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ABSTRACT
Nominal rewriting extends first-order rewriting with Gabbay-
Pitts abstractors: bound entities are explicitly named (rather
than being nameless, as for de Bruijn indices) yet rewrit-
ing respects α-conversion and can be directly implemented,
thanks to the use of freshness contexts. In this paper we
study two extensions to nominal rewriting. First we intro-
duce a Nquantifier for modelling name generation. This al-
lows us to model higher-order functions involving local state,
and has also applications in concurrency theory. The second
extension introduces new constraints in freshness contexts.
This allows us to express strategies of reduction and has ap-
plications in programming language design and implemen-
tation. Finally, we study confluence properties of nominal
rewriting and its extensions.

Categories and Subject Descriptors
F.4.1 [Mathematical Logic and Formal Languages]:
Mathematical Logic—lambda calculus and related systems

General Terms
Theory

Keywords
Binders, α-conversion, first and higher-order rewriting, name
generation, locality, confluence.

1. INTRODUCTION
Term rewriting systems (TRS) specify and reason about

computation by working with trees labelled by variable and
function symbols. Standard TRSs are first-order, but ef-
fort has been devoted to systems manipulating higher-order
functions, where variables can be free or bound. Examples
of higher-order rewriting formalisms combining first-order
rewriting with a notion of bound variable are: Combinatory

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 2002 ACM X-XXXXX-XX-X/XX/XX ... $5.00.

Reduction Systems (CRS) [24], Higher-order Rewrite Sys-
tems (HRS) [27], Expression Reduction Systems (ERS) [22],
and the rewriting calculus [10, 11]. The λ-calculus can be
seen as a higher-order rewrite system with one binder called
λ-abstraction.

Binders lead to α-conversion. First-order substitutions
(i.e. replacements) may capture variables, so substitution
in a higher-order system has to be carefully defined using
renamings (α-conversion). In the higher-order formalisms
mentioned above substitution is a meta-operation which re-
lies on an implicit notion of α-conversion: terms are defined
modulo renamings of bound variables. Several notions of
explicit substitutions and explicit α-conversion have been
defined for the λ-calculus (e.g. [1, 26, 12]) and more gener-
ally for higher-order rewrite systems (e.g. [30, 6]) with the
aim of specifying the higher-order notion of substitution as
a set of first-order rewrite rules. In most of these systems
variable names are replaced by de Bruijn indices to make
easier the explicitation of α-conversion, at the expense of
readability.

Nominal rewriting is a new formalism for rewriting with
bound variables, introduced in [14]. In nominal rewriting
systems (NRSs) variables are named (whence ‘nominal’),
substitution is first-order, and we deal with α-conversion
by using an auxiliary freshness relation a#t between vari-
ables and terms (we say “a is fresh for the term t”). This
freshness relation was introduced in [31, 18], and used to
define a metalanguage for functional programming in [33],
and to study unification problems in [36].

Nominal terms are first-order terms with built-in α-conversion.
Our metalanguage does not include metasubstitutions and
β-reductions (in contrast to notions of higher-order rewrit-
ing): in this sense, nominal rewriting systems are a middle
ground between first-order and higher-order rewriting. The
usual notion of higher-order substitution can be easily spec-
ified since α-conversion is in the meta-language.

Following [31, 18], we call the names that can be bound
atoms and reserve the word variable for the identifiers that
cannot be bound (known as variables and metavariables re-
spectively in CRSs). In nominal terms the dependencies
between variables and names are implicit, as in informal
presentations of higher-order reductions. For example, λ-
calculus β- and η-rules are written

app(λ([a]M), N) → subst([a]M, N)
a#X ` X → λ([a]app(X, a)).

Rewriting on nominal terms uses nominal matching [14,



36, 37], which does not need metasubstitutions and β-reduction
but it does take into account freshness contexts. Select-
ing a nominal rewrite rule that matches a given term is an
NP-complete problem in general [9]; however, by restricting
to closed rules we can avoid the exponential cost: nomi-
nal matching is polynomial in this case [14]. Closed nomi-
nal rewriting turns out to be sufficiently close to first-order
rewriting to share many of its properties, including a criti-
cal pair lemma [14], and a confluence theorem for orthogonal
(i.e. left-linear and non-overlapping) systems which we prove
in this paper. It is also expressive (see [14] for a translation
of Klop’s Combinatory Reduction Systems) but has some
limitations: rewrite rules have no mechanism for locally gen-
erating a fresh atom. This occurs in nature. For example
in a rewrite system for the π-calculus [28] we might wish
a reaction rule which we might write as ν[n]X → Nn.X,
where Nindicates that n must be fresh for all variables in
the context in which the rewrite is introduced. Similar phe-
nomena arise in programming languages, such as gensym in
LISP, unit ref in ML, and many other forms of dynamic
allocation both in the foundational and applied literatures.

In this paper we study two extensions to nominal rewrit-
ing:

(1) We consider the name generation construct Nand
make corresponding extensions to the freshness contexts to
describe the scope of the names thus generated. Although

Ncan be seen as a quantifier modelling locality of names,
it is not a binder: we will show that abstracted names and
local names have different behaviour.

(2) We extend just the contexts with new predicates spec-
ifying constraints for atoms in terms, for instance closedness.
In this way strategies of reduction such as closed reduction
in the λ-calculus [16] may be concisely specified. This exten-
sion has applications in programming language design and
implementation (see for instance [16]).

We study confluence properties of extended nominal rewrit-
ing: we give a critical pair lemma for extended NRSs and
we prove that orthogonal systems are confluent.

In summary the main contributions of this paper are:

1. We formalise a notion of name generation and locality
on nominal terms, with an associated notion of rewrit-
ing, with applications to distributed and higher-order
programming.

2. We define two new predicates: a scope relation and a
closedness relation, which can be used as constraints
together with the freshness relation in contexts to spec-
ify strategies of reduction in rewrite rules.

3. A Critical Pair Lemma which ensures that extended
nominal rewriting rules which do not introduce critical
pairs are locally confluent.

4. A Confluence Theorem for orthogonal systems.

Related Work.
NRSs are related to algebraic λ-calculi [7, 8, 21, 3] where

the β-reduction rule of the λ-calculus is combined with a
set of term rewriting rules using standard first-order match-
ing. Nominal rules are more general than these, since ab-
stractions can be used in patterns, in the same way as in
higher-order rewriting systems (e.g. CRSs [24], HRSs [27],
ERSs [22], HORSs [34], and the ρ-calculus [10, 11]).

In contrast with higher-order rewriting systems, nominal
rewriting does not need higher-order matching and higher-
order substitutions. Instead, it relies on an extension of
first-order matching that takes care of α-conversion without
introducing β-reductions.

Although NRSs were not designed as explicit substitution
systems, they are at an intermediate level between stan-
dard higher-order rewriting systems and their explicit sub-
stitution versions (e.g. [30, 6]), which implement in a first-
order setting the substitution operation together with α-
conversions using de Bruijn indices. Nominal rewriting is
also related to Hamana’s Binding Term Rewriting Systems
(BTRS) [19]. The main difference is that BTRSs use a con-
tainment relation that indicates which free atoms occur in
a term (as opposed to a freshness relation which indicates
that an atom does not occur free in a term).

The name generation operator Nof extended nominal
rewriting systems is related to the ν operator of Pitts and
Stark’s ν-calculus [32] and ν the π-calculus restriction oper-
ator [28]. Apart from obvious differences between a simply
typed λ-calculus, a process calculus, and a rewriting formal-
ism, ν and Ndiffer in their treatment of generated names:
ν is a binder, whereas Nis a scope construct.

Overview of the paper.
Section 2 presents nominal signatures and extended nomi-

nal terms. Section 3 defines α-equivalence as a logical notion
first, then gives an algorithm to test α-equality. Nominal
matching and unification algorithms are given in Section 4.
Section 5 defines rewriting on extended nominal terms, and
Section 6 studies confluence. Section 7 introduces closed-
ness constraints and reduction strategies. We conclude the
paper in Section 8.

2. EXTENDED NOMINAL TERMS

2.1 Signatures and terms
A Nominal Signature Σ is a set of function symbols

typically written f . We do not assume that functions have
sorts or arities in this paper (the original presentation [14]
does but we shall not need them here).

So for example, a nominal signature for a fragment of ML
has function symbols:

var app lam let letrec

Fix some signature Σ. Fix a countably infinite set X of
term variables X, Y, Z. These will represent meta-level
unknowns. Fix a distinct countably infinite set A of atoms
a, b, c, f, g, h, . . .. These will represent object-level variable
symbols. Consistent with later notation for terms, we write
a ≡ a to denote identity of atoms. We assume that Σ, X
and A are pairwise disjoint.

A swapping is a pair of atoms, which we write (a b).
Permutations π are generated by the grammar

π ::= Id | (a b)·π

We call Id the identity permutation. We call a pair of a
permutation π and a variable X a moderated variable and
write it π·X. Formally, swappings and moderated variables
are just pairs, and permutations are just lists of swappings.

Extended Nominal Terms, also called tagged terms



or just terms for short, are generated by the grammar

t ::= NA.a | NA.π·X | NA.(t1, . . . , tn) | NA.[a]t | NA.(ft),

where we write A for a finite set of atoms which may be
empty. We may write N∅.blah more succintly as blah, and
similarly we may write Id·X as X.

Terms are called respectively atoms, moderated vari-
ables (or just variables for short), tuples, abstractions
and function applications.

In the clause for tuples, n is called the length of the tuple
and may equal 0 in which case we have the empty tuple ().
We omit the brackets when n is 1 if there is no ambiguity.
In the clause for function applications, f may be applied to
the empty tuple in which case we may write f() as just f .

Note that an extended nominal term is a tree with nodes
annotated by function symbols or (moderated) variables, so,
syntax in the accepted sense — later we call it the term’s
skeleton — but also annotated at every node with a finite
sets of atoms. We shall call these sets tags. A term such
that every tag is empty is in essence ordinary syntax and is
isomorphic to a(n unextended) nominal term [14].

We denote V (t) the set of variables that occur in the
term t. Ground terms are terms without variables, that
is V (t) = ∅. A ground term may still contain atoms, for
example a or N{a}.() are ground terms and X is not.

An abstraction [a]t is intended to represent t with a bound,
and accordingly we call occurrences of a abstracted (or
bound) and unabstracted occurrences unabstracted (or
free). We do not work modulo α-conversion of abstracted
atoms, so syntactic identity ≡ is not modulo α-equivalence.
For example, [a]a 6≡ [b]b. In nominal techniques, α-equivalence
≈α is a logical notion constructed on top of ≡ using a notion
of context which we shall define soon.

A tagged term N{a}.t is intended to represent t with a
local name it is calling a. We call occurrences of a scoped
or local, and unscoped occurrences unscoped or global.
As with abstraction, we do not work up to α-conversion of
tags.

Abstraction is inherited from previous work [36, 14], tags
are new to this paper. We give some examples:

• N{a}.a is a scoped copy of a. In future, we drop the
set curly brackets and write Na.a.

• Nb.b is a local name called b. Note that Na.a 6≡ Nb.b.

• Na.b is b with a local name a (which is not used, the
reader might like to consider it ‘garbage’). Na.b is
not syntactically identical to Nc.b, Nb.b, or b.

• Na, b.a generates a and b and discards b. Because the
tags are sets, Na, b.a ≡ Nb, a.a. However, Na, b.a 6≡

Na, b.b.

• Na.( N∅.a, N∅.a) generates a and makes the pair (a, a).

• ( Na.a, Na.a) generates two local names which are both
(by coincidence) ‘a’.

• Na.(a, Na.a) is a tuple which generates locally a and
places it in the first component. The second compo-
nent is also a, but this is a different copy in its own
local scope. Na.(a, Na.a) 6≡ ( Na.a, Na.a).

• Using the ML signature mentioned above, we can write
(lam[a] Nb.(app(var(a), app(var(b), X)))) which we will

abbreviate λ[a] Nb.a(bX). This term can be used to
represent a function which has an argument a and gen-
erates a local name b (i.e. ref in ML).

2.2 Substitution and swapping
Substitution of an unknown X for a term s in a term t is

a function that satisfies:

( NA.a)[X 7→s] ≡ NA.a ( NA.(ft))[X 7→s] ≡ NA.(f(t[X 7→s]))

( NA.(t1, . . . , tn))[X 7→s] ≡ NA.(t1[X 7→s], . . . , tn[X 7→s])

( NA.[a]t)[X 7→s] ≡ NA.[a](t[X 7→s])

( NA.π·X)[X 7→ NB.s] ≡ N(A ∪ π·B).π·s.

A substitution is generated by the grammar

σ ::= Id | σ[X 7→s].

σ has an action on terms given elementwise from the defini-
tion above and satisfying sId ≡ s. We write substitutions
postfix as just shown, and write ◦ for composition of substi-
tutions: t(σ ◦ σ′) ≡ (tσ)σ′.

The intuition of a moderated variable π·X is that we
would like to rename the atoms in X, but we do not yet
know what X is. If a substitution [X 7→s] instantiates X, as
in the last clause of the definition above, we apply π to s. A
permutation has an action on terms, denoted π·t defined in
the natural way from the component swappings. The action
of swappings on terms is defined inductively by:

(a b)· NA.n ≡ N(a b)(A).(a b)(n)

(a b)· NA.(ft) ≡ N(a b)(A).(f(a b)·t)
(a b)· NA.(t1, . . . , tn) ≡ N(a b)(A).((a b)·t1, . . . , (a b)·tn)

(a b)· NA.[n]t ≡ N(a b)(A).[(a b)(n)](a b)·t
(a b)· NA.π·X ≡ N(a b)(A).((a b) · π)·X.

Here we have applied swappings to atoms and sets of atoms
(a b)(n) and (a b)(A). The action on sets is pointwise, and
the action on atoms satisfies:

(a b)(a) ≡ b (a b)(b) ≡ a and (a b)(c) ≡ c (c 6≡ a, b).

For example, (a b)·λ[a] Nb.abX ≡ λ[b] Na.ba(a b)·X.

2.3 Positions
A skeletal position p is generated by the grammar

p ::= ε | p.n

where n is a number. A position is a pair of a skeletal
position and a finite (possibly empty) set of atoms A. We
write s|p,A for the subterm of s at position (p, A).

Skeletal positions are usually called positions, we assume
the reader is familiar with [13, 23]; see also [2]. ‘Skeletal’
refers to the tag-less ‘skeleton’ of a term: so ε is the root
position; 1 indicates going under a function symbol or an
abstraction [a]s; i refers to ith position in (s1, . . . , sn); per-
mutations are ignored. Having arrived at a certain place p
in the skeleton, ‘A’ means remove the atoms A from the tag
at that (skeletal) position.

We omit a formal definition but give examples:
If s ≡ Na, b.( Na.X, Y ) then s|ε,∅ ≡ s, s|ε,{a} ≡ Nb.( Na.X, Y ),

s|ε,{a,b} ≡ N∅.( Na.X, Y ), and s|ε,{a,b,c} is undefined. s|ε.1,∅ ≡
Na.X, s|ε.1,{a} ≡ X, s|ε.2,∅ ≡ Y , and s|ε.3,∅ is not defined.

If s′ ≡ [a]t then s′|ε,∅ ≡ s′ and s′|ε.1,∅ ≡ t.
We write s[t]p,A for the result of replacing the subterm of

s at (p, A) by t, merging the tags. We may omit A when it



is empty, writing s[t]p instead of s[t]p,∅. For example if s is
as above, then s[Z]ε ≡ Z, s[Z]ε,{a} ≡ Na.Z, s[ Nb.Z]ε,{a} ≡

Na, b.Z, s[ Nc.Z]ε,{b} ≡ Nb, c.Z.

3. ALPHA-EQUIVALENCE
Syntactic equality s ≡ t is a structural (rather than logi-

cal) fact. α-equivalence is a logical notion, which we define
below.

3.1 A logical presentation
Constraints are generated by the grammar

P, Q, C ::= a#t | a@t | s ≈α t.

We call # a freshness predicate, @ a scoping (or local-
ity) predicate, and ≈α an equality predicate. They will be
defined formally below. The intended interpretation of

• a#t is “if a occurs in t then each occurrence is either
in a tag, or abstracted”. For example, a#b, a# Na.b,
not a# Na.a, however a# Na.[a]a. We sometimes write
a, b#s instead of a#s, b#s.

• a@t is “if an occurrence of a is unabstracted in t then it
is in a tag”. For example, a@ Na.b and a@ Na.a, a@[a]a,
but not a@a. We abbreviate a@s, b@s as a, b@s.

• s ≈α t is “s and t are α-equivalent” (see below).

In the following rules, and consistent with notation used
above, we write a# N∅.Id·X as a#X, a@ N∅.Id·X as a@X,

N∅.Id·X ≈α t as X ≈α t, and s ≈α N∅.Id·Y as s ≈α Y .
a#s is specified by deduction rules as follows:

a# NA.a
(#⊥)

P a# NA.b

a#s

a# NA.fs

a#s1 · · · a#sn

a# NA.(s1, . . . , sn)

a# NA.[a]s

a#s

a# NA.[b]s

π−1(a)#X

a# NA.π·X
This definition is like the one in [14] except that terms have
tags added; to calculate # we simply throw them out.

a@s is specified by deduction rules as follows:

a#X
(#@)

a@X

a@ NA.a
(@⊥) a 6∈ A

P

a ∈ A
a@ NA.s

a@s1 · · · a@sn
a 6∈ A

a@ NA.(s1, . . . , sn)

a@s
a 6∈ A

a@ NA.fs

a@s
a 6∈ A

a@ NA.[b]s
a 6∈ A

a@ NA.b

a 6∈ A
a@ NA.[a]s

π−1(a)@X
a 6∈ A

a@ NA.π·X
All rules except for (# N), (#⊥) and ( N⊥) are echoed in
algorithmic form in the next subsection.

Finally we define ≈α inductively as follows, where in all
the rules except the last s and t are terms with an empty
tag at the root (i.e. N∅.s, N∅.t).

s1 ≈α t1 · · · sn ≈α tn

(s1, . . . , sn) ≈α (t1, . . . , tn)

s ≈α t

fs ≈α ft a ≈α a

s ≈α t

[a]s ≈α [a]t

s ≈α (a b)·t a#t

[a]s ≈α [b]t

ds(π, π′)#X

π·X ≈α π′·X
N∅.s ≈α N∅.t B\A@ N∅.s A\B@ N∅.t

A ∪B 6= ∅
NA.s ≈α NB.t

We have used the difference set of two permutations:

ds(π, π′)
def
=

˘
n

˛̨
π(n) 6= π′(n)

¯
.

For example, ds((a b), Id) = {a, b}, so (using the rules
above) we can deduce (a b)·X ≈α X from assumptions a#X
and b#X and we also have as expected [a]a ≈α [b]b. Other
examples of α-equivalence are: Na.b ≈α b, and Na, b.a ≈α

Na.a, but note that Na.a 6≈α Nb.b.
Say constraints of the form a# NA.a, a#X, a@X, and

a@ NA.a with a 6∈ A, are reduced. We write ∆,∇, Γ for
sets of reduced constraints, we may call them contexts. If
there are no constraints of the form a# NA.a, and a@ NA.a
with a 6∈ A in ∆ we say it is consistent.

Call a set Pr of constraints a problem. We write ∆ ` Pr
when proofs of P exist for all P ∈ Pr, using elements of ∆ as
assumptions, and we say that ∆ entails Pr. Since the rules
above decompose syntax, an algorithm to check entailment
can be easily built using this logical presentation. We give
an operational definition of the predicates #, @ and ≈α in
the next subsection.

We now state some properties of #, @ and ≈α which are
needed later. In particular, we show that≈α is a congruence.

Lemma 3.1. If ∇ ` a#t then ∇ ` a@t.

Proof. We examine the derivation rules for @ and # and
see that a proof of a#t can be transformed rule-for-rule to a
proof of a@t. We may use (# N) to deduce a@X from some
a#X ∈ ∇.

Lemma 3.2. Suppose ∇ is a reduced context.

1. ∇ ` a#π·t if and only if ∇ ` π−1(a)#t.

2. ∇ ` a@π·t if and only if ∇ ` π−1(a)@t.

3. ∇ ` a# NA.s if and only if ∇ ` a# NB.s.

4. If ∇ ` a#t and ∇ ` t ≈α t′ then ∇ ` a#t′.

5. If ∇ ` a@t and ∇ ` t ≈α t′ then ∇ ` a@t′.

Proof. The first, second, and third parts are by routine
inductions on derivations.

The fourth part is by mostly routine induction on deriva-
tions. We use the first part for the case of N∅.[a]s ≈α N∅.[b]t,
and the third part for the case of NA.s ≈α NB.t.

The fifth part follows from the second part in a similar
way. We consider two example cases:

Suppose ∇ ` x@ NA.t and ∇ ` NA.t ≈α NA′.t′ are deriv-
able where at least one of A and A′ is nonempty. Then
∇ ` c@t′ for every c ∈ A′ \ A, and ∇ ` c@t for every
c ∈ A \ A′, and ∇ ` N∅.t ≈α N∅.t′. There are now three
cases:

• If x ∈ A′ then ∇ ` x@ NA′.t′ and we are done.

• If x ∈ A and x 6∈ A′ then ∇ ` x@t′ and so ∇ `
x@ NA′.t′ and we are done.

• If x 6∈ A and x 6∈ A′ then ∇ ` x@t and ∇ ` N∅.t ≈α

N∅.t′ and we use the inductive hypothesis.

Suppose ∇ ` x@ N∅.[a]t and ∇ ` N∅.[a]t ≈α N∅.[a′]t′.
Then ∇ ` t ≈α (a a′)·t′ and ∇ ` a#t′.

• If x ≡ a we are done.



• If x ≡ a′ we use the previous lemma to derive ∇ ` a@t′

using the derivation of ∇ ` a#t′, then extend to a
derivation of ∇ ` a@[a′]t′.

• If x 6∈ {a, a′} we use the inductive hypothesis to deduce
∇ ` x@ N∅.(a a′)·t′, the second part of this lemma to
deduce ∇ ` x@t′, and finally extend to a derivation of
∇ ` x@ N∅.[a′]t′ as required.

Lemma 3.3. For fixed ∇, ≈α is an equivalence relation
and ∇ ` s ≈α t implies ∇ ` π·s ≈α π·t.

Proof. Reflexivity is easy. For transitivity, we use in-
duction on derivations and the previous lemma for the case
of NA.[x]s ≈α NA′.[x′]s′ ≈α NA′′.[x′′]s′′. The final part is
also by induction; only the case of [a]s ≈α [b]t is in any way
non-trivial, we use the previous lemma.

Corollary 3.4. • ∆ ` s ≈α π−1·π·s′ if and only if
∆ ` s ≈α s′.

• ∆ ` s ≈α π·s′ if and only if ∆ ` π−1·s ≈α s′.

• ∆ ` ds(π, π′)#s then ∆ ` π·s ≈α π′·s.

• ∆ ` A \ A′@s and ∆ ` A′ \ A@s then ∆ ` NA.s ≈α

NA′.s.

• For fixed ∆, ≈α is a congruence. Thus, if ∆ ` t ≈α t′

then ∆ ` s[t]p ≈α s[t′]p.

Proof. The first four parts are by routine inductions us-
ing the previous results. The last part is by induction on
the syntax of s and uses the previous cases.

3.2 An algorithmic presentation
We specify simplification rules on problems by:

a# NA.b, Pr =⇒ Pr
a# NA.fs, Pr =⇒ a#s, Pr

a# NA.(l1, . . . , ln), P r =⇒ a#l1, . . . , a#ln, P r
a# NA.[b]s, Pr =⇒ a#s, Pr
a# NA.[a]s, Pr =⇒ Pr
a# NA.π·X, Pr =⇒ π−1(a)#X, Pr

a@ NA.s, Pr =⇒ Pr a ∈ A
a@ NA.b, Pr =⇒ Pr a 6∈ A

a@ NA.fs, Pr =⇒ a@s, Pr a 6∈ A
a@ NA.(l1, . . . , ln), P r =⇒ a@l1, . . . , a@ln, P r a 6∈ A

a@ NA.[b]s, Pr =⇒ a@s, Pr a 6∈ A
a@ NA.[a]s, Pr =⇒ Pr a 6∈ A
a@ NA.π·X, Pr =⇒ π−1(a)@X, Pr a 6∈ A

(l1, . . . , ln) =⇒ l1 ≈α s1, . . . ,
≈α (s1, . . . , sn), P r ln ≈α sn, P r

fl ≈α fs, Pr =⇒ l ≈α s, Pr
[a]l ≈α [a]s, Pr =⇒ l ≈α s, Pr
[b]l ≈α [a]s, Pr =⇒ (a b)·l ≈α s, a#l, P r

a ≈α a, Pr =⇒ Pr
π·X ≈α π′·X, Pr =⇒ ds(π, π′)#X, Pr
NA.s ≈α NB.t, Pr =⇒ B\A@ N∅.s, A\B@ N∅.t,

N∅.s ≈α N∅.t, P r A ∪B 6= ∅

Here, on the left commas indicate disjoint set union, on the
right they indicate possibly non-disjoint set union.

These rules define a reduction relation on problems: We
write Pr =⇒ Pr′ if Pr′ is obtained from Pr by applying

a simplification rule. We denote by
∗

=⇒ its transitive and
reflexive closure.

For example, the last rule reduces the problem { Na.a ≈α

N∅.a, N∅.a ≈α N∅.a} to {a@ N∅.a, N∅.a ≈α N∅.a}. Other
examples are:

a#(X, [a]Y )
∗

=⇒ a#X a#fa
∗

=⇒ a#a

a#((a b)·X, (b c)·Y )
∗

=⇒ b#X, a#Y

These reduction rules are derived from the deduction rules
in the last subsection, but there are differences; we omit
a rule a@X, Pr =⇒ a#X, Pr, which would correspond to
(# N), and also rules corresponding to (#⊥) and (@⊥). If
we didn’t, the important lemmas below would not hold.

Lemma 3.5. The simplification rules above are confluent
and strongly normalising (reduction order does not matter).

Proof. By Newman’s Lemma [29] we need only show ter-
mination, because there are no critical pairs. The rules form
a hierarchical system in the sense of [15], from which it fol-
lows that if the first two groups of rules are terminating and
non-duplicating (they are) and do not use in the right-hand
side any symbol defined in the third group (i.e. equality ≈α;
they do not), then if the rules defining the equality symbol
satisfy the general recursive scheme, then the whole system
is terminating. The general recursive scheme requires that
recursive calls in right-hand sides use strict subterms of the
left-hand side arguments, and this is the case.

Write 〈Pr〉nf for the unique normal form of Pr, and 〈P 〉nf

for 〈{P}〉nf, i.e. the result of simplifying it as much as possi-
ble. We will say that an equality N∅.s ≈α N∅.t is clashing
when the terms s and t have different term constructors at
the root (e.g. [a]u ≈α (v, w), X ≈α ft, a ≈α X, etc.) or
they are two different atoms (e.g. a ≈α b) or two different
variables (e.g. π·X ≈α π′·Y ), or applications with different
function symbols (e.g. ft ≈α gs).

Lemma 3.6 (Normal Forms). 〈a#s〉nf consists of re-
duced freshness constraints and 〈a@s〉nf consists of reduced
scoping constraints. 〈s ≈α t〉nf may contain any mixture of
reduced freshness constraints, reduced scoping constraints,
and clashing equalities.

Proof. Any non-reduced freshness or scoping constraint
can be simplified using the rules in the first two groups.
Similarly, a non-clashing equation can be simplified with a
rule in the third group.

Therefore 〈Pr〉nf can always be partitioned into ∆ ∪ Eq
where ∆ is a (possibly empty) context and Eq a (possibly
empty) set of clashing equalities Eq.

Lemma 3.7. Assume Pr =⇒ Pr′. Then

Γ ` Pr if and only if Γ ` Pr′.

Proof. By inspection of the rules.

Theorem 3.8. Let 〈Pr〉nf = ∆∪Eq where ∆ is a context
and Eq is a set of clashing equalities.

1. If ∆ is consistent then:
∆ ` Pr if and only if Eq = ∅.



2. ∆ ` P for all P if and only if ∆ is inconsistent.

Proof. The first part is proved by induction on the length

of the derivation Pr
∗

=⇒ 〈Pr〉nf: using Lemma 3.7, ∆ ` Pr
if and only if ∆ ` Eq. The result follows from the fact that
if s ≈α t is clashing then there is no consistent ∆ such that
∆ ` s ≈α t.

For the second part, we use the rules (#⊥) and (@⊥).

Corollary 3.9. Let Γ be a consistent context.

Γ ` Pr if and only if 〈Pr〉nf ≡ ∆ and Γ ` ∆.

Proof. Consequence of Theorem 3.8 and Lemma 3.7.

4. UNIFICATION
A unification problem Pr is a problem as previously

defined but replacing the equality constraint s ≈α t by the
unification constraint s ?≈? t. A solution to a unification
problem Pr is a pair (Γ, σ) of a consistent context and a
substitution such that Γ ` Pr′σ where Pr′ is obtained
from Pr by changing unification predicates into equality
predicates, and Pr′σ is the problem obtained by applying
the substitution σ to the terms in Pr′. If there is no con-
sistent context satisfying this property, we say that Pr is
unsolvable. We write U(Pr) for the set of unification so-
lutions to Pr.

Write ∆ ` σ ≈α σ′ when ∆ ` Xσ ≈α Xσ′ for all X.
Write Rt(s) for the tag associated to the root of s (so

Rt( Na, b.( Nc, a.U, V )) = {a, b}).
Write (Γ, σ) ≤ (Γ′, σ′) when there exists a substitution

σ′′ such that Γ′ ` Γσ′′, Γ′ ` σ ◦ σ′′ ≈α σ′ and Rt(Xσ) ⊆
Rt(Xσ′) for every X. We see that this defines a partial order
on solutions (sometimes called instantiation ordering). Say
a solution to a problem is principal when it is smaller than
or equal to all other solutions to that problem. A solution
(Γ, σ) is idempotent when Γ ` σ ◦ σ ≈α σ.

We will show below that every solvable unification prob-
lem has a principal idempotent solution, and give an algo-
rithm to find it.

The simplification rules given in the previous section can
be adapted to solve unification problems: we need to add
instantiating rules, labelled with substitutions.

N∅.π·Y ?≈? N∅.s, Pr
Y 7→π−1·s

=⇒ Pr[Y 7→π−1·s] (Y 6∈ s)

N∅.l ?≈? N∅.π·X, Pr
X 7→π−1·l

=⇒ Pr[X 7→π−1·l] (X 6∈ l)

The conditions in the rules are usually called occurs check.
Note that we do not intend to solve apartness or scope

constraints. Indeed, to solve apartness and scope constraints
we need instantiating rules for these predicates too. Instead,
we will solve the equalities in a problem, and require that
the solution satisfy the apartness and scope constraints in
the problem. This is what we need in rewriting.

We will use the set of simplification rules given in the
previous section (where we replace ≈α by ?≈?), together
with the instantiation rules, as a unification algorithm.

Lemma 4.1. The unification rules are confluent and strongly
normalising.

Proof. Standard: at each step either the number of un-
solved variables X in the problem decreases, or a non-reduced
constraint simplifies towards reduced constraints.

To solve a problem Pr, we will apply the rules until we
obtain an irreducible problem. We write 〈Pr〉sol = (Pr′, σ)
if Pr′ is the (unique) normal form of Pr using the unification
rules, and σ is obtained by concatenating the labels in some
reduction sequence from Pr to Pr′. We can characterise the
normal form Pr′ of Pr under the unification rules:

Lemma 4.2 (Unification Normal Forms). 〈a#s〉sol con-
sists of reduced freshness constraints and 〈a@s〉sol consists
of reduced scoping constraints. 〈s ?≈? t〉sol may contain
any mixture of reduced freshness constraints, reduced scop-
ing constraints, and clashing equalities such that if one side
is a variable the other side contains this variable.

Proof. Similar to Lemma 3.6: Any non-reduced fresh-
ness or scoping constraint or non-clashing equality can be
simplified as previously. Clashing equalities of the form
π·X ?≈? t or t ?≈? π·X where X 6∈ V (t) can be reduced
using an instantiation rule.

Therefore we can decompose 〈Pr〉sol as a triple (∆, Eq, σ)
where ∆ is a context, Eq a set of equations, and σ a substi-
tution.

We will show that the unification algorithm correctly checks
whether a problem is solvable or not, and moreover it com-
putes a principal, idempotent solution, if one exists. In the
proof we will use the following lemmas:

Lemma 4.3. 1. Let Eq be a non-empty set of unifica-
tion constraints in normal form. Then Eq has no so-
lution.

2. Let ∆ be an inconsistent context. Then ∆ has no so-
lution.

Proof. By Lemma 4.2, the equalities in Eq are clashing
or fail the occur check. Since no consistent context can entail
an instance of such an equality, Eq is not solvable.

The second part is directly by definition of solution, and
the fact that from a consistent context we cannot derive an
inconsistent one.

Lemma 4.4. (π·t)σ ≡ π·(tσ).

Proof. π acts top-down and accumulates on moderated
variables. σ acts bottom up on the variable symbols in the
moderated variables. The two operations commute. A for-
mal proof is easy by induction on syntax.

Lemma 4.5. If ∆ ` (π·X)σ ≈α tσ then ∆ ` [X 7→π−1·t] ◦
σ ≈α σ.

Similarly, if ∆ ` sσ ≈α (π·Y )σ then ∆ ` [Y 7→π−1·s] ◦
σ ≈α σ.

Proof. Suppose ∆ ` (π·X)σ ≈α tσ and write σ′ for
[X 7→π−1·t] ◦ σ. We simplify Xσ′ up to ≈α in the context
∆;

Xσ′ ≈α (π−1·t)σ ≈α π−1·(tσ)

≈α π−1·((π·X)σ) ≈α π−1 ◦ π·(Xσ) ≈α Xσ.

(We make heavy use of the previous lemma to rearrange the
brackets.) The second part is similar.

Lemma 4.6 (Preservation of solutions). Assume

Pr
θ

=⇒ Pr′.



1. If (Γ, σ) ∈ U(Pr) then (Γ, σ) ∈ U(Pr′) and Γ ` θ ◦
σ ≈α σ.

2. If (Γ, σ) ∈ U(Pr′) then (Γ, θ ◦ σ) ∈ U(Pr).

Proof. The first part follows from the previous lemma.
For the second part, suppose Γ ` Pr′σ and suppose θ =

[X 7→π−1·s] so that ({s ≈α s} ∪ Pr′) = Pr[X 7→π−1s]. It is
easy to verify that Γ ` s ≈α s, so Γ ` Pr(θ ◦ σ).

Corollary 4.7. Let Pr be a unification problem, and
〈Pr〉sol = (∆, Eq, σ).
U(Pr) 6= ∅ if and only if ∆ is a consistent context and

Eq = ∅.

Proof. By induction on the length of the derivation Pr
∗

=⇒
〈Pr〉sol. We use Lemma 4.3 and Lemma 4.6 part 1 for the
“only if”, and Lemma 4.6 part 2 for the “if”.

Lemma 4.8. If 〈Prσ〉nf = ∆ then 〈Pr〉nf = Pr′ and
〈Pr′σ〉nf = ∆ for some Pr′.

If 〈Pr〉sol = (∆, ∅, σ) then 〈Prσ〉nf = ∆.

Proof. The first part is a consequence of the confluence
of =⇒.

The second part can be proved by induction on the deriva-

tion Pr
∗

=⇒ 〈Pr〉sol. A step π·X ?≈? t, Pr
X 7→π−1·t

=⇒ Pr[X 7→π−1·t]
is replaced by t ≈α t, Pr[X 7→π−1·t] ∗

=⇒ Pr[X 7→π−1·t].

Theorem 4.9 (Principality). Let Pr be a unification
problem, and 〈Pr〉sol = (∆, ∅, σ) such that ∆ is a consistent
context.

1. (∆, σ) ∈ U(Pr), and

2. if (Γ, σ′) ∈ U(Pr) then (∆, σ) ≤ (Γ, σ′).

Proof. For the first part, note that (∆, Id) ∈ U(∆) if ∆
is a consistent context. Hence by Lemma 4.6 (and induction)
(∆, σ) ∈ U(Pr).

For the second part, if (Γ, σ′) ∈ U(Pr) then:

• Γ ` σ◦σ′ ≈α σ′, by Lemma 4.6 part 1 (and induction).
Note in particular that Γ ` σ ◦ σ ≈α σ, that is, σ is
idempotent.

• Γ ` Prσ′ by definition of solution, and Γ ` 〈Prσ′〉nf by
Corollary 3.9. Also, Γ ` 〈Prσ′〉nf ≈α 〈Pr(σ ◦ σ′)〉nf =
〈(Prσ)σ′〉nf, and by Lemma 4.8 part 2, 〈Prσ〉nf = ∆.
Therefore, by Lemma 4.8 part 1, 〈∆σ′〉nf = 〈(Prσ)σ′〉nf,
and we get Γ ` 〈∆σ′〉nf. Hence Γ ` ∆σ′ by Corol-
lary 3.9.

• Finally, Rt(Xσ) ⊆ Rt(Xσ′) for every X since σ is
created by the instantiation rules with empty tags.

Therefore (∆, σ) is a principal and idempotent solution.

5. REWRITING

5.1 Matching problems
Given terms-in-context∇ ` l and ∆ ` s such that V (∇, l)∩

V (∆, s) = ∅, a matching problem between them is the
pair (∇ ` l, ∆ ` s). We write it (∇ ` l) ?≈ (∆ ` s). The
solution to this matching problem, if it exists, is a pair
(∆′, θ) which is a principal solution in the sense of the last
section to the unification problem ∇, l ?≈? s, such that

• Xθ ≡ X for X ∈ V (∆, s) and

• ∆ ` ∆′, lθ ≈α s is derivable.

• ∆ ` ∇θ is derivable.

The first condition ensures that our solution is a matching.
The second condition controls when l matches with s. The
third condition controls when the conditions ∇ are satisfied.
When this third condition is satisfied we say the matching
is triggered. (Soon, ∇ ` l will be the left-hand of a rewrite
rule ∇ ` l → r, and then we say the rule is triggered.)

For example: (` Na.a) ?≈ (` Nb.b) has no solution; (`
Nb.b) ?≈ (` Nb.b) has a solution θ = Id; and (` Na, b.X ′) ?≈

(` Nb, a.X) has solution θ = [X ′ 7→X]. All of the following
problems have solution (a@X, [X ′ 7→X]):

(` Na.X ′) ?≈ (a#X`X)

(`X ′) ?≈ (a#X` Na.X) (`X ′) ?≈ (a@X` Na.X)

See [14] for more examples.

5.2 Rewrite rules
A(n extended) rewrite rule R ≡ ∇ ` l → r is a tuple of a

consistent context ∇, and extended terms l and r such that
V (r,∇) ⊆ V (l).

Suppose R = ∇ ` l → r is a rewrite rule, s and t are
terms, and ∆ is a context. We say s rewrites with R to t

in the context ∆, and we write ∆ ` s
R→ t when:

1. V (R) ∩ V (∆, s) = ∅ (we can assume this with no loss
of generality).

2. There exists a position (p, A) in s and a matching so-
lution (∆′, θ) to (∇ ` l) ?≈ (∆ ` s|p,A).

3. ∆ ` s[rθ]p,A ≈α t.

This is essentially the same definition as for (unextended)
nominal rewriting [14], modulo slight changes to account for
the tags.

Write R(a b) for that rule obtained by swapping a and b
in R throughout. For example, if R ≡ b@X ` [a]X →

Nb.(a b)·X then R(a b) ≡ a@X ` [b]X → Na.(b a)·X. Say a
set of rewrite rules is equivariant when it is closed under
∗(a b) for all atoms a and b.

A rewrite system R is an equivariant set of rewrite rules.
A set of rewrites gives rise naturally to a rewrite system by
closing under equivariance. We shall elide this step, say-
ing ‘R has the rewrite blah’ to mean ‘the rewrite system
obtained by closing R under equivariance has the rewrite
blah’. This usage is established [14].

We now consider some simple examples, and give appli-
cations of extended nominal rewriting in the following sub-
section.

• The rewrite system a → a has the rewrites n → n for
any n. This is because of equivariance: if a → a ∈ R
then so is n → n for any n.

It also has the rewrite Na.a → Na.a, using position
(ε, {a}).

• The rewrite system a → Na.a has the rewrites a →
Na.a and also Na.a → Na.a.

• The rewrite system [a]X → Na.X has the rewrite
[a]X → Na.X. It also has the rewrite b#X ` [a]X →

Nb.(b a)·X. This is because b#X ` [a]X ≈α [b](b a)·X.



The following is an important correctness result:

Theorem 5.1. If ∆ ` s
R→ t then ∆ ` C[s]

R→ C[t].

Proof. By unpacking the definition of rewriting.

5.3 Applications

Modelling name generation in theπ-calculus.
A reaction system for an asynchronous π-calculus is given

by the signature

in,out,par, rep, ν

and the following rewrite rules, where we abbreviate par(s, t)
as (s | t), in(a, [c]t) as a[c].t, out(a, b) as ab and rep(t) as !t
to get the standard π-calculus notation. We assume par is
associative and commutative, and work modulo a structural
congruence as usual; the details are omitted since they are
not relevant to this paper.

ab | a[c].Y → Y {c 7→b} ν[c]X → Nc.X !X →!X | X
a#P ` P | ( Na.Q) → Na.(P | Q).

Here {c 7→b} is an explicit substitution with reactions includ-
ing (X | Y ){c 7→b} → X{c7→b} | Y {c 7→b} and (ν[a]X){c 7→b} →
ν[a](X{c 7→b}).

Call the last rule the scope extrusion rule, the first
rule the reaction rule, and the second rule the name-
generation rule. Let us consider the name-generation and
scope extrusion rules and demonstrate in the context of ex-
tended nominal rewriting why they have these names.

Note that c is abstracted in ν[c]X. Nominal rewriting,
including the extension in this paper, works on terms up to
provable α-equivalence; thus if ∆ ` ν[c]R → Nc.R is a valid
rewrite and ∆ ` d#R is deducible, then ∆ ` ν[d](d c)·R →

Nd.(d c)·R is a valid rewrite. Thus, the name-generation
rule ‘generates a fresh d’. Ndefines the scope of d and the
scope extrusion rule allows us to extend it.

The fly in our ointment is that the scope extrusion rules
do not allow renaming a scoped name (d, for example) to a
‘fresher’ d′ such that, say, d′#P is provable where d#P was
not. This is known as name-clash and it is ‘unfair’ since
we could always have chosen d′ originally.

We can add a freshening rewrite rule

F ≡ b#P ` Na.P → Nb.(b a)·P (1)

to allow post-factum renaming. A weaker alternative is to
strengthen the scope extrusion rules:

b#P, Q ` P | ( Na.Q) → Nb.(P | (b a)·Q)

(‘Weaker’, because we get rewrites of the transitive closure
of F with the original scope extrusion rules, but not quite
all of them.)

Name generation in Pitts and Starks’sν-calculus.
A reaction system for Pitts and Starks’s ν-calculus [32] is

(λ[a]X)Y → X{a7→Y } ν[a]X → Na.X.

Again, {a7→Y } is an explicit substitution. Reaction rules in-
clude a#Y ` (λ[a]X){b 7→Y } → λ[a](X{b 7→Y }) and a#Y `
(ν[a]X){b 7→Y } → ν[a](X{b 7→Y }).

As in the implementation of the π-calculus above we have
faithfully modelled abstraction in the syntax by abstraction

in the rewrite system; for example a is abstracted in λ[a]s
and ν[a]s. We consider alternatives in the Conclusions.

Rewriting is a little too weak in its treatment of scoped
atoms, because they cannot be renamed to avoid name-
clash. Accordingly, we shall base our theory of confluence on
rewriting in the presence of rule F from (1). We shall see
this rule has a non-trivial and delicate interaction with the
definitions we have set up so far, giving us precisely what
we want.

6. CONFLUENCE

6.1 Uniform rewrite rules
We shall give a well-behavedness condition on rewrite rules

which we call uniformity, but first we prove properties of
` which give uniformity its power.

Lemma 6.1. • If ∆ ` Pr and ∆, 〈Pr〉nf ` Pr′ then
∆ ` Pr′.

• If ∆, 〈a#s〉nf ` a#t then ∆, 〈a#C[s]〉nf ` a#C[t].
Similarly for @.

• If ∇ ` a#l then 〈∇σ〉nf ` a#lσ. Similarly for @.

Proof. • By Corollary 3.9, if ∆ ` Pr then ∆ `
〈Pr〉nf. We modify the deduction of ∆, 〈Pr〉nf ` Pr′ to
replace any use of assumptions in 〈Pr〉nf with a (part
of) the deduction of ∆ ` 〈Pr〉nf.

• We work by induction on C, write X for the ‘hole’ in C.
We consider three interesting representative cases. If
C ≡ a then 〈a#C[s]〉nf is a#a and ∆, 〈a#a〉nf ` a#a
trivially. If C ≡ (a, X) then a#a ∈ 〈a#C[s]〉nf so
∆, 〈a#C[s]〉nf ` 〈a#C[t]〉nf by (#⊥). If C ≡ [a]X
then ` a#C[t] is easily derivable.

• By induction on s using the highly syntax-directed na-
ture of the deduction rules, and using the first part.

Part 1 of the lemma above is a very thinly disguised Cut.
Part 2 is, we think, rather striking. Part 3 is perhaps less
surprising.

Say a rule R ≡ ∇ ` l → r is uniform when ∇, 〈a@l〉nf `
a@r for all a. Examples of uniform rules are:

[a]X → Na.X a#X ` Na.X → X a@X ` Na.X → X

a → a a → Nb.b

For example consider a → a. c@a ` c@a for all c 6≡ a, and
a@a ` a@a by (@⊥). Consider a → Nb.b. x@a ` x@ Nb.b is
provable for x ≡ a by (@⊥), for x ≡ b, and for x 6∈ {a, b}.
Examples of rules that are not uniform are:

[a]X → X Na.X → X a → b

If (1) R is an equivariant set of uniform rewrite rules and
(2) F ∈ R then call R uniform. Henceforth, fix some
uniform set of rewrite rules.

Lemma 6.2. If ∆ ` s → t then ∆, 〈a@s〉nf ` a@t and
∆, 〈a#s〉nf ` a@t for all a.



Proof. If ∆ ` s → t then for some R ≡ ∇ ` l → r ∈ R
there is some position (p, A) in s and substitution σ such
that ∆ ` ∇σ and ∆ ` s|p,A ≈α lσ.

By the definition of uniformity, ∇, 〈a@l〉nf ` a@r. By the
first and third parts of Lemma 6.1, ∆, 〈a@lσ〉nf ` a@rσ. By
the second part of that same result, ∆, 〈a@s〉nf ` a@t. We
use similar reasoning to deduce ∆, 〈a#s〉nf ` a@t, only we
use the first part of that lemma again, and Lemma 3.1.

In fact, we can prove something rather stronger, if we as-
sume the context can allow us to deduce enough freshness
information. Say ∆ has enough fresh atoms with respect
to some finite set of atoms A and finite set of unknowns V
when there exists a set of atoms A′ with at least as many
elements as A such that A∩A′ = ∅ and ∆ ` a′#X for every
a′ ∈ A′ and X ∈ V .

Lemma 6.3. If ∆ ` s → t then there is a t′ such that

∆ ` s → t
F→∗ t′, ∆, 〈a@s〉nf ` a#t′ and ∆, 〈a#s〉nf ` a#t′

for all a ∈ s, provided that ∆ has enough fresh atoms with
respect to the atoms and variables in s, t.

Proof. As for the last lemma but using rule F to freshen
atoms as illustrated in the example below.

For example, using the notation of this lemma: consider
a uniform rewrite system with the trivial rewrite rule ∅ `
X → X (which is uniform). If s ≡ Na.X and ∆ ≡ b#X
(which has enough fresh atoms for a and X, namely b) then
t = Na.X and t′ = Nb.(b a)·X.

Henceforth we suppose ∆ provides us with all the fresh
atoms we need. In the case of finite terms and finite se-
quences of rewrites, if we run out we can always try again
with a larger ∆.

6.2 Critical Pairs
Fix a rewrite system R. Write ∆ ` s → t1, t2 for the

appropriate pair of rewrite judgements. Call a valid pair
∆ ` s → t1, t2 a peak. Suppose

1. Ri = ∇i ` li → ri for i = 1, 2 are copies of two rules
in R such that V (R1) ∩ V (R2) = ∅ (R1 and R2 could
be copies of the same rule).

2. (p, A) is a position in l1.

3. l1|p,A ?≈? l2 has solution (Γ, θ) so Γ ` l1|p,Aθ ≈α l2θ.

4. 〈∇iθ〉nf is consistent for i = 1, 2; write ∇′
i respectively.

Then call the pair of terms-in-context

∇′
1,∇′

2, Γ ` (r1θ, l1[r2θ]p,A)

a critical pair. If (p, A) = (ε, ∅) and R1, R2 are copies of
the same rule, or if (p, A) is the position of a variable in l1
then we say the critical pair is trivial.

The condition 〈∇iθ〉nf be consistent is important. b#X `
f(X) → X and ` f(b) → c do not generate a peak; f(X) ?≈?

f(b) does have a solution (∅, [X 7→b]), but 〈b#f(b)〉nf = {b#b}
is not consistent.

Say a uniform nominal rewrite system R is locally con-
fluent when if ∆ ` s → t and ∆ ` s → t′, then u exists
such that ∆ ` t →∗ u and ∆ ` t′ →∗ u. We say such a peak
is joinable.

Say a uniform nominal rewrite system is confluent when
if ∆ ` s →∗ t and ∆ ` s →∗ t′, then u exists such that
∆ ` t →∗ u and ∆ ` t′ →∗ u.

Trivial critical pairs are not necessarily joinable in NRSs.
For instance with rules

b#X ` (X, b) → c and f(a) → b

the trivial critical pair (c, (b, b)) obtained by unifying f(a)
with b#X ` X is not joinable. We obtain exactly the same
phenomenon with the condition b@X replacing b#X in this
example.

The following result is the reason we consider uniform
rules and use rule F from (1):

Lemma 6.4. In a uniform rewrite system trivial critical
pairs are joinable.

Proof. Suppose there is a trivial critical pair

∇′
1,∇′

2, Γ ` (r1θ, l1[r2θ]p,A)

between rules Ri = ∇i ` li → ri for i = 1, 2, where (p, a) is
the position of a variable in l1.

The only reason we might not be able to apply R1 in
l1[r2θ]p,A is if some freshness or scope condition in ∇1 is
unsatisfiable after R2, which was satisfiable before R2. For
uniform rules, Lemma 6.3 guarantees that this cannot hap-
pen (up to rule F ): we can always rewrite r2θ using F and
then apply R1. Therefore the critical pair is joinable.

This is the reason we are interested in critical pairs:

Theorem 6.5 (Critical Pair Lemma). If all nontriv-
ial critical pairs of a uniform nominal rewrite system are
joinable, then it is locally confluent.

Proof. Suppose ∆ ` s → t1 and ∆ ` s → t2 is a peak
(and as usual assume the context has enough fresh atoms).
Then:

1. There exist Ri = ∇i ` li → ri and positions pi, Ai in
s, for i = 1, 2.

2. There exist solutions σi to (∇ ` (s[li]pi,Ai , s[ri]pi,Ai)) ?≈
(∆ ` (s, ti)) for i = 1, 2.

Now there are two possibilities:

1. p1 and p2 are in separate subtrees. Local confluence
holds by a standard diagrammatic argument taken from
the first-order case [2]. We need Corollary 3.4 to ac-
count for the weaker notion of equality.

2. p1 is a prefix of p2 or vice versa, we consider only the
first possibility. Suppose that p1 = ε, the general case
follows using Corollary 3.4.

There are two possibilities: Either this is a non-trivial
critical pair, joinable by assumption, or it is a trivial
critical pair, we use Lemma 6.4

In fact, we need to study rule F a little more closely, to
deal with two problems, before tying up the results with the
Corollary below.

We call a critical pair F -trivial if it is either trivial in the
sense defined above, or if at least one of the rewrites is F .

Problem 1. Rule F has (F -trivial) critical pairs with any
rule ∇ ` l → r in which l mentions tags, simply because
F can freshen them. Solution. The following lemma implies
that F -trivial critical pairs are always joinable:



Lemma 6.6. If ∆ ` s
F→ s′ then ∆ ` s′

F→ s (rule F is
reversible).

Proof. By calculations involving the following easily-
verified technical fact b#s ` (a b)·(b c)·s ≈α (a c)·s.

So we can strengthen the critical pair lemma to only check
joinability of critical pairs that are not F -trivial. We may
be lax and just say ‘trivial’ and ‘nontrivial’ for ‘F -trivial’
and ‘not F -trivial’, e.g. in the corollary below.

Problem 2. R is necessarily nonterminating because F can
be applied to any term with a tag, forever (given enough
fresh atoms). Solution. R gives rise to an F ∗-abstract
rewrite system obtained from R but counting one or more
instances of F in sequence as one F ∗-abstract rewrite (we

count
F→∗ as a single ‘abstract’ rewrite step). Say R is ter-

minating up to F ∗ when its F ∗-abstract rewrite relation is
terminating. By Newman’s Lemma [29] we can deduce con-
fluence of a locally confluent and F ∗-terminating uniform
rewrite system. We may be lax and write ‘terminating’
for F ∗-terminating.

Corollary 6.7. Fix a uniform nominal rewrite system.

1. If nontrivial critical pairs are joinable then it is locally
confluent.

2. If it is in addition terminating then it is confluent, and
every term has a unique normal form modulo ≈α and
rewrites with F .

This result holds of rewrite systems in the previous sense
[14], which are the special case of the system here without

N.

6.3 Orthogonal Systems
We now treat a standard confluence criterion in rewriting

theory [13, 23] (see also [24, 27]).
Say a rule R ≡ ∆ ` l → r is left-linear when each vari-

able occuring in l occurs only once. For example, a#X, b#X `
X → (X, X) is left-linear but ` (X, X) → X is not.

We say a uniform, nominal rewrite system with only left-
linear rules and no non-trivial critical pairs is orthogonal.

Theorem 6.8. An orthogonal uniform nominal rewrite
system is confluent.

The proof occupies the rest of this section. Henceforth, we
only consider uniform rewriting.

We define a parallel reduction relation as follows:

∆ ` s
F→∗ t

(refl)
∆ ` s⇒ t

∆ ` (si ⇒ ti)1≤i≤n
(tup)

∆ ` (s1, . . . , sn)⇒ (t1, . . . , tn)

∆ ` (si ⇒ ti)1≤i≤n ∆ ` (t1, . . . , tn)
Rε→ F→∗ u

(tup’)
∆ ` (s1, . . . , sn)⇒ u

∆ ` s⇒ t
(abs)

∆ ` [a]s⇒ [a]t

∆ ` s⇒ t ∆ ` [a]t
Rε→ F→∗ u

(abs’)
∆ ` [a]s⇒ u

∆ ` NA.s
Fε→∗ NA′.s′ ∆ ` s′ ⇒ t′ ∆ ` NA′.t′

Fε→∗ NB.t
(new)

∆ ` NA.s⇒ NB.t

∆ ` NA.s
Fε→∗ NA′.s′ ∆ ` s′ ⇒ t′ ∆ ` NA′.t′

Fε→∗Rε→ F→∗ u
(new’)

∆ ` NA.s⇒ u

∆ ` s⇒ t
(fun)

∆ ` fs⇒ ft

∆ ` s⇒ t ∆ ` ft
Rε→ F→∗ u

(fun’)
∆ ` fs⇒ u

We have used some new notation: ∆ ` s
Rε→ t means ‘s

rewrites to t using R at position ε, ∅’. In the case of rule F ,

∆ ` s
Fε→ t means s rewrites to t using F at position ε, A,

for some A.
In Lemma 6.11 we say an instance of (tup’), (abs’), (new’),

or (fun’) is for R when it uses that rule.

Lemma 6.9.
F→∗⇒ F→∗⊆⇒.

Proof. By induction on the derivation of ⇒. The inter-
esting cases are (new) and (new’); we use the technical fact
from the proof of Lemma 6.6.

In a proof we are about to give, we shall have obtained t
and u such that t ⇒ u, and we shall say that we assume the
atoms in u are ‘sufficiently fresh for blah ’. We mean that
we choose a ⇒ rewrite such that atoms in u are chosen fresh
enough not to clash with certain background assumptions
in that proof.

Lemma 6.10. If ∆ ` s → t then ∆ ` s ⇒ t, and if
∆ ` s ⇒ t then ∆ ` s →∗ t. As a corollary, ∆ ` s ⇒ t if

and only if ∆ ` s
R→∗ t.

Proof. By induction on the position of the rewrite, and
by induction on the derivation of ⇒.

Lemma 6.11. If the system is uniform and orthogonal then
⇒ is strongly confluent: if ∆ ` s ⇒ t and ∆ ` s ⇒ t′, then
there exists some u such that ∆ ` t ⇒ u and ∆ ` t′ ⇒ u.
Hence ⇒ is confluent.

Proof. By induction on the derivation of ∆ ` s ⇒ t.
We consider one case. Suppose the derivation ends in (tup).
By the syntax-driven nature of deduction there are three
possibilities for the last rule in the derivation of ∆ ` s ⇒ t′:
(tup), (tup’), and (refl):

(1) If ∆ ` s ⇒ t′ has a derivation ending in (tup) then
the inductive hypothesis for ∆ ` si ⇒ ti and ∆ ` si ⇒ t′i
give us ui such that ∆ ` ti ⇒ ui and ∆ ` t′i ⇒ ui. We use
(tup) and are done.

(2) If ∆ ` s ⇒ t′ has a derivation ending in (tup’) for
R ≡ ∇ ` l → r, that is ∆ ` s ⇒ (t′1, . . . , t

′
n) and ∆ `

(t′1, . . . , t
′
n)

Rε→ F→∗ t′, then θ exits such that

∆ ` ∇θ, (t′1, . . . , t
′
n) ≈α lθ, rθ

F→∗ t′.

We now proceed as illustrated and explained below:

(s1, . . . , sn) +3

��

(t′1, . . . , t
′
n) ≈α

��

lθ
Rε // rθ

F ∗// t′

��
(t1, . . . , tn) +3 (u1, . . . , un) ≈α lθ′

Rε // rθ′

We apply the inductive hypothesis to close ∆ ` ti, t
′
i ⇒ ui,

using Lemma 6.9 (
F→∗⇒ F→∗⊆⇒) to ensure the tags in ui are

sufficiently fresh that Lemma 6.10 (→∗=⇒) and Lemma 6.3
can be used to deduce of ui all freshness and locality as-
sumptions deducible of t′i.

Since rules are left-linear R still applies: ∆ ` (u1, . . . , un)
Rε→

rθ′ and ∆ ` (t1, . . . , tn) ⇒ rθ′ by (tup) for R (for some sub-
stitution θ′). Finally, we use orthogonality, Lemma 6.9, and
Lemma 6.6 (F is reversible) to close with a rewrite t′ ⇒ rθ′.

(3) If ∆ ` s ⇒ t′ is derived using (refl) then trivially
s ≡ t′ and ∆ ` t′ ⇒ t using the same rules as were used to
derive ∆ ` s ⇒ t, and ∆ ` t ⇒ t is derivable using (refl).



The other cases are similar; the case of (new) and (new’)
uses the lemma below.

We now come back to our theorem:

Proof. If the uniform rewrite system has only left-linear
rules and no non-trivial critical pairs, then ⇒ is confluent
by Lemma 6.11. Since →∗⊆⇒ and →⊆→∗ by Lemma 6.10,
→ is confluent.

7. EXTENSIONS: CLOSED, AND IS-IN
We will now show that, thanks to the use of contexts,

the framework of nominal rewriting can be easily adapted
to express strategies of rewriting. As an example, we will
show how to define in this framework the system λca of
closed reduction for the λ-calculus [16]. λca-terms are λ-
terms with explicit constructs for substitutions, copying and
erasing. Reduction on λca is defined in [16] using a set
of conditional rule schemes, shown in Table 1, where x, y, z
denote variables, and t, u, v denote terms.

Table 1: λca-reduction

Name Reduction Condition
Beta (λx.t)v →ca t[v/x] FV (v) = ∅
Var x[v/x] →ca v
App1 (tu)[v/x] →ca (t[v/x])u x ∈ FV (t)
App2 (tu)[v/x] →ca t(u[v/x]) x ∈ FV (u)
Lam (λy.t)[v/x] →ca λy.t[v/x]
Copy1 (δy,z

x .t)[v/x] →ca t[v/y][v/z]
Copy2 (δy,z

x′ .t)[v/x] →ca δy,z
x′ .t[v/x]

Erase1 (εx.t)[v/x] →ca t
Erase2 (εx′ .t)[v/x] →ca εx′ .t[v/x]

We can formally define λca using a nominal rewriting sys-
tem, where we add two new kinds of constraints: •t (read t
is closed), with the intended meaning “a#t for every atom
a”, and a ∈ t (read a is unabstracted in t), the negation
of a#t.

We extend the deduction and simplification rules from
section 3 respectively with:

(∆ ` a#t)a∈S
(•R) A(t, ∆) ( S

∆ ` •t
•t, Pr =⇒ {a#t}a∈Pr,t, a

′#t, Pr

Here S is any set of atoms strictly containing the atoms in t
and ∆. In effect we need A(t, ∆) and one fresh atom; if ∆ `
a#t for a 6∈ A(t, ∆) a renaming argument gives ∆ ` b#t for
all other b 6∈ A(t, ∆). This is reflected in the simplification
rule, which is more algorithmic and chooses one fresh atom.
•t is intuitively ∀a. a#t. The rule for closure •t is slightly

different from the usual predicate logic rule for ∀ because
atoms behave here as constants and not variables. With
that in mind the definitions are quite natural.

We can extend the deductions with rules including

a ∈ ti

a ∈ (t1, . . . , tn) a ∈ a

a ∈ t

a ∈ Na.t

and similarly extend the simplification rules. We can extend
contexts with these new constraints and use them in ∇s of
rewrite rules ∇ ` l → r to control triggering.

A closed reduction strategy can be specified, this time as
a finite nominal rewrite system (we only show rules Beta,
App1 and App2):

Beta •V ` (λ[x]T )V →ca T [V/x]
App1 x ∈ T ` (TU)[V/x] →ca (T [V/x])U
App2 x ∈ U ` (TU)[V/x] →ca T (U [V/x])

8. CONCLUSIONS AND FUTURE WORK
The technical foundations of this work are derived from

work on nominal logic [31] and nominal unification [36].
Nominal rewriting was presented in [14]. Here we extended
nominal terms and the nominal unification algorithm with
a new construct to model scope of names. We also showed
that the nominal rewriting framework can be easily adapted
to model reduction strategies: the context used to trigger
rules allows us to express in a natural way constraints in the
application of the rules.

There is interest in extending Structural Operational Se-
mantics with abstraction and name-generation and Nominal
Rewriting could provide (yet another!) forum for it. The au-
thors have considered efficient implementation of N; there is
no space here (we treated orthogonality instead) but the is-
sue needs to be addressed for implementability. We have
shown how rewriting can be extended with contexts (in the
case of this paper, #, ∈, and •; other constraints can be
added to model other domains) and annotations on terms
( NA), and we have shown how to retain classic properties of
first-order rewriting (in this case, critical pairs and orthog-
onal rewriting results). We can encode useful structure in
rules (name abstraction and generation, and rewrite strate-
gies). It should be possible to consider different extensions,
using the same idea of rewriting-in-context.

Abstraction vs. N.
In conclusion we would like to ask: What are the prop-

erties of name-abstraction versus those of name-generation?
The theory of≈α for name-abstraction is generated by a#[a]X
and a#X, b#X ` X ≈α (a b)·X. The theory of ≈α for
name-generation is generated by a@ Na.X and a#X ` X ≈α

Na.X. (This statement could easily be made formal.)
It is certainly not the case that a#X ` X ≈α [a]X. It is

also not the case that a@X, b@X ` X ≈α (a b)·X. (Though
rule F gives us something similar, by allowing us to rename
tagged atoms.) So abstraction and name-generation are dif-
ferent. How do they interact in our system?

Nand abstraction are independent in that neither depends
on the other for its construction. They coexist in our sys-
tem with quite subtle interactions. The relevant results are:
# implies @ by Lemma 3.1, which comes down to a deduc-
tion rule (#@). @ implies # indirectly through Lemma 6.3,
which comes down to a rewrite rule F .

Indeed equality itself is rather subtle; it is constructed in
layers starting with ≡, syntactic identity an intrinsic prop-
erty of terms, then ≈α defined using a context and handling
abstraction [a]s, and finally rule F which is built into the
rewriting and deals with N(as we see from Lemma 6.3 and
the final parts of §6.2 and §6.3). Finding these different lay-
ers, and understanding their interactions, were the authors’
principal technical difficulties designing the system.

Can Nmodel abstraction, or vice versa? Abstraction can-
not directly model N, because Ndoes not abstract and of
course abstraction does. The converse does not hold, since



Nwith α-renaming rules could model the abstraction part
of abstraction, but we still have a@X ` X ≈α Na.X, which
abstraction should not satisfy.

Recall our reaction systems for the π-calculus and the
ν-calculus from §5.2. We used abstraction to model the
π-calculus term νa. P as ν[a]P because the a is normally
considered α-convertible in the π-calculus literature. But in
fact we could have used Ndirectly and saved ourselves the
rewrite ν[a]X → Na.X:

ab | a[c].Y → Y {c7→b} !X →!X | X
a#P ` P | ( Na.Q) → Na.(P | Q)

a#Q ` ( Na.P ) | Q → Na.(P | Q).

We cannot model the λ-calculus ‘abstract a in t’ as λ Na.t,
since λ Na.b ≈α λb is provable. We can model νa. t in the
ν-calculus with Nas ν Na.t, the reaction is (λ[a]X)Y →
X{a7→Y }.
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