
Nominal Rewriting Systems

Maribel Fernández
Dept. of Computer Science

King’s College London
Strand, London WC2R 2LS

UK

maribel@dcs.kcl.ac.uk

Murdoch J. Gabbay
LIX

École Polytechnique
91128 Palaiseau Cedex

France

gabbay@lix.polytechnique.fr

Ian Mackie
Dept. of Computer Science

King’s College London
Strand, London WC2R 2LS

UK

ian@dcs.kcl.ac.uk

ABSTRACT
We present a generalisation of first-order rewriting which al-
lows us to deal with terms involving binding operations in
an elegant and practical way. We use a nominal approach to
binding, in which bound entities are explicitly named (rather
than using a nameless syntax such as de Bruijn indices), yet
we get a rewriting formalism which respects α-conversion
and can be directly implemented. This is achieved by adapt-
ing to the rewriting framework the powerful techniques de-
veloped by Pitts et al. in the FreshML project.

Nominal rewriting can be seen as higher-order rewriting
with a first-order syntax and built-in α-conversion. We show
that standard (first-order) rewriting is a particular case of
nominal rewriting, and that very expressive higher-order
systems such as Klop’s Combinatory Reduction Systems can
be easily defined as nominal rewriting systems. Finally we
study confluence properties of nominal rewriting.

Categories and Subject Descriptors
F.4.1 [Mathematical Logic and Formal Languages]:
Mathematical Logic—lambda calculus and related systems

General Terms
Theory

Keywords
Binders, α-conversion, first and higher-order rewriting.

1. INTRODUCTION
Term rewriting systems (TRS) provide a general frame-

work for specifying and reasoning about computation. They
are defined as transformation rules working over trees la-
belled by variable and function symbols. This simple idea
is very powerful: TRSs can be regarded as a universal pro-
gramming language which can be used to express different
programming paradigms (functional, logical, parallel, etc.),

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PPDP’04, August 24–26, 2004, Verona, Italy.
Copyright 2004 ACM 1-58113-819-9/04/0008 ...$5.00.

as an abstract model of computation, or as transformations
that can be used for program optimisation and automated
theorem proving.

Standard TRSs are first-order, but a lot of effort has been
devoted in the past to develop systems manipulating higher-
order terms. Higher-order terms are built with higher-order
functions and variables which can be free or bound. Several
examples of higher-order systems can be found in the litera-
ture: Combinatory Reduction Systems (CRS) [22], Higher-
order Rewrite Systems (HRS) [25], Expression Reduction
Systems (ERS) [21, 20], and the rewriting calculus [10, 11],
combine first-order rewriting with a notion of bound vari-
able. The λ-calculus can be seen as a higher-order rewrite
system with one binder: λ-abstraction.

Systems that manipulate binders must also deal with α-
conversion: first-order substitutions (i.e. replacements) may
capture variables, so substitutions in a higher-order system
use renamings. In all the higher-order formalisms that we
mentioned above α-conversion is an implicit operation (in
other words, terms are defined modulo renamings of bound
variables), and substitution is also a meta-operation. Sev-
eral notions of explicit substitutions and explicit α-conversion
have been defined for the λ-calculus (e.g. [1, 24, 12]) and
more generally for higher-order rewrite systems (e.g. [28, 6])
with the aim of specifying the higher-order notion of substi-
tution as a set of first-order rewrite rules. In most of these
systems variable names are replaced by de Bruijn indices
to make easier the explicitation of α-conversion, at the ex-
pense of readability. The explicit substitution systems that
use names for variables either restrict the rewriting mech-
anism to avoid cases in which α-conversion would arise, or
do not address the problem of α-conversion.

In this paper we present a new formalism for rewriting
with bound variables. In our systems variables are named
(thus the title “nominal rewriting systems”, abbreviated as
NRS in the sequel), substitution is first-order, and we deal
with α-conversion by using an auxiliary freshness relation
between bound variables and terms, written as a#t (read “a
is fresh for the term t”). We can see nominal terms as first-
order terms with built-in α-conversion. In this sense, NRSs
can be seen as an explicit substitution version of higher-
order rewriting where α-conversion is already formalised (it
does not need to be specified explicitly).

The use of the notion of freshness in a rewriting framework
is the main novelty of this work. It is based on the work
reported in [29, 15]. A similar freshness relation is used to
define a metalanguage for functional programming in [30]
and to study unification problems in [33].

Following [29, 15], we call atoms the names that can be
bound and reserve the word variable for the identifiers that
cannot be bound (known as variables and metavariables re-
spectively in CRSs), and leave implicit the dependencies be-
tween variables and names as it is common practice in in-
formal presentations of higher-order reductions. More pre-
cisely, variables in NRSs have arity zero, as in ERSs. For
example, the β-reduction rule and the η-expansion rule of
the λ-calculus are written as:

app(λ([a]M),N) → subst([a]M,N)
a#X ` X → λ([a]app(X,a))

To summarise, the main contributions of this paper are:

1. The formulation of a notion of rewriting on nominal
terms which behaves as first-order rewriting modulo
α-conversion for bound atoms. In particular, sub-
stitution remains a first-order notion: we deal with
α-conversion without introducing meta-substitutions
and β-reductions in our metalanguage (in contrast with
standard notions of higher-order rewriting, which rely
on meta-substitutions and/or β-reductions in the sub-
stitution calculus). There is a price to pay for keep-
ing first-order substitutions: in some cases we need to
introduce freshness assumptions in terms and rewrite
rules; these will be taken into account in the match-
ing algorithm. We use nominal matching [33, 34] to
rewrite terms. Selecting a nominal rewrite rule that
matches a given term is an NP-complete problem in
general [9]. However, by restricting to closed rules we
can avoid the exponential cost: nominal matching is
polynomial in this case. CRSs, ERSs, and HRSs with
patterns impose similar restrictions.

2. A Critical Pair Lemma which ensures that nominal
rewriting rules which do not introduce critical pairs
are locally confluent. Similar results have been proved
for other notions of higher-order rewriting (see for in-
stance [22, 25]).

3. A translation from CRSs to NRSs which is sound and
complete. This shows that nominal rewriting is as ex-
pressive as standard higher-order rewriting systems.
Translations between CRSs, NRSs and ERSs have al-
ready been defined (see [31]), and there is also a trans-
lation of CRSs in the rewriting calculus [5].

Related Work.
Term rewriting systems and the λ-calculus provide two

useful notions of rewriting, and both formalisms have been
used as a basis for specification and programming languages.
Barendregt [4] showed that the term rewriting rules defining
surjective pairing cannot be encoded in the λ-calculus, which
motivated the study of more general formalisms combining
the power of term rewriting with the expressivity of the λ-
calculus to define binding operators. Combinations of term
rewriting and λ-calculus (both typed and untyped) have
been studied for instance in [7, 8, 19, 3]. In all these alge-
braic λ-calculi the β-reduction rule of the λ-calculus is com-
bined with a set of term rewriting rules using standard first-
order matching, and for this reason λ-abstractions do not ap-
pear in patterns. In contrast, higher-order rewriting systems
(e.g. CRSs [22], HRSs [25], ERSs [21, 20], HORSs [31], and
the ρ-calculus [10, 11]) extend first-order rewriting to include

binders using higher-order substitutions and higher-order
matching (i.e. matching modulo β) and therefore binders
are allowed in left-hand sides. Nominal Rewriting Systems
are related to these since nominal rules may have binders in
left-hand sides. However, nominal rewriting does not need
higher-order matching. Instead, it relies on an extension of
first-order matching that takes care of α-conversion without
introducing β-reductions.

Although NRSs were not designed as explicit substitution
systems, they are at an intermediate level between stan-
dard higher-order rewriting systems and their explicit sub-
stitution versions (e.g. [28, 6]), which implement in a first-
order setting the substitution operation together with α-
conversions using de Bruijn indices. Compared with the
latter, NRSs are more modular: a higher-order substitution
is decomposed into a first-order substitution and a separate
notion of α-conversion (a design idea borrowed from Fresh-
ML). Also, from a (human) user point of view, it is easier to
use systems with variable names. The disadvantage is that
nominal rewriting is not just first-order rewriting, therefore
we cannot directly use all the results and techniques avail-
able for first-order rewriting. However, nominal rewriting
turns out to be sufficiently close to first-order rewriting to
share many of its properties: we have efficient matching, a
critical pair lemma, and we conjecture that other confluence
and termination results can be transfered. More work needs
to be done in this direction.

Nominal rewriting is also related to Hamana’s Binding
Term Rewriting Systems (BTRS) [17]. The main difference
is that BTRSs use a containment relation that indicates
which free atoms occur in a term (as opposed to a fresh-
ness relation which indicates that an atom does not occur
free in a term). Not surprisingly, the notions of renam-
ing and variants play an important role in BTRSs, as do
swappings and equivariance in NRSs. In other words,
when free atoms occur in rules, we have to consider all the
(infinite) variants that can be obtained by renaming the free
atoms. Selecting a rewrite rule that matches a given term
is then NP, but we have characterised a class of NRSs for
which matching is efficient and we conjecture the BTRS-
matching algorithm is efficient in this case too. We show
in this paper that nominal rewrite systems in this subclass
have the same power as CRSs (and therefore also the same
power as HRSs and ERSs). More work needs to be done to
compare the expressive power of NRSs and BTRSs.

Overview of the paper.
Section 2 recalls some concepts from first-order and higher-

order rewriting. Section 3 presents nominal signatures, terms
and rules. Nominal matching, and its use in nominal rewrite
steps, are described in Section 4. Section 5 gives a critical
pair lemma for nominal rewriting. In Section 6 we com-
pare nominal rewriting with first and higher-order rewriting
systems. We conclude the paper in Section 7.

2. BACKGROUND
In this section we recall two formalisms that are closely

related to nominal rewriting: first-order rewriting and CRSs.
We refer the reader to [2, 13, 22] for details and examples.

2.1 Term Rewriting Systems
A signature F is a finite set of function symbols with

fixed arities, X denotes a denumerable set of variables, and

T (F ,X) denotes the set of terms built up from F and X .
Terms are identified with finite labelled trees as usual, and
positions are strings of positive integers. The subterm of t
at position p is denoted by t|p and the result of replacing t|p
with u at position p in t is denoted by t[u]p. V (t) denotes
the set of variables occurring in t. We use Greek letters for
substitutions and postfix notation for their application.

Given a signature F , a term rewriting system (TRS)
on F is a set of rewrite rules R = {li → ri}i, where li, ri ∈
T (F ,X), li 6∈ X and V (ri) ⊆ V (li). A term t rewrites to a
term u at position p with the rule l → r and the substitution
σ, written t→l→r

p u, or simply t →R u, if t|p = lσ and u =
t[rσ]p. We say that l matches t|p using σ.

We denote by →+
R (resp. →∗

R) the transitive (resp. tran-
sitive and reflexive) closure of the rewrite relation →R. The
subindex R is omitted when it is clear from the context.

2.2 Combinatory Reduction Systems
A CRS [23, 22] is a pair consisting of an alphabet and

a set of rewrite rules. The alphabet consists of: variables
a, b, c, . . .; metavariables with fixed arities, written as Zk

i

where k is the arity of Zk
i (k is omitted when there is no

ambiguity); function symbols f, g, . . . with fixed arities; and
an abstraction operator [·]·.

In CRSs a distinction is made between metaterms and
terms. Metaterms are the expressions built from the sym-
bols in the alphabet, in the usual way. Terms are metaterms
that do not contain metavariables. Variables that are in the
scope of the abstraction operator are bound, and free oth-
erwise. A (meta)term is closed if every variable occurrence
is bound. CRSs adopt the usual naming conventions (also
known as Barendregt’s variable conventions): in particular,
all bound variables are chosen to be different from the free
variables.

A rewrite rule is a pair of metaterms, written l → r, where
l, r are closed, l has the form f(s1, . . . , sn), the metavariables
that occur in r occur also in l, and the metavariables Zk

i

that occur in l occur only in the form Zk
i (a1, . . . , ak), where

a1, . . . , ak are pairwise distinct variables.

Example 2.1. The β-reduction rule for the λ-calculus is
written in the CRSs syntax as:

app(lam([a]Z(a)), Z ′) → Z(Z′)

where the binary function symbol app represents application
and the unary function symbol lam represents λ-abstraction.
Z is a unary metavariable, and Z ′ is 0-ary.

The reduction relation is defined on terms. To extract
from rules the actual rewrite relation, each metavariable is
replaced by a special kind of λ-term, and in the obtained
term all β-redexes and the residuals of these β-redexes are
reduced (i.e. a development is performed). Formally, the
rewrite relation is defined using substitutes and valua-
tions. An n-ary substitute is an expression of the form
λx1 . . . xn.t, where t is a term and x1, . . . , xn are differ-
ent variables. An n-ary substitute can be applied to a
n-tuple s1, . . . , sn of terms, and the result is the term t
where x1, . . . , xn are simultaneously replaced by s1, . . . , sn.
A valuation σ is a map that assigns an n-ary substitute to
each n-ary metavariable. It is extended to a mapping from
metaterms to terms: given a valuation σ and a metaterm
t, first we replace in t all metavariables by their images in

σ and then we perform the developments of the β-redexes
created.

A context is a term with an occurrence of a special symbol
[] called hole. A rewrite step is now defined in the usual way:
if l → r is a rewrite rule, σ a valuation and C[] a context,
then C[lσ] → C[rσ].

Example 2.2. The following is a rewrite step using the
β-rule given in Example 2.1:

app(lam([a]f(a, a)), t) →β f(t, t)

To generate it we use the valuation σ that maps Z to λb.f(b, b)
and Z′ to the term t.

3. NOMINAL REWRITE SYSTEMS

3.1 Sorts and Signatures
A Nominal Signature Σ is:

1. A set of sorts of atoms typically written ν.

2. A set S of base data sorts typically written s. These
are names for the domains under consideration, for
example integer, boolean.

3. Term sorts typically written τ , defined by the follow-
ing grammar:

τ ::= ν | s | τ × . . . × τ | [ν]τ.

where τ1 × . . . × τn is called a product and [ν]τ an
abstraction sort.

4. A set of function symbols typically written f , to
each of which is associated an arity τ1 → τ2. If τ1 is an
empty product we say that f is 0-ary (i.e. a constant)
and omit the arrow as usual.

Example 3.1. A nominal signature for a fragment of ML
has one sort of atoms ν, one sort of data exp, and function
symbols with arities as follows:

var : ν → exp app : exp × exp → exp
lam : [ν]exp → exp let : exp × [ν]exp → exp

letrec : [ν](([ν]exp) × exp) → exp

In the next section we define terms and give examples
from this signature. The first three constructors alone are
a signature for the untyped λ-calculus; in the course of this
paper we shall tend to simplify the examples to that sub-
signature. The example above, derived from [33], is use-
ful because it illustrates clearly how sorts indicate binding
scope. The actual mechanics of binding is handled by a non-
trivial decidable notion of equality on terms ∆ ` s ≈α t,
defined below.

3.2 Terms, Swappings, and Contexts
We fix some signature Σ. For each term sort τ , we fix

a countably infinite set Xτ of term variables X, Y, Z of
that sort. They will represent meta-level unknowns in the
rewrite system.

X
def
=

�

τ

Xτ

For each sort of atoms ν ∈ Σ fix a distinct countably infinite
set Aτ of atoms a, b, c, f, g, h, . . . of that sort.

A
def
=

�

τ

Aτ

Variables are sorted and we may include explicit informa-
tion in a subscript, for example Xτ ; Xτ and Xτ ′ are different
term variables, for which we have overloaded the symbol X.
Similarly for aν .

A swapping is a pair of atoms of the same sort, which we
write (a b). Permutations π are generated by the grammar
π ::= Id | (a b) · π. We call Id the identity permutation.

Swappings have an action on atoms (a b)(n) given by

(a b)(a)
def
= b (a b)(b)

def
= a and (a b)(c)

def
= c (c 6= a, b).

(1)
This extends to an action by permutations π(n). It is also
useful to define the difference set

ds(π, π′)
def
= � n �� π(n) 6= π′(n) � . (2)

For example, ds((a b), Id) = {a, b}.
Nominal Terms (we will generally write just ‘terms’)

are generated by the following grammar:

t ::= aν | (π · X)τ | (t1τ1
, . . . , tnτn

)
τ1×...×τn

|

([aν]tτ)[ν]τ | (fτ1→τ2
tτ1

)τ2

and called resp. atoms, moderated variables, tuples, abstrac-
tions and function applications. Ground terms are terms
without variables. In future we shall usually omit sorting
annotations, outermost brackets for abstractions and appli-
cations, and brackets of empty tuples. In an abstraction [a]t,
we will say that all the occurrences of a are abstracted (or
bound); unabstracted occurrences are called free. However,
we do not work modulo α-conversion of bound atoms at the
syntactic level. In other words, syntactic equality, which we
write ≡, is not defined modulo α-equivalence: [a]a and [b]b
are not equal syntax trees.

We write T (Σ,A,X) for the set of terms over a signature
Σ.

For Σ as in Example 3.1, we shall sugar the syntax of
terms to standard notation. We write a for var(a), tt′ for
app(t, t′), λ[a]t for lam([a]t), let a = t in t′ for let(t, [a]t′),
and letrec f a = t in t′ for letrec[f]([a]t, t′). For example,
a, (λ[a]aa)(λ[a]aa), and letrec f a = a in fb are terms.
Note that the sorts tell us that f is abstracted in t and t′

and a in t in the expression letrec f a = t in t′.
We call π · X a moderated variable, (a b) · X is the

canonical example. We may write X for Id·X. The intuition
of (a b) · X is “swap a and b in the syntax of X, when it
is instantiated”. We shall see why we need this when we
define α-equivalence ≈α below. Unification and matching
instantiate X, so later we will write ‘(a b) · t’ for t a non-
variable term. This is sugar, and we define it now:

(a b) · n = (a b)(n) (a b) · ft = f(a b) · t

(a b) · (t1, . . . , tn) = ((a b) · t1, . . . , (a b) · tn)

(a b) · [n]t = [(a b)(n)](a b)t

(3)

For example, (a b) · λ[a]λ[b]abX = λ[b]λ[a]ba(a b) · X.
The meaning of π · t is given in the natural way from the

component swappings in π. We write π−1 for the permuta-
tion obtained by reversing the swappings in π. For example
if π = (a b)(b c) then π−1(a) = c.

An apartness condition is a pair (a ∈ A, X ∈ X). We
write it a#X. Apartness contexts ∆,∇, Γ, . . . are finite
sets of apartness conditions.

Rewrite rules use apartness conditions to avoid accidental
name capture. Intuitively, a#X means “the atom a does
not occur unabstracted in X, when it is instantiated”.

We define a notion of entailment ∆ ` a#s inductively
as follows:

a#s1 · · · a#sn

a#(s1, . . . , sn)

a#s

a#fs

a#s

a#[b]s

a#b a#[a]s
π−1(a)#X

a#π · X

(4)

We write ∆ ` a#s when a proof of a#s exists using
elements of ∆ as assumptions.

Write 〈a#s〉#sol for the least apartness context such that
〈a#s〉#sol ` a#s. The deduction rules in (4) are rigidly
structural, and always make terms smaller, so 〈a#s〉#sol is
well-defined, unique, and always exists. For example,

〈a#(X, [a]Y)〉#sol = {a#X}
〈a#((a b) · X, (b c) · Y)〉#sol = {b#X, a#Y }.

We now define ≈α, a notion of α-equivalence-in-context.
Deductions are made according to the following inductive
rules:

s1 ≈α t1 · · · sn ≈α tn

(s1, . . . , sn) ≈α (t1, . . . , tn)

s ≈α t

fs ≈α ft a ≈α a

t ≈α t′

t′ ≈α t
s ≈α t

[a]s ≈α [a]t

a#t s ≈α (a b) · t

[a]s ≈α [b]t

ds(π, π′)#X

π · X ≈α π′ · X
(5)

Here and elsewhere we write a, b, c, . . . #X to indicate a set
a#X, b#X, For example, we can deduce (a b) ·X ≈α X
from the assumptions a#X and b#X.

Write ∆ ` s ≈α t when s ≈α t is derivable using the
assumptions ∆. The canonical examples are

a, b#X ` (a b) · X ≈α X
b#X ` λ[a]X ≈α λ[b](b a) · X

An alternative characterisation of ≈α is the least congru-
ence containing the first axiom above, or a little more for-
mally, such that if a, b#s then s ≈α (a b) · s.

In future we may write ∆ ` a#t and ∆ ` t ≈α t′ when
∆ is a collection of assumptions not necessarily of the form
a#X, i.e. when ∆ is not necessarily a pure apartness context
as defined above. The meaning is still that the conclusion
can be deduced from the assumptions.

All the definitions and theorems in this paper—matching
and unification, confluence, the Critical Pair Theorem 5.2—
work up to this notion of α-equivalence. This differs from
just quotienting terms by α-equivalence in a more tradi-
tional sense, because terms exist for us in an apartness con-
text which allows us to equate terms such as (a b) · X and
X, given assumptions a, b#X about a and b not occurring
free in X. Our use of swappings rather than substitutions
also contributes to making this work; we cannot deduce that
X[a/b] and X are α-equivalent if a and b are not free in X
(X[a/b] meaning, without giving a formal definition, “re-
place b by a throughout X, when it is instantiated”), e.g.
instantiate X to λ[a]λ[b]ab.

Rewriting, when we define it, operates on a term-in-context:
a pair (∆, s) which we write ∆ ` s. Then ∆ ` s rewrites

to ∆ ` t—an apartness context is fixed. Since in a par-
ticular rewriting path the context is fixed, a given context
defines a particular rewrite system ∆ ` - → - and a notion
of equality ∆ ` - ≈α -.

3.3 Substitutions and Positions in Terms
Substitutions are generated by the following grammar:

σ ::= Id | σ[X 7→s].

We need to apply a substitution to a rewrite rule ∇ ` l → r,
in order to instantiate it to match a term in an apartness
context. We develop the theory later, but it motivates us
to give a substitution action on both terms and apartness
contexts.

We write substitutions postfix: lσ, ∇σ. Mostly we con-
sider only the case σ = Id which we call the identity sub-
stitution, or σ = [X 7→s]. The general case is obtained by
repeated applications. We shall assume without comment
that Id has the trivial action whatever it is applied to.

Positions p are strings of natural numbers denoting paths
in the syntax tree of a term. We write ε for the empty string
and denote p.q the concatenation of p and q (we assume the
reader is familiar with this notation, see Section 2). Then ε is
the root position, 1 indicates going under a function symbol
or an abstraction [a]s; i refers to ith position in (s1, . . . , sn);
permutations are ignored.

We denote the subterm of s at position p by s|p. We omit
a formal definition. For example

(X, [a]([b](b, c), X))|ε.2.1.1.1 ≡ (b, c) (a b) · X|ε ≡ X

We denote the term obtained by replacing t by t′ at position
p in s by s[t′]p. For example for s and p the term and position
in the first example above, s[a]p ≡ (X, [a]([b]a, X)), and in
the second example (a b) · X[a]ε ≡ b.

Finally we write s[X 7→t] for the term obtained by simul-
taneously substituting every X in s by t, using the notion of
replacement just developed specialised to the position of X
in s, for every X. For example s[X 7→a] = (a, [a]([b](b, c), a)).
Note there is no capture avoidance.

Substitutions apply also to contexts: we define

a#X[Y 7→s]
def
= {a#X} a#X[X 7→s]

def
= 〈a#s〉#sol

∆[X 7→s]
def
=

�

C∈∆

C[X 7→s].

3.4 Rewrite Rules and Systems
Write V (s) for the variables X ∈ X occurring in the term

s, A(s) for the atoms mentioned in s. Similarly write V (∇)
for the variables in an apartness context.

A nominal rewrite rule over Σ is a tuple (∇, l, r), we
write it ∇ ` l → r, such that V (r) ∪ V (∇) ⊆ V (l). We
may write l → r for ∅ ` l → r.

Example 3.2. 1. a#X ` (λ[a]X)Y → X is a form
of trivial β-reduction.

2. a#X ` X → λ[a](Xa) is η-expansion.

3. Of course a rewrite rule may define any arbitrary trans-
formation of terms, and may have an empty context,
for example ∅ ` XY → XX.

4. a#Z ` Xλ[a]Y → X is not a rewrite rule, because
Z 6∈ V (Xλ[a]Y). ∅ ` X → Y is also not a rewrite
rule.

5. ∅ ` a → b is a rewrite rule. We mention this again
below.

We can now write

(∇ ` l → r)[X 7→s]
def
= ∇[X 7→s] ` l[X 7→s] → r[X 7→s].

(6)
Though we shall never write the substitution in such detail,
this is how we shall instantiate rules.

As usual we shall consider rules up to permutative re-
naming of their variable symbols X, Y . Thus a#X `
(λ[a]X)Y → X and a#Y ` (λ[a]Y)X → Y are ‘morally’
the same rule. Similarly it is convenient to consider atoms
a, b up to permutative renamings, making a#X ` X →
λ[a](Xa) and b#X ` X → λ[b](Xb) ‘morally’ the same.
It will be useful to have a notation for permuting atoms in
the syntax of a rule: for a permutation π write Rπ = ∇π `
lπ → rπ for the rule obtained by replacing every atom a in
its syntax with π(a). We formalise our morality as follows:
say a set of rewrite rules S is equivariant when if R ∈ S
then Rπ ∈ S for all π.

A nominal rewrite system (Σ,R) consists of:

1. A nominal signature Σ.

2. An equivariant set R of nominal rewrite rules over Σ.

We may drop Σ and write R for the rewrite system. When
we write out the system we (obviously) do not bother to
give every possible permutation of variables and atoms.

Example 3.3. To give a small-step evaluation relation
for the signature Σ of our fragment of ML (see Example 3.1)
we must extend it with a constructor for explicit substitutions
sub : ([ν]exp) × exp → exp which we sugar to t[a7→t′]. The
rewrite rules are:

(Beta) (λ[a]X)X ′ → X[a7→X ′]
(σapp) (XX ′)[a7→Y] → X[a7→Y]X ′[a7→Y]
(σvar) a[a7→X] → X
(σε) a#Y ` Y [a7→X] → Y

(σlam) b#Y ` (λ[b]X)[a7→Y] → λ[b](X[a7→Y])

These define a system of explicit substitutions for the λ-
calculus with names, together with the following rules:

(Let) let a = X ′ in X → X[a7→X ′]
(Letrec) letrec fa = X ′ in X →

X[f 7→(λ[a]letrec fa = X ′
in X ′)]

(σlet) a#Y ` (let a = X ′
in X)[b7→Y] →

let a = X ′[b7→Y] in X[b 7→Y]
(σletrec) f#Y, a#Y ` (letrec fa = X ′

in X)[b7→Y] →
letrec fa = X ′[b7→Y] in X[b 7→Y]

We recapitulate aspects of nominal terms and rules which
are unusual with respect to a first-order system:

1. Moderated variables (a b) · X, which let us ‘suspend’
renamings.

2. The unusual constructor abstraction [a]t.

3. The apartness side-conditions, such as a#X. We use
them to avoid accidental variable capture.

4. The α-equivalence relation ≈α, which uses all three of
the above.

(l1, . . . , ln) ?≈ (s1, . . . , sn), P =⇒ l1 ?≈ s1, . . . ,
ln ?≈ sn, P

fl ?≈ fs, P =⇒ l ?≈ s, P
[a]l ?≈ [a]s, P =⇒ l ?≈ s, P
[b]l ?≈ [a]s, P =⇒ (a b) · l ?≈ s, a#l, P

a ?≈ a, P =⇒ P
π · X ?≈ π′ · X, P =⇒ ds(π, π′)#X, P

a#s, P =⇒ 〈a#s〉#sol, P
(s 6≡ X)

(Matching) π · Y ?≈ s, P
Y 7→π−1

·s
=⇒ P [Y 7→π−1 · s]

(Y 6∈ s)

(Unification) l ?≈? π · X, P
X 7→π−1

·l
=⇒ P [X 7→π−1 · l]

(X 6∈ l)

Figure 1: Matching and Unification Rules

4. MATCHING AND REWRITING

4.1 Elementary Rewriting
A matching problem P is a set of equality problems

l ?≈ s and apartness problems a#s. Problems are trans-
formed to other (simpler) problems according to a labelled
transition system as shown in Figure 1.

Here we find it convenient to make commas indicate dis-
joint set union on the left, and set union on the right. We
also omit set brackets. P [Y 7→s] denotes the pointwise appli-
cation in the obvious reasonable way. ‘l’ suggests a rule and
‘s’ the term against which we are trying to match the rule.
In the rule (Matching) Y 6∈ s means “Y does not appear in
the syntax of s”. Similarly for X 6∈ l.

Recall that ≡ denotes structural identity on syntax. The
side-condition s 6≡ X is just to ensure termination, since
〈a#X〉#sol = {a#X}.

If we include (Matching) and not (Unification) in a prob-
lem {l ?≈ s} we obtain a matching algorithm, in a sense we
discuss below, instantiating variables in l to make it equal
in an appropriate sense to s. If we also include (Unification)
we obtain a unification algorithm instantiating variables in l
and s to make them equal. In that case we write {l ?≈? s}.

A transition is either trivially labelled P =⇒ P ′, or la-

belled with a substitution P
Y 7→s
=⇒ P ′. It is easy to prove

that the transition system terminates in finite time. Write
θ1, . . . , θn for the nontrivial labels generated in some path
to a terminal state P ′, and θ for their composition in that
order (recall we write substitutions postfix).

Call a problem terminal if all its elements are of the
form a#X. Write terminal problems Γ. If P reduces to
Γ generating θ as described in the last paragraph then say
(Γ, θ) solves (or is a solution to) the problem P .

Note in passing that by construction Γ mentions none of
the variable symbols in the domain of θ and that Γθ = Γ.

It is easy to verify that ∆ ` l ≈α s precisely when (Γ, Id)
solves l ?≈ s (or l ?≈? s) for some Γ ⊆ ∆. Thus matching
and unification do as promised work ‘up to’ α-equivalence
in the sense of ≈α.

The matching and unification algorithm defined in Fig-
ure 1 was obtained by adapting the rules in [33, Fig.3] to
our syntax. We assume without comment results from [33]
about decidability and existence of unique most general uni-
fiers in suitable senses (essentially, up to ≈α).

Say (Γ, θ) solves s ?≈ t when it solves {s ?≈ t}.
Let ∆ be an apartness context and s a term. Recall that

the pair (∆, s) is a term-in-context and that we write it
∆ ` s. A rewrite system R and an apartness context
∆ determines a transition system on terms which we write
∆ ` s → t leaving R implicit. We define transitions after
some useful terminology.

Define a matching problem between terms-in-context
to be a pair of terms-in-context and write them (∇ ` l) ?≈
(∆ ` s). A solution is a substitution θ such that

1. θX ≡ X for X in V (∆ ` s).

2. ∆ ` lθ ≈α s.

3. ∆ ` ∇θ.

It is easy to show that if a solution exists then a most
general one is the θ from (θ, Γ) solving l ?≈ s.

Given a rewrite rule R = ∇ ` l → r we say that in a
context ∆, s rewrites with R to t, and we write ∆ `

s
R
→ t when:

1. V (R) ∩ V (∆, s) = ∅ (we can assume this with no loss
of generality).

2. There exists a position p in s and a solution θ to (∇ `
l) ?≈ (∆ ` s|p).

3. ∆ ` s[rθ]p ≈α t.

We develop a slightly more involved notion of rewriting in
the next subsection, using this one, so we may also call this
elementary rewriting.

Finally, given a nominal rewrite system R say that in a

context ∆ s rewrites to t and write ∆ ` s
R
→ t or just

∆ ` s → t when there is a rule R ∈ R such that ∆ ` s
R
→ t.

The rewrite relation →∗ is the reflexive and transitive clo-
sure of this relation. A normal form is a term-in-context
that does not rewrite.

Lemma 4.1. If ∆ ` t ≈α s|p then ∆ ` s[t]p ≈α s.

This technical lemma is very natural and is important for
Theorem 5.2:

Lemma 4.2. If ∆ ` t ≈α t′ and if p is a position in s,
then ∆ ` s[t]p ≈α s[t′]p.

For example ∅ ` [a]a ≈α [b]b and ∅ ` [a][a]a ≈α [a][b]b.
Note that if s ≈α s′ and t ≈α t′ it is not necessarily the

case that s[t]p ≈α s′[t′]p. For example, [a]a ≈α [b]b and
a ≈α a but [a]a 6≈α [b]a.

Corollary 4.3. The latter two conditions defining ∆ `

s
R
→ t can be expressed succinctly as (∇ ` (s[l]p, s[r]p)) ?≈

(∆ ` (s, t)).

Proof. Direct from the previous two lemmas.

We now give some examples of rewrite steps:

Example 4.4. 1. It is easy to show that

∅ ` (λ[a]f(a, a)) X →∗ f(X, X)

in four steps using the rules (Beta) and (σvar) of Ex-
ample 3.3 together with a rule for the propagation of
substitutions under f :

(σf) f(X, X ′)[a7→Y] → f(X[a7→Y], X ′[a7→Y])

In a CRS a similar reduction is done in one step, as
shown in Example 2.2,using a higher-order substitution
mechanism which involves some β-reductions. NRSs
use first-order substitutions and therefore we have to
define explicitly the substitution mechanism, but in con-
trast with TRSs we don’t need to make explicit the α-
conversions. For instance, rule (σlam) pushes a sub-
stitution under a λ without capture, as the following
rewrite step shows:

b#Z ` (λ[c]Z)[a7→c] → λ[b](((c b) · Z)[a7→c])

2. A pathological but illuminating example of rewriting
rule is ∅ ` X → X. Then ∅ ` λ[a]a → λ[a]a, but
we can also verify that ∅ ` λ[a]a → λ[b]b. In general,
in the presence of this rule, if ∆ ` s ≈α t then
∆ ` s → t, for example a, b#X ` X → (a b) · X.

This will not cause problems in confluence results be-
cause they are also defined up to ≈α.

3. If ∅ ` a → b is in an equivariant set of rewrite rules,
we have a rewrite step ∅ ` a′ → b′ for all other atoms
a′ and b′. Our notion of matching does not instanti-
ate, or even permutatively rename, atoms. However,
equivariance of the rule system as a whole guarantees
that if a rule exists then a rule with permutatively re-
named atoms is available. Xτ → (a b) · Xτ allows
us to arbitrarily swap a and b in any term of sort τ .
Given equivariance of the set of rules, we can rename
all atoms.

4.2 Closed Rewriting and Efficiency
Suppose R ≡ ∇ ` l → r contains atoms and is in a nom-

inal rewrite system. By equivariance that system contains
all infinitely many Rπ for all renamings π of those atoms.

Checking whether s matches R is polynomial and we have
given the algorithm, but checking whether s matches Rπ for
some π is NP-complete [9]. For efficiency we are interested
in conditions to make this problem polynomial, we consider
this now.

Given a rule R = ∇ ` l → r we shall write R′ ≡ ∇′ `
l′ → r′ where the primed versions of ∇, l, and r, have atoms
and variables renamed to be fresh—for R, and possibly also
for other atoms occurring in a term-in-context ∆ ` s. We
shall always explicitly say what R′ is freshened for when this
is not obvious.

For example (a#X ` X → X) freshened with respect to
itself and to the term-in-context a′#X ` a′ is (a′′#X ′ `
X ′ → X ′), where a′′ 6≡ a, a′ and X ′ 6≡ X.

We can now define:

1. R ≡ ∇ ` l → r is closed when (∇′ ` (l′, r′)) ?≈
(∇, A(R′)#V (R) ` (l, r)) has a solution σ. Here R′

is freshened with respect to R.

2. Given R ≡ ∇ ` l → r and ∆ ` s a term-in-context

write ∆ ` s
R
→c t when ∆, A(R′)#V (∆, s) ` s

R′

→ t
and call this closed rewriting. Here R′ is freshened
with respect to R, ∆ ` s, and t.

Note that V (∆, s) = V (∆, s, t) because of conditions we put
on rewrites that unknowns cannot just ‘appear’ on the right-
hand side. We shall use these to simplify expressions denot-
ing freshness contexts without comment. Note also that R′

is freshened also with respect to t; in a sense “R is not al-
lowed to interact with the atoms of s in closed rewriting”.
Most of this subsection is about making this observation for-
mal, in particular Part 2 of Lemma 4.5 and Theorem 4.7.
Theorem 4.9 proves it is computationally useful to consider
this restriction. Lemma 4.8 adds “and R cannot inject its
own atoms into t”, which is later useful for the proof of the
Critical Pair Lemma.

For example, the rules in Example 3.3 are closed. A
canonical example of a closed rule is R ≡ a#X ` X →
X. Note that Z does not rewrite to Z with R (though

a#Z ` Z
R
→ Z). The canonical example of a closed rewrite

is Z
R
→c Z. If we think of closed rewriting as being such

that the atoms in R are bound to that rule, the assumption
A(R′)#V (∆, s) adds “and for any subsequent instantiations

of their unknowns”. This is why Z
R
→c Z even though R de-

mands to know that some atom a is fresh for X.
The following three technical results about renaming atoms

will very shortly be useful:

Lemma 4.5. 1. For ∆ ` s and R, if

∆, A(R′)#V (∆, s) ` s
R′

→ t

for one freshening R′ with respect to R, ∆ ` s, and

t, then ∆, A(R′′)#V (∆, s) ` s
R′′

→ t for all possible
freshenings with respect to R, ∆ ` s, and t.

2. For any π, ∆ ` s
R
→c t if and only if ∆ ` s

Rπ

→c t.

3. R is closed if and only if Rπ is closed.

Proof. 1. Nominal Rewriting is equivariant in atoms;

if Γ ` u
S
→ v then Γκ ` uκ Sκ

→ vκ for any κ. Nom-
inal Rewriting is also equivariant in variable names
(unknowns), so a similar result holds for them though
we have not developed the notation to express it. If
the atoms and variables in R′ are disjoint from ∆, s,
and t (if the variables are disjoint from those in ∆ and
s they must be for those in t, by correctness conditions
on rewriting)—then we can create a permutation κ for
atoms and another for unknowns, renaming them any
fresh way we like.

2. The particular identity of the atoms in R is destroyed
moving to R′. We might as well take R′ fresh for R
and also for Rπ. The result is now easy to see using
the previous result.

3. The predicate ‘R is closed’ has only one argument R.
Nominal Rewriting is equivariant on atoms, so we can
permute them in ‘R is closed’ to obtain ‘Rπ is closed’,
without changing the truth value. The reverse impli-
cation also holds since π is invertible.

Note that closed rewriting considers some freshened R′ and

that the associated notation ∆ ` s
R
→c t suggests the choice

does not matter since we do not annotate the arrow → with
R′, only with R. Part 1 proves this suggestion is correct.

Now we look at some simple examples:

1. If R′ ≡ a′′#X ′ ` X ′ → X ′ and R′′ ≡ a′′′#X ′′ `

X ′′ → X ′′, then if a#X,a′′#X ` s
R′

→ t then

a#X, a′′′#X ` s
R′′

→ t.

2. If R ≡ a#X ` X → X and π = (a b) observe that
R′ ≡ a′#X ′ ` X ′ → X ′ is a freshening of both R and
Rπ with respect to ∅ ` Z. With a different term-in-
context or π we might need a different choice of atoms
and unknowns but there are infinitely many to choose
from.

3. a → a is not closed, neither is [a]X → X. a#X `
X → X is closed, so is p#U ` U → U .

In what follows we may say “we assume R′ is fresh for
such-and-such extra terms-in-context” or “this is valid for
any suitably fresh R′”; we may also use closure of R to
justify closure of Rπ, or closed rewriting with R to justify
closed rewriting with Rπ. We are using the lemma above.

Theorem 4.6. R is closed if and only if for all ∆ ` s,

if ∆ ` s
R
→ t then ∆ ` s

R
→c t. (R is closed if and only if

rewriting implies closed rewriting.)

Proof. Assume that R is closed and that ∆ ` s
R
→ t.

For simplicity suppose that the position p used in the rewrite
is ε. So let θ solve (∇ ` (l, r)) ?≈ (∆ ` (s, t)). Recall σ
exists solving (∇′ ` (l′, r′)) ?≈ (∇, A(R′)#V (R) ` (l, r).
By syntactic calculations we see that V (Rσ) ⊆ V (∆, s). We
can use these facts to prove that σθ solves (∇′ ` (l′, r′)) ?≈
(∆, A(R′)#V (∆, s) ` (s, t)).

Conversely, assume rewriting with R implies closed rewrit-

ing with R. Note the trivial rewrite ∇ ` l
R
→ r, using

position ε. Therefore by assumption this rewrite is also gen-
erated by a freshened R′ in the context ∇ augmented with
A(R′)#V (R). From the syntactic similarity of R′ to R it
must be this rewrite is also generated using the position
ε and unpacking what that means we obtain precisely the
conditions for closure.

R ≡ a#X ` X → X is a counterexample to the assertion
that closed rewriting implies rewriting for closed R. But the
result holds for ground terms:

Theorem 4.7. Suppose s is ground and R is closed. Then

s
R
→c t if and only if there exists some π such that s

Rπ

→ t.

Proof. The left-to-right implication is trivial, we take
π to be a freshening permutation κ generating R′ in the
definitions above, as discussed variable names do not matter.

Conversely suppose s
Rπ

→ t for some π. Rπ is closed and by

the previous theorem we obtain s
Rπ

→c t and so s
R
→c t.

We can re-state this result as follows: closed R captures the
rewrites of its equivariance renaming class on ground terms.

Lemma 4.8. Let R be a closed rule. If ∆ ` s
R
→c t then

A(t) ⊆ A(s). If in addition ∆ ` a#s, then ∆ ` a#t.

Similarly for ∆ ` s
R
→ t.

Proof. It is not hard to see that if ∆, A(R′)#V (∆, s) `

s
R′

→ t then A(t) ⊆ A(R′) ∪ A(s). But the same must be
true of any other freshening R′′, using Part 1 of Lemma 4.5.
Taking an intersection we obtain the result.

Now suppose ∆ ` a#s[lσ]p; we can also suppose that
a 6∈ A(R′). By assumption ∆ ` a#s[lσ]p. We now use the
structural nature of the deduction rules and the fact that
V (r) ⊆ V (l) to construct a proof of ∆ ` a#s[rσ]p.

The final part is a consequence of Theorem 4.6.

Theorem 4.9. If a nominal rewrite system is provided as
the equivariant closure of a finite set of closed rules, then

1. Rewriting equals closed rewriting on ground terms and
rewriting is polynomial on ground terms.

2. Closed rewriting is polynomial on all (possibly non-
ground) terms.

Proof. The very first part is a consequence of the pre-
vious theorem.

The algorithm to polynomially derive the closed rewrites
of ∆ ` s under Rπ for all π is to derive just the closed
rewrites of R. The choice of R′ does not matter because by
Lemma 4.8 the atoms in it cannot escape into t.

The restriction to closed rules gives a powerful notion of
rewriting: we will show in Section 6 that we can simulate
CRSs using closed nominal rules. However, we also study
the general case since there are interesting systems (e.g. the
π-calculus) with non-closed rules. We come back to this
point in the conclusions.

5. CRITICAL PAIRS
Fix an equivariant rewrite system R. Write ∆ ` s →

t1, t2 for the appropriate pair of rewrite judgements. Call a
valid pair ∆ ` s → t1, t2 a peak.

Suppose

1. Ri = ∇i ` li → ri for i = 1, 2 are copies of two rules
in R such that V (R1) ∩ V (R2) = ∅ (R1 and R2 could
be copies of the same rule).

2. p is a position in l1.

3. l1|p ?≈? l2 has a solution (Γ, θ), so that Γ ` l1|pθ ≈α

l2θ.

Then call the pair of terms-in-context

∇1θ,∇2θ, Γ ` (r1θ, l1[r2θ]p)

a critical pair. If p = ε and R1, R2 are copies of the same
rule, or if p is the position of a variable in l1 then we say the
critical pair is trivial.

Example 5.1. There are several non-trivial critical pairs
in Example 3.3 involving substitution rules. For instance,
there is a critical pair between (σε) and (σapp), and also be-
tween (σε) and (σlam).

A critical pair is a pair of terms which can appear in a
peak of a rewrite of a term-in-context. Critical pairs are
important in term rewriting systems because it is sufficient
to check their joinability to deduce joinability of all peaks
(i.e. local confluence); we define joinability for NRSs below.

Let R be the rewrite system containing the rule ∅ `
[a][b]X → [b][a]X. We can verify that ∅ ` [a][b]X →
[b][a]X, using the rule ∅ ` [a][b]X → [b][a]X ∈ R, but
also that ∅ ` [a][b]X → [a][b](a b) · X, matching against
∅ ` [a][b]X → [b][a]X ∈ R. We can verify that ∅ `
[a][b](a b) · X ≈α [b][a]X. This example suggests that any
notion of confluence for NRSs must be defined up to ≈α.

Say a nominal rewrite system is locally confluent when
if ∆ ` s → t and ∆ ` s → t′, then u and u′ exist such
that ∆ ` t →∗ u and ∆ ` t′ →∗ u′, and ∆ ` u ≈α u′.
We say such a peak is joinable.

Say a nominal rewrite system is confluent when if ∆ `
s →∗ t and ∆ ` s →∗ t′, then u and u′ exist such that
∆ ` t →∗ u and ∆ ` t′ →∗ u′, and ∆ ` u ≈α u′.

Unlike standard TRS, trivial critical pairs are not neces-
sarily joinable. For instance, consider the rules:

b#X ` (X, b) → c
f(a) → b

There is a trivial critical pair (c, (b, b)), obtained by unifying
f(a) with b#X ` X, which is not joinable.

Also, we need to take equivariance into account when com-
puting critical pairs. We do not insist of a rule ∇ ` l → r
that the atoms in r occur in l. Thus ∅ ` a → bb is a valid
rule and it is easy to verify that ∅ ` a → bb is a valid
rewrite. We implicitly close rules up to permutative renam-
ings of variables and atoms, so ∅ ` a → cc for any other c
not equal to a. Therefore, in the Critical Pair Theorem be-
low we prove local confluence of NRSs under the assumption
that all critical pairs are joinable. However, if the rules are
closed then it is enough to check that the non-trivial critical
pairs are joinable, as usual.

Theorem 5.2 (Critical Pair Lemma). If all critical
pairs of a nominal rewrite system are joinable, then it is
locally confluent. If the rules are closed then it is sufficient
that non-trivial critical pairs be joinable.

Proof. Suppose ∆ ` s → t1 and ∆ ` s → t2 is a
peak. Then:

1. There exist Ri = ∇i ` li → ri and positions pi in s,
for i = 1, 2.

2. There exist solutions σi to (∇ ` (s[li]pi
, s[ri]pi

)) ?≈
(∆ ` (s, t)) for i = 1, 2.

Now there are two possibilities:

1. p1 and p2 are in separate subtrees. Local confluence
holds by a standard diagrammatic argument taken from
the first-order case [2]. We need Lemma 4.2 to account
for the weaker notion of equality.

2. p1 is a prefix of p2 or vice versa, we consider only the
first possibility. Suppose that p1 = ε, the general case

follows using Lemma 4.2. Write p
def
= p2.

There are now two possibilities:

1. p = p′q for l1|p′ a moderated variable π · X. This is
an instance of a trivial critical pair. If we assume all
critical pairs are joinable, we may join the peak. Oth-
erwise, if the rules are closed, local confluence again
follows using a standard argument and Lemma 4.2:
we can reduce using R1 then R2 on any X that are
left. Alternatively we can reduce using R2 on X; we
then use the second part of Lemma 4.8 to see that we
can still reduce using R1.

2. l1|p is defined and not a moderated variable π · X.
If p 6= ε, or p = ε but R1 and R2 are not copies of
the same rule, then this is an instance of a non-trivial
critical pair. Therefore we may join the peak. If p = ε
and R1, R2 are copies of the same rule then t1 ≈α t2
and the peak can be trivially joined.

Remark 5.3. As an application of this result, we can de-
duce that the substitution rules in Example 3.3 are locally
confluent: they are closed and the non-trivial critical pairs
can be easily joined. Note that if we consider also (Beta)
then the system is not locally confluent. This does not con-
tradict the previous theorem, because there is a critical pair
between (Beta) and (σapp) which is not joinable. Of course,
the system is locally confluent on ground terms (i.e. terms
without variables): the critical pair between (Beta) and (σapp)
is joinable if we replace the variables by ground terms.

We will say that an NRS is terminating if all the rewrite
sequences are finite. Using Newman’s Lemma [27], we ob-
tain the following confluence result.

Corollary 5.4. 1. If an NRS is terminating, and all
the critical pairs are joinable, then it is confluent. If
it is terminating, closed, and non-trivial critical pairs
are joinable, then it is confluent.

2. Under the same assumptions, each term has a unique
normal form modulo ≈α.

6. EXPRESSIVE POWER

6.1 Simulating First-Order Rewrite Systems
First-order terms are nominal terms with no atoms, and

therefore no permutations and abstractions. In this case
∅ ` s ≈α t is the same as s ≡ t. A first-order rewriting
rule l → r is a nominal rewrite rule ∅ ` l → r; clearly all
the variable restrictions are satisfied.

We must check that a first-order rewrite step is a nominal
rewriting step. It is sufficient to check that standard first-
order matching is a particular case of nominal matching.
This is straightforward: the nominal matching algorithm
with rules to manipulate terms with atoms omitted is the
standard first-order matching algorithm [18]. The matching
algorithm generates no apartness conditions if a first-order
problem l ?≈ s is input. Now if first-order terms l and s can
be matched using the substitution θ by these observations
the solution is of the form (∅, θ).

6.2 Simulating CRSs
Simulating CRS reductions is harder.
Firstly the very notion of CRS rewriting is defined on

terms without unknowns, not on metaterms (terms with un-
knowns). At the level of terms there are no significant syn-
tactical differences between CRSs and NRSs: variables in
CRSs correspond to atoms, and since there are no metavari-
ables in CRSs terms a CRS term is a ground nominal term.
However, CRSs’ metaterms cannot be represented directly
in the nominal framework: we should obviously map metavari-
ables to variables, but metavariables may have any finite
arity whereas variables in NRSs are 0-ary.

Our encoding of CRSs rules takes this into account. We
will define a translation function from CRS rules to nominal
rules, and we will show that it is possible to simulate a
rewrite step in a CRS by a sequence of nominal rewrite steps.

Consider a CRS R over an alphabet A (see section 2.2),
with the usual CRS conventions in rules: different bound
variables are used in each abstraction.

First, we define a nominal signature ΣA with one sort
of atoms (ν), one sort of data (δ), the term sorts generated
from these, and a set of function symbols which contains the

function symbols of the CRS R and a new function symbol
sub representing substitution, which we sugar as before to
t[a7→s], or more generally t[a1 7→s1, . . . , an 7→sn].

Given a rule l → r in R, we define a partial mapping Φ
from metavariables to lists of variables, such that

Φ(Zk) = [a1, . . . , ak]

if the leftmost occurrence of the metavariable Zk in l has the
form Zk(a1, . . . , ak). Recall that by definition, in left-hand
sides of CRS rules metavariables occur only in this form,
where a1, . . . , ak are pairwise different bound variables. We
denote by Φ(Zk)i the ith element in the list Φ(Zk).

To translate the rule l → r into a nominal rule over ΣA,
we will apply two different functions to l and r, both pa-
rameterised by Φ.

The first translation, which we denote (·)◦Φ, works on pairs
(∆, t) of an apartness context and a metaterm. The idea is to
replace, for each metavariable Zk in l, the leftmost subterm
of the form Zk(a1, . . . , ak) by Zk, and the other subterms
Zk(b1, . . . , bk) by (a1 b1) · . . . · (ak bk) · Zk, adding to the
apartness context ∆ the conditions b1#Zk, . . . , bk#Zk.

It is formally defined as follows:

(∆, a)◦Φ = (∆, a)

(∆, [a]t)◦Φ = (∆′, [a]t′),
where (∆′, t′) = (∆, t)◦Φ

(∆, f(t1, . . . , tn))◦Φ = (∆′, f(t′1, . . . , t
′
n)),

where (∆, ti)
◦
Φ = (∆i, t

′
i),

and ∆′ = � i
∆i

(∆, Zk(b1, . . . , bk))◦Φ = (∆ ∪ ∆′, Zk) if leftmost in l,
∆′ = {b1, . . . , bk#X |

X ∈ V (l), X 6= Zk}

(∆, Zk(b1, . . . , bk))◦Φ =

(∆ ∪ ∆′, (Φ(Zk)1 b1) · . . . · (Φ(Zk)k bk) · Zk) otherwise,
∆′ = {b1, . . . , bk#X|X ∈ V (l)}

The second translation function, when applied to r, pro-
duces (∆r, [[r]]Φ), where subterms of the form Zk(t1, . . . , tk)
in r are replaced by

Zk[Φ(Zk)1 7→[[t1]]Φ, . . . , Φ(Zk)k 7→[[tk]]Φ]

and ∆r = {ai#Zj | ai, Zj occur in r}.
[[r]]Φ is formally defined by:

[[a]]Φ = a
[[([a]t)]]Φ = [a][[t]]Φ
[[f(t1, . . . , tn)]]Φ = f([[t1]]Φ, . . . , [[tn]]Φ)
[[Z(t1, . . . , tk)]]Φ = Z[Φ(Z)1 7→[[t1]]Φ, . . . , Φ(Z)k 7→[[tk]]Φ]

We define the translation of the CRS rule l → r as ∆ `
l′ → r′ where (∅, l)◦Φ = (∆′, l′), ∆ = ∆′ ∪ ∆r and [[r]]Φ = r′.

We give some examples to illustrate the definition.

Example 6.1. The translation of the β-rule shown in Ex-
ample 2.1 according to the definitions above is:

a#Z′ ` app(lam([a]Z), Z ′) → Z[a7→Z′]

Consider now a CRS rule defining a differentiation operator:

diff([a]sin(Z(a))) → [b]mult(app(diff([c]Z(c)), b), cos(Z(b)))

The translation of this rule is: b, c#Z ` diff([a]sin(Z)) →
[b]mult(app(diff([c]Z[a7→c]), b), cos(Z[a7→b]))

Lemma 6.2. Let A be a CRS alphabet and ΣA a nominal
signature as defined above. If l → r is a CRS rule over
the alphabet A and ∆ ` l′ → r′ is its translation, then
∆ ` l′ → r′ is a closed nominal rewrite rule over ΣA.

Proof. By induction on the structure of terms, we can
show that the translations of l and r are nominal terms-
in-contexts. Since the metavariables that occur in r occur
also in l, all the variables of r′ and ∆ occur in l′, therefore
∆ ` l′ → r′ is a nominal rewrite rule. It is closed, since

1. l and r do not contain free variables by definition,

2. our translation respects the structure of terms,

3. all the atoms introduced (by substitution operators)
are abstracted,

4. when an abstraction is created in r′, it abstracts a fresh
atom.

Let us denote by R the nominal rewriting system obtained
by translating in this way all the rules of the CRS R and
adding the rules that push the substitutions through the
other constructs. The latter can be mechanically generated
from the function symbols in the signature:

(σvar) a[a7→X] → X
(σε) a#Y ` Y [a7→X] → Y
(σf) (f X)[a7→Y] → fX[a7→Y]

for each f in Σ
(σprod) (X1, . . . , Xn)[a7→Y] →

(X1[a7→Y], . . . , Xn[a7→Y])
(σabs) b#Y ` ([b]X)[a7→Y] → [b](X[a7→Y])

We will use two properties of these rules:

Property 6.3. 1. The substitution rules terminate.

2. The substitution rules are confluent on ground nominal
terms.

The termination of the substitution rules can be easily
shown by a standard interpretation argument, since the rules
move the substitution operators down towards the leaves of
the term.

Confluence for ground terms then follows from the fact
that the rules are closed and all non-trivial critical pairs are
joinable (see Remark 5.3). Let us denote nfσ(∆ ` t) the
normal form of a term-in-context ∆ ` t (this is uniquely
defined modulo ≈α by Corollary 5.4).

Lemma 6.4 (Correctness of substitution). Let t, s
be terms in a CRS R (and therefore also in R). Then
nfσ(t[a7→s]) ≈α t[a := s] where t[a := s] denotes the term
obtained by substituting (using the higher-order substitution
of the CRS) a by s in t.

We omit the proof by induction on t, which is standard
in explicit substitution systems.

Theorem 6.5 (Soundness). Let t be a term in a CRS
R (and therefore also in R). If ` t →R u then there exists
u′ such that ` u →∗

R u′ and t →R u′.

Proof. Take u′ ≈α nfσ(u), which is a CRS term by
Lemma 6.4. We will show that t →R u′.

Assume ` t →R u using a rule ∆ ` l′ → r′ which is the
translation of l → r ∈ R (i.e. r′ = [[r]]Φ), at position p (i.e.
t|p matches l′ using (∅, θ′) and ∆θ′ = ∅). Then u ≈α t[r′θ′]p
and nfσ(u) ≈α t[nfσ(r′θ′)]p.

Let Z1, . . . , Zk be the metavariables in l (and therefore
also the variables in l′), and assume that for each Zi, Φ(Zi) =
[ai1, . . . , aipi

]. Let

θ′ = {Z1 7→ t1, . . . , Zk 7→ tk}

then

θ = {Z1 7→ λa11 . . . a1p1
.t1, . . . , Zk 7→ λak1 . . . akpk

.tk}

matches l and t|p.
We show by induction on r that rθ ≈α nfσ([[r]]Φθ′), which

completes the proof. The only interesting case is when r is
a metaterm Zi(u1, . . . , upi

). Then

r′ = [[r]]Φ = Zi[ai1 7→[[u1]]Φ, . . . , aipi
7→[[upi

]]Φ]

and

rθ = ti[ai1 := u1θ, . . . , aipi
:= upi

θ].

By induction and Lemma 6.4:

rθ ≈α nfσ(ti[ai1 7→nfσ([[u1]]Φθ′), . . . , aipi
7→nfσ([[upi

]]Φθ′)])

By unicity of normal forms the latter coincides (modulo ≈α)
with nfσ(ti[ai1 7→[[u1]]Φθ′, . . . , aipi

7→[[upi
]]Φθ′], which in turn

is nfσ(r′θ′).

Theorem 6.6 (Completeness). Let t and u be arbi-
trary terms in the CRS R (and therefore also in R). If
t →R u then ` t →∗

R u.

Proof. The main points of the proof are:

• Matching in CRSs can be simulated by nominal match-
ing thanks to the condition on metavariables occurring
on left-hand sides of CRSs’ rules. No apartness con-
text is generated if the terms in the CRS follow the
usual Barendregt naming conventions.

• Our explicit substitution rules simulate the implicit
substitution mechanism of CRSs (Lemma 6.4).

Then t →R u implies t →R u′ such that nfσ(u′) ≈α u.
Therefore, t →∗

R u as required.

Since the translation of a CRS rule is a closed nominal
rule, and the rules for substitution are also closed, the class
of closed nominal rewriting systems is sufficient to simulate
CRS reductions.

7. CONCLUSIONS AND FUTURE WORK
The technical foundations and style of this work are most

directly derived from work on nominal logic [29] and nomi-
nal unification [33]. We use a nominal matching algorithm,
which is easy to derive from the unification algorithm and
inherits its good properties (such as most general unifiers),
in our definition of rewriting.

Our theory stays close to the first-order case, while still
allowing binding. We achieve this by working with concrete
syntax, but up to a notion of equality ≈α which is not just
structural identity. It is not α-equivalence either: ≈α is

actually logical, in the sense that ∆ ` s ≈α s′ is something
that we deduce using assumptions in ∆.

We pay the price that terms, rewrites, and equalities, hap-
pen in a context ∆, but ∆ is fixed and does not seem to
behave perniciously.

This system is also powerful, in that it encodes first-order
systems and CRSs. It can be seen as an explicit substi-
tution version of higher-order rewriting, but with built-in
α-conversion. We could easily implement a higher-order
rewrite system using a nominal rewrite system: we only need
to make the substitution explicit. We can spare the effort
of ‘implementing’ α-conversion using de Bruijn indices and
all the associated machinery.

Future Work.
In nominal rewriting, ∆ ` s

R
→ t and ∆ ` s

R
→c t, the

context ∆ is static. This is because rewrite rules have no
mechanism for locally generating a fresh atom. This does
occur in nature, for example in a rewrite system for the π-
calculus we might wish a reaction rule which we might write
as Nn. (ν[n]X) → X, where Nindicates that n must be fresh
for all variables in the context in which the rewrite is intro-
duced, which would be implemented by allowing rewrites to
expand ∆ with freshness conditions. The theory of this re-
mains to be considered though Miller and Tiu’s work [26]
seems related in spirit.

The judgement ∆ ` s → t has a ‘logical’ flavour with
its freshness context and deduction rules. It is easy to make
this more concrete by allowing a#u in ∆ for u a term, rather
than only a#X. It suffices to introduce rules like in (4) but
on the left, to obtain a logical system. It is not hard to prove
substitution lemmas and cut-elimination results. But we can
also ask what happens if we allow implications, quantifiers,
and equalities, on the left and right; we claim that this is a
‘logic for matching and unification’. If we restrict to notions
of Horn or Harrop clause the deduction rules of this logic
reproduce algorithms from logic programming, where the
status of the unknowns X is a sort of ‘object-level unknown’
distinct from the ‘meta-level unknowns’ which we write s, t,
and u. The first-order flavour is preserved since we have
abstraction but no β-conversion. We can take this even
further if we introduce a Nterm-former for unknowns X.

We can also turn rewriting inside-out to generalisation
on terms-with-abstraction, for example for machine learning
in First-Order Logic. This is the problem of given s and
t finding a least u and substitutions σ1 and σ2 such that
uσ1 = s and uσ2 = t. The advantage of our unknowns X
over, say, higher-order variables T , is that we maintain the
first-order flavour because there is no β-conversion, and that
the arity of X does not change according to the number of
atoms is contains, whereas the arity of T does determine
how many arguments it may take.

Acknowledgements.
We would like to thank James Cheney, Andy Pitts, and

Christian Urban for enlightening discussions and valuable
comments on previous versions of this paper.

8. REFERENCES
[1] M. Abadi, L. Cardelli, P-L. Curien, and J-J. Lévy,

Explicit substitutions, Journal of Functional
Programming 1 (1991), no. 4, 375–416.

[2] F. Baader and T. Nipkow, Term rewriting and all
that, Cambridge University Press, 1998.

[3] F. Barbanera, M. Fernández, and H. Geuvers,
Modularity of strong normalization in the
algebraic-λ-cube, Journal of Functional Programming
6 (1997), 613–660.

[4] H. P. Barendregt, Pairing without conventional
constraints, Zeitschrift für mathematischen Logik und
Grundlagen der Mathematik 20 (1974), 289–306.

[5] C. Bertolissi, H. Cirstea, and C. Kirchner, Translating
combinatory reduction systems into the rewriting
calculus, 4th International Workshop on Rule-Based
Programming (RULE 2003), Valencia, Spain, 2003.

[6] E. Bonelli, D. Kesner, and A. Ŕıos, From higher-order
to first-order rewriting, Proc. 12th Int. Conf.
Rewriting Techniques and Applications, Lecture Notes
in Computer Science, vol. 2051, Springer, 2001.

[7] V. Breazu-Tannen and J. Gallier, Polymorphic
rewriting conserves algebraic strong normalization,
Theoretical Computer Science 83:1 (1991).

[8] V. Breazu-Tannen and J. Gallier, Polymorphic
rewriting conserves algebraic confluence, Information
and Computation 82 (1992), 3–28.

[9] J. Cheney, The complexity of equivariant unification.
Proceedings of ICALP 2004, to appear.

[10] H. Cirstea and C. Kirchner, The Rewriting Calculus -
Part I, Logic Journal of the Interest Group in Pure
and Applied Logics 9 (2001), 363–399.

[11] H. Cirstea and C. Kirchner, The Rewriting Calculus -
Part II, Logic Journal of the Interest Group in Pure
and Applied Logics 9 (2001), 401–434.

[12] R. David and B. Guillaume, A λ-calculus with explicit
weakening and explicit substitution, Mathematical
Structure in Computer Science 11(1) (2001), 169–206.

[13] N. Dershowitz and J.-P. Jouannaud, Rewrite Systems,
Handbook of Theoretical Computer Science: Formal
Methods and Semantics (J. van Leeuwen, ed.), vol. B,
North-Holland, 1989.

[14] M. J. Gabbay, The π-calculus in FM, Thirty-five years
of Automath (Fairouz Kamareddine, ed.), Kluwer,
2003.

[15] M. J. Gabbay and A. M. Pitts, A New Approach to
Abstract Syntax with Variable Binding. Formal
Aspects of Computing 13, pp. 341–363, 2002. A
preliminary version appeared in the Proc. LICS 1999.

[16] M. J. Gabbay, Fresh graphs, Submitted, November
2003.

[17] M. Hamana, Term rewriting with variable binding: An
initial algebra approach, Fifth ACM-SIGPLAN
International Conference on Principles and Practice of
Declarative Programming (PPDP2003), ACM Press,
2003.

[18] J.-P. Jouannaud and C. Kirchner, Solving equations in
abstract algebras: a rule based survey of unification,
Computational Logic: Essays in Honor of Alan
Robinson (J-L. Lassez and G. Plotkin, eds.), MIT
Press, 1991.

[19] J.-P. Jouannaud and M. Okada, Executable
higher-order algebraic specification languages, Proc.
6th IEEE Symposium on Logic in Computer Science,
IEEE Computer Society Press, 1991, pp. 350–361.

[20] Z. Khasidashvili and V. van Oostrom,
Context-sensitive conditional reduction systems,
Electronic Notes in Theoretical Computer Science,
Proc. SEGRAGRA’95 2 (1995).

[21] Z. Khasidashvili, Expression reduction systems,
Proceedings of I.Vekua Institute of Applied
Mathematics (Tbisili), vol. 36, 1990, pp. 200–220.

[22] J.-W. Klop, V. van Oostrom, and F. van Raamsdonk,
Combinatory reduction systems, introduction and
survey, Theoretical Computer Science 121 (1993),
279–308.

[23] J-W. Klop, Combinatory reduction systems,
Mathematical Centre Tracts, vol. 127,
Mathematischen Centrum, 413 Kruislaan,
Amsterdam, 1980.

[24] P. Lescanne, From λσ to λυ a journey through calculi
of explicit substitutions, Proceedings of the 21st ACM
Symposium on Principles of Programming Languages
(POPL’94), ACM Press, 1994.

[25] R. Mayr and T. Nipkow, Higher-order rewrite systems
and their confluence, Theoretical Computer Science
192 (1998), 3–29.

[26] D. Miller and A. Tiu, A proof theory for generic
judgments: An extended abstract, Proceedings of LICS
2003, IEEE Computer Society Press, 2003, 118–127.

[27] M.H.A. Newman, On theories with a combinatorial
definition of equivalence, Annals of Mathematics 43
(1942), no. 2, 223–243.

[28] B. Pagano, Des calculs de substitution explicite et de
leur application à la compilation des langages
fonctionnels, Ph.D. thesis, Université de Paris 6, 1998.

[29] A. M. Pitts, Nominal logic, a first order theory of
names and binding, Information and Computation
186 (2003), 165–193. A preliminary version appeared
in the Proceedings of the 4th International Symposium
on Theoretical Aspects of Computer Software (TACS
2001), LNCS 2215, Springer-Verlag, 2001, pp 219–242.

[30] A. M. Pitts and M. J. Gabbay, A metalanguage for
programming with bound names modulo renaming,
Mathematics of Program Construction. 5th
International Conference, MPC2000, Ponte de Lima,
Portugal, July 2000. Proceedings (R. Backhouse and
J. N. Oliveira, eds.), Lecture Notes in Computer
Science, vol. 1837, Springer-Verlag, Heidelberg, 2000,
pp. 230–255.

[31] F. van Raamsdonk, Confluence and normalisation for
higher-order rewriting, Ph.D. thesis, Free University of
Amsterdam, 1996.

[32] M. R. Shinwell, A. M. Pitts, and M. J. Gabbay,
FreshML: Programming with binders made simple,
Eighth ACM SIGPLAN International Conference on
Functional Programming (ICFP 2003), Uppsala,
Sweden, ACM Press, August 2003, pp. 263–274.

[33] C. Urban, A. M. Pitts, and M. J. Gabbay, Nominal
unification, Computer Science Logic and 8th Kurt
Gödel Colloquium (CSL’03 & KGC), Vienna, Austria.
Proccedings (M. Baaz, ed.), Lecture Notes in
Computer Science, vol. 2803, Springer-Verlag, 2003,
pp. 513–527.

[34] C. Urban, Nominal matching, preliminary report,
2004.

