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1 Equivariance reasoning

FM techniques are a methodology of thinking about syntax and in particular about syntax with binding.
They take their name from the original FM (Fraenkel-Mostowski) theory of sets presented in my thesis [4].
For this document we use a different way of presenting FM techniques based on the idea of a Nominal
Set, which is a set equipped with certain algebraic properties (just as a group, ring, or field, is a set
equipped with certain properties), see Definition 1.2. First we need background machinery:

Definition 1.1. Fix a countably infinite set of atoms A. Write typical elements a, b, c, . . . ∈ A. For
a, b ∈ A write (a b) for the function A → A such that a 7→ b and b 7→ a and n 7→ n for all other atoms
n 6= a, b. This is a bijection with inverse itself, write PA for the group generated by (a b) for all a, b ∈ A
under functional composition ◦. Write typical elements π, π′ ∈ PA and Id ∈ PA for the identity.

Definition 1.2. A Nominal Set is a pair 〈X, · 〉 of an underlying set X and permutation action
· (written infix) of type PA ×X → X and satisfying the usual axioms, namely π · (π′ · x) = π ◦π′ · x and
Id · x = x. The permutation action also satisfies a finiteness condition omitted here.1

The point is that finite labelled trees, and hence the standard model of syntax but also a natural
model of proofs as trees, are Nominal Sets: the permutation action is given pointwise by the action on
the labels. Thus for example natural numbers N satisfy a trivial permutation action given by π · n = n
always. A datatype of trees for terms of the λ-calculus (using A as variable names)

Λ ∼= A + Λ× Λ + A × Λ (1)

is also a Nominal Set with the permutation action given pointwise by the action on the atoms labelling the
tree. Furthermore we can represent a theory of α-equivalence on these terms as a subset of “well-formed”
trees in the inductively defined set

T ∼= A + T × T + A × T × T, (2)

namely those inductively constructed using the rules

a =α a (Var)
t1 =α t′1 t2 =α t′2

t1t2 =α t′1t
′
2

(App)
t{c/a} =α t′{c/a′}

λat =α λa′t′
(Lam) (3)

where in (Lam) there is a side-condition that c 6∈ {a, a′} ∪ n(t) ∪ n(t′) (thus ‘fresh’ for the conclusion).
The usefulness of this way of looking at syntax and properties of syntax as Nominal Sets begins with the
following trivial theorem:

Theorem 1.3. If a property (on trees) is defined (inductively) using predicates whose validity is
invariant under permuting atoms, then the property is invariant under permuting atoms.

Here “invariant under permuting. . . ” means “given some valid instance of the property, a permutation
π uniformly applied to its arguments yields another valid instance”.

We have an example in the property of well-formedness of proof-trees of =α given in (3).
a =α a

is a

valid instance of (Var) and if we apply (b a) to this we obtain
b =α b

, which is also a valid instance of

1See [3, eq. 3], [5, eq. 4], and ‘finite support’ in [2, Def. 3.3].



(Var). The case of (App) is simple. A permutation applied to a valid instance of (Lam) is also a valid
instance of (Lam) because c 6∈ {a, a′}∪n(t)∪n(t′) if and only if π · c 6∈ {π · a, π · a′}∪n(π · t)∪n(π · t′).2

We now have a very concrete demonstration that proofs of =α are invariant under permutation; we
permute the atoms in the proof as a tree. We can take this further. Consider proving transitivity of =α

by induction on proof-trees. The induction predicate is (in words) “given a valid proof-tree Π concluding
in t =α t′, for all valid proof-trees Π′ concluding in t′ =α t′′, there exists a valid proof-tree Π′′ concluding
in t =α t′′”. This property is constructed using predicates invariant under permutations (validity of
proofs of =α) and so is itself invariant under permutations. Thus from Theorem 1.3 we know if we have
the inductive hypothesis of Π, we have it of π · Π for any permutation Π.

We proceed by induction on Π. The case of (Lam) for t = λas and t′ = λa′s′ causes problems: we
may assume Π proves s[c/a] =α s′[c/a′] and Π′ proves s′[c′/a′] =α s′′[c′/a′′] and we assume the inductive
predicate for Π, but we do not know c = c′ so we cannot proceed. However, we can apply a permutation
(d c) to Π, and (d c′) to Π′, for d chosen completely fresh. Now we have valid proofs (d c) · Π concluding
in s[d/a] =α s′[d/a′] and (d c′) · Π′ concluding in s′[d/a′] =α s′′[d/a′′], and also the inductive predicate
for (d c) · Π. We can now complete the proof of transitivity.

Just these ideas of permutations have already been adopted and put to use by other authors also in
published work (see for example [6]).

2 Taking it further

There is an equivalence class of proofs concluding in λat =α λa′t′, one for each fresh c; we can take it as
an object in its own right. This is an instance of FM abstraction [A]X which exists for any Nominal Set
X by virtue of the permutation action, which lets us rename atoms and construct an equivalence class
in the general case (see [2, Section 5]). We can apply this to syntax as well as proofs:

Λα
∼= A + Λα × Λα + [A]Λα (4)

is a datatype of λ-terms up to α-equivalence. An element of [A]Λα is (concretely) an equivalence class of
pairs 〈a, t〉 for a ∈ A a ‘bound atom’ fresh for the other atoms in the ‘body’ t ∈ Λα.

There are various ways of taking this further; Nominal Sets form a category, the Schanuel Topos.
Because it is a topos we can construct a general theory of abstractions and equivariance reasoning within
it (this is FMCat in [5, Section 2], see also [2, p.21]). Nominal Sets are also a special case of a general
theory of FM sets, see [4] and [2]. Nominal Sets can be axiomatised in first-order logic, see [7]. A team
in Cambridge has developed FreshML, a programming language based on these principles in which we
can program using abstractions and permutations, see [1]. Finally, I am currently implementing FM
sets in Isabelle, see [4]. Further reading can be found in any of the references below, and my homepage
www.cl.cam.ac.uk/~mjg1003.
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2This is not the case if we try to base the theorem on substitutions generated by [b/a] instead of permutations generated
by (b a) = [b/a, a/b].


