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Abstract

Nominal rewriting is based on the observation that if we add support for alpha-
equivalence to first-order syntax using the nominal-set approach, then systems with
binding, including higher-order reduction schemes such as lambda-calculus beta-
reduction, can be smoothly represented.

Nominal rewriting maintains a strict distinction between variables of the object-
language (atoms) and of the meta-language (variables or unknowns). Atoms may
be bound by a special abstraction operation, but variables cannot be bound, giving
the framework a pronounced first-order character, since substitution of terms for
variables is not capture-avoiding.

We show how good properties of first-order rewriting survive the extension, by
giving an efficient rewriting algorithm, a critical pair lemma, and a confluence the-
orem for orthogonal systems.
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1 Introduction

This is a paper about rewriting in the presence of α-conversion. ‘Rewriting’, or
in full ‘the framework of Term Rewriting Systems’ (TRS), is a framework for
specifying and reasoning about logic and computation. Usually, if the reader’s
favourite formal system can be described by syntax trees (also called terms),
then any notion of dynamics (deduction and evaluation for example) can prob-
ably be captured by a suitable collection of rewrite rules. For example (we are
more formal later):

(1) Assume 0-ary term-formers (constants) S and K, and a binary term-
former ◦ which we write infix. Then the rewrite rules

((S ◦X) ◦ Y ) ◦ Z → (X ◦ Y ) ◦ (X ◦ Z) and (K ◦X) ◦ Y → X

define a rewrite system for combinatory algebra (or combinatory
logic) [6]. X, Y , and Z are unknowns, which can be instantiated to any
term. So from this rewrite system we may deduce (K ◦ S) ◦ K → S and
indeed (K ◦X) ◦ Y → X.

(2) Assume constants very, damn, and whitespace, and rewrite rules

very → damn and damn → whitespace.

This implements a rewrite system due to Mark Twain. 1

However, in the presence of binding, a notion of rewriting on pure abstract
syntax trees is not as useful as we might like. For example, here are informal
descriptions of the α- and η-reduction rules of the untyped λ-calculus [6]:

λx.s → λy.s[x 7→y] if y 6∈ fv(s)

λx.(sx) → s if x 6∈ fv(s)

Note the freshness side-conditions on the right: fv(s) denotes the set of free
variables of s.

The β-reduction rule (λx.s)t → s[x 7→t] raises some issues too: we need to de-
fine the capture-avoiding substitution s[x 7→t], and this involves more freshness
side-conditions.

These rules introduce nondeterminism and make rewriting conditional. Ex-
perience also shows that they are difficult to reason about and pose specific
implementation problems.

1 Substitute “damn” every time you’re inclined to write “very”; your editor will
delete it and the writing will be just as it should be. – Mark Twain
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One answer is to take rules creating these issues, for example α, as equalities
on terms. We say that ‘names and binding are relegated to the meta-level’. A
lot of effort has gone into developing systems along these lines. Several notions
of rewriting modulo an equational theory have been developed, but none that
can deal specifically with α-equivalence (where equivalence classes of terms are
infinite). Combinatory Reduction Systems (CRS) [31], Higher-order Rewrite
Systems (HRS) [33], Expression Reduction Systems (ERS) [30,29], and the
rewriting calculus [13,14], combine first-order rewriting with a notion of bound
variable, and rewriting rules work on α-equivalence classes of terms. In these
systems the λ-calculus can be defined as a particular rewrite system with one
binder: λ-abstraction.

A benefit of such systems is that non-capture-avoiding substitution can be
implemented using capture-avoiding substitution. For example, the effect of
(λa.X)[X 7→a] (where here substitution for X does not avoid capture) can be
obtained in a higher-order system as (λa.fa)[f 7→λb.b]. Thus, we do not lose
any power by taking terms up to α-equivalence (which forces all substitution
to be capture-avoiding) so long as we also take them up to β-equivalence.

Another approach is to bite the bullet and specify everything to do with α, β, η,
and so on, completely explicitly. To make this more manageable, substitution
is introduced as a term-former, which does at least make reasoning on these
equivalences susceptible to term-level inductions on syntax and so on. Explicit
substitution systems have been defined for the λ-calculus (e.g. [1,32,15]) and
more generally for higher-order rewrite systems (e.g. [35,9]) with the aim of
specifying the higher-order notion of substitution as a set of first-order rewrite
rules. In most of these systems variable names are replaced by de Bruijn
indices to make easier the explicitation of α-conversion, at the expense of
readability. Explicit substitution systems that use names for variables (see
for example [23,8]) either restrict the rewriting mechanism to avoid cases in
which α-conversion would arise (for instance using weak reduction, or closed
reduction) or use Barendregt’s convention (all bound variables in a term have
fresh names, different from the free variables; and this property is assumed to
be maintained by reduction) to avoid addressing the problem of α-conversion.

In this paper we present a framework for rewriting based on a different way
of slicing these issues. We maintain a strict distinction between object-level
variables (we write them a, b, c and call them atoms), which can be abstracted
but behave similarly to constants (whence the ‘nominal’, for ‘name’ in “nom-
inal rewriting systems”, henceforth abbreviated to NRS) — and meta-level
variables (we write them X, Y, Z and may call them unknowns), which are
first-order in that there are no binders for them and substitution does not
avoid capture of free atoms (we may refer to our system as ‘first-order’, as
opposed to higher-order systems which quotient terms up to α-equivalence,
and for which substitution is capture-avoiding and may involve β-reductions).
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Our approach is based on the work reported in [36,24,41]. We deal with α-
conversion using a small logic for deriving a relation ‘are α-equivalent’, in a
syntax-directed manner (this gives us the great benefit that we can reason by
induction on syntax and/or on the derivation that two terms are α-equivalent);
we deal with the freshness side-conditions mentioned above by introducing an
explicit freshness relation between atoms and unknowns, written as a#X
(read “a is fresh for X”; in fact, we write a#t where t is any term, but this is
derived by simple induction on syntactic structure). Then, as we shall see, β-,
η- and other similar reduction rules can be easily defined, as rewrite rules.

We can see nominal terms as first-order terms, with a definition of α-equality
which explicitly supports our intuitive notions of ‘meta-variable’ and ‘freshness
condition’. It combines many of the conveniences of higher-order techniques
(smooth handling of β- and similar reduction rules) with the syntax-directed
simplicity of first-order techniques (a simple notion of substitution, decidable
unification).

Consistent with previous work on nominal logic and unification [36,24,41], we
call atoms the names that can be bound and reserve the words variable and
unknown for the identifiers that cannot be bound (known as variables and
metavariables respectively in CRSs and ERSs, or bound and free variables
in HRSs). We leave implicit the dependencies between variables and names
as it is common practice in informal presentations of higher-order reductions.
More precisely, variables in NRSs have arity zero, as in ERSs (but unlike
ERSs, substitution of atoms for terms is not a primitive notion in NRSs). For
example, the β-reduction rule and the η-expansion rule of the λ-calculus are
written as:

app(λ([a]M), N) → subst([a]M, N)

a#X ` X → λ([a]app(X, a))

where the substitution in the β-rule is a term-former, which has to be given
meaning by rewrite rules.

To summarise, the main contributions of this paper are:

(1) We formulate a notion of rewriting on nominal terms which behaves as
first-order rewriting but uses matching modulo α-conversion. In particu-
lar, substitution remains a first-order notion: we deal with α-conversion
without introducing meta-substitutions and β-reductions in our meta-
language (in contrast with standard notions of higher-order rewriting,
which rely on meta-substitutions and/or β-reductions in the substitution
calculus). Consequently in some cases we need freshness assumptions in
terms and rewrite rules; these will be taken into account in the matching
algorithm. We use nominal matching [41] to rewrite terms.

Selecting a nominal rewrite rule that matches a given term is an NP-
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complete problem in general [12]. However, by restricting to closed rules
we can avoid the exponential cost: nominal matching is polynomial in this
case. Closed rules are, roughly speaking, rules which preserve abstracted
atoms during reductions; in particular, closed rules do not contain free
atoms, hence their name. CRSs, ERSs, and HRSs impose similar condi-
tions on rules, by definition (ERSs impose a condition on the substitution
used to match a left-hand side, which corresponds to our notion of closed
rules). Closed rules are very expressive: 2 see [21] for an encoding of CRSs
using closed nominal rules. Translations between CRSs, HRSs and ERSs
have already been defined (see [37]).

(2) We prove a Critical Pair Lemma which ensures that closed nominal
rewriting rules which do not introduce critical pairs are locally confluent,
and a confluence result for orthogonal systems (i.e. NRSs where rules
have linear left-hand sides without superpositions). Similar results have
been proved for CRSs and HRSs (see [31,33]).

Related work First-order rewriting systems and the λ-calculus provide two
useful notions of terms and reduction, and both formalisms have been used as a
basis to develop specification and programming languages. However, in both
cases the expressive power is limited (although for different reasons): first-
order rewrite systems do not provide support to define binding operators, and
there are useful operations which cannot be encoded in the λ-calculus (see for
instance [5], where it is shown that the rules for surjective pairing cannot be
encoded in the λ-calculus). These observations motivated the search for more
general formalisms combining the power of first-order term rewriting with the
binding capabilities of the λ-calculus. Our work can be seen as part of this
effort. In the rest of the introduction we will compare nominal rewrite systems
with the rewrite systems with binders that have been defined previously.

(1) Algebraic λ-calculi, which can be typed [10,11,28,3,4] or untyped [17],
combine the β-reduction rule of the λ-calculus with a set of term rewrit-
ing rules. They use capture-avoiding substitution in β-reductions, and
first-order matching and substitution for term rewriting rules. They are
more expressive than either the λ-calculus or first-order rewriting, but it
was observed that properties of the latter formalisms are not automat-
ically inherited by the combination. The papers cited above use types,
or syntactical conditions in the rewrite rules, or both, to characterise
subsystems that preserve confluence or termination for instance.

Algebraic λ-calculi can be defined as nominal rewrite systems, but as
for the λ-calculus, the notion of capture-avoiding substitution has to be

2 An argument could be made that they are the correct notion of nominal rewrite
rule, though we have a weaker well-behavedness condition we call uniformity,
which is also relevant.
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explicitely defined using nominal rewrite rules.
(2) Higher-order rewriting systems (e.g. CRSs [31], HRSs [33], ERSs [30,29],

HORSs [37]) extend first-order rewriting to include binders using higher-
order substitutions and higher-order matching. In contrast with algebraic
λ-calculi (which use first-order matching), binders are allowed in left-
hand sides of higher-order rewrite rules. NRSs are related to these since
nominal rules may also have binders in left-hand sides, however, nominal
rewriting does not use higher-order matching; instead, it relies on nominal
matching (which takes care of α-equality). Although there is no ‘official’
definition of higher-order rewrite rule, it is generally acknowledged that
CRSs, ERSs and HRSs (although using different presentations) define a
canonical higher-order rewrite format (see [31]). The subclass of closed
NRSs is also canonical in this sense. However, NRSs are more expressive
than standard higher-order rewrite systems, we will give examples.

(3) Although NRSs were not designed as explicit substitution systems, they
are at an intermediate level between standard higher-order rewriting sys-
tems and their explicit substitution versions (e.g. [35,9]), which imple-
ment in a first-order setting the substitution operation together with
α-conversions using de Bruijn indices. Compared with the latter, NRSs
are more modular: a higher-order substitution is decomposed into a first-
order substitution and a separate notion of α-equality (a design idea bor-
rowed from Fresh-ML [38]). Also, from a (human) user point of view, it is
easier to use systems with variable names than systems with indices. The
disadvantage is that nominal rewriting is not just first-order rewriting,
therefore we cannot directly use all the results and techniques available
for first-order rewriting. However, nominal rewriting turns out to be suf-
ficiently close to first-order rewriting that it shares many of its desirable
and convenient properties: efficient matching, a critical pair lemma, and
a confluence result for orthogonal systems.

(4) Hamana’s Binding Term Rewriting Systems (BTRS) [27] also extend first-
order rewriting to include binders and α-equality, but use a de Bruijn
notation. The main difference with Nominal Rewriting is that BTRSs
use a containment relation that indicates which free atoms occur in a
term (as opposed to a freshness relation which indicates that an atom
does not occur free in a term). Not surprisingly, the notions of renaming
and variants play an important rôle in BTRSs, as do swappings and
equivariance in NRSs. In other words, when free atoms occur in rules,
we have to consider all the (infinite) variants that can be obtained by
renaming the free atoms. Selecting a rewrite rule that matches a given
term is then NP, but we have characterised a class of NRSs for which
matching is efficient and we conjecture the BTRS-matching algorithm is
efficient in this case too.

(5) NRSs, with their use of freshness contexts in rules, could be seen as
a form of conditional rewriting systems (see [7]), albeit with matching
modulo α. Takahashi’s λ-calculus with conditional rules [39] is a closely
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related formalism: it is a higher-order rewriting framework in the sense
that rules can include binders (there is a distinction between object-level
and meta-level variables). As in NRSs, substitution of metavariables for
terms is not capture-avoiding, but terms are defined as α-equivalence
classes of trees, and capture-avoiding substitution is a primitive notion
as in ERSs. The requirement that rule schemes are closed under capture-
avoiding substitution means that only closed NRSs can be expressed.
On the other hand, the conditions on the rewrite rules in conditional λ-
calculus systems are arbitrary (not just freshness predicates as in NRSs).
We discuss in Section 9 extensions of NRS which can deal with more
general contexts in rules.

This paper is an updated and extended version of [21]. Other work exists
extending nominal rewriting in various ways [19] and considering types [20].

Overview of the paper Section 2 presents nominal signatures, terms and
substitutions. In Section 3 we define α-equivalence of nominal terms and give
an algorithm to check it, which is used as a basis to design a unification
algorithm in Section 4. Rewriting is defined in Section 5. In Section 6 we
define uniform systems (a class of nominal rewriting systems which are well-
behaved with respect to α-equivalence), and prove the Critical Pair Lemma for
uniform rules. In Section 7 we prove that orthogonality is a sufficient condition
for confluence of uniform rewriting. A further restriction on rewrite rules is
used in Section 8 to obtain an efficient implementation of nominal rewriting.
In Section 9 we briefly discuss some extensions of nominal rewriting (with
sorts, and with more expressive contexts for rewrite rules). We conclude the
paper in Section 10.

2 Nominal terms

2.1 Signatures and terms

A nominal signature Σ is a set of term-formers typically written f (though
we do try to give them suggestive names in examples). For instance, a nominal
signature for a fragment of ML has term-formers:

app lam let letrec

and a nominal signature for the π-calculus is given by

in out par rep ν
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In order to define operations over the syntax of ML for instance, we will need:

• The notion of a term containing unknown terms represented by variables
which can be instantiated, so that we can represent a schema of rewrites by
a single rewrite rule. We call these (meta-level) unknowns.

• The notion of an object-level variable symbol of the ML language, so that
we can directly represent the variable structure of the object language, and
define variable lookup, open terms, patterns, and λ-abstractions. We call
these (object-level) variable symbols or atoms.

Of course, we would need the same if we wanted to model First-Order Logic,
the λ-calculus, or any other syntactic system which mentions variable symbols.

Fix a countably infinite set X of term variables X, Y, Z; these represent
meta-level unknowns. Also, fix a distinct countably infinite set A of atoms
a, b, c, n, x; these represent object-level variable symbols. Consistent with later
notation for terms, we write a ≡ a and X ≡ X to denote syntactic identity of
unknowns and atoms. We assume that Σ, X and A are pairwise disjoint.

A swapping is a pair of atoms, which we write (a b). Permutations π are
lists of swappings, generated by the grammar:

π ::= Id | (a b)π.

We usually omit the last Id when we write the list of swappings that define
a permutation. We call Id the identity permutation. We call a pair of a
permutation π and a variable X a moderated variable and write it π·X.
We say that π is suspended on X. We may write π−1 for the permutation
obtained by reversing the list of swappings in π. For example if π = (a b)(b c)
then π−1 = (b c)(a b) and π−1(a) = c. We denote by π ◦ π′ the permutation
containing all the swappings in π followed by those in π′.

Remark: π·X represents an unknown term X in which some atoms must
be renamed (e.g. by some α-equivalence taking place elsewhere in the term)
— but because we do not yet know what X is, the renaming sits suspended
outside. When we come to define substitution of terms for unknowns [X 7→s],
we shall see that permutations ‘unsuspend’ and go into s. For example, using
the notation we introduce in a moment, (π·X)[X 7→(Y, Y )] ≡ (π·Y, π·Y ). ∗

Definition 1 Nominal terms, or just terms for short, are generated by
the grammar:

s, t ::= a | π·X | (s1, . . . , sn) | [a]s | (f t)

Terms are called respectively atoms, moderated variables (or just vari-
ables for short), tuples, abstractions and function applications.
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Note that X is not a term, but Id·X is. We abbreviate Id·X as X when there
is no ambiguity. In the clause for tuples we call n the length of the tuple. If
n = 0 we have the empty tuple (). We omit the brackets when n is 1, if there
is no ambiguity. If f is applied to the empty tuple we may write f() as just f .

We write V (t) for the set of variables occuring in t. Ground terms are terms
without variables, that is V (t) = ∅. A ground term may still contain atoms,
for example a is a ground term and X is not.

An abstraction [a]t is intended to represent t with a bound, as in the syntax
λa.t (from the λ-calculus) and νa.P (from the π-calculus). Accordingly we
call occurrences of a abstracted (or bound) and unabstracted occurrences
unabstracted (or free). We do not work modulo α-conversion of abstracted
atoms, so syntactic identity≡ is not modulo α-equivalence; for example, [a]a 6≡
[b]b. α-equivalence ≈α is a logical notion constructed on top of ≡ using a notion
of context which we shall define soon.

Example 2 Recalling the signature for ML mentioned previously, the follow-
ing are nominal terms (and the last one is ground):

app(lam([a]a), X) (lam([a]lam([b]a)), Y ) let([a]a, a)

We define the following sugar:

• Sugar app(s, t) to s t.
• Sugar lam([a]s) to λ[a]s.
• Sugar let([a]s, t) to let a = t in s.
• Sugar letrec([f ]([a]t, s)) to let fa = t in s.

There is nothing to stop us writing app([a]s) if we like, because we have, for
simplicity, introduced no notion of arity or sort system. We discuss this later
in Section 9, see also [20].

2.2 Substitution and swapping

Substitutions (of variables for terms) are used to instantiate unknowns and to
represent matching or unification solutions. In systems with binders, substitu-
tion is not so easy to define because it should avoid capture of bound variables,
so α-conversions may be needed. α-conversion is in turn traditionally defined
by using a ‘simpler’ kind of substitution — renaming, that is, substitution of
atoms by atoms — where an atom is replaced by a fresh one. Instead of using
renamings, nominal techniques define α-equivalence and freshness using swap-
pings. Intuitively, a swapping (a b) is a special kind of first-order substitution
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which replaces simultaneously a by b and b by a in the syntax of the term,
suspending on variables. Swappings have better commutation properties (with
substitutions and with α-equivalence) than renamings — no side conditions
are required. We will return to this point later.

As discussed π·X represents an unknown term with some swappings waiting
to happen. This is reflected in the definition of the action of permutations and
substitutions on terms below, denoted π·t and t[X 7→s] respectively.

Definition 3 (Permutation) The action of a permutation π on a term t is
defined by induction on the number of swappings in π:

Id·t = t (a b)π·t = (a b)·(π·t)

where

(a b)·a = b (a b)·b = a (a b)·c = c

(a b)·(π·X) = ((a b) ◦ π)·X (a b)·ft = f(a b)·t (a b)·[n]t = [(a b)·n](a b)·t

(a b)·(t1, . . . , tn) = ((a b)·t1, . . . , (a b)·tn)

Here, a, b, c, n are any pairwise different atoms.

For example, (a b)·λ[a]λ[b]abX = λ[b]λ[a]ba(a b)·X.

Note that although (a b) and (b a) are different swappings, they have the same
action on terms. We will show (see Lemma 19) that two permutations with
the same action are logically undistinguishable,.

Definition 4 (Substitution) A substitution is generated by the grammar

σ ::= Id | [X 7→s]σ.

We write substitutions postfix and write ◦ for composition: t(σ ◦ σ′) ≡ (tσ)σ′.

a[X 7→s] ≡ a (ft)[X 7→s] ≡ f(t[X 7→s]) ([a]t)[X 7→s] ≡ [a](t[X 7→s])

(t1, . . . , tn)[X 7→s] ≡ (t1[X 7→s], . . . , tn[X 7→s])

(π·X)[X 7→s] ≡ π·s (π·Y )[X 7→s] ≡ π·Y

σ acts on terms elementwise in the natural way:

tId ≡ t t[X 7→s]σ ≡ (t[X 7→s])σ.

Remark: There is no primitive notion of substitution of a term for an atom in
Nominal Rewriting, since some languages have variables which do not repre-
sent terms (e.g. the π-calculus, which only has variable-for-variable renaming,
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or a language with global state which may have location variables and a notion
of generating new location variables, but no notion of replacing one location by
another). Various different kinds of substitution on atoms can be efficiently im-
plemented by rewrite rules — but substitution of terms for unknowns X, Y, Z
is primitive since we need it to express matching and thus rewriting. ∗

Note that t[X 7→s] really does replace every X in t by s in a completely unimag-
inative way — in particular ([a]t)[X 7→s] ≡ [a](t[X 7→s]) does not avoid capture
of a in s by the abstraction — except for the clause (π·X)[X 7→s] ≡ π·s, where
a suspended permutation becomes ‘active’ and acts on s. Permutations act
top-down and accumulate on moderated variables whereas substitutions act
on the variable symbols in the moderated variables. These observations are
the core of the next lemma.

Lemma 5 Substitution and permutation commute: π·(sσ) ≡ (π·s)σ.

Proof By induction on s: The property is trivial for atoms since they are
not affected by substitutions. For moderated variables the property follows
directly from the definition of substitution. The cases of tuples and function
applications are easily dealt with by the induction hypotheses. The only in-
teresting case is abstraction: (π·[a]s)σ ≡ ([π·a](π·s))σ by Definition 3, and
([π·a]π·s)σ ≡ [π·a]((π·s)σ) by Definition 4. Now by induction we obtain
[π·a]π·(sσ) which is π·[a](sσ) by Definition 3. ∗

Remark: In contrast with the Substitution Lemma [6], in the lemma above
we do not need to compose substitutions and there are no free variable side-
conditions. ∗

3 Alpha-equivalence

The notion of ‘fresh variable’ plays an important rôle in the definition of
α-equivalence. We will introduce a freshness predicate # and an alpha-
equality predicate ≈α:

• a#t intuitively means that if a occurs in t then it must do so under an
abstractor [a]-. For example, a#b, and a#[a]a but not a#a. We sometimes
write a, b#s instead of a#s, b#s.

• s ≈α t intuitively means that s and t are α-equivalent.

Syntactic equality s ≡ t is a structural (rather than logical) fact. Intuitively,
in the absence of unknowns a#s and s ≈α t are also structural facts —
to check a#s for example we just check that every a in s occurs under an
abstractor. However, in the presence of unknowns both predicates may depend
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on assumptions a#X about what will get substituted for the unknowns (the
simplest example: we may derive a#X if we assume . . . a#X). Formally, we
define # and ≈α by a logical system. We use # in the definition of ≈α, which
expresses the ‘freshness side-conditions’ mentioned in the introduction.

Definition 6 Constraints are generated by the grammar

P, Q, C ::= a#t | s ≈α t

and specified by a system of natural-deduction rules as follows (a, b are any
pair of distinct atoms):

(#ab)

a#b

a#s
(#f)

a#fs

a#s1 · · · a#sn
(#tup)

a#(s1, . . . , sn)

(#absa)

a#[a]s

a#s
(#absb)

a#[b]s

π-1·a#X
(#X)

a#π·X

To define ≈α we use the difference set of the two permutations:

ds(π, π′)
def
=

{
n

∣∣∣ π·n 6= π′·n
}

In the rules defining ≈α below, ds(π, π′)#X denotes the set of constraints:
{n#X | n ∈ ds(π, π′)}.

(≈αa)

a ≈α a

ds(π, π′)#X
(≈αX)

π·X ≈α π′·X

s1 ≈α t1 · · · sn ≈α tn
(≈αtup)

(s1, . . . , sn) ≈α (t1, . . . , tn)

s ≈α t
(≈αf)

fs ≈α ft

s ≈α t
(≈αabsa)

[a]s ≈α [a]t

(b a)·s ≈α t b#s
(≈αabsb)

[a]s ≈α [b]t

Remark: Rule (≈αabsb) is equivalent to a rule with premisses s ≈α (a b)·t a#t
∗

Example 7 We can derive a#((a b)·X, (b c)·Y ) from assumptions a#Y, b#X,
using the fact that (b c)·a ≡ a.

b#X
(#X)

a#(a b)·X

a#Y
(#X)

a#(b c)·Y
(#tup)

a#((a b)·X, (b c)·Y )
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We can also derive a#(X, [a]Y ) from a#X, and a#f a from a#a:

a#X
(#absa)

a#[a]Y
(#tup)

a#(X, [a]Y )

a#a
(#f)

a#fa

Also, we can deduce (a b)·X ≈α X from assumptions a#X and b#X, and we
also have as expected [a]a ≈α [b]b and, using sugar from the end of §2.1, we
can prove λ[f ]λ[x]fxX ≈α λ[x]λ[f ]xfX provided f#X and x#X (assuming
f and x are atoms):

a#X b#X
(≈αX)

(a b)·X ≈α X

(≈αa)

b ≈α b
(#ab)

b#a
(≈αabsb)

[a]a ≈α [b]b

(≈αa)

x ≈α x

(≈αa)

f ≈α f

x#X f#X
(≈αX)

(x f)·X ≈α X
(≈αf ,≈αtup)

f(x f)·X ≈α fX
(≈αf ,≈αtup)

x(f(x f)·X) ≈α x(fX)
(≈αf ,≈αtup,≈αabsa)

λ[f ]x(f(x f)·X) ≈α λ[f ]x(fX)

(#absa)

x#[x]f(xX)
(#f)

x#λ[x]f(xX)
(≈αabsb)

[f ]λ[x]f(xX) ≈α [x]λ[f ]x(fX)
(≈αf ,≈αtup)

λ[f ]λ[x]f(xX) ≈α λ[x]λ[f ]x(fX)

Here we use the fact that ds((a b), Id) = {a, b}. We recall that λ[f ]λ[x]f(xX) is
actually lam([f ]lam([x]app(f, app(x, Id·X)))), where lam is applied to a tuple
with one element. We write several rules used together as (rule1,rule2,...).

Definition 8 We call constraints of the form a#a and a#X reduced, and
write ∆,∇, Γ for sets of reduced constraints, we may call them contexts. If
there are no constraints of the form a#a in ∆ we say it is consistent.

Intuitively, an assumption a#a can never be true; we could add a rule in the
system to reflect this fact:

a#a
for any P

P
See [19] for a presentation with this rule. On the other hand, a#X might be
true if we instantiate X sensibly (to b, say, but not to a).

Definition 9 (Problems and entailment) A set Pr of constraints will be
called a problem. We write ∆ ` Pr when proofs of P exist for all P ∈ Pr,
using the derivation rules above and elements of the context ∆ as assumptions.
We say that ∆ entails Pr. If ∆ ` P because P ∈ ∆ we say ∆ trivially
entails P , or that the derivation is trivial.

14



Remark: In contrast with higher-order systems, here α-equivalence is ax-
iomatised instead of being built into the syntactic equality. This might seem
inefficient, because to decide α-equivalence in the front end (the syntax we
use to reason about terms) we must do an explicit proof. However, this is an
illusion, since we are free in nominal rewriting, as with any other framework,
to choose the back end (the underlying representation) wisely so it is efficient
for the manipulations we intend to carry out. When we define nominal match-
ing later, we will build the α-equivalence into the matching algorithm; but
by making the calculation of α-equivalence explicit in the front end, we lost
nothing and gain useful proof principles. ∗

We give below the specification of an algorithm to check the validity of fresh-
ness and α-equality constraints.

3.1 An algorithm to check constraints

The rules above decompose syntax and the part above the line in a rule is
always strictly simpler than the part below the line. This is not completely

obvious for the second rule for abstractions
s ≈α (a b)·t a#t

[a]s ≈α [b]t
until we recall

that (a b)·t is not itself a term but sugar for a term with a swapped with b and
(if there are unknowns X in t), (a b) suspended on X. The depth of this term
is strictly less than that of [b]t. Based on this observation, we give below an
algorithm to check constraints. We refer to [18] for a description of an efficient
implementation.

The algorithm is specified as a set of simplification rules acting on problems.
We will later extend these rules to solve matching problems between left-hand
sides of rewrite rules and terms; in anticipation we use l for terms in the
simplification rules for ≈α.

Definition 10 (Simplification rules for problems) Here a, b denote any
pair of distinct atoms, π·X denotes a moderated variable, and f a term-former.

a#b, Pr =⇒ Pr

a#fs, Pr =⇒ a#s, Pr

a#(s1, . . . , sn), P r =⇒ a#s1, . . . , a#sn, P r

a#[b]s, Pr =⇒ a#s, Pr

a#[a]s, Pr =⇒ Pr

a#π·X, Pr =⇒ π-1·a#X,Pr π 6≡ Id
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a ≈α a, Pr =⇒ Pr

(l1, . . . , ln) ≈α (s1, . . . , sn), P r =⇒ l1 ≈α s1, . . . , ln ≈α sn, P r

fl ≈α fs, Pr =⇒ l ≈α s, Pr

[a]l ≈α [a]s, Pr =⇒ l ≈α s, Pr

[b]l ≈α [a]s, Pr =⇒ (a b)·l ≈α s, a#l, P r

π·X ≈α π′·X, Pr =⇒ ds(π, π′)#X, Pr

These rules define a reduction relation on problems: We write Pr =⇒ Pr′

when Pr′ is obtained from Pr by applying a simplification rule, and we write
∗

=⇒ for the transitive and reflexive closure of =⇒.

These rules ‘run the derivation rules in reverse’, in no particular order. In
view of the example derivations above, we leave the reader to check that the
following hold:

a#(X, [a]Y )
∗

=⇒ a#X a#fa
∗

=⇒ a#a

a#((a b)·X, (b c)·Y )
∗

=⇒ b#X, a#Y,

and that the following hold:

(a b)·X ≈α X
∗

=⇒ a#X, b#X [a]a ≈α [b]b
∗

=⇒ {}

λ[f ]λ[x]f(xX) ≈α λ[x]λ[f ]x(fX)
∗

=⇒ x#X, f#X.

Intuitively, if a constraint can be reduced to the emptyset (as in the second
example for ≈α above) then the predicate holds. If after simplifying a problem
as much as possible, still some constraints remain, then we will need those as
assumptions to derive the constraints in the problem. We will formalise these
observations below.

Lemma 11 The relation =⇒ is confluent (i.e. Pr
∗

=⇒ Pr1 and Pr
∗

=⇒ Pr2

implies that there exists Pr3 such that Pr1
∗

=⇒ Pr3 and Pr2
∗

=⇒ Pr3) and
strongly normalising (i.e. the simplification process terminates).

Proof By Newman’s Lemma [34] we need only show termination, because
the simplification rules do not overlap (there are no critical pairs). The rules
form a hierarchical system in the sense of [22], from which it follows that
if the first group of rules is terminating (it is, since the rules decrease the
size of the problem, defined as the multiset of sizes of individual constraints)
and non-duplicating (it is, since no terms are duplicated) and does not use
in the right-hand side any symbol defined in the second group (i.e. equality
≈α; it doesn’t), then if the rules for the equality symbol satisfy the general
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recursive scheme, then the whole system is terminating. The general recursive
scheme requires that recursive calls in right-hand sides use strict subterms of
the left-hand side arguments, and this is the case (permutations are ignored).
∗

As a consequence, the simplification rules define a function from problems to
their unique normal forms. We write 〈Pr〉nf for the normal form of Pr, and
〈P 〉nf for 〈{P}〉nf , i.e. the result of simplifying it as much as possible.

The following technical properties are direct corollaries of confluence of =⇒:

Corollary 12 〈Pr∪Pr′〉nf = 〈Pr〉nf ∪〈Pr′〉nf , and as a corollary if Pr ⊆ Pr′

then 〈Pr〉nf ⊆ 〈Pr′〉nf .

Proof The algorithm for determining 〈Pr ∪Pr′〉nf works elementwise on the
elements of Pr ∪ Pr′, and is confluent by Lemma 11. ∗

We will say that an equality constraint u ≈α v is reduced when one of the
following holds:

• u and v are distinct atoms. For example a ≈α b is a reduced equality.
• u and v are applications with different term-formers (e.g. ft ≈α gs).
• u and v are two different variables. So π·X ≈α π′·Y is reduced, but π·X ≈α

π′·X is not, for any π and π′.
• u and v have different term constructors at the root. For example [a]s ≈α

(t, t′), X ≈α ft, and a ≈α π·X, are all reduced equalities.

Recall from §3 that we call a freshness constraint a#s reduced when it is
of the form a#a or a#X (i.e. when s ≡ a or s ≡ X). We call the first
inconsistent and the second consistent.

Say a problem Pr is reduced when it consists of reduced constraints, and
inconsistent when 〈Pr〉nf contains an inconsistent element — so Pr is in-
consistent if and only if 〈Pr〉nf is, if and only if a#a ∈ 〈Pr〉nf for some a.

Lemma 13 Pr is reduced if and only if Pr = 〈Pr〉nf .

Proof We check the simplification rules above, and the definition of a reduced
constraint, and see that a simplification rule applies to a constraint, if and only
if that constraint is not reduced. ∗

Corollary 14 (Characterisation of normal forms) (1) 〈a#s〉nf is a con-
text ∆, as defined in Section 3.

∆ need not be consistent. For example 〈a#a〉nf = {a#a} is an incon-
sistent context.

(2) 〈s ≈α t〉nf is of the form ∆ ∪ Contr ∪ Eq where ∆ is a set of consistent
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reduced freshness constraints (that is, a consistent context), Eq is a set
of reduced equality constraints, and Contr is a set of inconsistent reduced
freshness constraints.

Any of ∆, Contr, and Eq, may be empty.
(3) 〈Pr〉nf is of the form ∆ ∪ Contr ∪ Eq which is as above.

Proof Direct consequence of the previous lemma.

∗

So now we know Pr simplifies to a unique normal form 〈Pr〉nf , and we have
a good idea of the structure of 〈Pr〉nf .

The rest of this subsection addresses the question: How do logical entailment
Γ ` Pr and 〈Pr〉nf interact?

Lemma 15 (1) Assume Pr
∗

=⇒ Pr′. Then Γ ` Pr if and only if Γ ` Pr′.
(2) Γ ` Pr if and only if Γ ` 〈Pr〉nf .

Proof

(1) There are 12 simplification rules which could have been applied in a step
Pr =⇒ Pr′ so there are precisely 12 cases to consider. Each corresponds
precisely to one of the 12 syntax-directed derivation rules defining the
entailment relation. The result follows by induction on the number of
steps in the simplification Pr

∗
=⇒ Pr′.

(2) An immediate consequence of the first part.

∗

Lemma 16 If Γ is consistent and Γ ` Pr then Pr is consistent and moreover
if it is in normal form then it does not contain equality constraints.

Proof By a simple induction on derivations. ∗

Theorem 17 Write 〈Pr〉nf = ∆∪Contr ∪Eq as described by Corollary 14.
∆ ` Pr if and only if Contr and Eq are empty.

Proof

By Lemma 15, Γ ` Pr if and only if Γ ` ∆, Contr, Eq. The result now follows
easily by Lemma 16 because ∆ is consistent (see Corollary 14). ∗

Corollary 18 Let Γ and ∆ be consistent contexts, and Pr and Pr′ be any
problems.

(1) Correctness of the Algorithm: Γ ` Pr if and only if 〈Pr〉nf = ∆ (that
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is, Contr and Eq are empty) and Γ ` ∆.
(2) Cut: If Γ ` ∆ and Γ, ∆ ` Ψ, then Γ ` Ψ. (This is, of course, a form of

Cut rule.)
In particular, if Γ and ∆ are both consistent and Γ ` ∆ and ∆ ` Ψ,

then Γ ` Ψ.
(3) If Γ ` Pr and Γ, 〈Pr〉nf ` Pr′, then Γ ` Pr′.

Proof

(1) Suppose Γ ` Pr. By Theorem 17, 〈Pr〉nf = ∆ and by Lemma 15, Γ ` ∆.
Conversely if 〈Pr〉nf = ∆ and Γ ` ∆, by the same results Γ ` Pr.

(2) Suppose Γ ` ∆. By the first part of this result, Γ ` C for each C ∈ ∆.
Now we can paste into the derivation of ∆ ` Ψ to obtain a derivation of
Γ ` Ψ as required.

(3) By the previous two parts.

∗

3.2 Properties of # and ≈α

The following lemma indicates that use of permutations is extensional, in
the sense that lists of swappings denoting the same permutation, are logically
indistinguishable.

Lemma 19 Suppose ∇ is a context. If ds(π, π′) = ∅ then:

(1) ∇ ` π·a#t ⇐⇒ ∇ ` π′·a#t.
(2) ∇ ` a#π·t ⇐⇒ ∇ ` a#π′·t.
(3) ∇ ` π·s ≈α t ⇐⇒ ∇ ` π′·s ≈α t.
(4) ∇ ` s ≈α π·t ⇐⇒ ∇ ` s ≈α π′·t.

Proof We consider the four logical equivalences in turn:

(1) We observe simply that ds(π, π′) = ∅ precisely when π·a = π′·a always,
so π·a ≡ π′·a and there is nothing more to prove.

(2) We work by induction on the derivation of a#π·t from ∇. Note that be-
cause of the syntax-directed nature of the derivation rules, this is equiv-
alent to working by induction on the syntax of t. We consider just a few
cases.
• Suppose the derivation concludes in (#X), so∇ ` a#π·X and π−1·a#X ∈
∇. By the same observation as before (i.e., ds(π, π′) = ∅), π−1·a ≡
π′−1·a and we are done.

• Suppose the derivation concludes in (#absa) so ∇ ` a#π·([b]s) and π·b ≡
a. Since π′·b ≡ a we use (#absa) to build a derivation of ∇ ` a#π′·[b]·s.
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• Suppose the derivation concludes in (#absb) so ∇ ` a#π·([b]s), π·b ≡
b′ 6≡ a, and∇ ` a#π·s is derivable. By inductive hypothesis∇ ` a#π′·s
is derivable, and we continue as in the previous case.

(3) We work by induction on the derivation of ∇ ` π·s ≈α t. Again, we
consider only a few cases.
• Suppose the derivation concludes in (≈αX), so we conclude ∇ ` π ◦

τ ·X ≈α τ ′·X from ∇ ` a#X for every a ∈ ds(π ◦ τ, τ ′). We now
observe that ds(π ◦ τ, τ ′) = ds(π′ ◦ τ, τ ′) so we can write a derivation
concluding in ∇ ` π′ ◦ τ ·X ≈α τ ′·X, from the same hypotheses.

• Suppose the derivation concludes in (≈αa). It suffices to observe that
π·b = π′·b always.

• Suppose the derivation concludes in (≈αabsa), so we conclude∇ ` [π·a]π·s ≈α

[π·a]t and ∇ ` π·s ≈α t is also derivable. By inductive hypothesis
∇ ` π′·s ≈α t and since π′·a = π·a we can extend this derivation with
(≈αabsa) to derive ∇ ` [π′·a]π′·s ≈α [π·a]t.

• Suppose the derivation concludes in (≈αabsb), so we conclude∇ ` [π·a]π·s ≈α

[b]t where b 6≡ π·a, and ∇ ` (b π·a) ◦ π·s ≈α t and ∇ ` b#π·s are also
derivable.

We now observe that ds((b π·a) ◦ π, (b π′·a) ◦ π′) = ∅ (trivially, since
ds(π, π′) = ∅ and π·a = π′·a), and the result follows by the inductive
hypothesis and by part 2 of this result.

(4) Much as for the previous case.

∗

For example, the lemma above allows us to replace π−1 ◦ π with Id since
ds(π−1 ◦ π, Id) = ∅.

Given a derivable judgement ∇ ` P , we can:

(1) instantiate unknowns (∇ ` P maps to ∇σ ` Pσ in a suitable formal
sense), and

(2) permute atoms (∇ ` P maps to ∇ ` π·P ).

We show that derivability is preserved by both. Note that for the case of per-
mutation we only permute atoms in the conclusion P , not in the assumptions
∇. 3

In the rest of this section we assume that we are working with a consistent
context unless stated otherwise, in other words, we consider derivations ∇ `

3 The intuition is that in Definition 6 (#X) makes it clear that a#X if and only
if π′·a#π′·X, and Definition 3 makes it clear that permutations commute through
all term-formers. Also note that renamings (possibly non-injective functions from
atoms to themselves, e.g. ‘replace a by b’) do not satisfy these useful properties; it
is essential to use swappings.
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Pr where ∇ is a consistent context.

Lemma 20 (1) If ∇ ` a#t then ∇ ` π·a#π·t. Similarly if ∇ ` s ≈α t then
∇ ` π·s ≈α π·t.

This can be restated as follows: ∇ ` Pr if and only if ∇ ` π·Pr, where
here the action of π is pointwise on all terms mentioned in Pr.

(2) ∇ ` a#π·t if and only if ∇ ` π-1·a#t, and similarly ∇ ` π·s ≈α t if and
only if ∇ ` s ≈α π-1·t. (This turns out to be particularly useful.)

Proof The first part is by routine induction on derivations. We consider a few
cases:

• Suppose the derivation concludes in (#X), so ∇ ` a#τ ·X is derivable. It
follows that τ−1·a#X ∈ ∇. It is now easy to construct a derivation of
∇ ` π·a#π ◦ τ ·X, using (#X).

• Suppose the derivation concludes in (#absb), so ∇ ` a#[b]s is derivable. By
the inductive hypothesis ∇ ` π·a#π·s is derivable, and we can also extend
its derivation with (#absb).

• Suppose the derivation concludes in (≈αabsa), so∇ ` [a]s ≈α [a]t is derivable.
By inductive hypothesis ∇ ` π·s ≈α π·t, and so

∇ ` π·[a]s ≡ [π·a]π·s ≈α [π·a]π·t ≡ π·[a]t.

• Suppose the derivation concludes in (≈αabsb), so ∇ ` [a]s ≈α [b]t is deriv-
able. 4

By assumption ∇ ` (b a)·s ≈α t and ∇ ` b#s are derivable. By inductive
hypothesis

∇ ` π ◦ (b a)·s ≈α π·t and ∇ ` π·b#π·s
are derivable.

Now it is a fact that ds(π◦(b a), (π·b π·a)◦π) = ∅. Therefore, by Lemma 19

∇ ` (π·b π·a) ◦ π·s ≈α π·t and ∇ ` π·b#π·s,

are derivable, and so using (≈αabsb) we obtain

∇ ` π·[a]s ≡ [π·a]π·s ≈α [π·b]π·t ≡ π·[b]t

as required.

For the second part, we simply observe that ds(Id, π-1 ◦ π) = ∅ and use
Lemma 19 and the first part. ∗

4 In [41] the result which ‘did’ this case (Theorem 2.11) was proved by simultaneous
induction with transitivity of ≈α. We do not need this, because we use Lemma 19.
Lemmas 2.7 and 2.8 in [41] have more-or-less the same content, but the mention of
equality in 2.8 makes it a little harder to use and forces the simultaneous induction.
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We use this technical lemma in Lemma 22 below (a converse to this lemma is
also true, see Lemma 34).

Lemma 21 If ∇ ` a#s for each a ∈ ds(π, π′), then ∇ ` π·s ≈α π′·s.

Proof We work by induction on the syntax of s for all π and π′.

(1) Suppose s ≡ c for some atom c. Now either c ∈ ds(π, π′) or not; if
c ∈ ds(π, π′) then ∇ ` c#c contradicting our assumption that ∇ is
consistent. Otherwise, π·c ≡ π′·c and there is nothing to prove.

(2) If s ≡ π1·X we observe by group theory that ds(π◦π1, π
′◦π1) = ds(π, π′),

and we can use (#X).
(3) Suppose s ≡ [a]s′. Observe that either a ∈ ds(π, π′) or not.

(a) In the first case we construct a derivation as follows:

ds((π′·a π·a) ◦ π, π′)#s

∇ ` (π′·a π·a) ◦ π·s ≈α π′·s ∇ ` π′·a#π·s
(≈αabsb)

∇ ` [π·a]π·s ≈α [π′·a]π′·s

To explain the right-hand branch of the proof, we must do some
basic group theory. Since π·a 6≡ π′·a, also a 6≡ (π−1 ◦ π′)·a, so π′·a 6≡
(π′ ◦ π−1 ◦ π′)·a, and finally

(π ◦ π−1 ◦ π′) · a 6≡ (π′ ◦ π−1 ◦ π′) · a.

Thus, π−1 ◦ π′·a ∈ ds(π, π′) and ∇ ` π−1 ◦ π′·a#s is derivable. Using
the previous lemma ∇ ` π′·a#π·s is derivable as required.

Concerning the left-hand branch, we observe that the top line is not
a real derivation rule but represents a use of the induction hypothesis,
having verified (by some more basic group theory) that

ds((π′·a π·a) ◦ π, π′) = ds(π, π′) \ {a}.

(b) In the second case (a 6∈ ds(π, π′)) we write b ≡ π·a ≡ π′·a and
construct a derivation as follows:

ds(π, π′)#s
(Lemma 21)

∇ ` π·s ≈α π′·s
(≈αabsa)

∇ ` [b]π·s ≈α [b]π′·s

(Here the topmost horizontal line actually represents a derivation which
by Lemma 21 exists.)

(4) Other cases are similar and simpler.

∗
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Lemma 22 Suppose ∇ and ∇σ are consistent.

If ∇ ` a#t then 〈∇σ〉nf ` a#(tσ). Similarly if ∇ ` s ≈α t then 〈∇σ〉nf `
(sσ) ≈α (tσ). More generally, if ∇ ` Pr then 〈∇σ〉nf ` Prσ.

Proof We work by induction on the derivation of ∇ ` a#t or ∇ ` s ≈α t.
We consider a few cases:

• Suppose the derivation concludes with (#X) so ∇ ` a#π·X. It follows that
π−1·a#X ∈ ∇. By Lemma 15 〈(π−1·a#X)σ〉nf ` (π−1·a#X)σ. Also, by
Corollary 12 〈π−1·a#Xσ〉nf ⊆ 〈∇σ〉nf .

Therefore 〈∇σ〉nf ` π−1·a#Xσ. By Lemma 20 〈∇σ〉nf ` a#π·(Xσ) and
by Lemma 5 π·(Xσ) ≡ (π·X)σ, and the result follows.

• Suppose the derivation concludes with (#absb) so ∇ ` a#[b]t and ∇ ` a#t
are derivable. By inductive hypothesis 〈∇σ〉nf ` a#tσ is derivable. We also
observe that [b](tσ) ≡ ([b]t)σ and the result follows.

• Suppose the derivation concludes with (≈αX) so ∇ ` a#X for each a ∈
ds(π, π′) and ∇ ` π·X ≈α π′·X is derivable.

By inductive hypothesis 〈∇σ〉nf ` a#Xσ for each a ∈ ds(π, π′). We now
use the preceding technical lemma.

• Suppose the derivation concludes with (≈αabsb) so ∇ ` [a]s ≈α [b]t, ∇ `
(b a)·s ≈α t, and∇ ` b#s are derivable. We can use the inductive hypothesis
directly, once we recall Lemma 5 and observe that ((b a)·s)σ ≡ (b a)·(sσ).

∗

Lemma 23 (1) If ∇ ` n#s and ∇ ` s ≈α t then ∇ ` n#t.
(2) If ∇ ` s ≈α t and ∇ ` t ≈α u then ∇ ` s ≈α u.

Proof For the first part (#) we work by induction on the syntax of s:

• If s ≡ π·X then by the syntax-directed nature of the rules for deriving
∇ ` s ≈α t, we see that the derivation must conclude in (≈αX) so t ≡ π′·X
and ∇ ` a#X for every a ∈ ds(π, π′).

Now suppose ∇ ` n#π·X. By Lemma 20, ∇ ` π−1·n#X.
If n 6∈ ds(π, π′) then ∇ ` π′−1·n#X and by Lemma 20, ∇ ` n#π′·X.
If n ∈ ds(π, π′) then also π′−1·n ∈ ds(π, π′) so by the argument above,

∇ ` π′−1·n#X and by Lemma 20, ∇ ` n#π′·X.
• If s ≡ [a]s′ then there are two possibilities:
(1) t ≡ [a]t′ and the derivation concludes in (≈αabsa). Then either n ≡ a and

we are done, or we can use the inductive hypothesis.
(2) t ≡ [b]t′ and the derivation concludes in (≈αabsb). Then ∇ ` (b a)·s ≈α t.

We now work by cases according to whether n = a, n = b, or n 6= a, b,
using Lemma 20.

(3) If s ≡ (s1, . . . , sn) then again by the syntax-directed nature of the rules,
the derivation must conclude in (≈αtup) so t ≡ (t1, . . . , tn) and we use the
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inductive hypothesis.
(4) Other cases are similar.

For the second part (≈α), we sketch the proof semi-formally, but it can very
easily be made completely formal in the style of the first part. We work by
induction on the size of s (permutations are not counted in the size):

• If ∇ ` π·X ≈α π′·X ≈α π′′·X, the result follows by easy calculations to
verify that ds(π, π′′) ⊆ ds(π, π′) ∪ ds(π′, π′′).

• If ∇ ` [a]s′ ≈α [a]t′ ≈α [a]u′ then it must be that ∇ ` s′ ≈α t′ ≈α u′ and
we use the inductive hypothesis.

• If ∇ ` [a]s′ ≈α [b]t′ ≈α [b]u′ then ∇ ` (b a)·s′ ≈α t′, b#s′, t′ ≈α u′. By the
inductive hypothesis ∇ ` (b a)·s′ ≈α u′ and the result follows.

• If ∇ ` [a]s′ ≈α [a]t′ ≈α [b]u′ then ∇ ` s′ ≈α t′, (b a)·t′ ≈α u′, b#t′. By the
inductive hypothesis and using Lemma 20, ∇ ` (b a)·s′ ≈α u′ and by the
previous part, ∇ ` b#s′. The result follows.

• If ∇ ` [a]s′ ≈α [b]t′ ≈α [c]u′ then

∇ ` (b a)·s′ ≈α t′, b#s′, (c b)·t′ ≈α u′, c#t′.

It follows by induction that ∇ ` (c b) ◦ (b a)·s′ ≈α u′. Now ds((c b) ◦
(b a), (c a)) = {b} and ∇ ` b#s′, so by Lemma 21 (the technical lemma
above),

∇ ` (c a)·s′ ≈α (c b) ◦ (b a)·s′ ≈α u′

Now by inductive hypothesis we may complete the proof.
• Other cases are simple.

∗

Fix a consistent context ∇ and say ≈α is an equivalence relation when it is
reflexive, transitive and symmetric (as usual). Say ≈α is a congruence when
it is an equivalence relation such that if s ≈α t then fs ≈α ft, [a]s ≈α [a]t,
(· · · s · · · ) ≈α (· · · t · · · ), and π·s ≈α π·t.

Theorem 24 ≈α is an equivalence relation and a congruence in a consistent
context.

Proof Transitivity is by the previous lemma. Reflexivity is by an easy induc-
tion on syntax. Symmetry is slightly non-trivial.

We work by induction on the maximum of the sizes of s and t proving that if
∇ ` s ≈α t then ∇ ` t ≈α s. Mostly this is easy, but (≈αabsb) causes difficulty
because of its asymmetry. Suppose ∇ ` [a]s ≈α [b]t is derived by (≈αabsb), so
also ∇ ` (b a)·s ≈α t and ∇ ` b#s. By Lemma 19 also ∇ ` (a b)·s ≈α t,
and by Lemma 20 ∇ ` s ≈α (a b)·t. We now use the inductive hypothesis
to deduce ∇ ` (a b)·t ≈α s, and also Lemma 23 and Lemma 20 to deduce
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∇ ` a#t. The result now follows.

Congruence is by induction: suppose ∇ ` s ≈α t. Then:

• ∇ ` (u1, . . . , uk−1, s, uk+1, . . . , un) ≈α (u1, . . . , uk−1, t, uk+1, . . . , un) using
(≈αtup).

• ∇ ` [a]s ≈α [a]t using (≈αabsa).
• ∇ ` π·s ≈α π·t by Lemma 21.

∗

If P is a freshness constraint a#u or equality constraint u ≈α v, write P [X 7→s]
for a#u[X 7→s] or u[X 7→s] ≈α v[X 7→s] respectively.

Corollary 25 Suppose Γ is consistent and Γ ` s ≈α t. Then:

(1) Γ ` P [X 7→s] is derivable if and only if Γ ` P [X 7→t] is derivable.
(2) Γ, 〈P [X 7→s]〉nf ` Q is derivable if and only if Γ, 〈P [X 7→t]〉nf ` Q is

derivable.

Proof

(1) The case of P ≡ u ≈α v follows by the previous theorem. The case
of P ≡ a#u follows again by the previous theorem, and by part 1 of
Lemma 23.

(2) Observe that Γ, 〈P [X 7→s]〉nf ` P [X 7→s] by Lemma 15. Using the first
part of this result, Γ, 〈P [X 7→s]〉nf ` P [X 7→t].

Now suppose Γ, 〈P [X 7→t]〉nf ` Q. Then using Corollary 18 and the
observation in the previous paragraph, we conclude that Γ, 〈P [X 7→s]〉nf `
Q.

∗

So equality is ‘an equality’ with respect to the simple logic given by #, ≈α,
and `.

4 Unification

4.1 Definitions

As usual unification is about finding some substitution making two terms s
and t equal; however, now the notion of equality is our ‘logical’ notion of ≈α.
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Definition 26 (Unification problems) A unification problem Pr is a
problem as previously defined but replacing equality constraints s ≈α t by uni-
fication constraints s ?≈? t.

We recall from Corollary 14 that 〈s ≈α t〉nf is of the form ∆∪Contr∪Eq where
∆ is a consistent freshness context, Contr is a set of inconsistent freshness
constraints, and Eq is a set of reduced equalities. For example, 〈[a]X ≈α

[b]Y 〉nf = {b#X, (b a)·X ≈α Y }. Intuitively, a solution to [a]X ?≈? [b]Y is
any substitution σ such that (b a)·Xσ ≈α Y σ, and such that b#Xσ.

Definition 27 (Solution) A solution to a unification problem Pr is a pair
(Γ, σ) of a consistent context and a substitution such that:

(1) Γ ` Pr′σ where Pr′ is obtained from Pr by changing unification predi-
cates into equality predicates and Pr′σ is the problem obtained by applying
the substitution σ to the terms in Pr′.

(2) Xσ ≡ Xσσ for all X (we say the substitution is idempotent).

If there is no such (Γ, σ) we say that Pr is unsolvable.

Write U(Pr) for the set of unification solutions to Pr.

The condition of idempotence is not absolutely necessary, but it is technically
convenient and since our algorithms (see the next subsection) generate only
idempotent solutions, we lose nothing.

Solutions in U(Pr) can be compared using the following relation (we will show
it is actually an ordering).

Definition 28 Let Γ1, Γ2 be consistent contexts, and σ1, σ2 substitutions. Then
(Γ1, σ1) ≤ (Γ2, σ2) when there exists some σ′ such that

for all X, Γ2 ` Xσ1σ
′ ≈α Xσ2 and Γ2 ` Γ1σ

′.

If we want to be more specific, we may write (Γ1, σ1) ≤σ′ (Γ2, σ2).

Lemma 29 ≤ defines a partial order on U(Pr), call it the instantiation
ordering.

Proof Reflexivity is trivial. For transitivity, suppose (Γ1, σ1) ≤σ′
1

(Γ2, σ2) ≤σ′
2

(Γ3, σ3). Then we know (writing slightly informally):

Γ2 ` Γ1σ
′
1, Xσ1σ

′
1 ≈α Xσ2 and Γ3 ` Γ2σ

′
2, Xσ2σ

′
2 ≈α Xσ3.
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Since Γ3 is consistent, Γ2σ
′
2 is consistent by Lemma 16. Since Γ2 is consistent,

Γ1σ
′
1 is consistent by the same result. We also know

〈Γ2σ
′
2〉nf ` Γ1σ

′
1σ

′
2, Xσ1σ

′
1σ

′
2 ≈α Xσ2σ

′
2

by Lemma 22. Finally, we use Corollary 18 and Theorem 24 to deduce

Γ3 ` Γ1σ
′
1σ

′
2, Xσ1σ

′
1σ

′
2 ≈α Xσ3

as required. ∗

A least element of a partially ordered set is one which is related to (we
generally say less than or equal to) every other element of the set.

Definition 30 A principal (or most general) solution to a problem Pr is
a least element of U(Pr).

4.2 Principal solutions

We will now show that every solvable unification problem has a principal idem-
potent solution. The algorithm is derived from the simplification rules from
the previous section, enriched with instantiating rules, labelled with substi-
tutions. The conditions in the instantiating rules are usually called occurs
check.

π·X ?≈? u, Pr
X 7→π-1·u

=⇒ Pr[X 7→π-1·u] (X 6∈ V (u))

u ?≈? π·X, Pr
X 7→π-1u
=⇒ Pr[X 7→π-1·u] (X 6∈ V (u))

Note that the instantiating rules above apply also in the case Pr = ∅. Also note
that we do not solve freshness constraints by instantiation — for a problem
like X ≈α blah it is obvious we should instantiate X to blah, but there is
no obvious most general instantiation making, say, a#X true (any more than
there is an obvious instantiation making, say ‘x is a natural number’ true);
any term such that a is fresh for X would do. This is why we always work in
a freshness context.

The simplification and instantiation rules specify a unification algorithm:
to solve a problem Pr, we will apply the rules until we obtain an irreducible
problem. This algorithm is in essence the same as [41] although our presenta-
tion is slightly different.

Many different possible reduction paths exist for a given Pr, since it may have
many formulae each of which is susceptible to some simplification. Neither are
reductions necessarily confluent; for example,

{a#X, X ?≈? Y } [X 7→Y ]
=⇒ {a#Y } and {a#X, X ?≈? Y } [Y 7→X]

=⇒ {a#X}.
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However reductions do always terminate with some normal form, since at
each step either a formula becomes smaller, or the number of variables in the
problem is reduced by one. Also we shall see later that these normal forms are
all equivalent in a natural and useful sense (see Lemma 33).

It will be useful to syntactically characterise normal forms; for this, we define
reduced unification constraints:

Definition 31 A unification problem u ?≈? v is reduced when one of the
following holds:

• u and v are distinct atoms. For example a ?≈? b is reduced.
• Precisely one of u and v is a moderated variable and the other term mentions

that variable (so the occurrence check in the instantiating rules fails). For
example π·X ?≈? (X, Y ) or (X,Y ) ?≈? π·X, but not π·X ?≈? π′·X or
X ?≈? Y .

• u and v are applications with different term-formers (e.g. ft ?≈? gs).
• u and v have different term constructors at the root and neither is a mod-

erated variable. For example [a]s ?≈? (t, t′).

We may call all reduced unification constraints inconsistent.

If Pr reduces to a normal form Pr′ via some sequence of substitutions σ, write
〈Pr〉sol for the tuple (Pr′, σ).

Lemma 32 (Unification normal forms) • 〈a#s〉sol is (〈a#s〉nf , Id).
• 〈s ?≈? t〉sol is a problem of the form ∆ ∪ Contr ∪ Eq and a substitution,

where ∆ is a consistent freshness context, Contr is an inconsistent freshness
context and Eq is a set of inconsistent unification constraints.

• As a corollary, 〈Pr〉sol is a problem of the form ∆ ∪ Contr ∪ Eq as above
and a substitution.

Proof Just as in Corollary 14. We check that the simplification and instantiat-
ing rules are applicable to any non-reduced unification or freshness constraint.
∗

If we write 〈Pr〉sol = (∆, σ) we presume that Pr
∗

=⇒ ∆ with substitution σ
and Contr and Eq are empty. In this case, we may call (∆, σ) the solution
of Pr (soon we shall show it actually is a solution to Pr, in the sense that
(∆, σ) ∈ U(Pr)).

For example 〈a#a〉sol = ({a#a}, Id) and 〈(X, [b]X, fX) ?≈? (a, [a]X, gX)〉sol =
({a#a}, {b ?≈? a, fa ?≈? ga}, [X 7→a]). More examples are given in Figure 1;
they are a quote from the ‘Quiz’ in [41]. Although the presentation is slightly
different, the solutions are equivalent to the ones described in [41].
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λ[a]λ[b](Xb) ?≈? λ[b]λ[a](aX)
(?≈?f ,?≈?absb)

=⇒ {λ[a](((b a)·X)a) ?≈? λ[a](aX), b#λ[b](Xb)}
(?≈?f ,?≈?absa,?≈?f ,#f ,#absa)

=⇒ {(b a)·X ?≈? a, a ?≈? X}
X 7→b=⇒ {a ?≈? b} 6=⇒ Solution: None

λ[a]λ[b](Xb) ?≈? λ[b]λ[a](aY )
(?≈?f ,?≈?absb)

=⇒ {λ[a](((b a)·X)a) ?≈? λ[a](aY ), b#λ[b](Xb)}
(?≈?f ,?≈?absa,?≈?f ,#f ,#absa)

=⇒ {(b a)·X ?≈? a, a ?≈? Y }
X 7→b=⇒ { a ?≈? Y }

[Y 7→a]
=⇒ {} Solution: (∅, [X 7→b, Y 7→a])

λ[a]λ[b](bX) ?≈? λ[b]λ[a](aY )
(?≈?f ,?≈?absb)

=⇒ {λ[a](a((b a)·X)) ?≈? λ[a](aY ), b#λ[b](bX)}
(?≈?f ,?≈?absa,?≈?f ,#f ,#absa)

=⇒ {a ?≈? a, (b a)·X ?≈? Y }
(?≈?a), Y 7→(b a)·X

=⇒ {(b a)·X ?≈? (b a)·X}
(?≈?X)
=⇒ {} Solution: (∅, [Y 7→(b a)·X])

λ[a]λ[b](bX) ?≈? λ[a]λ[a](aY )
(?≈?f ,?≈?absa)

=⇒ {λ[b](bX) ?≈? λ[a](aY )}
(?≈?f ,?≈?absb)

=⇒ {a((b a)·X) ?≈? aY, a#bX}
(?≈?f ,?≈?a), Y 7→(b a)·X

=⇒ {(b a)·X ?≈? (b a)·X, a#bX}
(?≈?X,#f ,#ab)

=⇒ {a#X} Solution: ({a#X}, [Y 7→(b a)·X])

Fig. 1. Examples of the unification algorithm in action.

We now show that the unification algorithm checks whether a problem is
solvable or not, and moreover it computes a principal, idempotent solution, if
one exists. Thus the particular reduction path does not matter; we make some
canonical but arbitrary choice and use it silently henceforth, for example
we may talk about ‘the normal form’ of a problem.

Lemma 33 (Preservation of solutions)

If Pr =⇒ Pr′ using a simplification rule then U(Pr) = U(Pr′).
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Proof For simplicity suppose Pr = {P} (i.e. it contains only one problem).
Suppose Γ ` Pσ. The derivation is syntax-directed and follows the simplifica-
tion rules (see Definition 10), so it suffices to check the 12 simplification rules.
All the cases are trivial, except for the final simplification rule for freshness
and the final simplification rule for equality.

(1) Suppose Pr = {a#π·X} =⇒ Pr′ = {π−1·a#X}. Suppose Γ ` a#(π·X)σ.
Then we use part 2 of Lemma 20.

(2) Suppose Pr = {π·X ?≈? π′·X} =⇒ Pr′ = {a1#X, . . . , an#X} where
ds(π, π′) = {a1, . . . , an}. Suppose Γ ` π·Xσ ≈α π′·Xσ. The result follows
by Lemma 34 below.

∗

This result is the converse of Lemma 21.

Lemma 34 If ∇ ` π·s ≈α π′·s then ∇ ` a#s for each a ∈ ds(π, π′).

Proof By induction on the structure of s.

(1) If s ≡ X then the derivation concludes in (≈αX). The result is immediate.
(2) If s ≡ c then π·c ≡ π′·c so c 6∈ ds(π, π′) and thus any a ∈ ds(π, π′) is not

the same as c and the result follows using (#ab).
(3) If s ≡ (t1, . . . , tn) then the derivation must conclude in (≈αtup) and ∇ `

π·ti ≈α π′·ti for 1 ≤ i ≤ n. By the inductive hypothesis ∇ ` a#ti for
1 ≤ i ≤ n and each a ∈ ds(π, π′). Finally we deduce ∇ ` a#(t1, . . . , tn)
for each a ∈ ds(π, π′) using (#tup).

(4) The case s ≡ f(t) is similar.
(5) If s ≡ [c]t then there are two cases:

(a) If π·c ≡ π′·c then the reasoning is much as for tuples above.
(b) If π·c 6≡ π′·c (i.e. c ∈ ds(π, π′)) then the derivation must conclude

in (≈αabsb), so ∇ ` d′#π·t and ∇ ` (d′ d)·π·t ≈α π′·t where we set
d ≡ π·c and d′ ≡ π′·c.

By the inductive hypothesis ∇ ` a#t for each a ∈ ds((d′ d)◦π, π′).
Now it is a fact that ds((d′ d) ◦ π, π′) is those atoms in ds(π, π′) not
equal to c or π−1·π′·c. Therefore by inductive hypothesis, ∇ ` a#t
for each a ∈ ds(π, π′) not equal to c or π−1·π′·c and using (#absa)

and/or (#absb), we have ∇ ` a#[c]t for the same a.
We also have ∇ ` π−1·π′·c#t by the above and using part 2 of

Lemma 20, so ∇ ` a#[c]t for a ≡ π−1·π′·c. 5 Then, ∇ ` π·c#[c]t by
(#absa).

∗

5 This is in ds(π, π′), since if π·π−1·π′·c ≡ π′·π−1·π′·c then π′·c ≡
π′·π−1·π′·c so π·c ≡ π′·c, and this is not the case.
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Theorem 35 Let Pr be a unification problem, and suppose 〈Pr〉sol = (∆, σ).
Then:

(1) (∆, σ) ∈ U(Pr).
(2) Also (∆, σ) ≤ (∆′, σ′) for all other (∆′, σ′) ∈ U(Pr). That is, the solution

is also a least or principal solution.

Proof We work by induction on the length of the reduction Pr
∗

=⇒ 〈Pr〉sol .

• Suppose Pr is in normal form. Then:
(1) Trivially Pr = ∆ and σ = Id, and equally trivially ∆ ` PrId and Id is

idempotent.
(2) For any other (∆′, σ′) ∈ U(Pr) trivially σ′ is such that ∆′ ` ∆σ and

∆′ ` XIdσ ≈α Xσ for all X.
• Suppose Pr =⇒ Pr′ by some non-instantiating simplification. Then using

Lemma 33, we know that U(Pr) = U(Pr′). Both parts of the result follow
by induction.

• Suppose Pr
θ

=⇒ Pr′θ by an instantiating rule. So Pr = {π·X ≈α u} ∪ Pr′

where θ = [X 7→π−1·u] and X 6∈ V (u). Suppose 〈Pr′θ〉sol = (∆, σ), so that
by construction 〈Pr〉sol = (∆, θ ◦ σ).

(1) It is easy to see that θ ◦ σ is idempotent and by the first part of the
inductive hypothesis ∆ ` Pr′θσ, that is, (∆, θ ◦ σ) ∈ U(Pr).

(2) Suppose (∆′, σ′) ∈ U(Pr). Then ∆′ ` Xσ′ ≈α π−1·uσ′ by part 2 of
Lemma 20.

By part 1 of the technical lemma which follows (Lemma 36) and using
its notation, (∆′, θ◦σ′′) ∈ U(Pr) where σ′′ acts just like σ′ only it maps X
to X, θ = [X 7→u], and σ′ = θ◦σ′′. By part 2 Lemma 36, (∆′, σ′′) ∈ U(Pr′θ)
and by inductive hypothesis (∆, σ) ≤ (∆′, σ′′). By part 4 it follows that
(∆, θ ◦ σ) ≤ (∆′, θ ◦ σ′′).

∗

Lemma 36 (1) Suppose σ′ is idempotent and Xσ′ 6≡ X. Then if ∆′ ` Prσ′

and ∆′ ` Xσ′ ≈α uσ′, then ∆′ ` Pr(θ ◦ σ′′) where θ = [X 7→u] and σ′′

acts just like σ′, only Xσ′′ ≡ X. Furthermore, σ′ = θ ◦ σ′′.
(2) Continuing the assumptions and notation above, if (∆′, θ ◦ σ′′) ∈ U(Pr)

and Pr = Pr′ ∪ {π·X ?≈? u}, then (∆′, σ′′) ∈ U(Pr′θ).
(3) For all ∆′, σ1, and σ2, if ∆′ ` Y σ1 ≈α Y σ2 for all Y , then ∆′ ` uσ1 ≈α

uσ2 for all u. (‘Two α-equivalent substitutions on a single term give two
α-equivalent terms.’)

(4) For all ∆, σ, ∆′, and σ′′, if (∆, σ) ≤ (∆′, σ′′) then (∆, θ◦σ) ≤ (∆′, θ◦σ′′).

Proof

(1) We observe that Xσ′ ≈α uσ′ ≈α Xθσ′′ and for any other Y , Y σ′ ≡ Y σ′′.
(2) By part 1 of Corollary 25, and using idempotence.
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(3) By part 1 of Corollary 25.
(4) By definition if (∆, σ) ≤ (∆′, σ′′) then for some τ , ∆′ ` ∆στ and ∆′ `

Y στ ≈α Y σ′′ for all Y . The result follows by the previous part of this
lemma.

∗

We conclude with two routine but important results:

Lemma 37 (1) If Eq is a non-empty set of inconsistent unification con-
straints then it has no solution.

(2) If Γ is an inconsistent context then it has no solution.

Proof By definition, a solution to Eq, if it exists, must be of the form (∆, σ)
for some freshness context ∆ such that ∆ ` Eqσ, where here we are a bit lax
and convert the unification problems in Eq into equality problems. Lemma 32
tells us what form Eqσ can take and we check that each kind of problem
corresponds to a reduced equality problem. The second part of Theorem 17
then tells us that ∆ ` Eqσ simply cannot happen.

Now suppose Γ is an inconsistent context. By Lemma 32 〈Γ〉sol = (〈Γ〉nf , Id).
Suppose this is a solution to Γ, so that 〈Γ〉nf ` Γ and 〈Γ〉nf is consistent.
This is not possible since no derivation rule allows us to derive an inconsistent
constraint from a consistent context. ∗

Corollary 38 Let Pr be a unification problem such that 〈Pr〉sol = (∆ ∪
Contr ∪ Eq, σ). Then U(Pr) is nonempty if and only if Contr ∪ Eq = ∅.

Proof The right-to-left implication follows by Theorem 35. For the left-to-
right implication we work by induction on the length of the reduction Pr

∗
=⇒

〈Pr〉sol .

• Suppose Pr is in normal form. Then by Lemma 32 Pr = ∆ ∪ Contr ∪ Eq.
If Contr∪Eq is nonempty then by Lemma 37 U(Pr) is empty. Conversely

if Contr ∪ Eq is empty, we observe trivially that ∆ ` ∆Id and U(Pr)
contains (∆, Id).

• Suppose Pr =⇒ Pr′ by some non-instantiating simplification. Then using
Lemma 34 we know that U(Pr) = U(Pr′). We use the inductive hypothesis.

• Suppose Pr
θ

=⇒ Prθ by an instantiating simplification, so Pr = {π·X ≈α

u} ∪ Pr′ and θ = [X 7→π−1·u].
Suppose ∆′ ` Prσ′. Then ∆′ ` Prθσ′′ where σ′′ acts just like σ′ only

Xσ′′ ≡ X, and (∆′, σ′′) ∈ U(Pr′θ). The result follows by the inductive
hypothesis for Pr′θ.

∗
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Rewriting needs a notion of matching; we develop a suitable one in §5.2.

5 Rewriting

5.1 Rewrite rules

We will define a notion of rewriting which operates on ‘terms-in-consistent-
contexts’: a pair (∆, s) of a consistent context and a term, which we write
∆ ` s. Then ∆ ` s rewrites to ∆ ` t — a freshness context is fixed. Since
in a particular rewriting path the context is fixed, a given context defines a
particular rewrite relation ∆ ` - → - which we define below.

Definition 39 A nominal rewrite rule R ≡ ∇ ` l → r is a tuple of

• a consistent context ∇; and
• terms l and r such that V (r,∇) ⊆ V (l).

We now develop a theory of nominal rewriting; we will see in Section 6 that
a uniformity condition on R becomes useful for rewriting to be truly well-
behaved. However, the ‘engine’ driving rewriting remains what we now con-
struct.

Example 40 In this example we will use the signature of ML and the syn-
tactic sugar defined in Example 2.

(1) a#X ` (λ[a]X)Y → X is a form of trivial β-reduction.
(2) a#X ` X → λ[a](Xa) is η-expansion.
(3) Of course a rewrite rule may define any arbitrary transformation of terms,

and may have an empty context, for example ∅ ` XY → XX.
(4) a#Z ` Xλ[a]Y → X is not a rewrite rule, because Z 6∈ V (Xλ[a]Y ).

∅ ` X → Y is also not a rewrite rule.
(5) ∅ ` a → b is a rewrite rule. We mention this again below.

We can now write

(∇ ` l → r){X 7→s} def
= 〈∇{X 7→s}〉nf ` l{X 7→s} → r{X 7→s}.

We shall never write the substitution in such detail, but this is how we instan-
tiate rules.

As usual we shall consider rules up to permutative renaming of their variable
symbols X,Y . Thus a#X ` (λ[a]X)Y → X and a#Y ` (λ[a]Y )X → Y are
‘morally’ the same rule.
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Similarly it is convenient to consider atoms a, b up to permutative renamings,
so that if we have a rule a#X ` X → λ[a](Xa) then also b#X ` X →
λ[b](Xb) is available.

It will be useful to have a notation for permuting atoms in the syntax of rules
and terms, as we just did above: Write R(a b) for that rule obtained by swapping
a and b in R throughout. For example, if R ≡ b#X ` [a]X → (b a)·X then
R(a b) ≡ a#X ` [b]X → (a b)·X. Write Rπ for that rule obtained by applying
π to the atoms in R according to the swapping action. Also write sπ for that
term obtained by applying π to the atoms in s.

A simple technical lemma will be useful in Theorem 50, we mention it now:

Lemma 41 ∆ ` π·s ≈α sπσ for any ∆, where Xσ = π·X for each X men-
tioned in s.

The proof is by an easy induction on s and can be illustrated by an exam-
ple: if we take s ≡ (a b)·X and π = (a c) then π·s ≡ (a c)(a b)·X and
sπσ ≡ (c b)(a c)·X. The suspended permutations are not identical, but their
difference set is empty and the result follows.

Definition 42 A set of rewrite rules is equivariant when it is closed under
(−)(a b) for all atoms a and b.

A nominal rewrite system (Σ,R) consists of:

(1) A nominal signature Σ.
(2) An equivariant set R of nominal rewrite rules over Σ.

We may drop Σ and write R for the rewrite system. When we write out the
system we (obviously) do not bother to give every possible permutation of
variables and atoms. Indeed, given any set of rewrite rules we can always
obtain an equivariant one by closing under the permutation action (−)(a b)

outlined above (call this the equivariant closure of the set of rules). We
shall generally elide this step and equate a (finite, non-equivariant) set of
rewrite rules with its equivariant closure.

Note that rewrite systems are “metalevel equivariant”, as opposed to the “in-
ternal equivariance” of predicates # and ≈α shown in Lemma 20 part 1. In
other words, we define a rewrite system as an equivariant set of rules, whereas
we can prove that # and α are preserved by permutations.

Example 43 To give a small-step evaluation relation for our fragment of
ML (see Examples 2 and 40) we extend it with a term-former for (explicit)
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substitutions sub which we sugar to t{a 7→t′}. The rewrite rules:

(Beta) (λ[a]X)X ′ → X{a 7→X ′}

(σapp) (XX ′){a 7→Y } → X{a 7→Y }X ′{a 7→Y }

(σvar) a{a 7→X} → X

(σε) a#Y ` Y {a 7→X} → Y

(σlam) b#Y ` (λ[b]X){a 7→Y } → λ[b](X{a 7→Y })

define a system of explicit substitutions for the λ-calculus with names. We
add the following rules:

(Let) let a = X ′ in X → X{a 7→X ′}

(Letrec) letrec fa = X ′ in X →

X{f 7→(λ[a]letrec fa = X ′ in X ′)}

(σlet) a#Y ` (let a = X ′ in X){b 7→Y } →

let a = X ′{b 7→Y } in X{b 7→Y }

(σletrec) f#Y, a#Y ` (letrec fa = X ′ in X){b 7→Y } →

letrec fa = X ′{b 7→Y } in X{b 7→Y }

Example 44 We can define a signature for first-order logic with term-formers
∀, ∃, ¬, ∧, ∨, and rewrite rules to compute prenex normal forms (here we use
variables P , Q) :

a#P ` P ∧ ∀[a]Q → ∀[a](P ∧Q)

a#P ` (∀[a]Q) ∧ P → ∀[a](Q ∧ P )

a#P ` (P ∨ ∀[a]Q → ∀[a](P ∨Q)

a#P ` ((∀[a]Q) ∨ P → ∀[a](Q ∨ P )

a#P ` (P ∧ ∃[a]Q → ∃[a](P ∧Q)

a#P ` ((∃[a]Q) ∧ P → ∃[a](Q ∧ P )

a#P ` (P ∨ ∃[a]Q → ∃[a](P ∨Q)

a#P ` ((∃[a]Q) ∨ P → ∃[a](Q ∨ P )

` (¬(∃[a]Q) → ∀[a]¬Q

` (¬(∀[a]Q) → ∃[a]¬Q
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We could also add rules:

a#X ` ∀[a]X → X

` ∀[a]X ∧ ∀[a]Y → ∀[a](X ∧ Y )

We recapitulate aspects of nominal terms and rules which are unusual with
respect to a first-order system:

(1) Moderated variables (a b)·X, which let us ‘suspend’ renamings.
(2) The unusual term constructor abstraction [a]t.
(3) The freshness side-conditions, such as a#X. We use them to avoid acci-

dental variable capture.
(4) The α-equivalence relation ≈α, which uses all three of the above.

We now define the process of rewriting.

5.2 Matching problems, and rewriting steps

We do want a rewrite system to induce some actual rewrites on the set of
terms in its signature. Here’s how:

Definition 45 A matching problem (in context) is a pair

(∇ ` l) ?≈ (∆ ` s)

where ∇, ∆ are consistent contexts and l, s are nominal terms. The solution
to this matching problem, if it exists, is a substitution θ such that:

• 〈∇, l?≈?s〉sol = (∆′, θ).
• ∆ ` ∆′.
• Xθ ≡ X for X ∈ V (∆, s).

We say that θ solves the matching problem.

Note that a matching problem can be seen as a particular kind of unification
problem. The conditions in the definition above ensure that: ∆ ` lθ ≈α s
and ∆ ` ∇θ, and so (∆, θ) ∈ U(∇, l?≈?s). We can think of the solution to
(∇ ` l) ?≈ (∆ ` s) as being a most general θ such that (∆, θ) solves ∇, l?≈?s.
For notation and terminology see §4.

Remark: This is more than just matching modulo α-conversion because we can
use ∇ to specify constraints which must be satisfied by the matching solution.
When the conditions in ∇ are satisfied we say the matching is triggered.
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(Soon, ∇ ` l will be the left-hand side of a rewrite rule ∇ ` l → r, and then
we say the rule is triggered.) ∗

Example 46 (1) (` a) ?≈ (` b) has no solution.
(2) (` [a]a) ?≈ (` [b]b) has a solution θ = Id.
(3) (`[a][b]X ′) ?≈ (`[b][a]X) has solution θ = [X ′ 7→(a b)·X].
(4) (a#X`[a]X) ?≈ (`[a]a) has no solution (because the only candidate,

[X 7→a], causes the condition a#X to become inconsistent).

Say a term has a position when it mentions a distinguished unknown, we
usually write it -, precisely once, and with trivial moderation. We let capital
letters L, C, P vary over terms with a position. We write C[s] for C[- 7→s], and
[-] when the term C is precisely its unique variable. Since the term C is only of
interest inasmuch as - may be substituted for a term, we shall tend to silently
assume that - is fresh.

For example, [a](a, -) has a position, but not (-, -) or (a b)·-. 6

Definition 47 Suppose R = ∇ ` l → r is a rewrite rule, s and t are terms,
and ∆ is a consistent context. We say s rewrites with R to t in the

context ∆, and we write ∆ ` s
R→ t when:

(1) V (R) ∩ V (∆, s) = ∅ (we can assume this with no loss of generality).
(2) s ≡ C[s′] for some position C[-], and term s′, such that θ solves (∇ `

l) ?≈ (∆ ` s′).
(3) ∆ ` C[rθ] ≈α t.

If C ≡ [-] we say the the rewrite occurs at the root position. Otherwise
we may (semi-formally) say that the rewrite occurs at C.

Given a nominal rewrite system R say that s rewrites to t in a context ∆,

and write ∆ ` s
R→ t or just ∆ ` s → t, when there is a rule R ∈ R such that

∆ ` s
R→ t.

The rewrite relation →∗ is the reflexive and transitive closure of this relation.
A normal form is a term-in-context that does not rewrite.

We now give some examples of rewrite steps:

Example 48 (1) It is easy to show that

∅ ` (λ[a]f(a, a)) X →∗ f(X,X)

6 A ‘position’ is, literally, the standard notion of a point in the abstract syntax tree
of a term, as defined for example in [21]. It is more convenient for us to identify this
with the corresponding ‘initial segment’ of a term.
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in four steps using the rules (Beta) and (σvar) of Example 43 together
with a rule for the propagation of substitutions under f :

(σf ) f(X,X ′){a 7→Y } → f(X{a 7→Y }, X ′{a 7→Y })

In a CRS a similar reduction is done in one step, using a higher-order
substitution mechanism which involves some β-reductions. NRSs use first-
order substitutions and therefore we have to define explicitly the substi-
tution mechanism, but in contrast with first-order TRSs we don’t need
to make explicit the α-conversions. For instance, rule (σlam) (see Exam-
ple 43) pushes a substitution under a λ avoiding capture, as the following
rewrite step shows:

b#Z ` (λ[c]Z){a 7→c} → λ[b](((b c)·Z){a 7→c})

(2) A pathological but illuminating example of rewriting rule is ∅ ` X → X.
Then ∅ ` λ[a]a → λ[a]a, but we can also verify that ∅ ` λ[a]a → λ[b]b.
In general, in the presence of this rule, if ∆ ` s ≈α t then ∆ ` s → t, for
example a, b#X ` X → (a b)·X.

This will not cause problems in confluence results because they are also
defined up to ≈α.

(3) If ∅ ` a → b is in an equivariant set of rewrite rules, we have a rewrite
step ∅ ` a′ → b′ for any pair of different atoms a′ and b′. Our notion
of matching does not instantiate, or even permutatively rename, atoms;
however, equivariance of the rule system as a whole guarantees that if a
rule exists then a rule with permutatively renamed atoms is available.

Nominal rewriting systems are more expressive than first-order systems, as
Examples 43 and 44 show. They are also more expressive than standard higher-
order formats, as Example 49 shows.

Example 49 We add to the signature of the λ-calculus with names (see Ex-
ample 43) a second operator for substitution, csub, representing context sub-
stitution, which does not avoid capture. We introduce a unary term-former −
to represent ‘a hole’ in a λ-term, and we abbreviate −(Z) to −Z . We write
csub(C, t), which we sugar as C[t]; we are supposed to think of this as ‘replace
the hole − in C by t’. We specify this intuition formally using nominal rewrite
rules:

` −Z [X] → X

` (λ[a]−Z)[X] → λ[a]X

` (X −Z)[X ′] → X X ′

` (−Z X)[X ′] → X ′ X

Note that the second rule will capture any a occurring in an instance of X.
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It is hard to see how these rules would work in a formalism in which terms
are taken to be α-equivalence classes.

Note that we take − to be a unary term-former and not a constant (a 0-ary
term-former); for suppose we just took − as a constant. Then λ[a]− ≈α λ[b]−.
This is not the α-equivalence behaviour we expect of a binder with a hole in
its scope and it would lead to incorrect rewrites such as (λ[a]−)[b] → λ[b]b.

Another solution would be to pick some distinguished variable, call it −, and
use that for our hole. We would also have to restrict the instantiation behaviour
of the nominal rewriting machinery, to prevent (λ[a]a)[b] rewriting to λ[a]b
with the rule (λ[a]−)[X] → λ[a]X. 7

Usually, the one-step rewrite relation generated by a set of rules is defined as
the “compatible closure” of a set of rules, that is, the closure of the rewrite
rules by context and substitution (see for instance [16]). The definition of
nominal rewriting given above satisfies these properties (taking the freshness
context of the rule into account), and is also closed under permutation, as the
following theorem shows:

Theorem 50 Assume ∆ ` s
R→ t using the rule R ≡ ∇ ` l → r, then:

(1) ∆ ` C[s]
R→ C[t]. More generally, if ∆ ` s

R→ t and ∆ ` C[t] ≈α D, then

∆ ` C[s]
R→ D.

(2) If Γ is consistent and Γ ` ∆σ, then Γ ` sσ
R→ tσ.

(3) ∆ ` π·s Rπ

→ π·t.

Proof

(1) Intuitively this is obvious, since part 2 of Definition 47 allows for any
context, and part 3 allows for any α-equivalent term on the right.

Formally: since ∆ ` s
R→ t, s ≡ C ′[s′] and there exists some θ solving

(∇ ` l) ?≈ (∆ ` s′). That is, ∆ ` ∇θ and ∆ ` lθ ≈α s′ and ∆ `
C ′[rθ] ≈α t.

Then ∆ ` ∇θ and ∆ ` C[C ′[lθ]] ≈α C[C ′[s′]] and ∆ ` C[C ′[rθ]] ≈α

C[t] ≈α D, using Theorem 24, and the result follows by Definition 47.
(2) So s ≡ C ′[s′] and there exists some θ such that ∆ ` ∇θ and ∆ ` lθ ≈α s′

and ∆ ` C ′[rθ] ≈α t.
Then sσ ≡ C ′′[s′σ] where C ′′ is C ′σ. 8

7 So we have yet another kind of hole, similar to the X of nominal rewriting in
that it represents an unknown term, but this is one which we expressly do not
want to match with any particular term. Another day, another paper. This idea can
be emulated quite effectively in nominal rewriting as we have done, with a unary
term-former.
8 . . . assuming -σ ≡ -, which should be the case since we assume - ‘is always fresh
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Suppose that ∆σ is consistent. Then by Lemma 22 we know 〈∆σ〉nf `
∇θσ, 〈∆σ〉nf ` lθσ ≈α s′σ, and 〈∆σ〉nf ` C ′′[rθσ] ≈α tσ.

Now suppose Γ is consistent and Γ ` ∆σ. Then ∆σ is consistent by
Lemma 16 and the result now follows using part 3 of Corollary 18.

(3) So s ≡ C ′[s′] and there exists some θ such that ∆ ` ∇θ and ∆ ` lθ ≈α s′

and ∆ ` C ′[rθ] ≈α t.
Write (π·θ) for the substitution such that if Xθ ≡ X then X(π·θ) ≡ X,

and if Xθ 6≡ X then X(π·θ) ≡ π·(Xθ). Note that:
• Because of conditions on disjointness of variables in the matching prob-

lem which θ solves, Xθ 6≡ X for every X mentioned in R.
• By Lemma 41 it is the case that ∆ ` lπ(π·θ) ≈α π·(lθ).
• Similarly ∆ ` rπ(π·θ) ≈α π·(rθ).
• Similarly ∆ ` ∇π(π·θ).
• ∆ ` π·s ≈α π·(C ′[s′]) ≈α C ′′[π·s′] where C ′′ is π·C ′ with π·- replaced

by -.
Then by Lemma 20, Lemma 5, and Theorem 24 we can deduce that: π·s ≡
C ′′[π·s′] and (π·θ) is such that ∆ ` ∇π(π·θ) and ∆ ` lπ(π·θ) ≈α π·s′ and

∆ ` C ′′[rπ(π·θ)] ≈α π·t. This suffices to prove that ∆ ` π·s Rπ

→ π·t.

∗

Another interesting property, closure under ≈α, requires a more restrictive
notion of rewrite rule. We come back to this point in Section 6.

5.3 Critical pairs and confluence

Definition 51 Say a nominal rewrite system is confluent when if ∆ ` s →∗

t and ∆ ` s →∗ t′, then u exists such that ∆ ` t →∗ u and ∆ ` t′ →∗ u.

Confluence is an important property because it ensures unicity of normal
forms, a form of determinism. Local confluence is a weaker property, it is
defined as ‘joinability of peaks’. More precisely:

Definition 52 Fix an equivariant rewrite system R, and write ∆ ` s → t1, t2
for the appropriate pair of rewrite judgements. A pair ∆ ` s → t1, t2 is called a
peak. A nominal rewrite system is locally confluent when, if ∆ ` s → t1, t2,
then u exists such that ∆ ` t1 →∗ u and ∆ ` t2 →∗ u. We say such a peak is
joinable.

Definition 53 Suppose

(1) Ri = ∇i ` li → ri for i = 1, 2 are copies of two rules in R such that

enough’ and rename it otherwise.
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V (R1) ∩ V (R2) = ∅ (R1 and R2 could be copies of the same rule).
(2) l1 ≡ L[l′1] such that ∇1,∇2, l

′
1 ?≈? l2 has a principal solution (Γ, θ), so

that Γ ` l′1θ ≈α l2θ and Γ ` ∇iθ for i = 1, 2.

Then call the pair of terms-in-context

Γ ` (r1θ, Lθ[r2θ])

a critical pair. If L = [-] and R1, R2 are copies of the same rule, or if l′1 is
a variable, then we say the critical pair is trivial.

Example 54 There are several non-trivial critical pairs in Example 43 in-
volving substitution rules. For instance, there is a critical pair between (σε)
and (σapp), and also between (σε) and (σlam).

Definition 55 We will say that a peak ∆ ` s → t1, t2 is an instance of a
critical pair Γ ` (r1θ, Lθ[r2θ]) when there is some σ such that:

• Γσ is consistent.
• ∆ ` Γσ.
• ∆ ` (r1θσ, Lθσ[r2θσ]) ≈α (t1, t2).

Another way of phrasing this is that

(Γ ` [X1 7→r1θ, X2 7→Lθ[r2θ]) ≤ (∆ ` [X1 7→t1, X2 7→t2])

in the instantiation ordering from Definition 28, for two (suitably fresh) vari-
ables X1 and X2.

A critical pair is a pair of terms which can appear in a peak of a rewrite
of a term-in-context. In standard (first-order) rewrite systems any instance
of a critical pair gives rise directly to a peak for any substitution, but here,
an instance of a critical pair only gives rise to a peak for substitutions σ
(continuing the notation above) such that Γσ is consistent.

Non-trivial critical pairs are important in first order term rewriting systems
because it is sufficient to check their joinability to deduce local confluence.
This result extends to nominal rewriting under certain conditions, which we
will discuss in the next section.

6 Uniform rewriting (or: ‘well-behaved’ nominal rewriting)

Nominal rewriting is elementary (and easy to explain) but sometimes we need
more. For example:
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Lemma 56 It is not necessarily the case that trivial critical pairs are joinable.

Proof It suffices to give counterexamples. Consider the rules (for some term-
former f)

R ≡ ` fb → a and R′ ≡ a#X ` X → [a]X.

These have a trivial critical pair ` (a, [a]fb) (the term fb rewrites to both).
It is not hard to see that these terms are not joinable. ∗

The fact that the left-hand side of R′ is a variable is not a problem, the problem
is that R ‘creates’ an atom a, which invalidates the freshness context in R′.
Rules that create free atoms do not work uniformly in ≈α equivalence classes.
For instance, take

R ≡` [b]b → b

and the term s ≡ [a][b]b. Then s ≈α [b][a]a ≡ s′ and s → [a]b but s′ does not
reduce to [a]b.

However, rewrite rules ‘in nature’ (see Example 43) seem to belong to a re-
stricted class of uniform rules, which display good behaviour. We now char-
acterise this better-behaved class of uniform rules and show it has good prop-
erties (see Lemma 61).

Definition 57 Say R is uniform when if ∆ ` s
R→ t then ∆, 〈a#s〉nf ` a#t

for any a such that 〈a#s〉nf is consistent.

In the judgements of the form ∆, 〈a#s〉nf ` a#t below we will always assume
that we consider only atoms such that 〈a#s〉nf is consistent, or alternatively,
we can think that if the freshness context is inconsistent any predicate is
derivable, which corresponds to adding a bottom rule to the logical system.

Remark: All the example rewrite rules ‘from nature’ cited so far are uniform.
∗

The definition of uniformity looks hard to check — do we really have to con-
sider all s and t before we can declare R to be uniform? Fortunately, there is
a better way:

Lemma 58 (1) R ≡ ∇ ` l → r is uniform if and only if ∇, 〈a#l〉nf ` a#r
for all a.

(2) R ≡ ∇ ` l → r is uniform if and only if ∇, 〈a#l〉nf ` a#r for all a
mentioned in ∇, l, and r, and for one fresh a.

Proof Suppose R is uniform. It is easy to verify that ∇ ` l
R→ r (that is, l

rewrites with R to r in context ∇). Therefore by assumption, ∇, 〈a#l〉nf `
a#r.
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Conversely suppose ∇, 〈a#l〉nf ` a#r. Suppose also that ∆ ` s
R→ t, so that:

• There is a substitution θ such that ∆ ` ∇θ.
• There is a position L such that s ≡ L[s′] and ∆ ` s′ ≈α lθ.
• ∆ ` t ≈α L[rθ].

We know 〈∇θ〉nf , 〈a#lθ〉nf ` a#rθ by Lemma 22. Also, since ∆ ` ∇θ, using
the second part of Corollary 18 also ∆, 〈a#lθ〉nf ` a#rθ. Then ∆, 〈a#L[lθ]〉nf `
a#L[rθ] by the technical lemma which follows.

We then conclude that ∆, 〈a#L[lθ]〉nf ` a#t for any ∆ ` t ≈α L[rθ] by
Lemma 23.

For the last part, we use equivariance of the definition of uniform rewriting
itself [26,25] to see that if ∇, 〈a#l〉nf ` a#r for some a not mentioned in ∇,
l, or r, then ∇, 〈a′#l〉nf ` a′#r for all other a′ not mentioned in ∇, l, or r. 9

∗

The following result is useful in the proof above.

Lemma 59 For any l and r, if Γ, 〈a#l〉nf ` a#r, then Γ, 〈a#L[l]〉nf `
a#L[r].

Proof We work by induction on the syntax of L.

• If L = [a]L′ the result is immediate since a#[a](L′[r]) by (#absa).
• If L = [b]L′ then we observe that 〈a#L[l]〉nf = 〈a#L′[l]〉nf , so we may use

the inductive hypothesis and (#absb).
• The other cases are easy.

∗

Remark: Intuitively uniformity means ‘if a is not free in s and s rewrites to
t, then a is not free in t’, or more concisely: ‘uniform rules do not generate
atoms’. Note that the following definition is wrong : ∇ ` l → r is ‘uniform’
when ∇ ` a#l implies ∇ ` a#r for all a. The reason is that l and r may
contain unknowns, so we must insert assumptions about them, e.g. 〈a#l〉nf .

For instance, ` X → a is trivially ‘uniform’ according to the ‘wrong’ definition,
since ` b#X is derivable for no b.

∗

9 Or, if the reader does not care for this degree of rigour, we can just say “since a
was fresh but otherwise arbitrary, clearly ∇, 〈a#l〉nf ` a#r holds for any other a”.
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As observed in the proof of Lemma 56 the validity of a freshness judgement
a#s can be influenced by changes deep inside s (e.g. as occur in rewriting).
With uniform rewriting, this ceases to be a concern:

Lemma 60 If R is uniform and ∆ ` s
R→ t and ∆ ` a#s, then ∆ ` a#t.

Proof Suppose ∆ ` a#s. By Lemma 16, a#s is consistent. Also by definition
of uniformity ∆, 〈a#s〉nf ` a#t. We now use Corollary 18. ∗

Uniform rewriting is well-behaved:

Theorem 61 Assume R is uniform.

(1) If ∆ ` s
R→ t and ∆ ` s ≈α s′ then ∆ ` s′→t does hold (not necessarily

with the same rule).
(2) In a uniform rewrite system, peaks which are instances of trivial critical

pairs are joinable.

Proof

(1) By induction on the structure of s. If the reduction takes place at the
root position then the rule applies to s′ too because matching takes ≈α

into account. If the reduction is in a strict subterm of s (then s cannot be
an atom or a moderated variable), we proceed by induction. The cases of
a tuple and function application are trivial, as well as the case in which
s ≡ [a]u and s′ ≡ [a]u′. The only interesting case is when s ≡ [a]u,
s′ ≡ [b]u′, and ∆ ` u → v. Then we know that ∆ ` (b a)·u ≈α u′ and
∆ ` b#u, hence ∆ ` u ≈α (a b)·u′ and ∆ ` a#(a b)·u by Lemma 20.
By induction, ∆ ` (a b)·u′ → v, and by Theorem 50, ∆ ` u′ → (a b)·v.
Then ∆ ` [b]u′ → [b](a b)·v ≈α [a]v (because ∆ ` b#u implies ∆ ` b#v
by Lemma 60).

(2) Suppose two rules Ri = ∇i ` li → ri for i = 1, 2 have a critical pair

Γ ` (r1θ, Lθ[r2θ])

Then by Definition 53, l1 ≡ L[l′1], and (Γ, θ) is such that Γ ` l′1θ ≈α l2θ,
and Γ ` ∇1θ,∇2θ. Recall also that we call the critical pair trivial when
L = [-] and R1, R2 are copies of the same rule, or l′1 is a variable.

If R1 and R2 are identical, then their rewrites are identical and any
peak created by these rules is trivially joinable.

If R1 and R2 differ and l′1 is a variable, then the only way we might
not be able to apply R1 in Lθ[r2θ] or its instances, is if some freshness
condition on l′1 in ∇1 is unsatisfiable after R2, which was satisfiable before
R2 (see the example above). For uniform rules, Lemma 60 guarantees that
this cannot happen.

Therefore instances of a trivial critical pair are joinable.
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∗

Theorem 62 (Critical pair lemma) If all non-trivial critical pairs of a
uniform nominal rewrite system are joinable, then it is locally confluent.

Proof Suppose ∆ ` s → t1, t2 is a peak. Then:

(1) There exist Ri = ∇i ` li → ri, for i = 1, 2.
(2) s may be written as Ci[si], and t as Ci[ti], for i = 1, 2.
(3) There exist solutions σi to (∇i ` li, ri)) ?≈ (∆ ` (si, ti)) for i = 1, 2.

Hence ∆ ` liσi ≈α si,∇iσi.

Now there are two possibilities:

(1) The distinguished context variable [-] occurs at distinct subtrees of s in
C1 and C2. Local confluence holds by a standard diagrammatic argument
taken from the first-order case (see for instance [2]). We need Theorems 24
and 61 to account for the use of ≈α.

(2) C2 ≡ C1[D[-]] or C1 ≡ C2[D[-]]. We consider only the first possibility.
Suppose that C1 ≡ [-], so that C2 ≡ D (the general case follows using
Theorems 24 and 50).

There are now three possibilities:

(1) [-] replaces a variable X in s. This is an instance of a trivial critical pair.
If the rules are uniform, joinability of instances of trivial critical pairs
follows from the previous lemma.

(2) D ≡ [-] and R1 and R2 are copies of the same rule. Then t1 ≈α t2 and
the peak can be trivially joined.

(3) Otherwise, this is an instance of a non-trivial critical pair (see Defini-
tion 55). Non-trivial critical pairs are joinable by assumption, and using
Theorem 50 we can join their instances.

∗

Remark: As a first application of this result, we can deduce that the substitu-
tion rules in Example 43 are locally confluent: they are uniform (we will show
this in next section), and the non-trivial critical pairs can be easily joined.

Note that if we consider also (Beta) then the system is not locally confluent.
This does not contradict the previous theorem, because there is a critical
pair between (Beta) and (σapp) which is not joinable. Of course, the system is
locally confluent on ground terms (i.e. terms without variables): the critical
pair between (Beta) and (σapp) is joinable if we replace the variables by ground
terms. ∗
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We will say that an NRS is terminating if all the rewrite sequences are finite.
Using Newman’s Lemma [34], we obtain the following confluence result.

Corollary 63 (1) If an NRS is terminating, uniform, and non-trivial criti-
cal pairs are joinable, then it is confluent.

(2) Under the same assumptions, normal forms are unique modulo ≈α.

7 Orthogonal systems

We now treat a standard confluence criterion in rewriting theory [16,31,33].

Definition 64 A rule R ≡ ∆ ` l → r is left-linear when each variable
occurring in l occurs only once.

A uniform nominal rewrite system with only left-linear rules and no non-trivial
critical pairs is orthogonal.

For example, a#X, b#X ` fX → (X, X) is left-linear but ` (X, X) → fX is
not.

The subsystem defining substitution in Example 43 (i.e., the σ rules) is not
orthogonal, because rule σε generates non-trivial critical pairs. However, if we
replace σε in Example 43 by the rule

b[a 7→ X] → b

we obtain an orthogonal system (less efficient than the original one, since
substitutions will be pushed all the way to the leaves of the terms even if the
concerned variable does not occur in the term).

Theorem 65 An orthogonal uniform nominal rewrite system is confluent.

The proof occupies the rest of this section. Henceforth, we only consider uni-
form rewriting.
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We define a parallel reduction relation ⇒ as follows:

(refl)

∆ ` u ⇒ u

∆ ` (si ⇒ ti)1≤i≤n
(tup)

∆ ` (s1, . . . , sn) ⇒ (t1, . . . , tn)

∆ ` (si ⇒ ti)1≤i≤n ∆ ` (t1, . . . , tn)
Rε→ t′

(tup′)

∆ ` (s1, . . . , sn) ⇒ t′

∆ ` s ⇒ t
(abs)

∆ ` [a]s ⇒ [a]t

∆ ` s ⇒ t ∆ ` [a]t
Rε→ t′

(abs′)

∆ ` [a]s ⇒ t′

∆ ` s ⇒ t
(fun)

∆ ` fs ⇒ ft

∆ ` s ⇒ t ∆ ` ft
Rε→ t′

(fun′)

∆ ` fs ⇒ t′

∆ ` a
Rε→ t′

(atom′)

∆ ` a ⇒ t′

∆ ` π·X Rε→ t′

(var′)

∆ ` π·X ⇒ t′

We have used some new notation: ∆ ` s
Rε→ t means ‘s rewrites to t using R

where we have matched the whole of s to the left-hand side of R’. For example

if R ≡ a → a then a
Rε→ a but not (a, a)

Rε→ (a, a).

Lemma 66 (1) If ∆ ` s ⇒ t then ∆ ` π·s ⇒ π·t.
(2) If ∆ ` s ⇒ t then ∆ ` C[s] ⇒ C[t].

(3) If ∆ ` s
Rε→ t then ∆ ` s ⇒ t.

(4) If ∆ ` s → t then ∆ ` s ⇒ t.
(5) If ∆ ` s ⇒ t then ∆ ` s →∗ t.
(6) As a corollary, ∆ ` s ⇒∗ t if and only if ∆ ` s →∗ t.

Proof

(1) By induction on the derivation of ∆ ` s ⇒ t. We exploit the syntax-
directed nature of the rules; we consider only four cases.
(a) If ∆ ` a ⇒ t′ then (observing how this can have been derived), it

must be that ∆ ` a
Rε→ t′. Then ∆ ` π·a Rε→ π·t′ by Theorem 50, and

∆ ` π·a ⇒ π·t′ by (atom′).

(b) If ∆ ` τ ·X ⇒ t′ then it must be that ∆ ` τ ·X Rε→ t′. Then by

Theorem 50 ∆ ` π·τ ·X Rε→ π·t′ and ∆ ` π·τ ·X ⇒ π·t′ by (var′).
(c) If ∆ ` π·s ⇒ π·t then ∆ ` [π·a]π·s ⇒ [π·a]π·t by (abs). We observe

that [π·a]π·s ≡ π·[a]s.

(d) If ∆ ` π·s ⇒ π·t and ∆ ` [π·a]π·t Rε→ π·t′, then ∆ ` π·[a]s 7→π·t′ by
(abs′).

(2) Directly by induction on C.
(3) Directly using (refl) and (tup′), (abs′), (fun′), (atom′), and (var′).
(4) Using the previous two parts.
(5) We work by induction on the derivation of ∆ ` s ⇒ t. If the derivation

concludes with:
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(a) (refl) then the result is trivial, since →∗ is reflexive.
(b) (tuple) then we rewrite sequentially in each element of the tuple.
(c) (tuple′) then we rewrite as in the last part, and then once at top level.
(d) (abs), (abs′), (fun), or (fun′), then we reason much as we did for (tuple)

and (tuple′).
(e) (atom′) then we know ∆ ` a → t so ∆ ` a →∗ t. Similarly for (var′).

∗

Lemma 67 If the system is uniform and orthogonal then: if ∆ ` s ⇒ t and
∆ ` s ⇒ t′, then there exists some t′′ such that ∆ ` t ⇒ t′′ and ∆ ` t′ ⇒ t′′.
Hence ⇒ is confluent.

Proof By induction on the derivation of ∆ ` s ⇒ t.

We consider one case. Suppose the derivation ends in (tup). By the syntax-
driven nature of deduction there are three possibilities for the last rule in the
derivation of ∆ ` s ⇒ t′: (tup), (tup′), and (refl):

(1) If ∆ ` s ⇒ t′ has a derivation ending in (tup) then the inductive hypoth-
esis for ∆ ` si ⇒ ti and ∆ ` si ⇒ t′i give us t′′i such that ∆ ` ti ⇒ t′′i and
∆ ` t′i ⇒ t′′i . We use (tup) and are done.

(2) If ∆ ` s ⇒ t′ has a derivation ending in (tup′) using R ≡ ∇ ` l → r, that

is ∆ ` s ⇒ (t′1, . . . , t
′
n) and ∆ ` (t′1, . . . , t

′
n)

Rε→ t′, then θ exists such that

∆ ` ∇θ, (t′1, . . . , t
′
n) ≈α lθ, rθ ≈α t′.

We now proceed as illustrated and explained below:

(s1, . . . , sn) +3

��

(t′1, . . . , t
′
n) ≈α

��

lθ
Rε // t′

��
(t1, . . . , tn) +3 (t′′1, . . . , t

′′
n) ≈α lθ′

Rε // rθ′

We apply the inductive hypothesis to close ∆ ` ti, t
′
i ⇒ t′′i using Lemma 66

(→∗=⇒) and Lemma 72 to deduce of t′′i all freshness assumptions deducible
of t′i.

Since rules are non-overlapping, the rewrite (t′1, . . . , t
′
n) ⇒ (t′′1, . . . , t

′′
n) takes

place in the substitution θ, that is, θ ⇒ θ′.

Since rules are left-linear R still applies: ∆ ` (t′′1, . . . , t
′′
n)

Rε→ rθ′ and therefore
∆ ` (t1, . . . , tn) ⇒ rθ′ by (tup′) for R (for some substitution θ′). Finally, we
use Lemma 61 and orthogonality to close with a rewrite t′ ⇒ rθ′.

(3) If ∆ ` s ⇒ t′ then t′ ≡ s and the diamond can be trivially closed.
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The other cases are similar. ∗

We now come back to our theorem:

Proof If the uniform rewrite system has only left-linear rules and only trivial
critical pairs, then ⇒ is confluent by Lemma 67. Since →∗⊆⇒∗ and ⇒∗⊆→∗

by Lemma 66, → is confluent. ∗

8 Closed rewriting (or: ‘efficiently computable’ nominal rewriting)

Suppose R ≡ ∇ ` l → r contains atoms and is in a nominal rewrite system. By
equivariance that system contains all infinitely many Rπ for all renamings π of
those atoms. Checking whether s matches R is polynomial [18], but checking
whether s matches any Rπ, for all possible π, is NP-complete [12]. For efficiency
we are interested in conditions to make this problem polynomial, we consider
this now.

Given a rule R ≡ ∇ ` l → r we shall write R′ ≡ ∇′ ` l′ → r′ where the primed
versions of ∇, l, and r, have atoms and variables renamed to be fresh — for
R, and possibly also for other atoms occurring in a term-in-context ∆ ` s. We
shall always explicitly say what R′ is freshened for when this is not obvious.

For example, a freshened version of (a#X ` X → X) with respect to itself
and to the term-in-context a′#X ` a′ is (a′′#X ′ ` X ′ → X ′), where a′′ 6≡ a, a′

and X ′ 6≡ X.

We will write A(R′)#V (R) to mean that all atoms occurring in R′ are fresh
for each of the variables occurring in R.

Definition 68 (1) R ≡ ∇ ` l → r is closed when

(∇′ ` (l′, r′)) ?≈ (∇, A(R′)#V (R) ` (l, r))

has a solution σ.
Here R′ ≡ ∇′ ` (l′, r′) is freshened with respect to R.

(2) Given R ≡ ∇ ` l → r and ∆ ` s a term-in-context write

∆ ` s
R→c t when ∆, A(R′)#V (∆, s) ` s

R′
→ t

and call this closed rewriting.
Here R′ is freshened with respect to R, ∆ ` s, and t (in part 1 of

Lemma 69 below we show it does not matter which particular freshened
R′ we choose).
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In the next few paragraphs we give some examples and make some comments
on this definition.

So for example if R ≡ a#X ` [a′][a]X → [a′]X then A(R) = {a, a′} and
V (R) = {X} and R′ ≡ a′′#X ′ ` [a′′′][a′′]X ′ → [a′′′]X ′. The condition for
being closed unpacks to:

• There exists a σ such that Xσ ≡ X for all X ∈ V (R) and:
• ∇, A(R′)#V (R) ` ∇′σ.
• ∇, A(R′)#V (R) ` l ≈α l′σ.
• ∇, A(R′)#V (R) ` r ≈α r′σ.

Note that V (∆, s) = V (∆, s, t) because of conditions we put on rewrite rules
that unknowns cannot just ‘appear’ on the right-hand side. We shall use these
to simplify expressions denoting freshness contexts without comment.

There are two parts to this definition: closed rules, and closed rewriting. It is
possible to do (normal) rewriting with a closed rule, closed rewrit-
ing with a (normal) rule, or closed rewriting with a closed rule! The
intuition is that a closed rule generates the same rewrites with closed rewrit-
ing, as all (infinitely many) renamings of that rule generate with (normal)
rewriting. The rest of this section formally develops these intuitions.

Note also that R′ is freshened also with respect to t;

“In closed rewriting, atoms explicitly mentioned in R are not allowed to
interact with the atoms of the term being rewritten.”

So for example if R ≡ ∅ ` a → b then a
R→ b but not a

R→c b, because R is
freshened to a′ → b′ first.

Most of this subsection is about making this observation formal, in particular
Part 2 of Lemma 69 and Theorem 71. Theorem 74 proves this restriction is
computationally useful. Lemma 72 adds “and closed R are uniform”, where
uniformity is defined and discussed above.

For example, the rules in Example 43 are closed. A canonical example of a
closed rule is R ≡ a#X ` X → X. Note that Z does not rewrite to Z with

R (though a#Z ` Z
R→ Z). The canonical example of a closed rewrite is

Z
R→c Z. On the other hand, a → a is not a closed rule, neither are fa → b,

fb → b or [a]X → X, but a#X ` [a]X → X is closed.

If we think of closed rewriting as being such that the atoms in R are bound
to that rule, the assumption A(R′)#V (∆, s) adds “and for any subsequent

instantiations of their unknowns”. This is why the rewrite Z
R→c Z occurs

even though R demands to know that some atom a is fresh for X.
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It is interesting to note that CRSs rules are closed by definition, in the sense
that left and right-hand sides of rules cannot contain free variables (the equiv-
alent of unabstracted atoms). But in the case of CRSs this is a structural fact,
whereas here closure is defined as a logical condition. ERSs have a similar re-
quirement, but it is expressed in terms of admissible substitutions. Note also
that the notion of closed rewriting was generalised to Horn Clauses by Cheney
and Urban [42].

The following three technical results about renaming atoms will shortly be
useful:

Lemma 69 (1) For ∆ ` s and R, if

∆, A(R′)#V (∆, s) ` s
R′
→ t

for one freshening R′ with respect to R, ∆ ` s, and t, then ∆, A(R′′)#V (∆, s) `
s

R′′
→ t for all possible freshenings R′′ with respect to R, ∆ ` s, and t.

(2) For any π, ∆ ` s
R→c t if and only if ∆ ` s

Rπ

→c t.
(3) R is closed if and only if Rπ is closed.

Proof

(1) Nominal Rewriting is equivariant in atoms; if Γ ` u
S→ v then Γκ `

uκ Sκ

→ vκ for any κ. Nominal Rewriting is also equivariant in variable
names (unknowns), so a similar result holds for them though we have not
developed the notation to express it.

If the atoms and variables in R′ are disjoint from ∆, s, and t (if the
variables are disjoint from those in ∆ and s they must be for those in t, by
correctness conditions on rewriting)—then we can create a permutation
κ for atoms and another for unknowns, renaming them any fresh way we
like.

(2) The particular identity of the atoms in R is destroyed moving to R′. We
might as well take R′ fresh for R and also for Rπ. The result is now easy
to see using the previous result.

(3) The predicate ‘R is closed’ has only one argument: R. Nominal Rewriting
is equivariant on atoms, so we can permute them in ‘R is closed’ to obtain
‘Rπ is closed’, without changing the truth value. The reverse implication
also holds since π is invertible.

∗

Note that closed rewriting considers some freshened R′ and that the associated

notation ∆ ` s
R→c t suggests the choice does not matter since we do not

annotate the arrow → with R′, only with R. Part 1 proves this suggestion is
correct.
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Now we look at some simple examples:

(1) If R ≡ a#X ` X → X, R′ ≡ a′′#X ′ ` X ′ → X ′ and R′′ ≡ a′′′#X ′′ `
X ′′ → X ′′, then if a#X, a′′#X ` s

R′
→ t then a#X, a′′′#X ` s

R′′
→ t.

(2) If R ≡ a#X ` X → X and π = (a b) observe that R′ ≡ a′#X ′ `
X ′ → X ′ is a freshening of both R and Rπ with respect to ∅ ` Z. With a
different term-in-context or π we might need a different choice of atoms
and unknowns but there are infinitely many to choose from.

In what follows we may say “we assume R′ is fresh for such-and-such extra
terms-in-context” or “this is valid for any suitably fresh R′”; we may also use
closure of R to justify closure of Rπ, or closed rewriting with R to justify
closed rewriting with Rπ. We are using the lemma above.

Theorem 70 R is closed if and only if for all ∆ ` s, if ∆ ` s
R→ t then

∆ ` s
R→c t. (R is closed if and only if rewriting implies closed rewriting.)

Proof Assume that R is closed and that ∆ ` s
R→ t. For simplicity suppose

that the rewrite step is at the root position (the result then follows by induc-
tion). So let θ solve (∇ ` (l, r)) ?≈ (∆ ` (s, t)). Recall σ exists solving (∇′ `
(l′, r′)) ?≈ (∇, A(R′)#V (R) ` (l, r), because R is closed. By syntactic calcu-
lations we see that V (Rθ) ⊆ V (∆, s). We can use these facts and Lemma 22
to prove that σθ solves (∇′ ` (l′, r′)) ?≈ (∆, A(R′)#V (∆, s) ` (s, t)).

Conversely, assume rewriting with R implies closed rewriting with R. Note

the trivial rewrite ∇ ` l
R→ r, at root position. Therefore by assumption this

rewrite is also generated by a freshened R′ in the context ∇ augmented with
A(R′)#V (R). From the syntactic similarity of R′ to R it must be this rewrite
is also generated using the root position, and by definition that means we
obtain precisely the conditions for closure. ∗

R ≡ a#X ` X → X is a counterexample to the assertion that closed rewriting
implies rewriting for closed R. But the result holds for ground terms:

Theorem 71 Suppose s is ground and R is closed. Then s
R→c t if and only

if there exists some π such that s
Rπ

→ t.

Proof Since s has no variables (it is ground), a freshness context is irrelevant.

Then, the definition of closed rewriting boils down to: s
R→c t if and only if

s
R′
→ t. The left-to-right implication is thus trivial, we take π to be a freshening

permutation κ generating R′ in the definitions above, as discussed variable
names do not matter.

Conversely suppose s
Rπ

→ t for some π. Rπ is closed by Lemma 69 and by the

previous theorem we obtain s
Rπ

→c t and so s
R→c t again by Lemma 69. ∗
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We can re-state this result as follows:

If R is closed then R captures the rewrites of its equivariance renaming class
on ground terms.

Lemma 72 Let R ≡ ∇ ` l → r be a closed rule. Then R is uniform.

Proof We must show that ∇, 〈a#l〉nf ` 〈a#r〉nf , and we know by assumption
that, for any freshening, (∇′ ` (l′, r′)) ?≈ (∇, A(R′)#V (R) ` (l, r)) has a
solution, write it σ. Unpacking definitions,

∇, A(R′)#V (R) ` ∇′σ, l ≈α l′σ, r ≈α r′σ.

∇, 〈a#l〉nf , A(R′)#V (R) ` a#l′σ by Lemma 15 and part 1 of Lemma 23.

We can always take a freshening such that a 6∈ A(l′), and use the tech-
nical lemma which follows to deduce that ∇, 〈a#l〉nf ` a#X ′σ for each
X ′ ∈ V (l′). By assumption V (r′) ⊆ V (l′) and reversing our reasoning we
obtain ∇, 〈a#l〉nf ` a#r as required. ∗

Lemma 73 (1) If ∆, a′#X ` a#s and a′ 6∈ A(s) then ∆ ` a#s.
(2) If a 6∈ A(l′) then ∆ ` a#l′σ if and only if ∆ ` X ′σ for every X ′ ∈ V (l′).

Proof Both parts are proved by appealing to the syntax-directed nature of
the rules for #. ∗

Theorem 74 If a nominal rewrite system is provided as the equivariant clo-
sure of a finite set of closed rules, then

(1) Rewriting equals closed rewriting on ground terms and rewriting is poly-
nomial on ground terms.

(2) Closed rewriting is polynomial on all (possibly non-ground) terms.

Proof The very first part is a consequence of the previous theorem.

The algorithm to polynomially derive the closed rewrites of ∆ ` s under Rπ

for all π is to derive just the closed rewrites of R. The choice of R′ does not
matter because of Lemma 69 part 1. ∗

The restriction to closed rules gives a powerful notion of rewriting: we showed
in [21] that we can simulate CRSs using closed nominal rules. However, there
are interesting systems (e.g. the π-calculus, see also Example 49) with non-
closed (but uniform) rules. We come back to this point in the conclusions.
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9 Sorts and Extended Contexts

9.1 Sorts

Sorts and types are a way of organising terms into useful classes (‘represents a
natural number’ is the classic example). Sorts serve to organise terms into ‘the
right’ families for term-formers to act on them. They are particularly useful for
talking about the abstract syntax of programming languages. Types serve to
organise the semantics of terms. As usual, it is important in computer science
to distinguish between the syntax 1 + 2, which is the pair 1 and 2, and its
meaning, which is 3.

We now demonstrate how to impose a sorting system on terms. A type system
is a fascinating subject (can atoms have type ‘the natural numbers’, and if so
what does that mean?); we explore this subject in [20].

Definition 75 A Sorted Nominal Signature Σ is:

(1) A set of sorts of atoms typically written ν.
(2) A set S of base data sorts typically written s. These are names for the

domains under consideration, for example integer, boolean.
(3) Term sorts typically written τ , defined by the following grammar:

τ ::= ν | s | τ × . . .× τ | [ν]τ.

where τ1 × . . .× τn is called a product and [ν]τ an abstraction sort.
(4) A set of term-formers f as before, to each of which is now associated

an arity τ1 → τ2.

If τ1 is an empty product, we say that f is 0-ary or a constant and we omit
the arrow.

Example 76 A sorted nominal signature for a fragment of ML has one sort
of atoms: ν, one sort of data: exp, and term-formers with arities as follows:

var : ν → exp app : exp× exp → exp

lam : [ν]exp → exp let : exp× [ν]exp → exp

letrec : [ν](([ν]exp)× exp) → exp

This example, derived from [40], illustrates clearly how sorts indicate binding
scope.

Partition unknowns into countably infinite sets of variables of sort τ for
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each τ . Similarly partition atoms into countably infinite sets of atoms of
sort ν. Even in the sorted context we may drop the sorting subscripts where
they are obvious or we do not care, as a notational convenience; Xτ and Xτ ′

are still different term variables, for which we have overloaded the symbol X,
and similarly for aν .

A swapping is a pair (a b) of atoms of the same sort. Permutations π are
lists of swappings as before.

Then sorts for terms may be deduced by the following syntax-directed deduc-
tion rules:

aν : ν π·Xτ : τ
t1 : τ1 · · · tn : τn

(t1, . . . , tn) : τ1 × . . .× τn

t : τ

[aν ]t : [ν]τ

t : τ1

(fτ1→τ2t) : τ2.

It is not hard to prove the following well-behavedness properties:

Lemma 77 (1) If t : τ and π is a permutation then π·t : τ .
(2) If t : τ and s : τ ′ then t[Xτ ′ 7→s] : τ .

Proof The first part is by induction on the structure of t. The base case is
the observation that if π′·X : τ then π ◦ π′·X : τ , which is straight from the
sorting rules.

The second part is by induction on the structure of t. The base case is t ≡
π·Xτ ′ . Then t[Xτ ′ 7→s] ≡ π·s. Since s : τ ′ by the first part, π·s : τ ′, and we are
done. ∗

9.2 Extending freshness contexts

We will now show that, thanks to the use of contexts, the framework of nom-
inal rewriting can be easily adapted to express strategies of reduction. As an
example, we will show how to define the system λca of closed reduction for the
λ-calculus [23]. λca-terms are linear λ-terms with explicit constructs for sub-
stitutions, copying and erasing. Reduction on λca is defined in [23] using a set
of conditional rule schemes, shown in Table 1, where x, y, z denote variables,
and t, u, v denote terms.

We can formally define λca using a nominal rewriting system, where we add
two new kinds of constraints: •t (read t is closed), with the intended meaning
“a#t for every atom a”, and a ∈ t (read a is unabstracted in t), the negation
of a#t.
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Table 1
λca-reduction

Name Reduction Condition

Beta (λx.t)v →ca t[v/x] FV (v) = ∅

Var x[v/x] →ca v

App1 (tu)[v/x] →ca (t[v/x])u x ∈ FV (t)

App2 (tu)[v/x] →ca t(u[v/x]) x ∈ FV (u)

Lam (λy.t)[v/x] →ca λy.t[v/x]

Copy1 (δy,z
x .t)[v/x] →ca t[v/y][v/z]

Copy2 (δy,z
x′ .t)[v/x] →ca δy,z

x′ .t[v/x]

Erase1 (εx.t)[v/x] →ca t

Erase2 (εx′ .t)[v/x] →ca εx′ .t[v/x]

We extend the deduction and simplification rules from section 3 respectively
with:

(∆ ` a#t)a∈S
(•R) A(t, ∆) ( S

∆ ` •t

•t, Pr =⇒ {a#t}a∈Pr,t, a
′#t, Pr

Here S is any set of atoms strictly containing the atoms in t and ∆, and
a′ 6∈ A(Pr, t). In effect we need A(t, ∆) and one fresh atom; if ∆ ` a#t for
a ∈ A(t, ∆) a renaming argument gives ∆ ` b#t for all other b 6∈ A(t, ∆). This
is reflected in the simplification rule, which is more algorithmic and chooses
one fresh atom.

•t is intuitively ∀a. a#t. The rule for closure •t is slightly different from the
usual predicate logic rule for ∀ because atoms behave here as constants and
not variables. With that in mind the definitions are quite natural.

We can extend the deductions with rules including

a ∈ ti

a ∈ (t1, . . . , tn) a ∈ a

and similarly extend the simplification rules. We can extend contexts with
these new constraints and use them in ∇s of rewrite rules ∇ ` l → r to
control triggering.

A closed reduction strategy can be specified, this time as a finite nominal
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rewrite system (we only show rules Beta, App1 and App2):

Beta •V ` (λ[x]T )V → T [x 7→ V ]

App1 x ∈ T ` (TU)[x 7→ V ] → (T [x 7→ V ])U

App2 x ∈ U ` (TU)[x 7→ V ] → T (U [x 7→ V ])

A theory of nominal rewriting with (general) constraints will be the subject
of future work.

10 Conclusions

The technical foundations of this work are derived from work on nominal
logic [36] and nominal unification [40]. We use a nominal matching algorithm,
which is easy to derive from the unification algorithm and which inherits its
good properties (such as most general unifiers), in our definition of rewriting.

Our theory stays close to the first-order case, while still allowing binding. We
achieve this by working with concrete syntax, but up to a notion of equality
≈α which is not just structural identity. It is not α-equivalence either: ≈α is
actually logical, in the sense that ∆ ` s ≈α s′ is something that we deduce
using assumptions in ∆. We pay the price that terms, rewrites, and equalities,
happen in a freshness context ∆. In practice ∆ is fixed and does not seem to
behave perniciously.

Nominal rewriting is more expressive than first-order rewriting and standard
higher-order formats. Capture-avoiding substitution is not a primitive notion,
but it is easy to define with nominal rules (we can spare the effort of ‘imple-
menting’ α-conversion using de Bruijn indices and all the machinery associated
to typical explicit substitution systems). It is also possible to define a nominal
rewriting formalism with a primitive notion of substitution of terms for atoms
(capture-avoiding).

Many directions for future work are still open. For instance:

• We have given a sufficient condition for confluence (orthogonality, for uni-
form systems); weaker conditions (for example, weak orthogonality) should
also be considered.

• We have given a critical pair lemma, but we have not studied Knuth-Bendix
style completion procedures.

• There are sort systems for nominal terms, but no type system yet. We are
working on a type system and semantics which provide an interpretation
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for terms with variables (usual semantics for λ-calculus and higher-order
rewriting only consider ground terms). If we use term rewriting as a model
of computation, termination (or strong normalisation) is an important prop-
erty. It would be possible to devise sufficient conditions for termination of
nominal rewriting using type systems.

Acknowledgements: We thank James Cheney, Ian Mackie, Andy Pitts,
Christian Urban, and Nobuko Yoshida for useful comments.
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