb)

a#λb.(b a) ·X
(#λa)

b#λb.(b a) ·X
(perm)

λa.X = λb.(b a) ·X
(refl)

Y = Y
(cngapp)

(λa.X)Y = (λb.(b a) ·X)Y

The instance of (perm) relies on the fact that (b a) · λa.X ≡ λb.(b a) ·X . 2

Lemma 2.17 is a nominal algebra rendering of the substitution lemma [Bar84, Lemma
2.1.16] in terms of β-redexes:

Lemma 2.17 a#Y `
ULAM

(λb.((λa.Z)X))Y = (λa.((λb.Z)Y ))((λb.X)Y ).

A proof by induction on Z is impossible — Z need not range over syntax, only over
elements of nominal algebra models of ULAM (for the general theory of nominal algebra
denotations see elsewhere [Mat07]). But ULAM proves this, in logic:

Proof By (tran) the proof obligation follows from:

(λb.((λa.Z)X))Y = ((λb.(λa.Z))Y )((λb.X)Y ) (1)

((λb.(λa.Z))Y )((λb.X)Y ) = (λa.((λb.Z)Y ))((λb.X)Y ) (2)

Part (1) follows by axiom (βapp); for part (2) we give the full derivation:

a#Y
(axβabs)

(λb.(λa.Z))Y = λa.((λb.Z)Y )
(refl)

(λb.X)Y = (λb.X)Y
(cngapp)

((λb.(λa.Z))Y )((λb.X)Y ) = (λa.((λb.Z)Y ))((λb.X)Y )

2

The rules of CORE are not syntax-directed (consider (tran)), but we can derive syn-
tactic criteria for equality in CORE, which will also be useful later:

Definition 2.18 Write ds(π, π′) for the set {a | π(a) 6= π′(a)}, the difference set of per-
mutations π and π′. We write ∆ ` ds(π, π′)#X for a set of proof-obligations ∆ ` a#X ,
one for each a ∈ ds(π, π′).

Theorem 2.19 ∆ `
CORE

t = u precisely when one of the following holds:

• t ≡ a and u ≡ a.
• t ≡ π ·X , u ≡ π′ ·X and ∆ ` ds(π, π′)#X .
• t ≡ λa.t′, u ≡ λa.u′ and ∆ `

CORE
t′ = u′.

• t ≡ λa.t′, u ≡ λb.u′, ∆`b#t′ and ∆`
CORE

(b a) · t′=u′.
• t ≡ t′′t′, u ≡ u′′u′, ∆ `

CORE
t′′ = u′′ and ∆ `

CORE
t′ = u′.

• t ≡ c and u ≡ c.

For a proof see Appendix A; expanded details are also in [Mat07, Cor. 2.5.4]. Thus,
CORE induces the same theory of equality as the rules for equality from [UPG04].
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3 The λ-calculus

We give a short formal treatment of λ-terms and αβ(η)-equivalence.

Definition 3.1 Call a nominal term ground when it mentions no unknowns. 9

As discussed in Subsection 2.1 our nominal terms syntax is specialised to the λ-calculus;
ground terms g, h, k are characterised by:

g ::= a | λa.g | gg | c.

Thus, ‘ordinary’ λ-terms are a subset of the nominal terms from Definition 2.3, obtained
by exluding unknowns. This should be no surprise, since unknowns are in Definition 2.3 to
represent meta-variables.

Definition 3.2 Define the free atoms fa(g) by:

fa(a) = {a} fa(λa.g) = fa(g) \ {a} fa(g′g) = fa(g′) ∪ fa(g) fa(c) = ∅

Lemma 3.3 a 6∈ fa(g) if and only if ` a#g.
Also, if a 6∈ atoms(g) then ` a#g.

Definition 3.4 Define the size |g| of a ground term g by:

|a| = 1 |λa.g| = |g|+ 1 |g′g| = |g′|+ |g|+ 1 |c| = 1

Definition 3.5 Fix an infinite set of atoms F ⊆ A, such that A \ F is also infinite.

Definition 3.6 We define a capture-avoiding substitution action g[h/a] inductively on
|g| by:

a[h/a] ≡ h

b[h/a] ≡ b

(λa.g)[h/a] ≡ λa.g

(λb.g)[h/a] ≡ λb.(g[h/a]) (b 6∈ fa(h))

(λb.g)[h/a] ≡ λb′.(g[b′/b][h/a]) (b ∈ fa(h), b′ fresh, in F)

(g′g)[h/a] ≡ (g′[h/a])(g[h/a])

c[h/a] = c

In the clause for (λb.g)[h/a] we make some fixed but arbitrary choice of fresh b′ ∈ F for
each b, g, h, a (so b′ ∈ F \ atoms(g) ∪ atoms(h) ∪ {a, b}).

Remark 3.7 We fixF and make our choice of fresh b′ be fromF because this is convenient
for our later proof of completeness of ULAM. This choice allows us to prove Lemma 3.15,
which is needed to prove Lemma 4.13, and this in turn guarantees Lemma 4.17, which
makes it easier for us to express a compact definition of the inverse translation in Defini-
tion 4.18, which is a key component of the proof of Completeness (Theorem 4.7). This
pattern is repeated in Section 5.

9 Ground terms should not be confused with closed lambda terms, i.e. terms without free atoms; closed terms are not used
in this paper.
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Definition 3.8 Let α-equivalence =α be the least transitive reflexive symmetric relation
such that:

• (Name-abstraction.)
If g[c/a] =α g

′[c/b] for fresh c (so c 6∈ atoms(g, g′)) then λa.g =α λb.g
′.

• (Congruence for λ.) If g =α g
′ then λa.g =α λa.g

′.
• (Congruence for application.) If g =α g

′ and h=α h
′ then gh=α g

′h′.

Lemma 3.9 Suppose g is a ground term.

(i) If a, b 6∈ fa(g) then (a b) · g =α g.

(ii) If b 6∈ fa(g) then g[b/a] =α (b a) · g.

Proof For the first part, we observe that since a, b 6∈ fa(g), any a and b that occur in g
must occur in the scope of λa and λb. We traverse the structure of g bottom-up and rename
these to fresh atoms (for example λa′ and λb′ which do not occur anywhere in g). Call the
resulting term g′. Now (a b) · g′ ≡ g′ because a, b 6∈ atoms(g′). Equality is symmetric, so
we reverse the process to return to g.

The second part then follows by an induction on |g|. 2

Theorem 3.10 On ground terms, derivable equality in CORE coincides with =α.

(See also [Mat07, Theorem 4.3.13].)

Proof We must show that for ground terms g, h,

`
CORE

g = h if and only if g =α h.

We prove the left-to-right implication by induction on the structure of g, using the syn-
tactic criteria for CORE-equality (Theorem 2.19). The cases of g ≡ a and g ≡ c follow by
reflexivity, and the case of g ≡ g′′g′ follows by congruence using the inductive hypothesis.
Now suppose g ≡ λa.g′, then there are two possibilities:

(i) h ≡ λa.h′ and `
CORE

g′ = h′. Then g′ =α h
′ by the inductive hypothesis, and we

conclude λa.g′ =α λa.h
′ by congruence.

(ii) h ≡ λb.h′, ` b#g′ and `
CORE

(b a) · g′ = h′. By Lemma 3.3 and some easy calcula-
tions we know a, b 6∈ fa(λa.g′), so λa.g′ =α λb.(b a) · g′ by part 1 of Lemma 3.9 and
symmetry. Also λb.(b a) · g′ =α λb.h

′ by congruence and the inductive hypothesis.
We conclude λa.g′ =α λb.h

′ by transitivity.

Conversely suppose that g =α h. It suffices to show that equality in CORE can simulate
every derivation rule of =α. We treat the only non-trivial case.

Suppose we have deduced λa.g =α λb.h from g[c/a] =α h[c/b], where c is fresh (so
c 6∈ atoms(g, h)). By Lemma 3.3 we know ` c#g and ` c#h, with which we can show

`
CORE

g[c/a] = (c a) · g and `
CORE

h[c/b] = (c b) · h

by an induction on |g| and |h|.
Now also `

CORE
g[c/a] = h[c/b] by the inductive hypothesis. Then we obtain

`
CORE

λc.(c a) · g = λc.(c b) · h.

11
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by (symm), (tran) and (cong[]).
By (perm) `

CORE
λc.(c a) · g = λa.g and `

CORE
λc.(c b) · h = λb.h, since ` c#g and

` c#h. Using (symm) and (tran) we conclude that `
CORE

λa.g = λb.h. 2

Remark 3.11 We do not quotient terms by α-conversion and we do not use a nominal-
style datatype of syntax-with-binding [GP01]. Later on the proof-method for Theorem 4.7
involves delicate accounting of what atoms appear abstracted in terms. In particular, we
do not want to have to invent names (and keep track of our invented names) for abstracted
atoms in Definition 4.18.

We conclude this section with some basic definitions and lemmas, which will be useful
later.

Definition 3.12 Let (one step) β-reduction g →β h be defined by:

• (λa.g)h→β g[h/a].
• If g →β g

′ then λa.g →β λa.g
′.

• If g →β g
′ then gh→β g

′h.
• If h→β h

′ then gh→β gh
′.

Let (one step) β-equality↔β be defined by g↔β h when g →β h or h→β g.
Let (multi step) αβ-equality =αβ be the least transitive reflexive relation containing

↔β and =α.

Definition 3.13 Let (one step) η-contraction be defined by:

• λa.(ga)→η g if a 6∈ fa(g).
• If g →η g

′ then λa.g →η λa.g
′.

• If g →η g
′ then gh→η g

′h.
• If h→η h

′ then gh→η gh
′.

Let (one step) η-equality be defined by g↔η h when g →η h or h→η g.
Let (multi step) αβη-equality =αβη be the least transitive reflexive relation containing

↔η,↔β , and =α.

Definition 3.14 Define the bound atoms ba(g) by:

ba(a) = ∅ ba(λa.g) = ba(g) ∪ {a} ba(g′g) = ba(g′) ∪ ba(g) ba(c) = ∅

Lemma 3.15 For ground terms g, g′:

(i) If g →β g
′ and ba(g) ⊆ F , then ba(g′) ⊆ F .

(ii) If g →η g
′ and ba(g) ⊆ F , then ba(g′) ⊆ F .

Proof The first part is by routine calculations, using the fact that in Definition 3.6 we
choose fresh atoms from F .

The second part is trivial, since η-contraction eliminates a bound variable. 2

Lemma 3.16 For ground terms g, g′, h:

(i) If g =α g
′ and g →β h then there exists some h′ such that g′ →β h

′ and h′ =α h.

(ii) If g =α g
′ and g →η h then there exists some h′ such that g′ →η h

′ and h′ =α h.

12
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4 Soundness, completeness, and conservativity for αβ

In Section 2 we presented nominal algebra and the theory ULAM. We saw formal deriva-
tions reminiscent of the ‘informal meta-level’. This informal meta-level is made formal us-
ing nominal terms; object-level variables become atoms, and meta-level variables become
unknowns. ULAM axiomatises the λ-calculus up to αβ-equivalence within this framework.
Theorems 4.3 and 4.7 make that formal.

4.1 Soundness

Definition 4.1 Call σ a ground substitution for a set of unknowns X when σ(X) is
ground for every X ∈ X . Call σ ground for ∆, t, u when σ is ground for the set of un-
knowns appearing anywhere in ∆, t, or u.

So: ground substitutions eliminate all metavariables.

Definition 4.2 Write ∆ |=
αβ
t = u when tσ =αβ uσ (Definition 3.12) for all ground sub-

stitutions σ for ∆, t, u such that a 6∈ fa(σ(X)) for every a#X ∈ ∆.

Theorem 4.3 (Soundness) For any ∆, t, u, if ∆ `
ULAM

t = u then ∆ |=
αβ
t = u.

Proof We proceed by induction on ULAM derivations. We sketch the proof (some reason-
ing on freshnesses is elided):

• The cases (refl), (symm), (tran), (cngλ) and (cngapp) follow by induction using
the fact that =αβ is an equivalence relation and a congruence.

• The case (perm). Suppose a, b 6∈ fa(g). By part 1 of Lemma 3.9, (a b) · g =α g and
(a b) · g =αβ g follows.

• The case (fr). Unknowns are irrelevant because ground terms by definition do not
contain them. If σ(X) mentions an atom which (fr) generates fresh for some X in ∆, t,
or u, then we ‘freshen’ the atom further to avoid an ‘name clash’. 10

• The case (ax). The axioms of ULAM are all standard properties of the λ-calculus:
· (λa.a)h=αβ h.
· If a 6∈ fa(g) then (λa.g)h=αβ g.
· (λa.(g′g))h=αβ (λa.g′)h)((λa.g)h).
· If b 6∈ fa(h) then (λa.(λb.g))h=αβ λb.((λa.g)h).
· (λa.g)a=αβ g.

2

4.2 Completeness and conservativity

Recall our choice of F from Definition 3.5:

Definition 4.4 Fix a freshness context ∆ and two terms t and u. Let A be the atoms
mentioned anywhere in ∆, t, or u, i.e. A = {a | a#X ∈ ∆} ∪ atoms(t, u). Let X be the
unknowns mentioned anywhere in ∆, t, or u. For each X ∈ X fix the following data:

10We retain the inductive hypothesis of the ‘freshened’ derivation using the mathematical principle of ZFA equivariance
[GM08b, Appendix A] — or by performing induction instead on the depth of derivations, and proving that freshening atoms
does not affect this measure.

13
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• an order aX1, . . . , aXkX on the atoms in A such that a#X 6∈ ∆;
• two entirely fresh atoms dX and eX (so dX 6∈ F ∪ A, and eX 6∈ F ∪ A).

Write D for {dX | X ∈ X} and E for {eX | X ∈ X}.

Definition 4.5 Specify ς a ground substitution for X by:

• ς(X) ≡ eX(dXaX1 . . . aXkX) when X ∈ X , and
• ς(X) ≡ X otherwise (the choice of X in the right-hand side is irrelevant).

Lemma 4.6 is easy and will be useful:

Lemma 4.6 If a#X ∈ ∆ then a 6∈ fa(ς(X)).

Proof By construction of ∆ and ς (Definitions 4.4 and 4.5) a differs from all of the aXi. 2

Theorem 4.7 (Completeness) If ∆ |=
αβ
t = u then ∆ `

ULAM
t = u.

The proof of this result uses the ς constructed above, and it is technical. Therefore,
we defer it to Subsection 4.3 and mention Corollary 4.8 and Theorem 4.12, which are two
forms of conservativity result for ULAM over CORE.

Corollary 4.8 Suppose g and h are ground. Then `
ULAM

g = h if and only if g =αβ h.

Proof By Theorems 4.3 and 4.7, using that fact that gς ≡ g and hς ≡ h. 2

Definition 4.9 Call a ground term g a β-normal form when no g′ exists with g →β g
′.

Lemma 4.10 Fix ∆. Suppose that t and u contain no subterm of the form (λa.v)w. Then
for ς the ground substitution from Definition 4.5, tς and uς are β-normal forms.

Proof ς(X) ≡ eX(dXaX1 . . . aXkX) for every X appearing in ∆, t, u. Applying this substi-
tution to t and u cannot introduce subterms of the form (λa.v)w. 2

Lemma 4.11 tς =α uς implies ∆ `
CORE

t = u.

Proof We prove by induction on t′ that if t′ is a subterm of t and u′ a subterm of u then
t′ς =α u

′ς implies ∆ `
CORE

t′ = u′.
The interesting case is when t′ ≡ π ·X . Suppose eX(dXπ(aX1) . . . π(aXkX) =α u

′ς).
Then it must be that u′ς ≡ eX(dXπ(aX1) . . . π(aXkX)). By the construction of u′ς and the
way we chose aX1, . . . , aXkX to be the atoms mentioned in ∆, t, or u which are not provably
fresh for X in ∆, it follows that u′ must take the form π′ · X , for some π′ such that
∆ ` ds(π, π′)#X . It follows that ∆ `

CORE
t′ = u′ as required. 2

Theorem 4.12 (Conservativity) Suppose that t and u contain no subterm of the form
(λa.v)w. Then

∆ `
ULAM

t = u if and only if ∆ `
CORE

t = u.

Proof A derivation in CORE is also a derivation in ULAM so the right-to-left implication
is immediate.

Now suppose that ∆ `
ULAM

t = u. We construct ς as in Definition 4.5. By Theo-
rem 4.3, tς =αβ uς . By Lemma 4.10 we know that tς and uς are β-normal forms. By
confluence [Bar84, Theorem 3.2.8 (i)] tς =α uς . By Lemma 4.11 ∆ `

CORE
t = u, as re-

quired. 2

14
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4.3 Proof of Theorem 4.7

Recall the definition of ba(g) from Definition 3.14.

Lemma 4.13 There exists a chain

tς ≡ g1↔? g2↔? g3↔? . . .↔? gm−1↔? gm ≡ uς

where each↔? is one of =α or↔β , which is such that ba(gi) ∩ (D ∪ E) = ∅ for 1 ≤ i ≤ m
(so none of the terms in the chain contains ‘λdX’ or ‘λeX’ for any dX ∈ D or eX ∈ E).

Proof By assumption ∆ |=
αβ
t = u, so by Lemma 4.6, we know tς =αβ uς . It follows that

there is a chain

tς ≡ g′1↔? g
′
2↔? g

′
3↔? . . .↔? g

′
m′−1↔? g

′
m′ ≡ uς

where each↔? is one of =α or↔β .
By construction, ba(gi) ∩ (D ∪ E) = ∅ for i = 1 and i = m′. We transform this into a

chain such that all terms satisfy this property.
Suppose h →β h

′ is a link in the chain and such that ba(h) ∩ (D ∪ E) 6= ∅ (so h ≡ g′i
and h′ ≡ g′i+1, or h ≡ g′i and h′ ≡ g′i−1, for some i). We use Lemma 3.16 to replace this
link with h=α h

′′ →β h
′′′=α h

′, where we choose h′′ such that ba(h′′) ∩ (D ∪ E) = ∅. By
part 1 of Lemma 3.15 also ba(h′′′) ∩ (D ∪ E) 6= ∅.

We iterate the replacement above as much as possible. Now suppose h=α h
′ =α h

′′ is
a pair of links in the chain. Since =α is transitive, we replace this with h=α h

′′.
It is easy to check that the final chain has the form

tς ≡ g1↔? g2↔? g3↔? . . .↔? gm−1↔? gm ≡ uς

where ba(gi) ∩ (D ∪ E) = ∅ for all 1 ≤ i ≤ m, as required. 2

We can make the following definition:

Definition 4.14 Make a fixed but arbitrary choice of chain as specified in Lemma 4.13.

Definition 4.15 Let A+ be the set of all atoms mentioned anywhere in the chain we fixed
in Definition 4.14, and let ∆+ be ∆ enriched with freshness assumptions a#X for every
a ∈ A+ \ A and every X ∈ X .

Definition 4.16 Call a ground term g accurate when:

• atoms(g) ⊆ A+ (g mentions only atoms in A+); and
• ba(g) ∩ (D ∪ E) = ∅ (g does not contain ‘λdX’ or ‘λeX’ for any dX ∈ D or eX ∈ E).

Lemma 4.17 g1, . . . , gm are accurate.

Proof Trivially, from the construction in Lemma 4.13 and from our choice of A+. 2

Definition 4.18 Define an inverse translation from accurate ground terms to (possibly
non-ground) terms inductively by:

a-1 ≡ a (a 6∈ D ∪ E) (λa.g)-1 ≡ λa.(g-1) (gh)-1 ≡ (g-1)(h-1) c-1 ≡ c

(dX)-1 ≡ λaX1. · · ·λaXkX .X (dX∈D) (eX)-1 ≡ λeX.eX (eX∈E)

15
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We need some technical lemmas:

Lemma 4.19 Suppose that g is accurate. For any a ∈ A+, if a 6∈ fa(g) then ∆+ ` a#g-1.

Proof By induction on g. The non-trivial case is when g ≡ dX . If a 6∈ fa(dX) then a 6= dX
and we must show

∆+ ` a#λaX1. · · ·λaXkX .X,
which follows using the rules for freshness and the fact that the atoms that might not be
fresh for X are precisely the aXi. 2

Lemma 4.20 Suppose that g is accurate. Suppose that π is a permutation such that
π(a) = a for all a 6∈ A+ \ (D ∪ E). Then ∆+ `

CORE
(π · g)-1 = π · (g-1).

Proof By a routine induction on g. In the case of g ≡ dX we use the fact that π(a) = a for
all a ∈ (D ∪ E). 2

Lemma 4.21 Suppose that g and h are accurate. Then g =α h implies ∆+ `
CORE

g-1 = h-1.

Proof By Theorem 3.10 g =α h coincides with `
CORE

g = h. The proof is then by a de-
tailed but routine induction on g using the syntactic criteria of Theorem 2.19.

The only non-trivial case is when

g ≡ λa.g′, h ≡ λb.h′, ` b#g′, and `
CORE

(b a) · g′ = h′.

We must show ∆+ `
CORE

λa.(g′)-1 = λb.(h′)-1. By transitivity and congruence, it suffices
to show the following:

• ∆+ `
CORE

λa.(g′)-1 = λb.(b a) · (g′)-1. By (perm) and the rules for freshness, this
follows from ∆+ ` b#(g′)-1. Using Lemma 4.19, this follows from our assumption that
` b#g′.

• ∆+ `
CORE

(b a) · (g′)-1 = ((b a) · g′)-1. λa.g′ and λb.h′ are accurate so a, b ∈ A+ \ (D ∪ E).
The result follows by Lemma 4.20.

• ∆+ `
CORE

((b a) · g′)-1 = (h′)-1. (b a) · g′ and h′ are accurate, so this follows by in-
ductive hypothesis from our assumption that `

CORE
(b a) · g′ = h′.

2

Lemma 4.22 Suppose that a ∈ A+ \ (D ∪ E). Suppose that g, h, and g[h/a] are accurate.
Then ∆+ `

ULAM
(λa.(g-1))(h-1) = (g[h/a])-1.

Proof By induction on |g| (Definition 3.4). We consider the cases in turn:

• a[h/a]. ∆+ `
ULAM

(λa.a)(h-1) = h-1 by axiom (βvar).
• b[h/a] where b 6∈ (D ∪ E). So ∆+ ` a#b, and ∆+ `

ULAM
(λa.b)(h-1) = b by axiom

(β#). (Recall that by our permutative convention, b ranges over atoms other than a.)
• c[h/a]. So ∆+ ` a#c, and ∆+ `

ULAM
(λa.c)(h-1) = c by axiom (β#). (Recall from

Definition 2.1 that c ranges over constant symbols.)
• dX [h/a] where dX ∈ D. By assumption a 6= dX , so we must show

∆+ `
ULAM

(λa.(λaX1. · · ·λaXkX .X))(h-1) = λaX1. · · ·λaXkX .X.
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Using axiom (β#) (and (tran) and (refl)) it suffices to show

∆+ ` a#λaX1. · · ·λaXkX .X.

This follows from Lemma 4.19 and the fact that a 6∈ fa(dX) = {dX}.
• eX [h/a] where eX ∈ E . By assumption a 6= eX , so we must show

∆+ `
ULAM

(λa.(λeX.eX))(h-1) = λeX.eX.

Using axiom (β#) (and (tran) and (refl)) it suffices to show

∆+ ` a#λeX.eX.

We derive this using the derivation rules for freshness (Figure 2).
• (λa.g)[h/a]. ∆+ `

ULAM
(λa.(λa.(g)-1))(h-1) = λa.(g-1) by axiom (β#).

• (λb.g)[h/a] where b 6∈ fa(h). ∆+ `
ULAM

(λa.(λb.(g)-1))(h-1) = λb.((g[h/a])-1) by the
following ULAM derivation, presented in a calculational style:

(λa.(λb.(g)-1))(h-1)

= { axiom (βabs), since ∆+ ` b#h-1 by Lemma 4.19 }
λb.((λa.(g)-1)(h-1))

= { inductive hypothesis }
λb.((g[h/a])-1)

• (λb.g)[h/a] where b ∈ fa(h). By assumption λb.g is accurate, therefore b 6∈ (D ∪ E).
By Definition 3.6, (λb.g)[h/a] ≡ λb′.(g[b′/b][h/a]) for fresh b′ (so b′ 6∈ atoms(g, h)).
By assumption λb′.(g[b′/b][h/a]) is accurate, and so b′ 6∈ (D ∪ E) and g[b′/b][h/a] is
accurate. We must show

∆+ `
ULAM

(λa.(λb.(g-1)))(h-1) = λb′.((g[b′/b][h/a])-1).

Note that by Lemma 4.19, ∆+ ` b′#g-1 and ∆+ ` b′#h-1, and ∆+ ` b′#λb.(g-1) fol-
lows by (#λb). Also ∆+ ` b#λb.(g-1) is immediate by (#λa). We present the rest of
the proof as a calculation:

λb′.((g[b′/b][h/a])-1)

= { g[b′/b] =α (b′ b) · g by part 2 of Lemma 3.9 since b′ 6∈ fa(g) }
λb′.(((b′ b) · g)[h/a])-1

= { inductive hypothesis, since (b′ b) · g is accurate }
λb′.((λa.((b′ b) · g)-1)(h-1))

= { Lemma 4.20 }
λb′.((λa.(b′ b) · (g-1))(h-1))

= { axiom (βabs), since ∆+ ` b′#h-1 }
(λa.(λb′.(b′ b) · (g-1)))(h-1)

= { (perm) since ∆+ ` b#λb.(g-1) and ∆+ ` b′#λb.(g-1) }
(λa.(λb.(g-1)))(h-1)
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• (g′g)[h/a]. By axiom (βapp) and the inductive hypothesis.

The result follows. 2

Corollary 4.23 Suppose that g and h are accurate. If g↔β h then ∆+ `
ULAM

g-1 = h-1.

Proof By induction on the rules for →β from Definition 3.12. It suffices to show the
following (here g, g′, h, h′, and g[h/a] are accurate and a ∈ A+ \ (D ∪ E)):

• ∆+ `
ULAM

(λa.(g-1))(h-1) = (g[h/a])-1.
• If ∆+ `

ULAM
g-1 = (g′)-1 then ∆+ `

ULAM
λa.(g-1) = λa.((g′)-1).

• If ∆+ `
ULAM

g-1 = (g′)-1 then ∆+ `
ULAM

(g-1)(h-1) = ((g′)-1)(h-1).
• If ∆+ `

ULAM
h-1 = (h′)-1 then ∆+ `

ULAM
(g-1)(h-1) = (g-1)((h′)-1).

The first part is Lemma 4.22. The other parts follow by (cngλ) and (cngapp). 2

Lemma 4.24 ∆+ `
ULAM

(tς)-1 = t, and ∆+ `
ULAM

(uς)-1 = u.

Proof We prove by induction that if v is a subterm of t or u then ∆+ `
ULAM

(vς)-1 = v is
derivable.

The only interesting case is when v ≡ π ·X . We must show that

∆+ `
ULAM

(λeX.eX)
(
(λaX1. · · ·λaXkX .X)π(aX1) · · ·π(aXkX)

)
= π ·X.

Take a set of fresh atoms B = {bXi | X, i such that aXi ∈ A} in bijection with A; so B is
disjoint from the aXi and π(aXi). Let ∆B = {bXi#Y | bXi ∈ B and Y ∈ X}. Then by (fr),
it suffices to show

∆+ ∪∆B `ULAM
(λeX.eX)

(
(λaX1. · · ·λaXkX .X)π(aX1) · · ·π(aXkX)

)
= π ·X.

Now let π1 = (bX1 aX1) · · · (bXkX aXkX) and π2 = (bXkX π(aXkX)) · · · (bX1 π(aX1)). We will
need the following properties of derivability in CORE involving these permutations:

∆+ ∪∆B `CORE
λaX1. · · ·λaXkX .X = λbX1. · · ·λbXkX .π1 ·X (3)

∆+ ∪∆B `CORE
λbX1. · · ·λbXkX .π1 ·X = λπ(aX1). · · ·λπ(aXkX).(π2 ◦ π1) ·X (4)

∆+ ∪∆B `CORE
(π2 ◦ π1) ·X = π ·X (5)

We can see this as follows:

• Proof obligation (3) follows by kX uses of Lemma 2.16 (and kX − 1 instances of (cngλ)),
since for 1 ≤ i ≤ kX ,

∆+ ∪∆B ` bXi#λaXi+1. · · ·λaXkX .(bXi−1 aXi−1) · · · (bX1 aX1) ·X.

• Proof obligation (4) follows by kX uses of Lemma 2.16 (and kX − 1 instances of (cngλ)),
provided that for 1 ≤ i ≤ kX ,

∆+ ∪∆B ` π(aXi)#λbXi+1. · · ·λbXkX .((π(aXi−1) bXi−1) · · · (π(aX1) bX1) ◦ π1) ·X.

By the rules for freshness, this follows from π(aXi)#π1 ·X ∈ ∆+ ∪∆B since the π(aXj)

are all disjoint and the bXj are different from π(aXi). We reason by cases on π(aXi):
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· π(aXi) 6= aXj for all j: then π(aXi)#X ∈ ∆ by Definition 4.4.
· π(aXi) = aXj for some j: then bXj#X ∈ ∆B.

• Proof obligation (5): By Theorem 2.19 it suffices to show ∆+ ∪∆B ` ds(π2 ◦ π1, π)#X .
That is, we must show that a#X ∈ ∆+ ∪∆B for every a such that (π2 ◦ π1)(a) 6= π(a),
which follows by a case distinction on a (considering every a ∈ supp(π2 ◦ π1) ∪ supp(π))
using Definitions 4.4 and 4.15.

We use the properties above to construct the following ULAM derivation, presented in a
calculational style:

(λeX.eX)
(
(λaX1. · · ·λaXkX .X)π(aX1) · · ·π(aXkX)

)
= { Axiom (βvar) }

(λaX1. · · ·λaXkX .X)π(aX1) · · ·π(aXkX)

= { (cngapp), (refl), and (3) }
(λbX1. · · ·λbXkX .π1 ·X)π(aX1) · · ·π(aXkX)

= { (cngapp), (refl), and (4) }
(λπ(aX1). · · ·λπ(aXkX).(π2 ◦ π1) ·X)π(aX1) · · ·π(aXkX)

= { Axiom (βid) (kX times) }
(π2 ◦ π1) ·X

= { (5) }
π ·X

The result follows. 2

We are now ready to prove Theorem 4.7:

Proof (of Theorem 4.7) Recall from Definition 4.14 the chain we fixed:

tς ≡ g1↔? g2↔? g3↔? . . .↔? gm−1↔? gm ≡ uς

By Lemma 4.21 and Corollary 4.23

∆+ `
ULAM

(tς)-1 ≡ g-1
1 = g-1

2 = . . . = g-1
m ≡ (uς)-1,

so ∆+ `
ULAM

(tς)-1 = (uς)-1 by transitivity. By Lemma 4.24 then also ∆+ `
ULAM

t = u.
Since ∆+ extends ∆ with atoms that are not mentioned in t and u we extend the derivation
with (fr) to obtain ∆ `

ULAM
t = u as required. 2

5 Soundness, completeness, and conservativity for αβη

Our proof-method works for the λ-calculus augmented with η-conversion (extensionality)
as well, and the proofs change only slightly. We outline how this works, emphasising only
the parts of previous sections that need changing.

Definition 5.1 Let ULAME be the nominal algebra theory with the axioms of ULAM from
Figure 1, and with the additional axiom (η), as illustrated in Figure 5.
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(βvar) ` (λa.a)X = X

(β#) a#Z ` (λa.Z)X = Z

(βapp) ` (λa.(Z ′Z))X = ((λa.Z ′)X)((λa.Z)X)

(βabs) b#X ` (λa.(λb.Z))X = λb.((λa.Z)X)

(βid) ` (λa.Z)a = Z

(η) a#Z ` λa.(Za) = Z

Figure 5: Axioms of ULAME

5.1 Soundness

We modify Definition 4.2 in the natural way:

Definition 5.2 Write ∆ |=
αβη

t = u when tσ =αβη uσ (Definition 3.13) for all ground
substitutions σ for ∆, t, u such that a 6∈ fa(σ(X)) for every a#X ∈ ∆.

Soundness is just like Theorem 4.3:

Theorem 5.3 (Soundness) For any ∆, t, u, if ∆ `
ULAME

t = u then ∆ |=
αβη

t = u.

Proof Just as for Theorem 4.3. The induction on ULAME derivations has one extra axiom
case:

• If a 6∈ fa(g) then λa.(ga) =αβη g.
2

5.2 Completeness and conservativity

Definition 4.4, Definition 4.5 and Lemma 4.6 are unchanged. Completeness theorem 4.7
becomes:

Theorem 5.4 (Completeness) If ∆ |=
αβη

t = u then ∆ `
ULAME

t = u.

We defer the proof to Subsection 5.3.
Corollary 4.8 becomes:

Corollary 5.5 For any ground terms g, h, `
ULAME

g = h if and only if g =αβη h.

Proof By Theorems 5.3 and 5.4, using the fact that g and h are ground. 2

Definition 4.9 and Lemma 4.10 are changed as follows:

Definition 5.6 Call g a βη-normal form when no g′ exists with g →β g
′ or g →η g

′.

Lemma 5.7 Fix ∆. Suppose that t and u contain no subterm of the form (λa.v)w or
λa.(va) where ∆ ` a#v. Then for ς the ground substitution from Definition 4.5, tς and uς
are βη-normal forms.

Proof ς(X) ≡ eX(dXaX1 . . . aXkX) for every X appearing in ∆, t, u. Applying this substi-
tution to t and u cannot introduce subterms of the form (λa.v)w or λa.(va). 11 2

11We chose eX in Definition 4.4, and ‘wrapped’ dXaX1 . . . aXkX in eX in Definition 4.5, specifically to prevent accidental
η-contracts here.
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Lemma 4.11 is unchanged, as it does not concern ULAM. Conservativity theorem 4.12
becomes:

Theorem 5.8 (Conservativity) Fix some ∆. Suppose that t and u contain no subterm of
the form (λa.v)w or λa.(va) where ∆ ` a#v. Then

∆ `
ULAME

t = u if and only if ∆ `
CORE

t = u.

Proof A derivation in CORE is also a derivation in ULAME so the right-to-left implication
is immediate.

Now suppose that ∆ `
ULAME

t = u. We construct ς as in Definition 4.5. By Theo-
rem 5.3, tς =αβ uς . By Lemma 5.7 we know that tς and uς are βη-normal forms. By
confluence [Bar84, Theorem 3.3.9 (i)] tς =α uς . By Lemma 4.11 ∆ `

CORE
t = u, as re-

quired. 2

5.3 Proof of Theorem 5.4

Lemma 4.13 and Definition 4.14 are changed as follows:

Lemma 5.9 There exists a chain

tς ≡ g1↔? g2↔? g3↔? . . .↔? gm−1↔? gm ≡ uς

where each ↔? is one of =α, ↔β , or ↔η, which is such that ba(gi) ∩ (D ∪ E) = ∅ for
1 ≤ i ≤ m.

Proof By assumption ∆ |=
αβη

t = u, so by Lemma 4.6 we know tς =αβη uς . It follows
that there is a chain

tς ≡ g1↔? g
′
2↔? g

′
3↔? . . .↔? g

′
m′−1↔? gm′ ≡ uς

where each↔? is one of =α,↔β , or↔η. By construction, ba(gi)∩ (D∪E) = ∅ for i = 1

and i = m′. We use part 1 and part 2 of Lemma 3.15, and Lemma 3.16, to construct a
chain

tς ≡ g1↔? g2↔? g3↔? . . .↔? gm−1↔? gm ≡ uς
such that ba(gi) ∩ (D ∪ E) = ∅ for all 1 ≤ i ≤ m, just as in the proof of Lemma 4.13. 2

Definition 5.10 Make a fixed but arbitrary choice of chain as specified in Lemma 5.9.

Definitions 4.15 (A+) and 4.16 (g accurate) are unchanged. As before (Lemma 4.17),
g1, . . . , gm are accurate by construction. Definition 4.18 (the inverse translation g-1) is
unchanged.

Lemmas 4.19 to 4.21 do not concern ULAM, and are unchanged. Lemma 4.22 becomes:

Lemma 5.11 Suppose that a ∈ A+ \ (D ∪ E). Suppose that g, h, and g[h/a] are accurate.
Then ∆+ `

ULAME
(λa.(g-1))(h-1) = (g[h/a])-1.

Proof By Lemma 4.22, since a derivation in ULAM is also one in ULAME. 2

Corollary 4.23 changes as follows:
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Corollary 5.12 Suppose that g and h are accurate.

• If g↔β h then ∆+ `
ULAME

g-1 = h-1.
• If g↔η h then ∆+ `

ULAME
g-1 = h-1.

Proof The first part is by Corollary 4.23, since a derivation in ULAM is also one in
ULAME.

For the second part, it suffices to show that if a 6∈ fa(g) then ∆+ `
ULAME

λa.(g-1a) = g-1.
This follows using axiom (η) and Lemma 4.19. 2

Lemma 4.24 changes as follows:

Lemma 5.13 ∆+ `
ULAME

(tς)-1 = t, and ∆+ `
ULAME

(uς)-1 = u.

Proof From Lemma 4.24, since a derivation in ULAM is also one in ULAME. 2

We can now prove Theorem 5.4:

Proof (of Theorem 5.4) Recall from Definition 5.10 the chain

tς ≡ g1↔? g2↔? g3↔? . . .↔? gm−1↔? gm ≡ uς.

By Lemma 4.21 and Corollary 5.12

∆+ `
ULAME

(tς)-1 ≡ g-1
1 = g-1

2 = . . . = g-1
m ≡ (uς)-1,

so ∆+ `
ULAME

(tς)-1 = (uς)-1 by transitivity. By Lemma 5.13 then also ∆+ `
ULAME

t = u.
Since ∆+ extends ∆ with atoms that are not mentioned in t and u we extend the derivation
with (fr) to obtain ∆ `

ULAME
t = u as required. 2

6 Conclusions

6.1 Related work

What are functions, from a(n algebraic) logical point of view? This question has been
studied from many angles:

Lambda-lifting
‘Lambda-lifting’ introduces constant symbols to represent functions and adds axioms for
them [Joh85]. This expresses functions, but the axiomatisation is of atomic constant sym-
bols representing individual functions (as many as we would like to add) and not of the
λ-calculus.

The issues of variables and binding surrounding the ‘λ’ in the ‘λ-calculus’ are avoided
— or more precisely, they are relegated to the meta-level into the universal quantifiers used
in the formula expressing the properties of each atomic constant symbol. Implementation-
ally this can be extremely convenient but from a logical point of view we should consider
this deeply unsatisfactory.
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Combinatory algebra
Schönfinkel and Curry discovered combinatory algebra [Sch67,CF58]. The signature con-
tains a binary term-former application and two constants S and K. Axioms are Kxy = x

and Sxyz = (xz)(yz).
This syntax is parsimonious and the axioms are compact, but it is not natural or er-

gonomic to program in because it is impossible to go directly from a rule specifying a
function, to the function itself — by λ-abstracting. In common with lambda-lifting, this
must be done at the meta-level.

There is another mathematical issue inherent to combinators themselves: the natural
encoding of closed λ-terms into combinatory algebra syntax ([Bar84, Section 7] or [Sel02,
Subsection 1.4]) is unsound; it does not map αβ-equivalent λ-terms to provably equal terms
in combinatory algebra. We can strengthen combinatory algebra to lambda algebra by
adding five more axioms [Sel02, Proposition 5] but the translation is still not sound; there
exist λ-terms M and N such that the translation of M is derivably equal to the translation
of N , but the translation of λx.M is not derivably equal to the translation of λx.N .

For soundness we need the Meyer-Scott axiom [Sel02, Proposition 20] (Selinger calls
it ‘the notorious rule’). Thus, combinators do not capture the same functions as expressed
by the λ-calculus.

Calculi of explicit substitutions
Calculi of explicit substitutions capture the λ-calculus in a first-order rewrite system; the
idea originates in [ACCL92] and we note also Lescanne’s compact but readable survey
[Les94]. If we orient the axioms of ULAM left-to-right then they become rewrite rules, and
— although ULAM has no explicit substitution term-former — if we consider a β-reduct
(λa.t)u as a(n implicit) substitution t[a 7→ u] then we can view the axioms of ULAM as
‘pushing substitutions’ down into a term, step-by-step. Thus, a derivation of an equality in
ULAM looks very much like a sequence of explicit substitution rewrites, just not necessarily
all oriented left-to-right because equality is symmetric.

ULAM displays two other notable differences from explicit substitution:

• The management of α-equivalence (name-binding) comes from nominal techniques and
is distinct from that explored in [ACCL92] or the subsequent literature. For an explo-
ration of the computational cost of α-equivalence in nominal terms (in the terminology
of this paper; of equality up to CORE) see [Che04].

• The syntax of ULAM includes unknowns X , Y , Z which explicitly represent unknown
terms. ‘Push a substitution down into a term’ is an analogy but it cannot always be fully
realised; there is no way to push [a 7→ X] into Z (i.e. reduce (λa.Z)X using (βid),
(βapp), or (βabs)) because Z is an unknown.

(β#) resembles Bloo and Rose’s ‘garbage collection rule’ [BR95]. There the rule
is dispensable — removing it does not affect the transitive symmetric closure of the
reduction relation [BR95, Remark 2.15]. In contrast, there may be models of ULAM in
which Z can denote an element which cannot be represented by a term. For this reason
(β#) is not admissible in the presence of (βid), (βapp), and (βabs).

Lambda Abstraction Algebras
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ULAM LAA

a, b, c x, y, z

λa, λb, λc λx, λy, λz

X, Y, Z ξ, µ, ν

(βvar) (β1)

(β#) (β2), (β4)

(βapp) (β5)

(βabs) (β6)

(βid) (β3)

CORE (α)

Salibra’s Lambda Abstraction Algebras (LAA) [Sal00]
are a λ-calculus version of cylindric algebra [HMT85].
There are many similarities with ULAM. For the con-
venience of the reader familiar with LAA syntax and
semantics, a ‘cheat-sheet’ relating the material in this
paper with definition 1, page 6 of [Sal00] is to the right.

ULAM exists in the nominal algebra framework;
thus, at the level of syntax, there is one term-former λ
for λ-abstraction. LAA includes infinitely many term-
formers λx, λy, λz,. . . ; and there are finitely many ax-
ioms and term-formers. This is because LAA uses ‘or-
dinary’ universal algebra, whereas in nominal algebra,
α-equivalence is handled primitively by the nominal al-
gebra framework, and does not require special consid-
eration in the signature or axioms.

Similarly, freshness side-conditions appear ‘hard-
wired’ in LAA axioms. For example Salibra’s axiom (β4) from [Sal00, page 6]
(λx.(λx.ξ))µ = λx.ξ is a version of (β#) where the freshness condition is built into the
structure of the term by writing λx.ξ. Nominal algebra handles freshness primitively (the
‘freshness judgements’ a#t of Definition 2.8). The notion of algebraic dependence from
[Sal00, Definition 3] ‘(λx.a)z 6= z for some z’ corresponds with the negation of our fresh-
ness judgement ‘a#X’ (in a rather unfortunate notation clash with our notation for atoms,
Salibra uses a to range over arbitrary elements of a model). Algebraic (in)dependence is
handled rigorously but informally (that is, in the prose discourse of the paper) in Salibra’s
work; for us, the corresponding notion of freshness is a formal part of the syntax of nominal
algebra judgements, and freshness has a denotation in nominal sets going back to the orig-
inal work on nominal techniques [GP01], which places LAA ‘algebraic (in)dependence’ in
a broader and more general mathematical setting.

For a general theory of models of ULAM, see the general theory of models of nomi-
nal algebra theories [Mat07]; recall that nominal algebra theories take models in nominal
sets. Nominal sets have a finite-support property which, from the ‘cyclindic’ point of view,
corresponds with a property which is known and studied under the name locally finite or
locally finite dimensional [Sal00, Definition 7]. Models of ULAM are finitely-supported /
locally finite by construction. 12

See the Related Work section of [Sal00] for further references to this and similar work.

Syntax quotiented by αβ-equivalence
The definition of αβ-equivalence on syntax is occasionally called ‘axiomatising the λ-
calculus’, although it is just an equivalence relation on abstract syntax trees. However, if
the λ-calculus syntax serves as the language of a logic with an equality judgement then αβ-
equivalence may have the status of axioms. For example Andrews’s logicQ0 [And86, §51]
contains five axioms (41), (42), (43), (44), and (45) ([And86, page 164]). In fact these are

12It may be prudent to note that being finitely-supported / locally finite does not mean that in nominal sets we cannot consider
models including infinitary syntax. Nominal sets are consistent with infinitary syntax, so long as it mentions only finitely
many free variables; it can mention as many bound variables as we like, including infinitely many. For a nominal-style
theory of objects with infinite support, and in particular infinitary syntax with potentially infinitely many free variables, see
[Gab07].

24



Gabbay and Mathijssen

axiom schemes, containing meta-variables A and B in the informal meta-level ranging over
terms, and meta-variables x, y ranging permutatively over variable-symbols. A kinship
with Figure 1 is apparent, though the axioms of ULAM exist in the formal framework of
nominal algebra — a formal logic, not an informal meta-level. The interested reader might
like to consider a formalisation of the arguments about Q0 in [And86] into a formal logic
(not a nominal one) [Tan05].

Nominal techniques
A rewrite system for the λ-calculus appeared already in [FG07b] but without any statement
or proof of completeness (indeed, it was not complete). More recently the authors have used
nominal algebra to axiomatise first-order logic as a theory FOL [GM08b] and substitution
as a theory SUB [GM08a].

One might suspect that the theory of substitution should be only a hair’s breadth away
from that of the untyped λ-calculus, and could be obtained by imposing a type system (just
as the simply-typed λ-calculus is related to the untyped λ-calculus). 13 Perhaps this will
indeed prove to be the case, but so far all attempts by the authors to derive the properties
of SUB from those of ULAM have tantalisingly failed. This may (or may not!) indicate the
existence of a subtle mathematical point lurking in these systems; if there is, it seems to
relate to the difference between λ-calculus variables and nominal algebra unknowns.

Nominal algebra has a cousin, nominal equational logic (NEL) [CP07]), which is very
similar but makes slightly different design decisions. To the description of the relationship
with nominal algebra given in [CP07] should be added that (unsorted) NEL is a subsystem
of nominal algebra. The translation described and discussed in [GM09, Subsection 6.1.2];
it relies on the encoding of freshness using equality given in [GP01, equation 32]. NEL
and nominal algebra both satisfy completeness results for a class of models in nominal
sets [CP07,GM07,Mat07] (in other words — derivable equality coincides with validity in
all models). The completeness results in this paper are stronger; they prove that derivable
equality coincides with validity in particular models, which we built in this paper (Def-
initions 4.2 and 5.2). Similarly for the authors’ treatments of substitution [GM08a] and
first-order logic [GM08b]. We know of no like treatments of substitution, logic, and the
λ-calculus in NEL. If and when this is done it will be interesting to compare the results;
one way to do this is to transfer results using the translation of [GM09, Subsection 6.1.2].

Some concluding remarks on names, variables, and functional abstraction
Nominal techniques are based on modelling names as atoms (urelemente) in set theory
[Bru96,Gab00], an idea raised by the Gabbay-Pitts models of α-abstraction and Nquan-
tification [GP01]. These ideas find uses beyond the initial applications to syntax: in game
theory and reasoning about pointers [AGM+04,Tze07,BL05], spatial logics [LC04], and
more.

Thus, there is now a body of work based on atoms, some concerned with reasoning on
syntax-with-binding, some concerned with representing other things. Nevertheless, it al-
ways treats atoms as denotational entities in their own right rather than as a purely syntactic
adjunct to a notion of function.

13We briefly give some intuition for what SUB is: (λb.(ba))(λa.a) = a is derivable in ULAM, but only
app(b, a)[b 7→ lam([a]a)] = app(lam([a]a), a) is derivable in SUB (notation from [GM08a]).

25



Gabbay and Mathijssen

For us, nominal techniques are a general theory of names, and nominal algebra is a
formal logic with which to instantiate this general theory to more specific theories.

λ-calculus style variables are names that can be functionally abstracted. 14 Nominal-
style atoms are names that can be permuted and α-abstracted. We have written down
ULAM and ULAME and shown that they soundly and completely express those proper-
ties which, when added to nominal-style names, convert them into λ-calculus style vari-
ables. Conveniently, permutation then behaves like abstracted-then-applied variables (the
device used, for example, in Miller’s higher-order patterns [Mil91] and in Salibra’s lambda-
abstraction algebras [Sal00]) — and nominal-style α-abstraction becomes λ-calculus style
functional abstraction.

6.2 Future work and conclusions

ULAM completes a trio of papers studying (untyped) nominal algebra considered as a log-
ical framework: first-order logic [GM08b], substitution [GM08a], and with this paper, the
λ-calculus. Between them, these works cover a significant fraction of the typical syntaxes
of interest in theory and practice of computer science. It would of course be interesting to
seek common generalisations of the proof-techniques therein.

Our most immediate interest is in constructing a theorem-prover based on nominal al-
gebra instead of the λ-calculus. We expect this to formally represent at least some kinds
of reasoning better than the λ-calculus can, because the treatment of names and variables
in nominal algebra, and nominal techniques in general, is very close to some kinds of in-
formal practice (for example the pervasive use of meta-variables and freshness conditions,
as appear in specifications of ... the λ-calculus). From that perspective this paper proves a
vital correctness result.

It remains to understand the connections between standard models for the λ-calculus
and the class of models determined by models of ULAM in nominal sets. It might also
be interesting to construct versions of graph models or domain models of the λ-calculus
[Bar84,Sto77] that themselves are built in nominal sets; does the presence of nominal-
style atoms add any useful structure? Similarly, we can consider existing work using the
language of categories (for example [Sel02,AB07]) using categories based on nominal sets.

A representation theorem for ULAM, in nominal sets models, would also be interesting.
As a first step, in recent work we have proved an HSP theorem (also known as Birkhoff’s
theorem) for nominal algebra [Gab09].

14This marks a difference from combinators, which share a notion of functional application with the λ-calculus but not the
notion of functionally abstracting variable symbols.
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(Ax)
a ≈∆ a

∆ ` ds(π, π′)#X
(Ds)

π ·X ≈∆ π′ ·X

t′ ≈∆ u′ t ≈∆ u
(Fapp)

t′t ≈∆ u′u
(Fc)

c ≈∆ c

t ≈∆ u
(Absaa)

λa.t ≈∆ λa.u

(b a) · t ≈∆ u ∆ ` b#t
(Absab)

λa.t ≈∆ λb.u

Figure A.1: Syntax-directed rules for CORE

A Syntactic criteria for CORE-equality

For completeness we include a proof of Theorems 2.19. Note that this is a basic result
of theory CORE and hence of nominal algebra in general; it does not have to do with the
λ-calculus, or with ULAM.

We will show that theory CORE is equivalent to an existing notion of α-equivalence on
nominal terms, which is syntax-directed by definition [UPG04,FG07b]. Definition A.1 was
introduced in [UPG04, Figure 2] (except that here, our syntax is specific to the λ-calculus):

Definition A.1 Let t ≈∆ u be an ordered tuple of a term t, a freshness context ∆, and
a term u. Let the derivable equalities of t ≈∆ u be inductively defined by the rules in
Figure A.1.

Lemma A.2 (π′ ◦ π) · t ≡ π′ · (π · t) and id · t ≡ t.

Proof By routine inductions on t. The only interesting case is t ≡ π′′ ·X for the first part:
by Definition 2.5 we can verify that

(π′ ◦ π) · (π′′ ·X) ≡ (π′ ◦ π ◦ π′′) ·X and π′ · (π · (π′′ ·X)) ≡ (π′ ◦ π ◦ π′′) ·X.

2

Recall the notion of difference set ds(π, π′) of two permutations π and π′ from Defini-
tion 2.18. Lemma A.3 shows how theory CORE can mimic the (Ds) rule of ≈∆ :

Lemma A.3 If ∆ ` ds(π, π′)#t then ∆ `
CORE

π · t = π′ · t.

Proof We work by induction on the number of elements in ds(π, π′). If this set is empty
then π = π′ and the result follows easily by (refl). Now suppose a ∈ ds(π, π′). We con-
struct a partial derivation of the proof obligation:

π · t = ((π(a) π′(a)) ◦ π′) · t

π(a)#π′ · t π′(a)#π′ · t
(perm)

((π(a) π′(a)) ◦ π′) · t = π′ · t
(tran)

π · t = π′ · t

(The instance of (perm) here is valid because by Lemma A.2 ((π(a) π′(a)) ◦ π′) · t ≡
((π(a) π′(a)) · (π′ · t), and π′ · t ≡ id · (π′ · t).)

The following proof obligations remain:
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• π · t = ((π(a) π′(a)) ◦ π′) · t follows from ds(π, (π(a) π′(a)) ◦ π′)#t by the inductive
hypothesis, provided that |ds(π, (π(a) π′(a)) ◦ π′)| < |ds(π, π′)|. This condition is sat-
isfied, since ds(π, (π(a) π′(a)) ◦ π′) = ds(π, π′) \ {a}. The remaining proof obligation
ds(π, (π(a) π′(a)) ◦ π′)#t follows by assumption ds(π, π′)#t.

• π(a)#π′ · t follows from (π′)-1(π(a))#t by an easy calculation. Now this is one of
the assumptions ds(π, π′)#t: by Definition 2.18, we know that (π′)-1(π(a)) ∈ ds(π, π′)

when π((π′)-1((π(a))) 6= π(a), and, using the fact that 6= is invariant under permutation,
this follows from the assumption π(a) 6= π′(a).

• π′(a)#π′ · t follows from a#t by an easy calculation. This follows directly from as-
sumption ds(π, π′)#t, since a ∈ ds(π, π′).

2

Theorem A.4 (Equivalence of CORE and ≈∆) ∆ `
CORE

t = u is derivable if and only if
t ≈∆ u is derivable using the rules of Figure A.1.

Proof The left-to-right direction is by induction on the structure of nominal algebra deriva-
tions of ∆ `

CORE
t = u. By the inductive hypothesis it suffices to show the following:

• Syntax-directed equality≈∆ is an equivalence relation and a congruence. This is [FG07b,
Theorem 24].

• If ∆ ` a#t and ∆ ` b#t then (a b) · t ≈∆ t. By induction on t.
• If t ≈

∆,a#X1,...,a#Xn
u where a 6∈ t, u,∆ then t ≈∆ u. By straightforward induction on

the structure of derivations of t ≈
∆,a#X1,...,a#Xn

u.

For the right-to-left direction we work by induction on derivations of t ≈∆ u. By the
inductive hypothesis it suffices to show:

• ∆ `
CORE

a = a. This is an instance of (refl).
• If ∆ ` ds(π, π′)#X then ∆ `

CORE
π ·X = π′ ·X . This is Lemma A.3.

• If ∆ `
CORE

t′ = u′ and ∆ `
CORE

t = u then ∆ `
CORE

t′t = u′u. This is (congapp).
• ∆ `

CORE
c = c. This is an instance of (refl).

• If ∆ `
CORE

t = u then ∆ `
CORE

λa.t = λa.u. This is (congλ).
• If ∆ `

CORE
(b a) · t = u and ∆ ` b#t then ∆ `

CORE
λa.t = λb.u. Suppose that Π and

Π′ are derivations of ∆ `
CORE

(b a) ·t = u and ∆ ` b#t respectively. Then the following
is a derivation of ∆ `

CORE
λa.t = λb.u:

··· Π
′

b#t
(#λb)

b#λa.t
(#λa)

a#λa.t
(perm)

λb.(b a) · t = λa.t
(symm)

λa.t = λb.(b a) · t

··· Π
(b a) · t = u

(congλ)
λb.(b a) · t = λb.u

(tran)
λa.t = λb.u

2

Proof (of Theorem 2.19) From Theorem A.4, since the rules in Figure A.1 render the
criteria of Theorem 2.19 as derivation rules. 2
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