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NOMINAL TERMS AND NOMINAL LOGICS: FROM
FOUNDATIONS TO META-MATHEMATICS

ABSTRACT: Nominal techniques concern the study of names using mathematical
semantics. Whereas in much previous work names in abstract syntax were studied,
here we will study them in meta-mathematics. More specifically, we survey the
application of nominal techniques to languages for unification, rewriting, algebra,
and first-order logic.
What characterises the languages of this chapter is that they are first-order in character,
and yet they can specify and reason on names. In the languages we develop, it
will be fairly straightforward to give first-order ‘nominal’ axiomatisations of name-
related things like alpha-equivalence, capture-avoiding substitution, beta- and eta-
equivalence, first-order logic with its quantifiers—and as we shall see, also arithmetic.
The formal axiomatisations we arrive at will closely resemble ‘natural behaviour’;
the specifications we see typically written out in normal mathematical usage.
This is possible because of a novel name-carrying semantics in nominal sets, through
which our languages will have name-permutations and term-formers that can bind as
primitive built-in features.
This chapter draws together material from several papers to deliver a coherent account
of a journey from the foundations of a mathematics with names, via logical systems
based on those foundations, to concrete applications in axiomatising systems with
binding. Definitions and proofs have been improved, generalised, and shortened, and
placed into an overall narrative.
On the way we touch on a variety of definitions and results. These include: the
nominal unification algorithm; nominal rewriting and its confluence proofs; nominal
algebra, its soundness, completeness, and an HSP theorem; permissive-nominal logic
and its soundness and completeness; various axiomatisations with pointers to proofs
of their correctness; and we conclude with a case study stating and proving correct a
finite first-order axiomatisation of arithmetic in permissive-nominal logic.
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1 INTRODUCTION

Nominal sets for meta-mathematics Suppose we want to axiomatise theλ-calculus
or first-order logic. Then we need to express properties like this:

• If y 6∈ fv(t) then ∀x.t =α ∀y.(t[y/x]).
• If x 6∈ fv(u) then (λx.t)[u/y] = λx.(t[u/y]).
• If x 6∈ fv(t) then λx.(tx) =η t.

x, y, t, and u here are what we would call names. A linguist might call them referents,
a mathematician might call them variables. But the words ‘referent’ and ‘variable’
carry connotations (a referent should refer to something, a variable should vary), so
we prefer the more neutral term ‘name’. So for us, a name is just an atomic symbol,
to which we may then associate further properties, at our discretion, using additional
axioms.
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The axioms above are typical of a certain kind of specification. Mathematical
specification is nothing new. First-order logic can specify, to choose a classic trio of
examples, groups, rings, and fields. But the λ-calculus, first-order logic itself, the
π-calculus, and a very great many other examples, are different. They have names.

By adding names to first-order logic in the correct way, we can axiomatise the
specifications above, cleanly and in a manner very close to the informal specification.
How should we do this? Using a recent application of mathematical foundations
originating in computer science: nominal sets [GP01; Gab11b], to which we will use
nominal terms [UPG03; UPG04] as a corresponding formal syntax. To survey and
update the state of the art of logics based on nominal terms and taking semantics in
nominal sets, is our goal here.

In nominal terms, term-formers can bind names and freshening renamings like the
[y/x] or [u/y] above are taken as primitive.

Here are the informal statements above, rewritten in permissive-nominal algebra—
an algebraic logic based on nominal terms with a sound and complete semantics in
nominal sets:

• If b 6∈ supp(X) then ∀([a]X) = ∀([b](b a)·X).
• If a 6∈ supp(Y ) then λ([a]X)[b7→Y ] = λ([a](X[b 7→Y ])).
• If a 6∈ supp(X) then λ([a](Xa)) = X .

In this chapter we will briefly consider nominal sets, then survey nominal terms,
unification, rewriting, algebra, and permissive-nominal logic. We cover the nominal
unification algorithm, confluence proofs for nominal rewriting, soundness and com-
pleteness results for nominal algebra and permissive-nominal logic, an HSP theorem,
and a finite axiomatisation of first-order logic.

By doing this we aim to give an overview of the applications of nominal sets to meta-
mathematical syntax. We cannot be exhaustive, but we can try to be representative of
what can be achieved.

As we shall see, nominal syntax is more expressive than first-order syntax (for
instance we can give a finite first-order axiomatisation of arithmetic), because term-
formers that can explicitly manipulate names. Yet, it remains first-order in flavour,
preserving theoretical and computational properties like completeness and most
general unifiers.

A few words on atoms What nominal sets add to ‘ordinary’ structures is an assump-
tion of a distinguished class of symmetric atomic elements called atoms: these are
also called urelemente or names. We will use these terms more-or-less synonymously.

Indeed, nominal sets are a special case Zermelo-Fraenkel sets with atoms, and are
instances of the structures considered by Fraenkel and Mostowski in their celebrated
independence proof of the the Axiom of Choice from the other axioms of set theory
with atoms. For detailed references see [Gab11b, Remark 2.22]. So this chapter really
does describe a journey from mathematical foundations to meta-mathematics, and
that is representative of how the maths we describe here was arrived at.

We can view the underlying philosophy of nominal techniques is as the following
informal inequality, where ‘smaller’ means ‘greater generality’:

atoms = urelemente = names ≤ referents ≤ variables
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Discovering to what extent these intuitions can be made precise, concrete, and useful,
is the topic of much ongoing research, some of which is reported on here.

Names induce automorphisms generated by permuting them. We shall see that if
we model variables as a special case of atoms, then α-renaming becomes a special
case of a much more general fact that nominal sets are symmetric under permuting
atoms. This generalisation turns out to have powerful consequences, including the
atoms-abstraction and N-quantifier introduced by the author with Pitts in [GP01]. So
the point of view described above has led to and continues to lead to new reasoning
principles.

If we identify a thing with the properties of that thing, then the ‘nominal’ model
suggests that names are equal to the following set of three properties:

names = {atomic, symmetric, generative}

The reader familiar with nominal techniques can identify these three properties with
the use of: atomic symbols a (an atom, name, or urelement, with a distinct existence
in the denotation), permutations π (symmetries under permutation of names), and
the N-quantifier (‘choose a fresh name’). These three properties will appear directly
in this chapter as atoms, permutations, and permission sets.1 Full definitions appear
below.

This material in the literature This paper surveys existing literature on logics
based on nominal terms, and adds a few new results. Very broadly, Section 2 is
based on [GP99; GP01] (nominal sets; they were called equivariant FM sets there);
Sections 3 and 4 are based on [UPG03; UPG04; DGM09; DGM10; Gab12a] (nominal
terms and unification); Sections 5 and 6 are based on [FGM04; FG07; Gab12a]
(rewriting and closed terms); Section 7 is based on [Gab05; GM06a; GM07; GM09a]
(nominal algebra); Sections 9 to 11 are based on [DG10; DG12a] (permissive-nominal
logic).

Definitions and proofs may have changed from the original presentations. In
particular:

• The semantics is permissive-nominal, meaning that it is based on possibly
infinitely supported nominal sets with co-infinite support. In [GP01] a nominal
semantics based on finite and co-infinite support was used.

• Unlike [UPG04] and [DGM10] we use nominal abstract syntax to build our
nominal terms. That is, in this paper nominal terms atoms-abstraction is
directly equal to Gabbay-Pitts atoms-abstraction. Thus, nominal terms here are
an instance of nominal abstract syntax and come quotiented by α-equivalence
by construction.

• Permutation may be stronger than usual, and we parameterise over the group
of permutations.
We consider (as usual) finite permutations (generated by swappings, also called
transpositions) as standard, but in particular we also find shift-permutations δ
useful, which shift infinitely many atoms. The shift-permutation δ corresponds

1In other papers, such as [UPG04], permission sets are presented instead as syntactic freshness
assumptions.
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to a de Bruijn shift function ↑ and presheaf reindexing map up, though δ is not
equal to them since it is a permutation and so invertible.

• Syntax includes non-equivariant constant symbols. In [UPG04] all term-
formers/function-symbols (including 0-ary ones, i.e. constants) were equivari-
ant. This does not matter for finite support but it does make a difference with
infinite support.

• Nominal unknowns are modelled as arbitrary elements of a strongly-supported
nominal set. This means that theX andY in this paper correspond to moderated
unknowns from [UPG04]: see Example 3.1.7.

• Because unknowns have support, there are no freshness contexts and substi-
tutions are characterised as equivariant functions (the freshness conditions
normally attached to substitutions follow from equivariance: see Proposi-
tion 3.4.3). The theories of nominal unification, rewriting, and algebra are
reformulated to reflect this.

• The simplification rules for unification problems (Figure 2) are new and the
treatments of closed terms and closed nominal rewriting (Section 6) are entirely
revised with respect to [FG07].
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Nominal sets and nominal terms

2 NOMINAL SETS

We open with a brief presentation of nominal sets, which are the semantic basis for
this work: this is the universe that the logics we define will describe, and be sound
(and complete) for.

Nominal sets were developed with Pitts and introduced in the author’s thesis
[Gab01], a conference paper [GP99], and journal paper [GP01]. The nominal sets here
are more general than in [GP01]: following [DGM10] we are permissive, meaning
that we split the set of atoms into two infinite halves and consider infinite support.
This specific idea was developed jointly with Dowek,2 but shades of it appear also
in Cheney’s paper [Che06] and in the author’s study of infinite atoms-abstraction
[Gab07b].

In addition we parameterise over a group of permutations which need not just be
finitely-supported permutations. This is new.

2.1 Atoms, permutations, permission sets

In Definition 2.1.2 we need several sets of atoms. This is to model the several sorts
of names that will appear in our syntax later on.

Following [DGM10] our development will be permissive-nominal. A permission
set S splits a set of atoms into two halves A< and A> . One intuition for A< is
‘the atoms that have been generated so far’, and for A> is ‘the atoms that might be
generated later’.

DEFINITION 2.1.1. Write N = {0, 1, 2, 3, . . .} for the natural numbers and Z =
{0, -1, 1, -2, 2, . . .} for the integers.

DEFINITION 2.1.2. For each i ∈ N fix a pair of disjoint countably infinite sets of
atoms A<i and A>i .

Write

Ai = A< ] A> A< =
⋃

A<i A> =
⋃

A>i A =
⋃

Ai

a, b, c, . . . will range over distinct atoms: we call this the permutative convention.

REMARK 2.1.3 (Comments on splitting the set of atoms). The different sets of atoms
Ai are different ‘types’ of atoms. Thus, later on in Definitions 3.1.1 and 3.2.1 we can
give each name sort its own distinct population of atoms.

The reasons for splitting the set of atoms into A< and A> will become clear as the
maths develops. It might help to think of A< as ‘atoms that can be captured’ and of
A> as ‘atoms that cannot be captured’, or as ‘atoms that might have been generated
in the past’ and ‘atoms that may be generated in the future’—but with reservations.
In Definition 2.1.10 we see that this is only true up to permuting atoms.

2The development here is a little different from that in [DGM10] because we take permission sets to be
sets of the form π·A< instead of sets of the form (A< \A) ∪B.
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The real purpose of Definition 2.1.2 is to ensure that we have plenty—countably
infinitely many—of ‘capturable’ and ‘non-capturable’ atoms. Permutations (below)
can and will move atoms between these worlds, but no permutation can move them
all at once. So the interest of A< is not just for the set itself but for its orbit under
permutations; this is a property of the set as a whole, and not of its individual elements.
REMARK 2.1.4 (Comments on the permutative convention). While visiting Tel-
Aviv University in 2006 I gave talks on nominal techniques and Arnon Avron asked:
“Do a and b refer to specific atoms (e.g. in the axioms in the Introduction), or to any
two atoms?”. In other words, are a and b constants or variables?

In response I started using a permutative convention that a and b are variables, but
they range over distinct atoms so that variables with distinct names refer to distinct
objects (the first uses were in [GM06c; GM06a]; the convention was explicitly named
in [GM08c]).

For a while this was resisted by some anonymous referees. Yet, we typically apply
the permutative convention informally; e.g. we silently assume that λx.λy.xy is
never the same term as λx.λx.xx. I would claim that the permutative convention
expresses something about the foundational origins of the nominal view of names as
urelemente—constants that are distinguishable yet symmetric—in an underlying set
theory.

Perhaps this is why the referees did not like it: the permutative convention may seem
unnatural if we are committed to standard (nameless) Zermelo-Fraenkel foundations,
since names are then just some set, and like any set should be varied over non-
permutatively by variables. Thus the fact that we accept that λx.λy.xy and λx.λx.xx
always signify distinct λ-terms to us, can be taken as a sign that we inhabit a nameful
foundation, so that the permutative convention is a signpost on the way to something
more extensive.

A formal reflection of the permutative convention appears explicitly in the formal
logics of this paper: it lives in the π of the π·X in Definition 5.2.1.
DEFINITION 2.1.5. Given a, b ∈ Ai for some i ∈ N write (a b) for the swapping
bijection on atoms mapping a to b, b to a, and any other c ∈ A \ {a, b} to c.

Another standard name for a swapping is a transposition.
By convention (a a) will denote the identity function on atoms id .
If π is a bijection on atoms define

nontriv(π) = {a | π(a) 6= a}.

DEFINITION 2.1.6. A nominal permutation group is any set of bijections P of
A such that:

1. If a ∈ Ai and b ∈ Ai then (a b) ∈ P.
2. If π ∈ P then a ∈ Ai if and only if π(a) ∈ Ai.
3. There exists some infinite S ⊆ A such that nontriv(π) ∩ S is finite for every
π ∈ P.

Call a bijection on atoms π a finite permutation when it is in the subgroup generated
by swappings. (π is finite when π(a) ∈ Ai if and only if a ∈ Ai and nontriv(π) is
finite.)
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Write π◦π′ for the composition of π and π′ (so (π ◦ π′)(a) = π(π′(a))). Write
id for the identity permutation (so id(a) = a always).

The purpose of conditions 1 to 3 of Definition 2.1.6 are as follows:

1. Swappings make sure we can always rename a to b (and b to a).
2. Condition 2 is a standard typing condition, that we do not try to turn an atom

of one sort, into an atom of another sort.
3. This condition guarantees that we can still always choose a fresh atom for any

finite set of permutations (see for instance Lemma 3.2.9).

EXAMPLE 2.1.7.

1. The set of all finite permutations is a nominal permutation group.

2. For each i fix a bijection fi between Ai and the integers Z, such that {f(i) | i ≤
0} = A<i and (consequently) {f(i) | i > 0} = A>i . We can do this because
we assumed atoms are countable.

Write δi for the permutation mapping

• fi(j) to fi(j−1) for j ≤ 0,
• fi(2j) to fi(2(j−1)) and fi(2j−1) to fi(2j−1) for j ≥ 1, and
• any other c ∈ A \ Ai to c.

This is an example of a shift-permutation, considered in more generality in
Definition 3.6.1 and throughout Subsection 3.6. We illustrate fragments of the
actions of a swapping (f(0) f(1)) and a δi:

f(-6)
WW

f(-5)
WW

f(-4)
WW

f(-3)
WW

f(-2)
WW

f(-1)
WW

f(0)
{{ $$

f(1) f(2)
WW

f(3)
WW

f(4)
WW

f(5)
WW

f(6)
WW

f(-6)
zz

f(-5)
zz

f(-4)
zz

f(-3)
zz

f(-2)
zz

f(-1)
zz

f(0)
vv

f(1)
WW

f(2)
vv

f(3)
WW

f(4)
vv

f(5)
WW

f(6)

The atoms corresponding to positive odd integers are taken to be fixed points
of δi in order to satisfy condition 3 of Definition 2.1.6, so that these atoms can
be taken fresh for δi if we need to.

The set of permutations generated by swappings and δi, is a nominal permuta-
tion group.

REMARK 2.1.8. The nominal permutation group P determines the symmetries of
our nominal syntax and semantics. We consider permutations designed to guarantee
(in Definition 2.2.3) symmetry up to equality/inequality of atoms. We will get sets
with atoms that are atomic, symmetric (up to equality and inequality of names), and
generative—the main further design choice we care about is whether or not to include
a shift (Example 2.1.7), which goes strictly beyond what can be achieved with finite
permutations as considered e.g. in [GP01].

Other notions of permutation may lead to other symmetries, so an interesting topic
of future research is to weaken the conditions in Definition 2.1.6.
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For instance, if we only allow permutations generated by f(i) 7→ f(i + 1) and
f(i) 7→ f(-i) then we preserve a notion of ‘distance’ between atoms.3 In a similar vein,
we can identify atoms with points in a plane and consider Euclidian transformations.
It is not known how much of ‘nominal techniques’ would hold of such examples.

More generally of course, presheaves are a forum within which sets with symmetry
structure can be expressed. Indeed, nominal sets can be viewed as a category of
presheaves [GP99] and a similar presheaf category was considered at the same time
[FPT99] (see also the later related nominal renaming sets [GH08], which are in some
sense half-way in between those two systems).

There is no shortage of research into this kind of structure [MM92]. It remains,
however, to understand what are the abstract properties that make a set with a group
action, or a presheaf, into something ‘nominal’.
DEFINITION 2.1.9. If A ⊆ A define the pointwise action by

π·A = {π(a) | a ∈ A}.

DEFINITION 2.1.10. A permission set S is a set of the form π·A< .
S, T will range over permission sets.

REMARK 2.1.11. Some preliminary comments on permission sets:

• The notion of permission set used in some previous work, for instance in
[DGM10, Definition 2.2], was slightly different: a permission set was taken
to be a set of the form (S \ A) ∪ B for finite A ⊆ A< and B ⊆ A> . In the
presence of shift-permutations we can do this using a permutation, and any
(S \A)∪B can be written as π·S for suitable π (cf. Remark 3.6.2 and δX-a·X
in (IF) of Figure 2).
Given that the designs are equivalent for the cases we will care about, we chose
Definition 2.1.10 because it is somewhat simpler to do mathematics with.

• In the semantics, permission sets are used in the definition of support Defini-
tion 2.2.3; if permutations specify symmetry, permission sets specify captura-
bility and generativity (Remark 2.2.4).

• In the syntax, permission sets are used to control capture (see Remark 3.4.9);
atoms in S are intuitively ‘capturable’ and atoms not in S are intuitively ‘not
capturable’.
This is reminiscent of some treatments of syntax where a formal distinction
is made between ‘names that exist to be bound’ and ‘names that exist to be
free’. See for instance the freie and gebundene Gegenstansvariable of Gentzen
[Gen35, Section 1], and the individual variables and parameters of Prawitz
[Pra65, Section 1], or Smullyan [Smu68, Chapter IV, Section 1].
However, note that here, for any a ∈ S and b 6∈ S, also a 6∈ (b a)·S and
b ∈ (b a)·S. That is, for any given atom there is no fixed sense in which it is

3This example modified from an example by Bartek Klin; private communication from Alexander
Kurz.
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capturable or not capturable. Each individual permission sets defines its own
world of capturable/non-capturable atoms, which differs by a permutation π
from what is really a fixed but entirely arbitrary representative A< .

2.2 Permissive-nominal sets

DEFINITION 2.2.1. A set with a (P-)permutation action X is a pair (|X|, ·) of

• a carrier set |X| and
• a group action (P× |X|)→ |X|, written infix as π·x.

So, id ·x = x and π·(π′·x) = (π ◦ π′)·x for every π, π′, and x ∈ |X|.

DEFINITION 2.2.2. Given a set with a P-permutation action X say that A ⊆ A
supports x ∈ |X| when for all permutations π ∈ P, if π(a) = a for all a ∈ A then
π·x = x.

Also, call A ⊆ A small when A ⊆ S for some permission set S.

DEFINITION 2.2.3. A permissive-nominal set is a set with a permutation
action such that every element has a unique least small supporting set supp(x).
We call this the support of x.
X, Y will range over permissive-nominal sets.

Note in Definition 2.2.3 that supp(x) must be small, that is, included in some permis-
sion set. For instance, a ∈ A—with A having the natural permutation action given
by π·x = π(x) for x ∈ A—is supported by {a} and A \ {a}, but the former is small
while the latter is not.

REMARK 2.2.4. The difference between a set with a permutation action and a
‘nominal’ set is that nominal sets guarantee for any element, infinitely many atoms
fresh for that element.

A mild generalisation of Definition 2.2.3 is possible, where we insist there is a
supporting set but do not insist on the existence of a unique least such set. It is
possible to do a surprising amount just with that; see for instance Fiore, Plotkin
and Turi’s paper [FPT99] based on presheaves, and the ‘nominal’ study of infinite
permutations and infinite atoms-abstraction in [Gab07b].4

EXAMPLE 2.2.5.
4 If all permutations in P are finite then we have as a Technical Lemma that the existence of some

supporting set implies the existence of a unique least small supporting set.
In the more general case where infinite permutations are allowed, it is possible to construct a set with a

permutation action X and x ∈ |X| such that x has a supporting set but does not have a unique least small
supporting set. See [Gab07b, Lemma 21] for an example.

An intermediate state is to admit infinite permutations but restrict the notion of support to consider only
the finite ones. We do this in Definitions 3.1 and 3.2 and Remark 3.3 of [DG12a].

For this paper, none of this will matter directly.
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• First-order syntax with variable symbols (modelled as atoms) is a permissive-
nominal set, where the permutation action permutes variable symbols directly
in syntax so that e.g. π·λa.t = λπ(a).π·t.
A term t is supported by the variable symbols it contains. In this and the
following examples the precise nature of the permutation group is not important.

• First-order syntax up to α-equivalence is a permissive-nominal set. The α-
equivalence class of t is supported by the free variable symbols of t. A full
proof is in [Gab11b, Theorem 5.18].

• Traces of π-calculus processes with channel names (atoms) taken from some
permission set S, form a permissive-nominal set. A trace is supported by the
set of channel names it mentions (which may be infinite in number).

• Given a permissive-nominal nominal set X the set of subsets U ⊆ |X| with the
pointwise action π·U = {π·u | u ∈ U} is a set with a permutation action (this
generalises Definition 2.1.9).
The subset of this consisting of those subsets U ⊆ |X| that have a supporting
permission set under this action, forms a permissive-nominal set pow(X).5

LEMMA 2.2.6. SupposeX is a permissive-nominal set andx ∈ |X|. Then supp(π·x) =
π·supp(x).

Proof. By a routine calculation using the group action. �

We conclude with a useful condition for checking whether a ∈ supp(x):
COROLLARY 2.2.7. Suppose X is a permissive-nominal set and x ∈ |X|. Suppose
b 6∈ supp(x). Then (b a)·x = x if and only if a 6∈ supp(x).

Proof. Suppose b 6∈ supp(x). The right-to-left implication is by the definition
of support. For the left-to-right implication, we prove the contrapositive. Suppose
a ∈ supp(x). By Lemma 2.2.6 supp((b a)·x) = (b a)·supp(x). By our suppositions,
(b a)·supp(x) 6= supp(x). It follows that (b a)·x 6= x. �

2.3 Equivariance
DEFINITION 2.3.1. Suppose X and Y are permissive-nominal sets.

Call x ∈ |X| equivariant when supp(x) = ∅. (So x is equivariant when π·x = x
for all π.)

Call F ∈ |X| → |Y| equivariant when

∀π ∈ P.∀x ∈ |X|.π·(F (x)) = F (π·x).

F will range over equivariant functions between pairs of permissive-nominal sets.
REMARK 2.3.2. The second notion of equivariance in Definition 2.3.1 is a special
case of the first. For details, see e.g. Definition 9.3 and Lemma 9.4 of [Gab11b].

5Using possibly repeated powersets, arbitrarily complex structures may be constructed. Thus this
example guarantees an inexhaustible supply of arbitrarily large and complex structures with which to
model . . . almost anything we can imagine. The survey [Gab11b] explores this in detail.
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LEMMA 2.3.3. If F from |X| to |Y| is equivariant then supp(F (x)) ⊆ supp(x) for
all x ∈ |X|.

Proof. Suppose π ∈ fix (supp(x)). By assumption π·F (x) = F (π·x), and π·x = x.
�

DEFINITION 2.3.4. WritePmsPrm for the category with objects permissive-nominal
sets and arrows equivariant functions between them.

So X, Y range over objects in PmsPrm (Definition 2.2.3).

2.4 Examples of permissive-nominal sets
Throughout the rest of this document we will need the following examples of permissive-
nominal sets: atoms, booleans, lists, product, equivariant elements, permutation orbits,
and atoms-abstraction. We consider each in turn now.

Atoms, Booleans, infinite lists

DEFINITION 2.4.1 (Atoms). A the set of all atoms can be considered a permissive-
nominal set with a natural permutation action π·a = π(a). So can each Aν .
DEFINITION 2.4.2. If X is a permissive-nominal set say the permutation action is
trivial when π·x = x for all x ∈ |X| and all π ∈ P.

So X is trivial if and only if all its elements are equivariant.
DEFINITION 2.4.3. Any ‘ordinary’ set can be made into a permissive-nominal set
by giving it the trivial permutation action such that π·x = x always.

In particular, the set B = {0, 1} can be considered a permissive-nominal set with
the trivial permutation action; so can N and Z from Definition 2.1.1.

In the cases of A and {0, 1} only, we will be lax about the distinction between the
set, and the permissive-nominal set with its natural permutation action.
DEFINITION 2.4.4 (Infinite lists). Define a permissive-nominal set L by:

• |L| is the set of infinite sequences of distinct atoms L = [a1, a2, a3, . . . ] such
that atms(L) = {a1, a2, a3, . . .} is a permission set.

• π·L = [π(a1), π(a2), π(a3), . . . ].

Product

DEFINITION 2.4.5. Suppose I is an indexing set.6 If Xi are permissive-nominal
sets for i ∈ I then define ΠiXi by:

• |ΠiXi| is the set of I-tuples (xi)i such that ∀i.xi ∈ |Xi| and there exists a
permission set S such that ∀i.supp(xi) ⊆ S.

• π·(xi)i = (π·xi)i (the elementwise or pointwise action).

6For clarity, note that we intend this set to not have a permutation action. Or, we can take this to be a
nominal set with the trivial action (Definition 2.4.2). We have in mind N.
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Permutation orbits

Permutation orbits will serve us later in Definition 3.3.2 (free unknowns of a term).
If X is a nominal set then orb(X) is ‘X quotiented by the permutation action’.

DEFINITION 2.4.6. If X is a permissive-nominal set define orb(X) by:

• If x ∈ X then define its permutation orbit by orb(x) = {π·x | π ∈ P}.
• |orb(X)| = {orb(x) | x ∈ X}.
• π·orb(x) = orb(x).

LEMMA 2.4.7.

• supp(orb(x)) = ∅. That is, orb(x) is equivariant (Definition 2.3.1).
• orb(x) = orb(y) if and only if y = π·x for some π.

Atoms-abstraction

DEFINITION 2.4.8. Suppose X is a permissive-nominal set and Ai is a set of atoms.
Define atoms-abstraction [Ai]X by:

[a]x = {(a, x)} ∪ {(b, (b a)·x | b ∈ Ai\supp(x)}
|[Ai]X| = |[Ai]X| = {[a]x | a ∈ Ai, x ∈ |X|}
π·[a]x = [π(a)]π·x

LEMMA 2.4.9.

1. [Ai]X is a permissive-nominal set.
2. [a]x=[a]x′ if and only if x=x′, for a∈Ai and x∈|X|.
3. [a]x=[a′]x′ if and only if a′ 6∈supp(x) and (a′ a)·x=x′, for a, a′∈Ai andx, x′∈|X|.

LEMMA 2.4.10. Suppose a functionF from |A×X| to |Y| is equivariant and suppose
∀a, x.a 6∈ supp(F (a, x)). Then there is a unique equivariant function F̂ from |[A]X|
to |Y| such that ∀a, x.F̂ ([a]x) = F (a, x).

Proof. It suffices to show that if b 6∈ supp(x) ∪ supp(F (a, x)) then
F (b, (b a)·x) = F (a, x). By assumption a 6∈ supp(F (a, x)), so (b a)·F (a, x) =
F (a, x). The result follows by equivariance. �

Here are some basic properties of support:
LEMMA 2.4.11.

• supp(a) = {a}.
• supp([a]x) = supp(x) \ {a}.
• supp((x1, . . . , xn)) =

⋃
{supp(xi) | 1 ≤ i ≤ n}.

Proof. Proofs are as in [GP01] or [Gab11b]. �
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The fine design of PmsPrm

Studying PmsPrm (Definition 2.3.4) is not the point of this paper, but for the benefit
of the interested reader we will discuss a few aspects of its behaviour.

• If P consists of finite permutations then PmsPrm is a Boolean topos, directly
generalising the category of nominal sets (equivariant FM sets) from [GP01;
Gab11b]. The proof proceeds much as in [Gab11b, Corollary 9.11].

• If P contains infinite permutations then PmsPrm is cartesian (has products)
but is not necessarily cartesian closed (may not have exponentials). This is
the fuzzy support observed in [Gab07b]; see [Gab07b, Lemma 21] for the
concrete construction. This is reasonable, and it happens because it is possible
to construct a function f on ω+ω which satisfies f(0) = 0 and f(i+1) = f(i)
yet which is not a constant function (it returns 0 on finite cardinals and 1 on
infinite ones).

• If P contains infinite permutations but we follow [DGM10] and take the no-
tions of support in Definition 2.2.2 and equivariance to consider only finite
permutations, then the category we obtain is a Boolean topos but we only have
supp(x) ∩ nontriv(π) = ∅ implies π·x = x for finite π. In other words, an
element can be fixed by all finite permutations and have empty support, but be
shifted by some infinite permutation.
Again, this is reasonable; it is no surprise that infinite permutations can ‘observe’
more than finite ones.

• If P contains infinite permutations and we work with presheaves (in essence,
we lose the ‘unique least supporting set’ assumption in Definition 2.2.3), then
we get a topos, though it is not Boolean.

In this paper we do not attempt to reason inside PmsPrm so we do not care whether
it is a topos; and we do want the possibility of infinite permutations because these let
us write nice algorithms and they give our logics some useful extra expressive power
(see e.g. rule (IF) of Figure 2, Subsection 3.6, and Remark 9.2.4).

So we admit the possibility of infinite permutations in Definition 2.1.6, we let Def-
inition 2.2.2 consider all π ∈ P (even infinite ones), and we insist in Definition 2.2.3
that every x have a unique least small supporting set.

In another paper, another set of design decisions might be appropriate.
The reader who does not care about these considerations need not worry; they are

all swept under the carpet henceforth.

2.5 Strong support

Strong support exists in nominal terms, though this is implicit. Consider in [UPG04]
the ≈-suspension rule in Figure 2, and Lemma 2.8. We call this strong support,
following [Tze07, Definition 1].

A possibly useful intuition is that an element x ∈ X has strong support when
the atoms in its support occur in order (a dedicated theoretical study of this is in
[Gab07b]). Formally, the notion of strong support enters into the mathematics in this
paper via Proposition 2.5.5, Lemma 3.4.6, and Lemma 7.4.4.
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DEFINITION 2.5.1. Suppose X is a permissive-nominal set. Say A ⊆ A strongly
supports x ∈ |X| when π·x = x if and only if ∀a∈A.π(a) = a.

If x has some strongly supporting set, call x strongly supported.
If every x ∈ |X| is strongly supported then call X strongly supported.

LEMMA 2.5.2. x ∈ X is strongly supported if and only if

∀π, π′.
(
π·x = π′·x⇔ (∀a ∈ supp(x).π(a) = π′(a))

)
.

Proof. From Definition 2.5.1 by considering π-1 ◦ π′. �

EXAMPLE 2.5.3.

• The pair (a, b) ∈ A× A is strongly supported by {a, b}.
• The unordered pair {a, b} ⊆ A with the pointwise permutation action (Defini-

tion 2.1.9) is not strongly supported, because (a b)·{a, b} = {a, b}.
• The infinite sequences [a1, a2, a3, . . . ] in L from Definition 2.4.4 are strongly

supported.

DEFINITION 2.5.4. Suppose X and Y are permissive-nominal sets and X is strongly-
supported. Suppose we are given the following data:

• For each x ∈ |orb(X)| a fixed but arbitrary choice of representative Xx ∈ x.
• For each x ∈ |orb(X)| a choice of yx ∈ |Y| such that supp(yx) ⊆ supp(Xx).

Define the equivariant extension F of this data, which is a function from |X| to |Y|,
by:

F (π·Xx) = π·yx

PROPOSITION 2.5.5.

1. The equivariant extension is well-defined and is an equivariant function from
|X| to |Y|.

2. Every equivariant f is an equivariant extension.

Proof. For the first part, by properties of orbits every x ∈ |X| has the form π·Xx

for some π and for precisely one Xx. This is equivariant by construction, if it is
well-defined. So suppose π·Xx = π′·Xx. By assumption Xx is strongly supported
so π(a) = π′(a) for every a ∈ supp(Xx). By assumption supp(yx) ⊆ supp(Xx).
The result follows by the definition of support.

The second part is easy, noting that supp(F (x)) ⊆ supp(x) by Lemma 2.3.3. �
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3 THE SYNTAX OF NOMINAL TERMS

Nominal terms were introduced in [UPG04]. The development here is permissive,
following [DGM10], but with some additional ingredients: We allow non-equivariant
constant symbols and we parameterise over a set of unknowns which is a strongly-
supported [Tze07].

Some example permissive-nominal terms are given in Example 3.2.4. See also how
nominal terms are used in rewrite theories (Example 5.1.3), algebra (Example 7.1.3),
and first-order logic (Subsection 10.1).

3.1 Signatures

DEFINITION 3.1.1. A sort-signature is a tuple (A,B) of name and base sorts
A ⊆ N and B.

ν will range over name sorts; τ will range over base sorts.

A sort language is defined by

α ::= ν | τ | (α, . . . , α) | [ν]α.

EXAMPLE 3.1.2. Example base sorts are: ‘λ-terms’, ‘formulae’, ‘π-calculus pro-
cesses’, and ‘program environments’, ‘functions’, ‘truth-values’,
‘behaviours’, and ‘valuations’.

Base sorts τ are arbitrary; later on when we build denotations they will be populated
by elements of arbitrary permissive-nominal sets, see Definition 7.3.1.

Examples of name sorts are ‘variable symbols’, ‘channel names’, ‘thread identi-
fiers’, or ‘memory locations’. Name sorts ν are populated by the atoms we fixed in
Definition 2.1.2 and which we used to build permutations and permissive-nominal
sets.

REMARK 3.1.3. (α, . . . , α) is a product sort and behaves as expected.

[ν]α is an atoms-abstraction sort; this is different. The behaviour of a term of
sort [ν]α corresponds to ‘α-abstract a name of sort ν in a term of sort α’. This
is binding without functions: we will use atoms-abstractions (Definition 2.4.8) to
populate atoms-abstraction sorts.

REMARK 3.1.4. In Definition 3.1.1 we insist that a name sort ν is a natural number;
this is not necessary but it makes it easier for us to identify name sorts with sets of
atoms from Definition 2.1.2, which are also indexed by numbers.
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DEFINITION 3.1.5. A (nominal) term-signature over a sort-signature (A,B)
is a tuple (C,X ,F , ar) where:

• C is a permissive-nominal set of constants.
• X is a strongly supported (Definition 2.5.1) permissive-nominal set of un-

knowns.
• F is a set of equivariant term-formers.
• ar assigns

– to each constant C ∈ C a base sort τ which may we write sort(C),
– to each unknown X ∈ X a sort α which we may write sort(X), and
– to each f ∈ F a term-former arity (α)τ , where

α and τ are in the sort-language determined by (A,B).

A (nominal terms) signature Σ is then a tuple (A,B, C,X ,F , ar).

The support supp(X) of an unknown X ∈ X is intuitively the atoms that may
occur free in a term we substitute for that unknown, and A \ supp(X) is the atoms
which may not occur free. See Proposition 3.4.3.
NOTATION 3.1.6. We may write ((α1, . . . , αn))τ just as (α1, . . . , αn)τ .

We write f : (α)τ for ar(f) = (α)τ and similarly we write P : α for ar(P) = α.
EXAMPLE 3.1.7. Here are some examples of suitable X .

1. For each sort α and permission set S choose a disjoint countably infinite set
of unknown symbols XSα, YSα, . . .Define π·XSα = {(π′, XSα) | ∀a∈S.π(a) =
π′(a)}. Let X = {π·XSα | all XSα, π} with permutation action π·(π′·XSα) =
(π ◦ π′)·XSα. Define ar(π·XSα) = α.
Essentially this X was used in [DGM10].

2. For each sort α choose a disjoint countably infinite set of unknown symbols
Xα, Yα, . . .Define π·Xα = {(π′, Xα) | ∀a∈A< .π(a) = π′(a)}. Let X =
{π·Xα | all Xα, π} with permutation action π·(π′·Xα) = (π ◦ π′)·Xα. Define
ar(π·Xα) = α.

3. Take X = (α, (a0, a1, a2, . . .)) where {ai | i ∈ N} is a permission set and
let X be the set of all possible X . Give this the pointwise permutation action
π·X = (α, (π(a0), π(a1), . . .)) and define ar(X) = α.
This X is mathematically simple, eliminating the need to take quotients over π.

4. Take X = {0, 1, 2, . . . } with the trivial action π·x = x, so every x ∈ X has
supp(x) = ∅. This example illustrates that our framework is general enough to
include the possibility of unknowns ranging over closed elements (a possibility
also mooted in [FG07, Subsection 9.2]). By adding further structure to X ,
further possibilities can be explored. See also [Gab11c] and [Gab12a].

In all cases it can be verified that X is strongly supported.
REMARK 3.1.8. In the case that X the set of unknowns is as described in parts 1
or 2 of Example 3.1.7, orb(X) (Definition 2.4.6) may be identified with XSα or Xα
respectively.
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Vanilla Permissive

X Unknown with permission set A<

a#X a 6∈ supp(X)

a#r a 6∈ fa(r)

∇ ` r → s or ∆ ` r = s r → s or r = s

Extend freshness context shift-permutation (approx)

Finite support Small support

Figure 1: Cheat sheet relating ‘vanilla’ nominal terms concepts with ‘permissive’
ones

TheX of part 1 above may be equivalent to that ofX of part 2, if there exists π ∈ P
bijecting S with S \ {a} for a ∈ S. This is a shift-permutation; see Definition 3.6.1
and subsequent discussion.

For the benefit of the reader familiar with ‘vanilla’ nominal terms as used e.g. in
[UPG04; FG07; GM09a], Figure 1 gives a cheat sheet suggesting how concepts in
those papers map to the ‘permissive’ context.

EXAMPLE 3.1.9. A nominal terms signature for the λ-calculus would have one name
sort ν, one base sort τ , and term-formers lam : ([ν]τ)τ , app : (τ, τ)τ , and var : (ν)τ .
The set of constants is empty, and for unknowns we can consider Example 3.1.7.

Usually we assume ‘plenty’ of variable symbols. Definition 3.1.10 makes that
formal:

DEFINITION 3.1.10. Say that a signature Σ = (A,B, C,X ,F , ar) has enough
unknowns when for every sort α in (A,B) and every permission set S, the set
{orb(X) | X ∈ X , sort(X) = α, supp(X) = S} is infinite.

All the examples in Example 3.1.7 have enough unknowns.

3.2 Terms

DEFINITION 3.2.1. For each signature Σ = (A,B, C,X ,F , ar) (Definition 3.1.5)
define (permissive-nominal) terms over Σ by:

(a∈Aν , ν∈A)

a : ν

(sort(C) = τ)

C : τ

(sort(X) = α)

X : α

r : α (ar(f) = (α)τ)

f(r) : τ

r1 : α1 . . . rn : αn

(r1, . . . , rn) : (α1, . . . , αn)

r : α (a∈Aν , ν∈A)

[a]r : [ν]α

NOTATION 3.2.2. We may write f((r1, . . . , rn)) as f(r1, . . . , rn).
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REMARK 3.2.3. Definition 3.2.1 is nominal abstract syntax: terms come pre-
quotiented by α-equivalence by construction by virtue of our use of atoms-abstraction
[a]r. That is, if a ∈ Aν and r : α then [a]r is not a pair (a, r), it is a set {(a, r)} ∪
{(b, (b a)·r) | b ∈ Aν \ supp(r)} (Definition 2.4.8).
EXAMPLE 3.2.4. Recall the signature for the λ-calculus from Example 3.1.9. In
that signature we can form terms as illustrated in the following table, where a : ν and
X : τ :

a : ν This is not a λ-term.

var(a) : τ If we want an atom to behave like a λ-term vari-
able, we use var to ‘inject’ it into τ . This corre-
sponds to ‘x’.

[a]a : [ν]ν An atoms-abstraction. This is not a λ-term.

[a]var(a) : [ν]τ An atoms-abstraction of a λ-term. This is not a
λ-term.

lam([a]var(a)) : τ This corresponds to ‘λx.x’.

lam([a]app(X, var(a))) : τ An open nominal term. This corresponds to
‘λx.tx, for some t’. Depending on whether
a 6∈ supp(X), we may add a side-condition
‘where x is not free in t’.

LEMMA 3.2.5. Support and the permutation action are characterised on terms r as
follows:

supp(a) = {a} supp(f(r)) = supp(r)
supp(C) = supp(C) supp((r1, . . . , rn)) =

⋃
1≤i≤n supp(ri)

supp(X) = supp(X) supp([a]r) = supp(r)\{a}

π·a = π(a) π·f(r) = f(π·r)
π·C = π·C π·(r1, . . . , rn) = (π·r1, . . . , π·rn)
π·X = π·X π·[a]r = [π(a)]π·r

Proof. By facts of the permutation action and Lemma 2.4.11. �

REMARK 3.2.6. Lemma 3.2.5 is important because it verifies that ‘support of r’
coincides with the usual definition of ‘free variables (atoms) of r’. This is false
of nominal terms; for instance the support of the structure [a]X as constructed in
[UPG04] is {a}, and that of (a b)·X is {a, b}.

What makes Lemma 3.2.5 work is the very specific way in which we constructed
our permissive-nominal terms syntax, so that it coincides with the nominal abstract
syntax of [GP01]. In this sense, what Lemma 3.2.5 expresses is a unification (no pun
intended) of the mathematics of [GP01] and [UPG04].

In Lemma 3.2.5 the clauses for C and X are uninformative, of course. This is
because support and the permutation action are determined by the choice of C and
X . If we assume further internal structure of C ∈ C or X ∈ X then we can be more
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specific: for instance in the case of part 1 of Example 3.1.7, fa(π·XS) = {π(a) | a ∈
S}.

Because of Lemma 3.2.5, we are entitled to use the following notation:

NOTATION 3.2.7. In the case of syntax r, we may write fa(r) for supp(r) and
call this the free atoms of r.

LEMMA 3.2.8. fa(π·r) = π·fa(r).

Proof. By a routine induction on r. �

LEMMA 3.2.9. If π(a) = π′(a) for all a ∈ fa(r) then π·r = π′·r. The reverse
implication also holds, provided that all constant symbols in r are strongly supported.

Proof. The first part is immediate from Notation 3.2.7 and the definition of support
in Definition 2.2.2.

The reverse implication is by a nominal abstract syntax induction on r. For the case
of r = [a]r′ we α-convert a to be fresh so that a 6∈ nontriv(π) ∪ nontriv(π′); by
assumption 3 in Definition 2.1.6 we can do this. We then use part 2 of Lemma 2.4.9.
The case of r = X ∈ X uses the assumption of strong support in Definition 3.1.5.7

�

3.3 Free unknowns of a term
REMARK 3.3.1. Defining a notion of ‘the free unknowns of r’ is not entirely evident.

Consider for example [a]X where a ∈ supp(X). If ‘X appears in [a]X’ is true
then so is ‘(b a)·X appears in [a]X’ for any b 6∈ supp(X), since [a]X = [b](b a)·X .
We deal with this in Definition 3.3.2 using permutation orbits from Definition 2.4.6;
we simply quotient out all permutations. We take a more refined look at this later in
Remark 3.7.1.
DEFINITION 3.3.2. Define (free) unknowns fU (r) by:

fU (a) = ∅ fU (f(r)) = fU (r)
fU (C) = ∅ fU ((r1, . . . , rn)) =

⋃
i fU (ri)

fU (X) = {orb(X)} fU ([a]r) = fU (r)

By abuse of notation we write X ∈ fU (r) for orb(X) ∈ fU (r) and X 6∈ fU (r) for
orb(X) 6∈ fU (r), and so forth.
LEMMA 3.3.3. fU (r) is well-defined.

Proof. Using Lemmas 2.4.7 and 2.4.10. �

NOTATION 3.3.4. Call a term r ground when fU (r) = ∅. Otherwise, call r open.
7Details of how induction on nominal abstract syntax allows us to α-convert and make freshness

assumptions, are the topic of [Gab11b]. A less fancy proof of both implications by a standard induction—
so not this new-fangled nominal nonsense—on terms not quotiented by α-equivalence, is in Appendix A
of [DGM10], proof of Lemma 4.15 on page 50. We leave it to the reader to judge which is the nicer proof.
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3.4 Substitutions
REMARK 3.4.1. Substitutions are of course how unknowns ‘stand for’ terms. Some-
what later we will develop a denotational theory for nominal terms, and so valuations
for unknowns will appear, in Definition 7.3.3. Between now and then, substitutions
are king.

The permissive-nominal framework we work with allows us an elegant definition:

DEFINITION 3.4.2. Suppose Σ is a signature. A substitution θ in Σ is an
equivariant function from X to terms in Σ such that sort(θ(X)) = sort(X)
always.
θ will range over substitutions.
Write id for the identity substitution mapping X to X always. It will always be
clear whether id means the identity substitution or permutation.

The reader familiar with nominal terms will expect a ‘freshness’ condition on substi-
tutions corresponding to ‘∇′ ` ∇θ’, as in for example Equation (11) or Lemma 2.14
of [UPG04], or ‘fa(θ(X)) ⊆ supp(X)’ as in Definition 3.1 of [DGM10]. This
follows immediately from equivariance:
PROPOSITION 3.4.3. If θ is a substitution then ∀X∈X .fa(θ(X)) ⊆ supp(X).

Proof. Direct from Lemma 2.3.3. �

Putting Propositions 3.4.3 and 2.5.5 together with a concrete X recovers the notion
of substitution used in [DGM10]:
LEMMA 3.4.4. If X is equal to example 1 of Example 3.1.7 then the construction
in Definition 2.5.4 describes a 1-1 correspondence between substitutions and maps
from unknowns XSα to terms t : α such that fa(t) ⊆ S.
DEFINITION 3.4.5. Suppose fa(t) ⊆ supp(X) and sort(t) = sort(X). Write
[X:=t] for the atomic substitution equivariantly extending the assignment X 7→ t,
so that

[X:=t](π·X) = π·t and
[X:=t](Y ) = Y for all other Y.

By Proposition 2.5.5 we have:
LEMMA 3.4.6. Definition 3.4.5 is well-defined. That is, if π·X = π′·X then
π·t = π′·t.
REMARK 3.4.7. The ‘moderated unknown’ π·X in Definition 3.4.5 is an artefact of
our writing [X:=t] instead of a mathematically equal [π·X:=π·t] for some other π.

Since θ is equivariant its behaviour on π·X is already determined by its behaviour
on X and so we could unambiguously specify [X:=t] succinctly as [X:=t](X) = t
and [X:=t](Y ) = Y .
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DEFINITION 3.4.8. Define a substitution action on terms by:

aθ = a f(r)θ = f(rθ)
Cθ = C (r1, . . . , rn)θ = (r1θ, . . . , rnθ)
Xθ = θ(X) ([a]r)θ = [a](rθ)

Note that Xθ refers to θ acting on X as a term whereas θ(X) refers the value
of the function θ at X . The substitution action is well-defined by Lemmas 2.4.10
and 2.4.11.
REMARK 3.4.9. Famously, the nominal terms substitution is capturing [UPG04,
Definition 2.13]. We spell out how this works in our permissive-nominal context:
Suppose supp(X) is equal to a permission set S and a ∈ S and b 6∈ S (where we
assume appropriate sorts). Then:

• ([a]X)[X:=a] = [a]a. The a in the substitution [X:=a] has been captured by
the [a]X .

• ([b]X)[X:=a] = [b]a.
• It is impossible to even ask what ([b]X)[X:=b] is equal to because [X:=b] is not

even a substitution, since b 6∈ S. So b 6∈ S cannot be captured by a substitution
[X:=b], because that substitution does not exist. This is no ad hoc restriction:
by Proposition 3.4.3 it cannot exist.

• Also, [b](b a)·X = [a]X . By construction in Definition 3.4.5

([b](b a)·X)[X:=a] = [b](b a)·a = [b]b = [a]a.

Also [X:=a] = [(b a)·X:=b] and ([b](b a)·X)[(b a)·X:=b] = [b]b.
That is, the choice of representative of [a]X and [X:=a] does not matter for
capture to occur.

It is interesting to note that in our setting, [X:=a] is equivariant and that a 6∈
supp([a]X). If a is fresh for both [X:=a] and [a]X , how can it be captured?

What allows a to get captured is the strong support property of X . Because X is
strongly supported, we can think of it as ‘containing’ a list of its supporting atoms in
some order, so that the a in [X:=a] is bound by supp(X) but in being bound it points
to a ‘position’ in X .

Viewed from this interesting perspective, the nominal substitution action is not
capturing at all: it is simply a compact way to present an ‘infinite raising’ (terminology
from higher-order logic), or a de Bruijn index.
LEMMA 3.4.10. π·(rθ) = (π·r)θ.

Proof. By a routine induction on r using equivariance. �

LEMMA 3.4.11. fa(rθ) ⊆ fa(r).

Proof. From Lemmas 2.3.3 and 3.4.10. �

LEMMA 3.4.12. rθ = rθ′ if and only if ∀X∈fU (r).θ(X) = θ′(X).
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Proof. By a routine induction on r. We consider two cases:

• The case [a]r. Suppose θ(X) = θ′(X) for every X ∈ fU ([a]r). fU ([a]r) =
fU (r) so by inductive hypothesis rθ = rθ′. The result follows from the
definitions.
The reverse implication is similar.
• The case X . Suppose θ(π·X) = θ′(π·X) for all π. Then taking π = id we

have Xθ = θ(X) = θ′(X) = Xθ′.
Conversely if Xθ = Xθ′ then using equivariance (Definition 3.4.2) θ(π·X) =
θ′(π·X) for all π.

�

REMARK 3.4.13. Recall from Definition 3.3.2 that we write X ∈ fU (r) for
orb(X) ∈ fU (r). It might seem that the condition ∀X∈fU (r).θ(X) = θ′(X)
in Lemma 3.4.12 would require checking θ(X) = θ′(X) for infinitely many X
provided that fU (r) 6= ∅. In fact, this is not the case: by equivariance of θ, we
only need to check equality for one representative X of each permutation orbit:
X ∈ orb(X) ∈ fU (r).

3.5 Composition and invertibility of substitutions
DEFINITION 3.5.1. Define composition of substitutions θ1◦θ2 by

(θ1◦θ2)(X) = (θ1(X))θ2.

LEMMA 3.5.2. (rθ)θ′ = r(θ◦θ′).

Proof. By induction on r. �

DEFINITION 3.5.3. Call θ invertible when there exists θ-1 such that θ◦θ-1 =
θ-1◦θ = id .
LEMMA 3.5.4. θ is invertible if and only if θ is a bijection on X the set of all
unknowns. Furthermore, if θ is invertible then supp(θ(X)) = supp(X) always.

Proof. Substitution cannot make syntax smaller, or (by Lemma 3.4.11) make free
atoms larger. �

So an invertible θ must biject unknowns of a particular sort and permission set with
other unknowns of that same sort and permission set. So, like atoms, we can rename
unknowns to ‘be fresh’ (provided we have given ourselves enough of them). Invertible
substitutions will be useful later, and they are also one manifestation of a more general
framework of two-level nominal sets [Gab11c].

3.6 shift-permutations
The reader may be familiar with nominal freshness conditions a#X from [UPG04].
In that paper, a#X indicated that X should be substituted only for terms for which a
is fresh.
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In [UPG04; FG07], we might have to extend a freshness context in order to give
ourselves more fresh atoms. This is what rules like (Fr) from [GM08c, Figure 2]
or (fr) from [GM09a, Figure 2] do; see also [FG10] where the issue of extending
nominal freshness contexts is made very explicit.

In principle, permission sets guarantee an infinite supply of fresh atoms, so the
problem of extending a freshness context should not arise. But this may rely on
oracular knowledge of what the permission set should be, which we might prefer
not to assume. The choice of nominal permutation group P gives us the power to
implicitly parameterise over this decision.

Suppose we have some X such that a ∈ supp(X) and we perhaps we are solving
a unification problem and the information that a should be fresh for X has just been
revealed by an algorithm; so we want to remove a from the permission set of X . This
arises in the unification algorithm of Section 4.

Suppose alternatively we would like to make the permission set larger, e.g. if
we know ∀X.φ and want to deduce φ[X:=t] where fa(t) 6⊆ supp(X), or we have
a rewrite rule X → X and want to deduce t → t where again fa(t) 6⊆ supp(X).
This arises in the nominal rewriting, algebra and permissive-nominal logic which we
construct later.

This is where shift-permutations can help.

DEFINITION 3.6.1. Call a permutation δ ∈ P a shift-permutation when there
exists a permission set S and atom a ∈ S such that S \ {a} = δ·S.
Say that a nominal permutation group P has shift-permutations when for every
permission set S and atom a ∈ A there exists a permutation π ∈ P such that
π·S = S\{a}.

REMARK 3.6.2. Another way to read Definition 3.6.1 is thatP has shift-permutations
when, if S is a permission set and A is finite, then S \A and S ∪A are permission
sets. Stronger versions allowing infinite A are certainly imaginable.
EXAMPLE 3.6.3. The nominal permutation group in part 2 of Example 2.1.7 has
shift-permutations.
δi bijects A<i with A<i \ {f(0)}. Using swappings we can now generate a π to

biject any permission set S with S\{a} for a ∈ S. We give the concrete constructions
below, culminating with Lemma 3.6.10.

For the rest of this subsection we work concretely with the nominal permutation
group from part 2 of Example 2.1.7; the reader only interested in the high-level
picture can skip this. Recall the bijections fi from integers to atoms from part 2
of Example 2.1.7. For simplicity drop the subscript i and consider just one set of
atoms.
NOTATION 3.6.4. By abuse of notation write 0 for the atom f(0).
DEFINITION 3.6.5.

1. If a ∈ A< then define δ-a by:
δ-a = (a 0) ◦ δ ◦ (a 0)
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2. If b ∈ A> then for some fixed but arbitrary choice of c ∈ A> such that δ(c) = c
(and so also c 6∈ A< ), define δ+b by:

δ+b = (b 0) ◦ (c b) ◦ δ-1 ◦ (c b) ◦ (b 0)

EXAMPLE 3.6.6. We illustrate δ-a and δ+b where a = f(-2) and b = f(3) and
where we take c = b:

f(-6) f(-5)
zz

f(-4)
zz

f(-3)
zz

f(-2)
::
f(-1)

$$
f(0)hh f(1)

WW
f(2)

uu
f(5)

WW
f(4)

vv
f(5)

WW
f(6)

vv
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f(-5)

$$
f(-4)

$$
f(-3)

$$
f(-2)

$$
f(-1)

++
f(0)

WW
f(1)

WW
f(2) 66f(3)

��
f(4)

((
f(5)

WW
f(6)

We also consider the slightly more complex example of δ+d where d = f(4), and
again we take c = f(3). We do this in three steps, where we illustrate δ-1, then
(c d) ◦ δ-1 ◦ (c d), and finally δ+d:
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$$
f(-3)
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WW
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f(6)
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f(2)
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f(3)
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f(5)
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LEMMA 3.6.7.

1. If a ∈ A< then δ-a bijects A< with A< \ {a}.
2. If b ∈ A> then δ+b bijects A< with A< ∪ {b}.

Proof. For the first part, suppose a ∈ A< . Then A< = (a 0)·A< . We reason as
follows:

δ-a·((a 0)·A< ) = ((a 0) ◦ δ ◦ (a 0) ◦ (a 0))·A<

= ((a 0) ◦ δ)·A< = (a 0)·(A<\{0}) = A< \{a}

Now suppose b ∈ A> . It is easier to work with (δ+b)-1, to keep the parallel with
the previous case. So A< ∪ {b} = ((b 0)·A< ) ∪ {0}. We reason as follows:

(δ+b)-1·(((b 0)·A< )∪{0}) = ((b 0) ◦ (c b) ◦ δ ◦ (c b) ◦ (b 0))·(((b 0)·A< ) ∪ {0})
Def. 3.6.5

=
(
((b 0) ◦ (c b) ◦ δ ◦ (c b) ◦ (b 0))·((b 0)·A< )

)
∪ {0}

δ(c)=c
=
(
((b 0) ◦ (c b) ◦ δ ◦ (c b))·A<

)
∪ {0}

Fact
=
(
((b 0) ◦ (c b) ◦ δ)·A<

)
∪ {0}

b, c 6∈ A<
=
(
((b 0) ◦ (c b))·(A< \{0})

)
∪ {0}

δ·A<=A< \{0}
= (A< \{0}) ∪ {0}

b, c 6∈ A< \{0}
= A<
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�

Recall from Definition 2.1.10 that each permission set S has the form π·A< for
some permutation π.
DEFINITION 3.6.8. For each S make some choice of permutation πS such that
S = π-1

S ·A< .8

DEFINITION 3.6.9. Suppose S is a permission set and a ∈ S and b 6∈ S. Then we
define:

δS-a = π-1
S ◦ δ

-πS(a) ◦ πS δS+b = π-1
S ◦ δ

+πS(b) ◦ πS

The concrete details of the construction are only interesting insofar as they give us
Lemma 3.6.10. Other permutations are possible, but we only need that one exists.
LEMMA 3.6.10.

1. δS-a bijects S with S\{a}.
2. δS+b bijects S with S∪{b}.

Proof. From Lemma 3.6.7. �

DEFINITION 3.6.11. Suppose S is a permission set and supp(X) = S. SupposeD
is a finite list of atoms d1, . . . , dn and E is a finite list of atoms e1, . . . , en. Suppose
{d1, . . . , dn} ⊆ S and {e1, . . . , en}∩S = ∅. Then define δS-D and δS+E , andX-D
and X+E by:

δS-[] = id
δS-[d] = δS-d
δS-d,D = δ(S\{d})-D ◦ δS-d
X-D = δsupp(X)-D·X

δS+[] = id
δS+[e] = δS+e
δS+e,E = δ(S∪{e})+E ◦ δS+e
X+E = δsupp(X)+E ·X

LEMMA 3.6.12. Suppose S is a permission set. Suppose D and E are finite lists of
atoms d1, . . . , dn and e1, . . . , en. Suppose {d1, . . . , dn} ⊆ S and {e1, . . . , en}∩S =
∅.

Then δS-D bijectsS withS\{d1, . . . , dn} and δS+E bijectsS withS∪{e1, . . . , en}.

Proof. Using Lemma 3.6.10. �

COROLLARY 3.6.13. S is a permission set if and only if S = (A< \A)∪B for some
finite A ⊆ A< and B ⊆ A> .

Proof. If S is a permission set then by Definition 2.1.10 S = π·A< for some π and
the result follows by a routine induction on the generators of π (swapping and δ; see
part 2 of Example 2.1.7).

Conversely consider S = (A< \A)∪B. Let D be the atoms in A in some order,
and E be the atoms in B in some order. Then we apply δS-D and then δ(S\A)+E and
use Lemma 3.6.12. �

8Taking the inverse here saves writing -1 quite so many times in Definition 3.6.9, and is harmless since
permutations are invertible.
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REMARK 3.6.14. The reader may be familiar with the de Bruijn shift function ↑
[ACCL91, Subsection 2.2]. This maps N to N\{0} by mapping j ∈ N to j + 1 ∈ N,
and in doing so it ‘creates a fresh number’ 0. The reader familiar with presheaf
techniques may know of a functor δ and arrow up, which work the same way, as
exemplified in [FPT99, Section 1].
δi from part 2 of Example 2.1.7 is in the same spirit. It shifts ‘down’ instead of

‘up’, but δ-1
i shifts ‘up’.

Note that δ is invertible (↑ and up are not). This is consistent with the general
preference of nominal techniques for using permutations where possible.

3.7 Occurrences
REMARK 3.7.1. As discussed in Remark 3.3.1 we have to be careful if we wish to
say ‘X appears in r’; this might not quite mean what we think it does.

For example if ‘X appears in [a]X’ where a ∈ supp(X) then also ‘(b a)·X
appears in [a]X’ for any b 6∈ supp(X). We dealt with this in Definition 3.3.2 by
quotienting out all permutations.

But this is a little drastic. For instance, ‘(b a)·X appears in [a]X’ is not true for
b ∈ supp(X); it is not the case that if ‘X appears in r’ then ‘π·X appears in r’ for
any π.

We did not need to quotient out all permutations—only some of them—and so
returning orb(X) in Definition 3.3.2 throws out more information than necessary.

Definitions 3.7.2 and 3.7.3 develop a more refined notion of occurrence, based on
an intuition of ‘X appears in r under a list of abstractions D’. This will be useful
later.
DEFINITION 3.7.2. D will range over finite lists of distinct atoms. A (level 2)
occurrence is a term of the form [D]X where []X is X and [a,D]X is [a][D]X .
DEFINITION 3.7.3. Define the occurrences in r inductively by:

occ(a) = ∅ occ(f(r)) = occ(r)
occ(C) = ∅ occ((r1, . . . , rn)) =

⋃
occ(ri)

occ(X) = X occ([a]r) = {[a]x | x∈occ(r)}

EXAMPLE 3.7.4.

• X occurs in X .
• [a]X occurs in [a]X and also in [a](X,Y ); so does [a]Y . X does not occur in

[a]X or [a](X,Y ).
• [a][b]X and [a][a]X occur in [a]([b]X, [a]X).

We write occurrences as [D]X for D a finite list of distinct atoms. Note that [a][a]X
is an occurrence since it is equal to [a][b](b a)·X where b 6∈ supp(X). This is an
equality, not an equivalence imposed on terms after they are constructed, because of
our use of atoms-abstraction (Definition 2.4.8) in syntax (Definition 3.2.1).
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Rewrites, equations, and algebras

4 UNIFICATION

We want to write rewrite rules and equality axioms using nominal terms. In order to
do this, we have to unify nominal terms (answer the question: “given r and s what
substitutions θ make them equal?”). Unification makes unknowns ‘come alive’ and
represent unknown terms.

Therefore, we now create a nominal unification algorithm. One notable property
of nominal unification is that it has most general (principal) unifiers Theorem 4.4.6.
Contrast this with higher-order unification, which does not [Dow01, Section 4]. This
is one reason we say that the nominal approach to names and binding has a ‘first-order’
flavour.

The algorithm we use follows the spirit of [UPG04] but the design is different.
In [UPG04] a solution to [a]X ?= [b]Y would be (b#X, [Y:=(b a)·X]); that is, the
unification algorithm returns a pair of some freshness side-conditions and some
equalities.9

Here, solutions are equalities only, without freshness conditions. The extra power
resides in the notion of an shift-permutation (Definition 3.6.1).

A solution to [a]X = [b]Y where b ∈ supp(X) = supp(Y ) would be

[X:=δ′·X, Y :=((b a) ◦ δ′)·X]

where δ′ bijects supp(X) with supp(X) \ {b} (and by this bijection ‘internally
freshens’ X with respect to b).

In another design [DGM10, Section 5] we use permission sets and fresh unknowns;
a solution to [a]X = [b]Y where b ∈ supp(X) = supp(Y ) is [X:=Z, Y :=(b a)·Z]
where supp(Z) = supp(X)\{b}. GeneratingZ fresh requires us to solve problems in
a context of ‘known unknowns’ V . This introduces a notion of state and sequentiality
into the algorithm of [DGM10] which we avoid here.

Nothing forces us to feed the unification algorithm syntax with shift-permutations,
even if the solutions it returns might mention them; similarly in [UPG04] we may
obtain a solution with freshness side-conditions to a unification problem with only
equalities. So use of shift-permutation in Definition 4.0.5 should not be read as a
commitment to using them everywhere (though we do note empirically that shift
seems to be useful elsewhere too).

The main definition of this section is Definition 4.1.7. The main result is Theo-
rem 4.4.6.

DEFINITION 4.0.5. Throughout this Section we fix some signature Σ and we
work with syntax over Σ. We assume a nominal permutation group P with shift-
permutations and a set of unknowns X such that every unknown is supported by a
permission set (see e.g. part 2 of Example 3.1.7).

9We write typewriter font to avoid confusion between the symbols used in [UPG04] (which have no
support) and the elements X ∈ X used in this paper (which do have support). To see how to travel
between these two worlds see part 2 of Example 3.1.7, or [DGM10].
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4.1 The unification algorithm

DEFINITION 4.1.1. A (unification) equality is a unordered pair r ?= s (so r ?= s
is identical to s ?= r) such that:

1. sort(r) = sort(s).
2. If [D]X and [D′]π·X are both in occ(r) ∪ occ(s) then π is finite.

So we exclude an equality like X ?= δ·X , where δ is a shift permutation and
nontriv(δ) ∩ supp(X) is not finite.

A (unification) freshness is an ordered pair a#?r.
Let ef range over equalities or freshnesses and define ef θ by:

• (r ?= s)θ = (rθ ?= sθ).
• (a#?r)θ = (a#?(rθ)).

A nominal unification problem Pr is a finite list ef1, . . . , efn.
We (ab)use standard sets notation and write ef ∈ Pr as shorthand for ‘ef appears

in the list Pr’.

REMARK 4.1.2. Condition 2 in Definition 4.1.1 protects ( ?=X) in Figure 2 from an
‘infinite freshness explosion’, if nontriv(π) ∩ supp(X) is not finite. This condition
exists implicitly in [UPG04], in the sense that all permutations there are finite. How-
ever, condition 2 is not only computationally motivated. Given constants C and D
with supp(C) = ∅ = supp(D), X ?= δ·X may have solutions C and D but have no
principal solution. We discuss the implications of this condition to nominal rewriting,
at the end of Section 6.

DEFINITION 4.1.3. If Pr = ef1, . . . , efn is a problem then define Prθ by:

Prθ = ef1θ, . . . , efnθ

Say θ solves Pr and call θ a solution to Pr when

rθ = sθ for every r ?= s ∈ Pr, and
a 6∈ fa(rθ) for every a#?r ∈ Pr.

Write Sol(Pr) for the set of solutions to Pr and call Pr solvable when Sol(Pr) is
non-empty.

Recall the definition of θ◦θ′ from Definition 3.5.1.

LEMMA 4.1.4. θ◦θ′ ∈ Sol(Pr) if and only if θ′ ∈ Sol(Prθ).

Proof. By unpacking Definition 4.1.3 and using Lemma 3.5.2. �

DEFINITION 4.1.5. Define a simplification rewrite relation Pr =⇒ Pr′ on unifi-
cation problems by the rules in Figure 2.

We call rules (IF) and (IE) instantiating rules. We call all the other rules
non-instantiating rules.
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( ?=a) a ?= a, Pr =⇒ Pr
( ?=C) C ?= C, Pr =⇒ Pr
( ?=f) f(r) ?= f(s), P r =⇒ r ?= s, Pr
( ?=()) (r1, . . . , rn) ?= (s1, . . . , sn), P r =⇒ r1

?= s1, . . . , rn
?= sn, P r

( ?=[]) [a]r ?= [a]s, Pr =⇒ r ?= s, Pr
( ?=X) X ?= π·X, Pr =⇒ a1#?X, . . . , an#?X,Pr

({a1, . . . , an} = nontriv(π) ∩ supp(X))
(F) r ?= X, Pr =⇒ a#?r, r

?=X, Pr
(a ∈ fa(r)\supp(X))

(F#) a#?r, Pr =⇒ Pr (a 6∈ fa(r))
(Ff) a#?f(r), P r =⇒ a#?r, Pr
(F()) a#?(r1, . . . , rn), P r =⇒ a#?r1, . . . , a#?rn, P r
(F[]) a#?[b]r, Pr =⇒ a#?r, Pr

(IE) r ?= X, Pr
[X:=r]
=⇒ Pr[X:=r]

(X 6∈fU (r), fa(r)⊆supp(X))

(IF) a#?X,Pr
[X:=δX-a·X]

=⇒ Pr[X:=δX-a·X]

Figure 2: Simplification rules for problems

In (IF) δX-a is some permutation bijecting supp(X) with supp(X) \ {a}. We
can do this because we assumed shift-permutations in Definition 4.0.5.10

Write =⇒∗ for the transitive and reflexive closure of =⇒.

REMARK 4.1.6. Compare Figure 2 with Figure 3 of [UPG04]. Note of ( ?=[]) that
we do not consider the case [a]r ?= [b]s. This is because α-equivalence is handled
automatically by nominal abstract syntax, specifically by Definition 2.4.8. So α-
renaming is pushed into the background (just as is usually the case for first-order
syntax) and these rules are somewhat higher-level than those of [UPG04].

We also do not require a rule a#?[a]r, Pr =⇒ Pr because the abstracted atom
in [a]r is α-convertible; more formally, [a]r = [b](b a)·r for some/any fresh b (so
b 6∈ fa(r)).

Finally, in ( ?=X) we do not need to write π·X ?= π′·X (though we could) because
unknowns are just a strongly-supported nominal set. We know that nontriv(π) ∩
supp(X) is finite by a routine argument based on condition 2 of Definition 4.1.1. It
is not hard to check that the instantiating rules (IF) and (IE) do indeed preserve
these conditions—(IF) involves a shift permutation, but in a manner that is applied
uniformly to the whole problem.

10The specific choice does not matter. Intuitively this is because permutations are invertible so any
one choice and be undone and redone at will. A more formal statement of this is Theorem 4.3.6. For an
example of a shift-permutation concretely constructed, see Definition 3.6.9.

This algorithm generates shifts just like in [UPG04] we generated freshness conditions, and for the same
reason.
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DEFINITION 4.1.7. If Pr is a problem, define a unification algorithm by:

1. RewritePr using the rules of Definition 4.1.5 where possible, with top-down
precedence (so apply ( ?=a) before ( ?=f), and so on).

2. If we reduce to ∅ then we succeed and return θ where θ is the composition
of all the substitutions labelling rewrites (we take θ = id if there are none).
Otherwise, we fail.

REMARK 4.1.8. Note in Definition 4.1.7 that we apply each rule to the head of the
list Pr. This is to prevent ‘unfair’ looping, e.g. repeatedly applying (F) to some
equality r ?= X wherever it appears in Pr.

Note also that the rule (F#) is equivalent—in the presence of the other rules—to
three rules as follows:

(Fa) a#?b, Pr =⇒ Pr
(FC) a#?C, Pr =⇒ Pr (a 6∈ supp(C))
(FX) a#?X,Pr =⇒ Pr (a 6∈ supp(X))

PROPOSITION 4.1.9. The algorithm of Definition 4.1.7 always terminates.

Proof. It is not hard to generate an inductive quantity which is reduced by the
reductions in Figure 2. �

4.2 Examples of the algorithm
We assume the permutation group from part 2 of Example 2.1.7 and we recall the
definition of X-D from Definition 3.6.9.

Example one (succeeds).

Suppose a, c ∈ A< and d 6∈ A< . Take supp(X) = A< and suppose a term-former g.
We apply the algorithm to {g([a]X, [a]a) ?= g([d]c, [d]d)}:

g([a]X, [a]a) ?= g([d]c, [d]d) =⇒ ( ?=g), ( ?=())

[a]X ?= [d]c , [a]a ?= [d]d =⇒ ( ?=[]), [a]X = [d](d a)·X

(d a)·X ?= c , [a]a ?= [d]d
[X:=c]
=⇒ (IE)

[a]a ?= [d]d =⇒ ( ?=[]), [a]a = [d]d

d ?= d =⇒ ( ?=a)

∅ Success, with [X:=c]

Example two (succeeds).

Suppose a, c ∈ A< and b, d 6∈ A< . Take supp(X) = A< ∪ {b, d}, supp(Y ) =
A< ∪ {f}, and supp(Z) = A< . Suppose a term-former f.

We apply the algorithm to {f([a]b, Z,X) ?= f([d]b, [a]a, Y )}:
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f([a]b, Z,X) ?= f([d]b, [a]a, Y ) =⇒ ( ?=f), ( ?=())

[a]b ?= [d]b , Z ?= [a]a, X ?= Y =⇒ ( ?=[]), [a]b = [d]b

b ?= b , Z
?= [a]a, X ?= Y =⇒ ( ?=a)

Z ?= [a]a , X ?= Y
[Z:=[a]a]

=⇒ (IE)

X ?= Y =⇒ (F)

b#?X , X ?= Y
[X:=X-b]

=⇒ (IF)

X-b ?= Y =⇒ (F)

d#?X-b , X-b ?= Y
[X-b:=X-b,d]

=⇒ (IF)

X-b, d ?= Y =⇒ (F)

f#?Y , X-b, d ?= Y
[Y :=Y -f ]

=⇒ (IF)

X-b, d ?= Y -f
[Y -f :=X-b,d]

=⇒ (IE)

∅ Success, with [X:=X-b, d, Y :=X-b, d, Z:=[a]a]

Example three (fails).

Take supp(X) = A< . We run the algorithm on {[a][b]X ?= [a]X}:

[a][b]X ?= [a]X =⇒ ( ?=[])

[b]X ?= X Failure

The algorithm fails because the precondition of rule (IE), X 6∈ fU ([b]X) is not
satisfied.

Example four (succeeds).

Take supp(X) = A< and take a, b ∈ A< . We run the algorithm on {X ?= (a b)·X}:

X ?= (a b)·X =⇒ ( ?=X)

a#?X , b#?X
[X:=X-a]

=⇒ (IF)

b#?X-a
[X-a:=(X-a)-b]

=⇒
∅ Success, with [X:=(X-a)-b]

Later we will prove Theorem 4.4.6, which tells us that failure here implies that no
solution to the unification problem exists.

4.3 Preservation of solutions
. . . under non-instantiating rules

LEMMA 4.3.1. If Pr =⇒ Pr′ by a non-instantiating rule (Definition 4.1.5) then
Sol(Pr) = Sol(Pr′).
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Proof. The empty set cannot be simplified, so suppose Pr = r ?=s, Pr′ where the
simplification rule acts on r ?= s. We consider two cases:

• The case ( ?=[]). Suppose Pr = [a]r ?= [a]s, Pr′ and [a]r ?= [a]s, Pr′ =⇒
r ?= s, Pr′ by ( ?=[]). By Definition 3.4.8 and properties of equality, [a](rθ) =
[a](sθ) if and only if rθ = sθ.

• The case (F()). Suppose Pr = a#?(r1, . . . , rn), P r′ and suppose that
a#?(r1, . . . , rn), P r′ =⇒ a#?r1, . . . , a#?rn, P r

′ by (F()). By Definition 3.4.8
and Lemma 3.2.5, a 6∈ fa((r1, . . . , rn)θ) if and only if a 6∈ fa(r1θ), . . . ,
a 6∈ fa(rnθ).

�

LEMMA 4.3.2. Suppose θ(X) = θ′(X) for all X ∈ fU (Pr). Then θ ∈ Sol(Pr) if
and only if θ′ ∈ Sol(Pr).

Proof. From Definition 4.1.3 it suffices to show that rθ = sθ if and only if rθ′ = sθ′,
for every (r ?= s) ∈ Pr, and a 6∈ fa(rθ) if and only if a 6∈ fa(rθ′), for every
(a#?r) ∈ Pr. This is immediate using Lemma 3.4.12. �

. . . under (IE)

Recall from Remark 3.4.7 the discussion of why we write π·X when we have chosen
a representative element X of an equivalence class of unknowns under permuta-
tions.
DEFINITION 4.3.3. Write θ−X for the substitution such that

(θ−X)(π·X) = π·X
(θ−X)(Y ) = θ(Y ) for all other Y .

In the right circumstances, a substitution θ can be factored as ‘a part of θ that does
not touch X’ and ‘a single substitution for X’:
THEOREM 4.3.4. If Xθ = sθ and X 6∈ fU (s) then

θ = [X:=s]◦(θ−X).

That is:
θ(X) = X([X:=s]◦(θ−X)) and
θ(Y ) = Y ([X:=s]◦(θ−X)).

Proof. We reason as follows:

(π·X)([X:=s]◦(θ−X)) = (π·s)(θ−X) Definition 3.4.8, Lemma 3.5.2
= (π·s)θ X 6∈ fU (s), Lemma 3.4.12
= (π·X)θ Assumption

Y ([X:=s]◦(θ−X)) = Y (θ−X) Definition 3.4.8, Lemma 3.5.2
= Y θ Definition 4.3.3

�
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. . . under (IF)

DEFINITION 4.3.5. Suppose θ is a substitution. Suppose a ∈ supp(X) and a 6∈
fa(θ(X)). Let δX-a be a shift permutation bijecting supp(X) with supp(X) \ {a}.

Define a substitution θ[X-a:=X](X) by:

• (θ[X-a:=X])(π·X) = (π ◦ δ-1
X-a)·θ(X).

• (θ[X-a:=X])(Y ) = θ(Y ) for all other Y .

It is routine to verify that Definition 4.3.5 is well-defined and a substitution.
THEOREM 4.3.6. Suppose a ∈ supp(X) and a 6∈ fa(θ(X)). Then

θ = [X:=X-a]◦(θ[X-a:=X]).

That is:
θ(π·X) = ([X:=X-a]◦θ[X-a:=X])(π·X) and
θ(Y ) = ([X:=X-a]◦θ[X-a:=X])(Y ).

Proof. We unpack definitions:

([X:=X-a]◦(θ[X-a:=X]))(π·X) = (π·(X-a))θ[X-a:=X] Definition 3.5.1
= ((π◦δX-a)·X)θ[X-a:=X] Def. X-a
= (π ◦ δX-a ◦ δ-1

X-a)·X Definition 4.3.5
= π·X Group action

The result follows. �

4.4 Simplification rewrites calculate principal solutions
DEFINITION 4.4.1. Write θ1 ≤ θ2 when there exists some θ′ such that Xθ2 =
X(θ1 ◦ θ′) always. Call ≤ the instantiation ordering.
DEFINITION 4.4.2. A principal (or most general) solution to a problem Pr is a
solution θ ∈ Sol(Pr) such that θ ≤ θ′ for all other θ′ ∈ Sol(Pr).

Our main result is Theorem 4.4.5: the unification algorithm from Definition 4.1.7
calculates a principal solution.
LEMMA 4.4.3. If θ1 ≤ θ2 then θ◦θ1 ≤ θ◦θ2.

Proof. By Definition 4.4.1, θ′ exists such that Xθ2 = X(θ1◦θ′) always. Then:

X(θ◦θ2) = (Xθ)θ2 Lemma 3.5.2
= (Xθ)(θ1◦θ′) Lemma 3.4.12
= X((θ◦θ1)◦θ′) Lemma 3.5.2

�

LEMMA 4.4.4.
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1. Suppose fa(s)⊆supp(X) and X 6∈ fU (s). Write χ=[X:=s]. If Pr χ
=⇒ Pr′

with (IE) then θ ∈ Sol(Pr) implies θ−X ∈ Sol(Pr′).

2. Suppose a ∈ supp(X). Write ρ=[X:=X-a]. If Pr ρ
=⇒ Pr′ with (IF) then

θ ∈ Sol(Pr) implies θ[X-a:=X] ∈ Sol(Pr′).

Proof.

1. Suppose Pr = X ?= s, Pr′′ so that X ?= s, Pr′′
χ

=⇒ Pr′′χ. Now suppose
θ ∈ Sol(Pr). By Theorem 4.3.4 χ◦(θ−X) ∈ Sol(Pr). By Lemma 4.1.4,
θ−X ∈ Sol(Prχ). It follows that θ−X ∈ Sol(Pr′′χ) as required.

2. Suppose Pr = a#?X, Pr
′′ and a ∈ supp(X) so that Pr ρ

=⇒ Prρ. Now
suppose θ ∈ Sol(Pr). By Theorem 4.3.6 ρ◦θ[X-a:=X] ∈ Sol(Pr). By
Lemma 4.1.4, θ[X-a:=X] ∈ Sol(Prρ) as required.

�

THEOREM 4.4.5. If Pr θ
=⇒∗ ∅ then θ is a principal solution to Pr (Defini-

tion 4.4.2).

Proof. By induction on the path of Pr θ
=⇒∗ ∅.

• The empty path. So Pr = ∅ and θ = id . By Definition 4.4.1, id ≤ θ′.
• The non-instantiating case. Suppose

Pr =⇒ Pr′
θ

=⇒∗ ∅

where Pr =⇒ Pr′ by a non-instantiating rule. By inductive hypothesis θ is a
principal solution of Pr′. It follows from Lemma 4.3.1 that θ is also a principal
solution of Pr.

• The case (IE). Suppose fa(r) ⊆ supp(X) and X 6∈ fU (r). Write χ =
[X:=r]. Suppose Pr = r ?=X,Pr′′ so that

r ?=X, Pr′′
χ

=⇒ Pr′′χ
θ′′

=⇒∗ ∅.

Further, consider any other θ′ ∈ Sol(Pr).
By Lemma 4.4.4 (θ′−X) ∈ Sol(Pr′′χ) and by inductive hypothesis θ′′ ∈
Sol(Pr′′χ) and θ′′ ≤ θ′−X . By Lemma 4.4.3, χ◦θ′′ ≤ χ◦(θ′−X). By
Theorem 4.3.4 χ◦(θ′−X) = θ′.
• The case (IF). Suppose a ∈ supp(X). Write ρ = [X:=X-a], so that

Pr
ρ

=⇒ Prρ
θ′′

=⇒∗ ∅,

Further, consider any other θ′ ∈ Sol(Pr).
By Lemma 4.4.4, θ′[X-a:=X] ∈ Sol(Prρ) and by inductive hypothesis θ′′ ∈
Sol(Prρ) and θ′′ ≤ θ′[X-a:=X]. By Lemma 4.4.3, ρ◦θ′′ ≤ ρ◦θ′[X-a:=X]. By
Theorem 4.3.6 ρ◦θ′[X-a:=X] = θ′.
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�

THEOREM 4.4.6 (Correctness of algorithm). Given a problem Pr, if the algorithm
of Definition 4.1.7 succeeds then it returns a principal solution; if it fails then there is
no solution.

Proof. If the algorithm succeeds we use Theorem 4.4.5. Otherwise, the algorithm
generates an element of the form f(r) ?= g(s), a ?= b, a#?a, a#?C where a ∈
supp(C), or X ?= s where X ∈ fU (s) and s is not of the form π·X . By arguments
on syntax and size of syntax, no solution to the reduced problem exists. It follows by
Lemma 4.4.4 that no solution to Pr exists. �

DEFINITION 4.4.7. Fix terms r and s.

• Call nominal unification the problem of finding a θ to make rθ = sθ.
• Call nominal matching the problem of finding a θ to make rθ = s.

COROLLARY 4.4.8. Providing that equality of C (constants), X (unknowns), and
P (permutations) are decidable, nominal unification and nominal matching over
signatures using them are also decidable.

Proof. An algorithm for unification is sketched in Definition 4.1.7; furthermore by
Theorem 4.4.6 it calculates a most general θ which represents all other solutions.

For matching, we substitute unknowns in s with fresh (non-equivariant) constants
of the same sorts and permission sets—we extend the signature if we need to—and run
the unification algorithm. We then replace the constants by the original unknowns.11

It is not hard to see that this calculates a most general matching solution. �

REMARK 4.4.9. The matching and unification algorithms might generate solutions
with shift-permutations. If we prefer to eliminate them then—provided that X has
enough unknowns (Definition 3.1.10)—we may do so by appending an invertible
substitution (Definition 3.5.3) mapping each shifted δ·X in the solution to a fresh
unknown Y such that supp(Y ) = δ·supp(X).

5 REWRITING

Nominal rewriting was the first logical system designed to study theories (sets of
axioms, i.e. rewrite rules) over nominal terms. It was introduced by Fernández
and the author in [FGM04; FG07]. Nominal terms allow us to express rewrite rules
involving binding, like substitution and the λ-calculus (see Example 5.1.3).

The presentation of nominal rewriting here differs from that in [FG07], and is more
concise. Partly this is optimisation, but this is also due to the permissive-nominal
approach. We compare and contrast nominal rewriting from [FG07] with nominal
rewriting here, in Subsection 5.6.

11We do not make this formal, but since constants are structurally just like unknowns the definitions can
easily be constructed by proceeding exactly as we did when we defined substitution for unknowns.
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5.1 Rewrite rules

DEFINITION 5.1.1. A rewrite rule in a signature Σ = (A,B, C,F , ar) is a pair
of terms l→ m in Σ such that sort(l) = sort(m) ∈ B and fU (m) ⊆ fU (l).
R will range over rewrite rules.
A rewrite theory R = (Σ,Rew) is a pair of a signature Σ (Definition 3.1.5) and
a (possibly infinite) set of rewrite rules Rew in Σ.

NOTATION 5.1.2. Write (l → m) ∈ R to mean ‘l and m are terms in Σ and
(l→ m) ∈ Rew ’.

The notion of rewrite rule and rewrite theory in Definition 5.1.1 is much like the
first-order case, but because of the ‘nominal’ aspects of our syntax we can handle
names and binding.

EXAMPLE 5.1.3. Here are some example rewrite theories:

• nrSUB expresses the usual capture-avoiding substitution action on λ-calculus
terms.

Let Σ have a base sort τ and the following term-formers:

sub : ([ν]τ, τ)τ lam : ([ν]τ)τ app : (τ, τ)τ var : (ν)τ

Rewrite rules are as follows:

(var→) var(a)[a7→X] → X
(var→′) var(b)[a7→X] → var(b)
(lam→) lam([a]X)[b7→Y ] → lam([a](X[b 7→Y ])) (a6∈supp(Y ))
(app→) app(X,X ′)[b7→Y ] → app(X[b 7→Y ], X ′[b 7→Y ])

Here and in the next example we sugar sub([a]r, t) to r[a7→t]. Every permission
set contains b and every permission set contains a except for supp(Y ), as
indicated above.

• nrLAM extends the previous theory with two more rewrites:

(β→) (λ[a]Z)X → Z[a7→X]
(η→) λ[a](Y a) → Y (a6∈supp(Y ))

Sugar lam(r) to λr, app(r, s) to rs, and var(a) to a. We anticipate Subsection 5.2
and sketch how one might rewrite (λ[b](λ[a]ab))a to λ[a′]a′a:

(λ[b](λ[a]ab))a→ (λ[a]ab)[b7→a]
= (λ[a′]a′b)[b7→a]
→ λ[a′]((a′b)[b 7→a])
→∗ λ[a′]a′a
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5.2 Rewrite steps

DEFINITION 5.2.1. Define the terms s in which X occurs only once by:
s ::= π·X | [a]s | f(r1, . . . , ri−1, s, ri+1, . . . , rn)

(X 6∈ fU (r1), . . . , fU (ri−1), fU (ri+1), . . . , fU (rn))
A position P is a pair (s,X) of a nominal term and an unknown X which occurs
only once in s.

Our notion of position is also sometimes called a context; the idea goes back to at
least [FH92].

In Definition 5.2.1, π·X denotes an unknown in the same permutation orbit as X .
NOTATION 5.2.2. If P = (s,X) is a position write supp(P ) for supp(X) and
sort(P ) for sort(X).

If sort(r) = sort(P ) and fa(r) ⊆ supp(P ) (so that [X:=r] is a substitution)
write P [r] for s[X:=r].

DEFINITION 5.2.3. The one-step rewrite relation r R−→ s is the least relation such
that for every (l → m) ∈ R, position P , and substitution θ, if sort(r) = sort(P )
and fa(lθ) ∪ fa(mθ) ⊆ supp(P ) (so that P [lθ] and P [mθ] are well-defined) then

P [lθ]
R−→ P [mθ].

The multi-step rewrite relation r R−→∗ s is the reflexive transitive closure of the
one-step rewrite relation.

We consider decidability and complexity of the rewrite relation in Section 6.
EXAMPLE 5.2.4. Let T have one name sort ν, one base sort τ , one term-former
triv and one axiom triv(a)→ triv(b).

Then triv(a) → triv(b) but also (using positions (π·X,X) for any π) triv(b) →
triv(a) and triv(a′)→ triv(b′) for any pair of distinct atoms a′ and b′.

Thus atoms in rewrite rules range over ‘any atom’ analogously to how unknowns
in rewrite rules range over ‘any term’.
EXAMPLE 5.2.5. Recall the rule (η→) = (λ[a](Y a) → Y ) where a 6∈ supp(Y )
from Example 5.1.3. Suppose also b 6∈ supp(Y ).

1. To deduce λ[a](ba)→ b we take P = ((b c)·Y, Y ) for some c ∈ supp(Y ) and
we take θ = [Y :=c].

2. To deduce λ[a′](ba′) → b for any other a′ we also take P = ((b c)·Y, Y )
and θ = [Y :=c]. This is because λ[a′](ba′) and λ[a](ba) are the same term
(Lemma 2.4.9).

3. To deduce λ[a](Y a)→ Y we take P = (Y, Y ) and θ = id .
4. Suppose supp(Y ′) = supp(Y ) ∪ {a}.

Suppose we have shift-permutations so there exists a permutation, write it
δY ′-a, bijecting supp(Y ′) with supp(Y ). To deduce λ[a](Y ′a)→ Y ′ we take
P = ((δY ′-a)-1·Y, Y ) and θ = [Y :=δY ′-a·Y ′].
Without shift we cannot deduceλ[a](Y ′a)→ Y ′; we can still deduceλ[a](Y a)→
Y .
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5. We cannot deduce λ[a](aa) → a, because [Y :=a] is not a substitution: no
function mapping Y to a can be equivariant, since (b a)·Y = Y but (b a)·a =
b 6= a (also a 6∈ supp(Y ): see Proposition 3.4.3).

6. A rewrite X → X only entails rewrites for t with fa(t) ⊆ π·supp(X) for
some π. With shift, the effect of this may be that we can deduce t→ t from
X → X for any t. We make no claim to there being a ‘right’ or ‘wrong’ answer
here: the issue is purely a design question of how much expressivity we want
permutations to have. Our results are parameterised over this choice.

DEFINITION 5.2.6.

• Call R locally confluent when r R−→ s1 and r R−→ s2 implies there exists
some s′ such that s1

R−→∗ s′ and s2
R−→∗ s′.

• Call R confluent when r R−→∗ s1 and r R−→∗ s2 implies there exists some s′

such that s1
R−→∗ s′ and s2

R−→∗ s′.

5.3 Peaks, critical pairs, joinability

We now begin to investigate criteria for deducing confluence of nominal rewrite
systems. Our first observation is that things are not quite as simple as in first-order
rewriting [BN98, Section 6.2]: by Lemma 5.3.5, trivial critical pairs are not always
joinable.

DEFINITION 5.3.1. Write r → s1, s2 when r → s1 and r → s2 and call this a
peak. Call this peak joinable when there exists a t such that s1 →∗ t and s2 →∗ t.

So R is locally confluent when every peak is joinable.

DEFINITION 5.3.2. Consider two rewrite rules R1 = (l1 → m1) and R2 = (l2 →
m2). Call R1 a copy of R2 when there exists an invertible substitution θ such that
(l2θ → m2θ) = R1.

Clearly, if R1 is a copy of R2 then R2 is also a copy of R1. Furthermore:

LEMMA 5.3.3. If R1 and R2 are copies of the same rule then l R1−→ m if and only
if l R2−→ m.

Proof. Unpacking Definition 5.2.3 and exploiting the existence of an inverse θ-1. �

DEFINITION 5.3.4. Suppose that Ri = (li → mi) for i = 1, 2 and fU (R1) ∩
fU (R2) = ∅. Suppose l1 = P [l′1] for some l′1, and suppose l′1

?= l2 has a principal
solution θ. Call the pair (m1θ, P [m2]θ) a critical pair.

Call (m1θ, P [m2]θ) trivial when at least one of the following hold:

1. P = (π·X,X) and R1 and R2 are copies of the same rule.
2. l′1 = X for some unknown X .

LEMMA 5.3.5. Peaks that are instances of trivial critical pairs, are not always
joinable.
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Proof. It suffices to provide a counterexample. Fix term-formers 0 and f and take
R1 = (0→ a) and R2 = (X → f(a)) where a 6∈ supp(X).

There is a critical pair (a, f(a)) between R1 and R2.
Also, 0

R1−→ a and 0
R2−→ f(a) and it is a fact that this peak cannot be joined—we

‘want’ to close this peak by rewriting a to f(a) usingR2, but the fact that a 6∈ supp(X)
blocks this. �

5.4 Uniform rewriting

The proof of Lemma 5.3.5 suggests a simple cure:

DEFINITION 5.4.1. Call a rule R = (l→ m) uniform when

fa(m) ⊆ fa(l).

Call a rewrite theory R uniform when every R ∈ R is uniform.

Definition 5.4.1 mirrors the condition in Definition 5.1.1 that fU (m) ⊆ fU (l), but
for atoms instead of unknowns. This condition is sufficient to obtain Theorem 5.4.7,
which is a nominal rewriting version of the well-known critical pair lemma from
first-order rewriting [BN98, Theorem 6.2.4].

EXAMPLE 5.4.2. Let R have one name sort ν, one base sort τ , two term-formers
triv : (ν)τ and abs : ([ν]τ)τ , and rewrite rules

triv(a)→ triv(a) triv(a)→ triv(b) abs([a]X)→ X.

fa(triv(a)) ⊆ fa(triv(a)) and fa(triv(b)) 6⊆ fa(triv(a)). Also fa(X) 6⊆
fa(abs([a]X)) if and only if a 6∈ supp(X).

So the first rule is uniform, the second is not, and the third is uniform if and only
if a 6∈ supp(X).

The rewrite rules of nrSUB and nrLAM in Example 5.1.3 are uniform.12

LEMMA 5.4.3. If fa(m) ⊆ fa(l) then fa(P [m]) ⊆ fa(P [l]).

Proof. Routine induction using Lemmas 3.2.8 and 3.2.5. �

COROLLARY 5.4.4. R = (l → m) is uniform if and only if ∀r,s.
(
r

R−→ s ⇒
fa(s) ⊆ fa(r)

)
.

Proof. From Lemmas 3.2.8 and 3.4.11. �

LEMMA 5.4.5. Suppose R = (l → m) is uniform and X 6∈ fU (R). Suppose
θ(X) = lθ. Specify θ′ by θ′(π·X) = π·(mθ) and θ′(Y ) = θ(Y ). Then rθ →∗ rθ′
for any r.

Proof. θ′ is a substitution by Lemmas 3.4.11 and 3.2.8. The result follows by a
routine induction on r. �

12There is a deeper reason for this: they are also closed. See Example 6.2.2 and Theorem 6.2.3.
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Because of Lemma 5.3.3, we can be relaxed about the particular (orbits of) un-
knowns that are used in a rewrite rule, if we only care about the rewrites that they
generate. We do this in Theorems 5.4.6 and 5.4.7. This can always be made formal
by inserting invertible ‘freshening’ substitutions as appropriate.
THEOREM 5.4.6. If a rewrite theory R (Definition 5.1.1) is uniform then peaks that
are instances of trivial critical pairs, are joinable.

Proof. Consider two rules Ri = (li → mi) ∈ R for i = 1, 2. Taking copies if neces-
sary, suppose fU (R1) ∩ fU (R2). Suppose they have a critical pair (m1θ, P [m2]θ).
That is, there exists l′1 such that l1 = P [l′1] and θ is a principal solution to l′1

?= l2.
There are two cases:

• The case P = (π·X,X) and R1 and R2 are copies of the same rule l → m.
The peak we want to join is l1θ = π·l2θ → m1θ, π·m2θ, where the rules
l1 → m1 and l2 → m2 are identical aside from their free unknowns which are
renamed disjoint. We use Lemma 3.4.12 and the assumption in Definition 5.1.1
that fU (m) ⊆ fU (l).

• The case of (m1θ, P [m2]θ) where l1 = P [X] and θ(X) = l2. Specify θ′
by θ′(π·X) = π·m2 and θ′(Y ) = θ(Y ) for all other Y ; note that θ′ is a
substitution since fa(m2) ⊆ fa(l2) by uniformity and fa(l2) ⊆ supp(X) by
our assumption that θ is a substitution.
By Lemma 5.4.5 m1θ →∗ m1θ

′. By definition P [m2]θ = l1θ
′ R1−→ m1θ

′, so
we have joined the peak.

�

THEOREM 5.4.7. Suppose all non-trivial critical pairs of R are joinable and suppose
R is uniform. Then R is locally confluent.

Proof. Suppose r R1−→ s1 and r R2−→ s2. Write P1 and P2 for the positions at which
the two rewrites occur. Taking copies if necessary, suppose fU (R1) ∩ fU (R2) = ∅.

If P1 and P2 identify distinct subterms of r then local confluence holds by a
standard diagrammatic argument (see for instance [BN98]).

Otherwise it must be that P2 = (P1[P ], X) for some position P ; that is, P2

identifies a point in r beneath the point identified by P1 (or the symmetric case that
P1 = (P2[P ], X), which is similar and we elide). There are now three possibilities:

1. X in P2 replaces an unknown in r. This is an instance of a trivial critical pair;
we use Theorem 5.4.6.

2. P = (π·X,X) and R1 and R2 are copies of the same rule. Then again this is
an instance of a trivial critical pair and we use Theorem 5.4.6.

3. Otherwise, this is an instance of a non-trivial critical pair at it may be joined
using our assumption that non-trivial critical pairs are joinable.

�

DEFINITION 5.4.8. Call a rewrite systemR terminating when all rewrite sequences
are finite. Call a term r a normal form (with respect to a rewrite system R) when
∀s.¬(r

R−→ s), that is, when r does not R-rewrite to anything.
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EXAMPLE 5.4.9. It can be proved that nrSUB in Example 5.1.3 is terminating.
nrLAM (famously) is not terminating, because of (β 7→).
COROLLARY 5.4.10. Suppose R is terminating, uniform, and suppose non-trivial
critical pairs in R are joinable. Then:

1. R is confluent.
2. If r →∗ s and r →∗ s′ and s and s′ are normal forms, then s = s′.

5.5 Orthogonal rewrite systems
We now treat another standard criterion in rewriting: orthogonality [DJ89; BN98].
By Theorem 5.5.7 orthogonality implies not only local confluence, but the stronger
property of confluence (Definition 5.2.6). The proof is not direct: it turns out that it
is easier to consider an auxilliary parallel reduction relation⇒ (Definition 5.5.4).
The reflexive transitive closure of⇒ is equal to that of→ (Lemma 5.5.5), but⇒
allows (intuitively) multiple reductions provided that they do not occur ‘one after the
other, in the same position’. This is the kind of multiple reduction generated in the
second case of the proof of Theorem 5.4.6, when we rewrite m1θ to m1θ

′.
DEFINITION 5.5.1. Call R = (l→ m) left-linear when each unknown occurring
in l occurs only once (Definition 5.2.1).

For example f(X)→ g(X,X) is left-linear but g(X,X)→ f(X) and g(π·X,x)→
f(X) are not. Note that (a, a)→ a is left-linear.

DEFINITION 5.5.2. Call R orthogonal when every R ∈ R is uniform and left-
linear, and all critical pairs are trivial.

(Note that we insist that R is uniform, as well as the standard condition that it be
left-linear.)

DEFINITION 5.5.3. Suppose R = (l→ m). Write r R→ε s when r R−→ s and the
rewrite occurs at a position P = (π·X,X). We say that the rewrite with R occurs at
root position.

Expanding Definition 5.5.3, r R→ε s when there exists θ and π such that r = π·(lθ)
and s = π·(mθ). For example: if R = (a→ a) then a R→ε a but not [a]a

R→ε [a]a.
DEFINITION 5.5.4. We define a parallel reduction relation ⇒ by the rules in
Figure 3.

LEMMA 5.5.5. r →∗ s if and only if r ⇒∗ s.

Proof. By routine inductions. �

LEMMA 5.5.6. If R is orthogonal then⇒ is confluent.

Proof. We prove by induction on the derivation of r ⇒ s that a stronger property
holds, often called the diamond property: for all s′ if r ⇒ s′ then there exists some
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r1 ⇒ s1 · · · rn ⇒ sn
(⇒f)

f(r1, . . . , rn)⇒ f(s1, . . . , sn)

r1 ⇒ s1 · · · rn ⇒ sn f(s1, . . . , sn)
R→ε s

′

(⇒f ′)
f(r1, . . . , rn)⇒ s′

s⇒ t
(⇒abs)

[a]s⇒ [a]t

r ⇒ s [a]s
R→ε s

′

(⇒abs′)
[a]r ⇒ s′

(refl)
r ⇒ r

a
R→ε s

′

(⇒a′)
a⇒ s′

X
R→ε s

′

(⇒X′)
X ⇒ s′

Figure 3: Parallel reduction relation

s′′ such that s⇒ s′′ and s′ ⇒ s′′. From this, confluence easily follows by a standard
diagrammatic argument.

We consider a selection of cases:

• The derivations of r ⇒ s and r ⇒ s′ both end in (⇒f). We use the inductive
hypotheses and (⇒f).

• The derivation of r ⇒ s ends in (⇒f) and that of r ⇒ s′ ends in (⇒f ′). So
ri ⇒ si and ri ⇒ s′i for 1 ≤ i ≤ n, and f(s′1, . . . , s

′
n) = π·(lθ) R→ε π·(mθ)

for some π and R = (l → m) ∈ R. By inductive hypothesis there exist s′′i
such that si ⇒ s′′i and s′i ⇒ s′′i . We now proceed as illustrated and explained
below:

f(r1, . . . , rn) +3

��

f(s′1, . . . , s
′
n) =

��

π·(lθ) Rε // π·(mθ)

��
f(s1, . . . , sn) +3 f(s′′1 , . . . , s

′′
n) = π·(lθ′) Rε // π·(mθ′)

Either l is an unknown X or the rewrite f(s′1, . . . , s′n)⇒ f(s′′1 , . . . , s
′′
n) takes

place in the substitution θ.
If l is an unknown then by uniformity we may rewrite f(s′′1 , . . . , s

′′
n) using R

and close the diagram by rewriting corresponding instances of θ(X) in π·(mθ).
Otherwise, by uniformity there is a substitution θ′ such that θ(X) ⇒ θ′(X)
for every X and f(s′′1 , . . . , s

′′
n) = π·(lθ′). Rules are also left-linear so R still

applies to π·(lθ): f(s′′1 , . . . , s′′n)
R→ε π·(mθ′) and therefore f(s1, . . . , sn) ⇒

sθ′ by (⇒f ′) for R.

The other cases are no harder. �

THEOREM 5.5.7. If a theory R is orthogonal (Definition 5.5.2) then R is confluent
(Definition 5.2.6).
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Proof. If the uniform rewrite system has only left-linear rules and only trivial critical
pairs, then ⇒ is confluent by Lemma 5.5.6. It follows that ⇒∗ is confluent. By
Lemma 5.5.5 the result follows. �

5.6 Nominal rewriting with freshness contexts versus permissive-
nominal rewriting

As mentioned in the introduction to this Section, the presentation of this paper differs
from that of [FG07] in being permissive-nominal.

For clarity, let us call the nominal rewrite framework from [FG07] ‘System ∇’
and the nominal rewrite framework here ‘System S’.

In system ∇ a rewrite rule takes the form ∇ ` t → u where ∇ is a set of
assumptions a#X called a freshness context. X is an unknown. This is not typed by a
permission set; freshness information is given by ∇.

Here are (λ→) from Example 5.1.3, and how it would look in System ∇:

System S lam([a]X)[b 7→Y ]→ lam([a](X[b 7→Y ])) (a6∈supp(Y ))
System ∇ a#Y ` lam([a]X)[b7→Y] → lam([a](X[b 7→Y]))

a 6∈ supp(Y ) is a fact (we must choose Y so that this is true). It does not matter
which permission set we give Y because using δ and swappings we can build a π to
map supp(Y ) to every other permission set π·supp(Y )—which will contain π(a).

Conversely a#Y is a freshness condition. It directly controls the terms to which
we may instantiate Y; they must not contain a free. Here we attain this effect using
Proposition 3.4.3.

Freshness conditions are elementary: they mean what they say and what they mean
be quickly understood. Permission sets are still finitely representable, but somewhat
harder to understand. So from the point of view of keeping a gentle learning curve,
System ∇ may be preferable to System S.

However, System S rewards us with some advantages: we can use nominal abstract
syntax and the freshness conditions which must be explicitly stated (repeatedly) in
[FG07] are handled in the background by equivariance of substitutions (as Proposi-
tion 3.4.3 makes formal).

This also has some effects on mathematical properties. In System∇ from [FG07]
it was not in general the case that if∇ ` r ≈α r′ and∇ ` r R−→ s then∇ ` r′ R−→ s
(see the end of Subsection 5.2 in [FG07]). It was also not in general the case that
nominal rewriting coincides with nominal algebra (Section 7), essentially because
any fixed freshness contexts might not be ‘big enough’. Fernández and the author
wrote a paper on how to adjust for this [FG10]. In a permissive-nominal context,
these issues do not arise in the first place.

This author’s feeling is that nominal-terms-with-freshness-contexts and permissive-
nominal terms can be considered as essentially the same thing. However, if our goal
is to prove theorems then we get closer to what is ‘really going on’ via the permissive-
nominal presentation.
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6 CLOSED TERMS

Equivariant unification—the problem of finding θ and π such that π·(rθ) = sθ—is
NP complete [Che04; Che10]. The same applies to corresponding matching problems.
This matters to us because the rewrite relation in Definition 5.2.3 is equivariant; to
determine whether r rewrites with a rule (l → r), we must solve an equivariant
matching problem.

Fernández and the author introduced a notion of closed term such that for closed
terms, equivariant matching/unification coincides with ‘ordinary’ matching/unification
[FG07]. That is, for closed terms we can throw away the π.

We now develop corresponding definitions and results. The definitions and proofs
in this paper are significantly different from those in [FG07].13

6.1 The definition
DEFINITION 6.1.1. Define explicit atoms ea(r) inductively by:

ea(a) = {a} ea(C) = supp(C) ea(X) = ∅
ea(f(r)) = ea(r) ea((r1, . . . , rn)) =

⋃
ea(ri) ea([a]r) = ea(r)\{a}

REMARK 6.1.2. Intuitions for ea(r) versus fa(r) are as follows:

• The explicit atoms of r are the atoms that actually appear in r (unbound). That
is, we can read ‘a ∈ ea(r)’ as ‘a appears in r’.

• The free atoms of r are the atoms that can appear in rθ for some θ.

For instance, ea(X) = ∅ 6= supp(X) = fa(X).
This is an intuition, not a fact. fa(r) =

⋃
θ ea(rθ) is not true in general (but see

Lemma 6.1.5). For instance in a signature with one base sort τ and no term formers,
terms containing atoms simply do not populate the sort τ .

Recall the notion of occurrences occ(r) from Definition 3.7.3.
NOTATION 6.1.3. Write π·occ(r) = {π·x | x ∈ occ(r)}. Also ifD = [d1, . . . , dn]
and S is a permission set define S \D = S \ {d1, . . . , dn}.
LEMMA 6.1.4. ea(π·r) = π·ea(r) and occ(π·r) = π·occ(r). In addition, ea(r) ⊆
ea(rθ).

Proof. By routine inductions on r. �

LEMMA 6.1.5. fa(r) = ea(r) ∪
⋃
{supp(x) | x ∈ occ(r)}.

As an easy corollary using Lemma 3.2.5, fa(r) = ea(r) ∪
⋃
{supp(X) \ D |

[D]X ∈ occ(r)}.

Proof. By a routine induction on r. We consider one case:
13The interested reader can begin by comparing our notion of closed terms in Definition 6.1.7, based on

two simpler inductive definitions, with that used in [FG07, Definition 68], based on a renamed variant of a
term and an equality derivable in an extended freshness context. See also an inductive characterisation of
closed terms in unpublished notes [Clo07].
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• The case [a]r. Suppose fa(r) = ea(r) ∪
⋃
{supp(x) | x ∈ occ(r)}. By

definition fa([a]r) = fa(r)\{a}, and ea([a]r) = ea(r)\{a} and occ([a]r) =
{[a]x | x ∈ occ(r)}. The result follows by an easy sets calculation.

�

DEFINITION 6.1.6. Call r fa-functional when if [D1]X ∈ occ(r) and [D2]X ∈
occ(r) then fa([D1]X) = fa([D2]X) (equivalently, when D1 and D2 contain the
same atoms but not necessarily in the same order).

DEFINITION 6.1.7. Call r closed when r is fa-functional and ea(r) = ∅.

EXAMPLE 6.1.8.

• a is not closed (ea is non-empty).
• X is closed, so note that ‘closed’ does not mean ‘fU (r) = ∅’. Our terminology

is consistent with [FG07] and the subsequent literature.
• ([a]X,X) is not closed (occ is not fa-functional).
• [a](X, a) is closed.

LEMMA 6.1.9. Suppose ea(r) = ∅. Thenπ·(rθ) = rθ′ if and only ifπ·(([D]X)θ) =
([D]X)θ′ for every [D]X ∈ occ(r).

Proof. By a routine induction on r. �

THEOREM 6.1.10. r is closed if and only if

∃S.fa(r) ⊆ S ∧ ∀π, θ.π·fa(rθ) ⊆ S ⇒ ∃θ′.π·(rθ) = rθ′.

Proof. Suppose there is a permission set S ⊇ fa(r) such that if π·fa(rθ) ⊆ S then
there exists θ′ such that π·(rθ) = rθ′. There are two things to prove:

• ea(r) is empty. Suppose there exists a ∈ ea(r). Pick b ∈ S \ ea(r). By
assumption taking θ = id there exists θ′ such that (b a)·(rθ) = rθ′. By
Lemma 6.1.4 ea((b a)·r) = (b a)·ea(r) 63 a and a ∈ ea(r) ⊆ ea(rθ′), a
contradiction.

• occ(r) is fa-functional. Consider [D1]X and [D2]X in occ(r); choose Di

such that Di ∩ fa(r) = ∅ for i = 1, 2. Suppose there exists a ∈ fa([D2]X) \
fa([D1]X), and choose any b ∈ fa([D1]X) (since supp(X) is infinite and D1

is finite, such a b exists).
By Lemma 6.1.5 a, b ∈ fa(r) so by assumption taking θ = id there exists θ′
such that (b a)·r = rθ′. We proved above that ea(r) = ∅, so by Lemma 6.1.9
(b a)·[D1]X = ([D1]X)θ. By Lemma 3.2.8 a is free in the left-hand side, and
by Lemma 3.4.11 a is not free in the right-hand side; a contradiction.
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Suppose occ(r) is fa-functional and ea(r) = ∅ and choose some permutation π
and substitution θ.

If occ(r) = ∅ then by Lemma 6.1.5 fa(r) = ∅ so by Lemmas 3.2.9 and 3.4.12
π·(rθ) = r and rθ′ = r, so there is nothing to prove.

Otherwise take S = fa(r). For every element of in occ(r) make a fixed but
arbitrary choice of representation as [D]X where the atoms inD are disjoint from the
atoms in nontriv(π). We take θ′ to equivariantly extend this choice (Definition 2.5.4),
so we mapπ′·X to (π′◦π)·θ(X) for the choice of representingX above, and otherwise
to map Y to Y . Using Proposition 2.5.5 this is a substitution and π·(([D]X)θ) =
([D]X)θ′ for every [D]X ∈ occ(r). We use Lemma 6.1.9. �

6.2 Closed rewrite rules

DEFINITION 6.2.1. Call a rewrite rule l→ m closed when (l,m) is closed.

EXAMPLE 6.2.2. Let R have one name sort ν, one base sort τ , two term-formers
triv : (ν)τ and abs : ([ν]τ)τ , and rewrite rules

triv(a)→ triv(a) triv(a)→ triv(b) abs([a]X)→ X.

The terms triv(a) and triv(b) are not closed; the terms abs([a]X) and X are closed.
The terms (triv(a), triv(a)) and (triv(a), triv(b)) are not closed. The term (abs([a]X), X)
is closed if and only if a 6∈ supp(X). So the first two rules are not closed and the
third is closed if and only if a 6∈ supp(X).

The rewrite rules of nrSUB and nrLAM in Example 5.1.3 are closed.
Recall that uniform rules have good properties like Theorems 5.4.7 and 5.5.7.

Closed rules inherit these good properties, because:
THEOREM 6.2.3. If R = (l→ m) is closed then it is uniform.

Proof. By assumption fU (m) ⊆ fU (l). Also (l,m) is fa-functional; it follows that
occ(m) ⊆ occ(l). The result follows from Lemma 6.1.5. �

LEMMA 6.2.4. Suppose r and l are terms and l is closed. Then

1. ∃π, θ.r = π·(lθ) implies
2. ∀π.fa(r) ⊆ π·fa(l)⇒ ∃θ.r = π·(lθ)

Proof. Suppose fa(r) ⊆ π·fa(l) and fa(r) ⊆ π′·fa(l) and r = π·(lθ).
We need a θ′ such that r = π′·(lθ′). It follows from the above that (π′

-1 ◦
π)·fa(lθ) ⊆ fa(l). We use Theorem 6.1.10. �

THEOREM 6.2.5. If R is closed then R−→ can be checked as follows, where for
simplicity we suppose R = {(l→ m)}:

1. We try to match r against π·l for some π such that fa(r) ⊆ π·fa(l), if such a
π exists.
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2. If we fail then by Lemma 6.2.4 we must fail for instantiating for any π·l. We
descend into subterms of r and repeat the previous step.

Whether step 1 of the algorithm above is decidable depends on the decidability of
P, X , and C; obviously, if equality of the syntax is undecidable then matching will
also be undecidable. So assuming that we have not been silly, closed rules are useful
because we only need to compute one π and consider matching, rather than consider
an equivariant matching problem.

To use the matching algorithm of Section 4, we need terms to satisfy condition 2
of Definition 4.1.1. So, we could forbid shift permutations altogether. The algorithm
might reintroduce them but as noted in Remark 4.4.9, shift can be eliminated once a
solution is found. Thus, if we care about decidability and not so much about infinite
permutations—which was the case e.g. in [FGM04; FG07]—then shift can be viewed
as an internal mechanism of our unification/matching algorithm. However we have
designed the mathematics to allow the possibility of exploring other, more liberal
(and perhaps still decidable) choices, if we wish. More on this in [Gab12a].

7 EQUALITY: (PERMISSIVE-)NOMINAL ALGEBRA

Permissive-nominal algebra has one judgement form: an equality r = s. This is
just an unoriented nominal rewriting rule, so what makes algebra different from
rewriting is not so much the judgement form as the properties we care about: instead
of confluence and decidability, we primarily care about soundness and completeness.
These are Theorems 7.4.6 and Corollary 7.5.12.

This different emphasis affects the axioms we write. The rewrites in Example 5.1.3
are designed to work on λ-terms without unknowns (since we expect to ‘evaluate’
closed terms using rewrites). The analogous axioms in Example 7.1.3 are designed
to work also on open terms (since we expect to reason about arbitrary denotations).

Permissive-nominal algebra simplifies and streamlines the nominal algebra logic
of [GM09a] (which was based on nominal terms). Essentially, these two logics do
the same thing, but there are significant differences which we discuss in Subsec-
tion 7.7. Nominal Algebra (NA) was presented in [Gab05; GM06b]; see also [GM07;
GM09a]. It was first used to axiomatise substitution, first-order logic, and the λ-
calculus [GM06a; GM08a; GM06c; GM08c; GM08b; GM10]. The interest of these
papers was not merely to write down the axioms—which all take advantage of atoms-
abstraction to axiomatise various binding operators—but also to prove these axioms
sound and complete. These proofs are not included here; see the presentations in
[GM08a; GM08c; GM10]. Or, to see a much more sophisticated instance of the same
general idea, the reader can examine the permissive-nominal logic axiomatisation of
arithmetic which is proved correct in the case study of Section 10.

7.1 Judgement form, axioms, theories

DEFINITION 7.1.1. A (nominal algebra) equality judgement is a pair r = s.

DEFINITION 7.1.2. A theory T = (Σ,Ax ) is a pair of a signature Σ and a possibly
infinite set of equality judgements Ax in that signature; we call them the axioms.
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EXAMPLE 7.1.3. Here are some example nominal algebra theories:

• naSUB axiomatises capture-avoiding substitution (on the λ-calculus).
Let Σ have a base sort τ and the following term-formers:

sub : ([ν]τ, τ)τ lam : ([ν]τ)τ app : (τ, τ)τ var : (ν)τ

Axioms are as follows:
(var 7→) var(a)[a7→X] =X
(# 7→) Y [a7→X] =Y (a6∈supp(Y ))
(f 7→) f(Y )[a7→X] = f(Y [a7→X]) (f∈{lam, app, var, sub})
(tup 7→) (X1, . . . , Xn)[a7→X]= (X1[a7→X], . . . , Xn[a7→X])
(abs 7→) ([b]Y )[a7→X] = [b](Y [a7→X]) (a6∈supp(Y ))
(id 7→) Y [b 7→var(b)] =Y
(η 7→) [a]sub(Y, var(a)) =Y (a6∈supp(Y ))

Here and in the next example we sugar sub([a]r, t) to r[a7→t]. Every permission
set contains b and every permission set contains a except for supp(Y ), as
indicated above. Sorts are filled in as appropriate.
naSUB is based on the nominal algebra axioms of [GM06a; GM08a] (which
were parameterised over the signature Σ).
There, we proved the axioms sound and complete for a specific syntactic model
in which Z[a:=X] really is interpreted as capture-avoiding substitution. The
completeness result from Corollary 7.5.12 remains valid but is weaker because
it holds not for the specific syntactic model, but the class of all nominal algebra
models of the axioms.

• naLAM extends the previous theory with two more axioms:
(β) (λ[a]Y )X =Y [a7→X]
(η) λ[a](Xa) =X (a6∈supp(X))

This theory is studied in [GM08b; GM10]. Analogously to naSUB, we prove
the axioms sound and complete for a syntactic model where substitution is
substitution and β- and η-conversion are β- and η-conversion.

REMARK 7.1.4. Compare and contrast Example 7.1.3 with Example 5.1.3. Clearly,
one is an equality theory and another a rewrite theory, but we obtain a nominal algebra
theory from Example 5.1.3 by replacing→ by =, and conversely we can replace =
with→ in Example 7.1.3.

So why are they different? They demonstrate different design priorities.
The rewrites in Example 5.1.3 are designed to operate on ground terms (fU (r) =

∅), following an intuition that rewriting is about ‘executing programs’. The equalities
in Example 7.1.3 are designed to operate on possibly open terms, following an
intuition that algebra is about models, not all of whose elements need be referenced
by ground terms.

What we gain in deductive power we lose in computational properties. For instance,
nrSUB is terminating whereas (an oriented version of) naSUB is not terminating,
because explicit substitutions can ‘churn’ by distributing repeatedly over one another
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(Refl)
r = r

r = s s = t
(Trans)

r = t

r = s
(Symm)

s = r

r1 = r′1 . . . rn = r′n
(Cong1)

(r1, . . . , rn) = (r′1, . . . , r
′
n)

r = r′

(Cong2)
f(r) = f(r′)

r = r′

(Cong3)
[a]r = [a]r′

((r=s)∈T)
(Axr=s)

π·(rθ) = π·(sθ)

Figure 4: Derivable entailment in Permissive-Nominal Algebra (PNA)

(this is essentially the idea behind Melliès’s counterexample in [Mel95]). On the
other hand while the effect of (#7→) from naSUB can be obtained on ground terms
using the rules in nrSUB, by pushing the substitution down to the atoms, the rules of
nrSUB are not deductively powerful enough to do this for open terms (or arbitrary
models). More on this in [GM08a; GM10].

7.2 Derivable equality
DEFINITION 7.2.1. Suppose T is a theory. Derivable equality T ` r = s is the
least transitive reflexive symmetric relation such that for every (r = s) ∈ T, position
P , and substitution θ, if sort(r) = sort(P ) and fa(rθ)∪ fa(sθ) ⊆ supp(P ) (so that
P [lθ] and P [sθ] are well-defined) then

T ` P [rθ] = P [sθ].

REMARK 7.2.2. Definition 7.2.1 is rather compact; it might be useful to expand it a
little. This is Figure 4, given in natural deduction style.

The reader familiar with nominal terms (see for instance Figure 2 of [UPG04])
should note of (Cong3) that we do not need to consider the case [a]r = [b]s, because
α-equivalence is handled automatically for us by nominal abstract syntax. It is built in
by Definition 2.4.8. In other words, thanks to how we set up our permissive-nominal
terms syntax, we can always rename abstracted atoms so that they are equal. We
noted an analogous point earlier on, in Remark 4.1.6.

LEMMA 7.2.3. Suppose T = (Σ,Ax ) is a theory. Then:

• T ` a = b is impossible.
• T ` [a]r = [b]s if and only if b 6∈ fa(r) and (b a)·r = s.
• T ` (r1, . . . , rn) = (s1, . . . , sn) if and only if T ` ri = si for 1 ≤ i ≤ n.
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Proof. In axiom (r = s) ∈ Ax , r and s must have base sort τ ; thus it is not possible
to assert equalitities between atoms, abstractions, or tuples (unless wrapped in a
term-former and so injected into a base sort). The second part additionally uses
Lemma 2.4.9. �

LEMMA 7.2.4. Suppose T ` r = s. Then:

1. T ` π·r = π·s.
2. T ` rθ = sθ.

Proof. Both parts are by a routine argument on derivations. We consider one case:

• The case (r′ = s′) ∈ T and r = P [r′θ′] and s = P [s′θ′] and P = (t,X).
For the first part we use a position (π·t,X).
For the second part we consider a position P ′ = (t(θ−X), X) and consider
P ′[r′θ′θ] and S′[r′θ′θ] (θ−X defined in Definition 4.3.3). It is not hard to
check that P ′[r′θ′θ] = P [r′θ′]θ and P ′[s′θ′θ] = P [s′θ′]θ, and the result
follows.

�

7.3 Interpretation of signatures and terms

DEFINITION 7.3.1. Suppose (A,B) is a sort-signature (Definition 3.1.1).
An interpretation I for (A,B) consists of an assignment of a nonempty permissive-

nominal set JαKI to each sort α in (A,B), along with equivariant maps

• for each ν ∈ A an equivariant and injective map Aν → JνKI which we write aI,
• for each ν ∈ A and α an equivariant and injective map [Aν ]JαKI → J[ν]αKI

which we write [a]Ix, and
• for each αi for 1 ≤ i ≤ n an equivariant and injective map ΠiJαiKI →

J(α1, . . . , αn)KI which we write (x1, . . . , xn)I.

DEFINITION 7.3.2. Suppose Σ = (A,B, C,F , ar) is a signature (Definition 3.1.5).
An interpretation I for Σ, or Σ-algebra, consists of the following data:

• An interpretation for the sort-signature (A,B) (Definition 7.3.1).
• For every f ∈ F with ar(f) = (α)τ an equivariant function fI from JαKI to

JτKI.
• An equivariant assignment fromC ∈ C toCI ∈ Jsort(C)KI. (That is, (π·C)I =
π·(CI).)

DEFINITION 7.3.3. Suppose I is a Σ-algebra. A valuation ς to I is an equivariant
function on unknowns X such that for each unknown X , ς(X) ∈ Jsort(X)KI.
ς will range over valuations.

DEFINITION 7.3.4. Suppose I is a Σ-algebra. Suppose ς is a valuation to I.
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Extend I to an interpretation on terms JrKIς (where of course r is a term in the
signature Σ) by:

JaKIς = aI Jf(r)KIς = fI(JrKIς)
JCKIς = CI J(r1, . . . , rn)KIς = (Jr1KIς , . . . , JrnKIς)I
JXKIς = ς(X) J[a]rKIς = [a]IJrKIς

Lemma 7.3.5 is a basic sanity check and an important soundness result:
LEMMA 7.3.5. If r : α then JrKIς ∈ JαKI.

Proof. By a routine induction on r. �

LEMMA 7.3.6. π·JrKIς = Jπ·rKIς .

Proof. By a routine induction on r. We consider one case:

• The caseX . By Definition 7.3.4 JXKIς = ς(X). Therefore π·JXKIς = π·ς(X).
By assumption π·ς(X) = ς(π·X) = Jπ·XKIς .

�

LEMMA 7.3.7. supp(JrKIς) ⊆ fa(r).

Proof. From Lemmas 2.3.3 and 7.3.6. �

7.4 Models and soundness

DEFINITION 7.4.1. For a theory T = (Σ,Ax ) and interpretation I of T call
(r = s) valid in I when JrKIς = JsKIς for every valuation ς to I.
Call I a model of T when every axiom (r = s) ∈ Ax is valid in I.
Write T |= r = s when (r = s) is valid in every model of T.

LEMMA 7.4.2. If ς(X) = ς ′(X) for all X ∈ fU (r) then JrKIς = JrKIς ′ .

Proof. By a routine induction on r. �

DEFINITION 7.4.3. Suppose ς is a valuation to I. Suppose X is an unknown and
x ∈ Jsort(X)KI is such that supp(x) ⊆ supp(X). Define a function ς[X:=x] by

(ς[X:=x])(π·X) = π·x and (ς[X:=x])(Y ) = ς(Y ) all other Y

LEMMA 7.4.4. ς[X:=x] in Definition 7.4.3 is well-defined and a valuation to I.

Proof. As that of Proposition 2.5.5. �

LEMMA 7.4.5. JrKIς[X:=JtKIς ] = Jr[X:=t]KIς . As corollaries we have:
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1. If JrKIς = JsKIς then JP [r]KIς = JP [s]KIς .
2. If JrKIς = JsKIς then JrθKIς = JsθKIς .

Proof. By a routine induction on the definition of JrKIς . We consider one case:

• The case of Jπ·XKIς[X:=t]. We reason as follows:

Jπ·XKIς[X:=JtKIς ] = π·JtKIς Definition 7.3.4
= Jπ·tKIς Lemma 7.3.6
= J(π·X)[X:=t]KIς Definition 3.4.8.

For the two corollaries we reason as follows:

1. By definition where P = (t,X), P [r] = t[X:=r] and P [s] = t[X:=s]. Using
the assumptions,

Jt[X:=r]KIς = JtKIς[X:=JrKIς ] = JtKIς[X:=JsKIς ] = Jt[X:=s]KIς .

2. It is a fact of syntax that fU (r) and fU (s) are finite. Using Lemma 3.4.12 we
may represent the effect of θ on r and s as a sequence of atomic substitutions
(Definition 3.4.5). The result follows.

�

THEOREM 7.4.6 (Soundness). For any T = (Σ,Ax ) if T ` r = s then T |= r = s.

Proof. Let I be a model of T and ς be a valuation to I.
Identity in the denotation is reflexive, transitive, and symmetric so it suffices to

check the theorem for axioms. That is, suppose (r = s) ∈ Ax and assume a position
P and substitution θ such that sort(r) = sort(P ) and fa(rθ) ∪ fa(sθ) ⊆ supp(P ).
We must show that JP [rθ]KIς = JP [sθ]KIς .

I is a model so JrKIς = JsKIς . We use parts 1 and 2 of Lemma 7.4.5. �

7.5 Free term models and completeness
In this subsection fix a signature Σ and a theory T = (Σ,Ax ).

The proof of completeness follows a standard method: we construct a model out
of syntax in which by construction two terms denote equal elements if and only if
they are derivably equal.

The subtlety occurs in Lemma 7.5.9. We want to eliminate ς in
JrKF(T)

ς by converting it into a substitution θ. This ‘should’ be easy, since for each X ,
ς(X) is a provably equivalent class of terms. We need only choose some representa-
tive term in ς(X) for each X and set θ(X) to be that representative.

If we are naive in our construction then this could be impossible, as outlined in
Example 7.5.10: there might be ‘too many atoms’ in the available representatives.
We enrich our syntax with ‘enough’ extra constant symbols, to guarantee ‘enough’
representatives of every element of the model. Nominal algebra without the constant
symbols is complete for the same semantics, but the proof would be more complex.
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DEFINITION 7.5.1. For each sort α in Σ define [r]T and F(T)α by

[r]T = {r′ : α | T ` r = r′} (r : α)
F(T)α = {[r]T | r : α}.

Make each F(T)α into a permissive-nominal set by giving it a permutation action

π·[r]T = [π·r]T.

F(T) stands for ‘Free terms in the signature of T, up to derivable equality in T’.
Lemmas 7.5.2 and 7.5.3 relate permutation and support to the natural notions from
nominal sets:
LEMMA 7.5.2. The permutation action on [r]T is pointwise on [r]T as a set: that is,
π·[r]T = {π·r′ | r′ ∈ [r]T}.

Proof. From Definition 7.5.1 and Lemma 7.2.4. �

LEMMA 7.5.3. supp([r]T) ⊆ fa(r).

Proof. From Definition 7.5.1 and Lemma 2.3.3. �

DEFINITION 7.5.4. We construct the free term interpretation F(T) of T as fol-
lows:

• Take F(T)α as in Definition 7.5.1.
• aF(T) = [a]T, [a]F(T)[r]T = [[a]r]T, and ([r1]T, . . . , [rn]T)F(T) = [(r1, . . . , rn)]T.
• fF(T)([r]T) = [f(r)]T for each term-former f : (α)τ in Σ and each r : α.
• CF(T) = [C]T for each constant in Σ.

LEMMA 7.5.5. Definition 7.5.4 is well-defined and is an interpretation. That is:

• The choice of representative of [r]T does not matter in any of the clauses.
• The choice of abstracted atom in the clause for [a]F(T)[r]T does not matter.
• The maps aF(T), [a]F(T)[r]T, and ([r1]T, . . . , [rn]T)F(T) are injective.

Proof. The first part follows by congruence properties of derivable equality. The sec-
ond part additionally uses Lemmas 2.4.10 and 2.4.11. The third part uses Lemma 7.2.3.

�

DEFINITION 7.5.6. Define a theory T+ = (Σ+,Ax+) to be equal to T except
that we adjoin

⋃
τ F(T)τ to the set of constants in Σ, and we add axioms equating

r with [r]T in Ax .

That is, for every r : τ there is a constant Cr = [r]T ∈ Σ+, and an axiom (Cr =
r) ∈ F(T)+.
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LEMMA 7.5.7. F(T) extends to an interpretation F(T)+ of T+, where for each
r : τ we take CF(T)+

r = [r]T. Furthermore, F(T)+ is a model of T+.
DEFINITION 7.5.8. Write ςid for the valuation to F(T) mapping each X to CX =
[X]T.
LEMMA 7.5.9. For every valuation ς to F(T) there exists a substitution θ in T+

such that JrKF(T)
ς = JrθKF(T)+

ςid .

Proof. For each orbit x ∈ |orb(X )| choose a representative X ∈ x. Define θ by
θ(π·X) = π·CX . Recall that CX = [X]T and by Lemma 7.5.3 supp([X]T) ⊆
supp(X). By Proposition 2.5.5 θ is well-defined and is a substitution

It is not hard to check by induction on r that JrKF(T)
ς = JrθKF(T)+

ςid . �

EXAMPLE 7.5.10. To see why Lemma 7.5.9 is non-trivial and how T+ helps,
supposeT has one name sort ν, two base sorts τ and τ ′, one term-former abs : (ν, τ)τ ′,
and one axiom abs(b, (b a)·X) = abs(a,X) where a ∈ supp(X) and b 6∈ supp(X).

Then it is a fact that there is no r ∈ [abs(a,X)]T such that
fa(r) ⊆ supp([abs(a,X)]T) and it follows that there is no θ such that JX ′KF(T)

[X ′:=[abs(a,X)]T] =

JX ′θKF(T)+

ςid (recall that substitutions must be equivariant).
THEOREM 7.5.11. F(T) is a model of T.

Proof. We must show that F(T) validates the axioms.
Suppose (r = s) ∈ Ax . Suppose ς is a valuation to F(T). We must show that

JrKF(T)
ς = JsKF(T)

ς .
By Lemma 7.5.9 there exists θ to T+ such that JrKF(T)

ς = JrθKF(T)+

ςid and JsKF(T)
ς =

JsθKF(T)+

ςid .
By assumption T+ ` rθ = sθ. By Lemma 7.5.7, JrθKF(T)+

ςid = JsθKF(T)+

ςid . The result
follows. �

COROLLARY 7.5.12 (Completeness). If T |= r = s then T ` r = s.

Proof. Suppose T |= r = s. By Theorem 7.5.11 JrKF(T)
ςid = JsKF(T)

ςid (ςid is defined in
Definition 7.5.8).

It is not hard to prove by induction that JrKF(T)
ςid = [r]T and JsKF(T)

ςid = [s]T. It follows
that T ` r = s as required. �

7.6 Freshness
Nominal terms freshness conditions a#X and a#r from [UPG04] correspond in
this paper to ‘free atoms of’ a 6∈ supp(X) and a 6∈ fa(r). See Notation 3.2.7 and
Lemma 3.2.5. Call this syntactic freshness.

Nominal sets freshness a 6∈ supp(JrK) is a distinct notion which can be expressed
using equality; call this semantic freshness. The two are not identical, but they are
connected in various ways which we briefly explore.

Proposition 7.6.1 corresponds to Theorem 5.5 from [GM07] and Lemma 4.51
from [GM09a]:
PROPOSITION 7.6.1. Suppose b 6∈ fa(r).
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Then T ` (b a)·r = r if and only if for every model I of T and valuation ς to I,
a 6∈ supp(JrKIς).

Proof. By Theorem 7.4.6 and Corollary 7.5.12 T ` (b a)·r = r if and only if T |=
(b a)·r = r, which unpacking definitions means that for every I and ς , J(b a)·rKIς =
JrKIς . By Lemma 7.3.6 J(b a)·rKIς = (b a)·JrKIς , and by Lemma 7.3.7 b 6∈ supp(JrKIς).
The result follows by Corollary 2.2.7. �

Lemmas 7.5.3 (and also Lemma 7.3.7) express that syntactic freshness implies
semantic freshness. A partial converse is Proposition 7.6.3, which is based on a
technical property of nominal sets:
LEMMA 7.6.2. Suppose X is a nominal set and U ⊆ |X| is finitely-supported (so
U ∈ |pow(X)| from Example 2.2.5) and nonempty.

Then if a#U then there exists some x ∈ U with a#x.

Proof. U is nonempty so choose any x′ ∈ U . Choose fresh b (so b 6∈ supp(U) ∪
supp(x′)) and set x = (b a)·x′. By the definition of support (b a)·U = U . By the
pointwise action (Example 2.2.5) x ∈ U . By Lemma 2.2.6 a 6∈ supp(x). �

PROPOSITION 7.6.3. a#[r]T implies there exists some r′ such that T ` r = r′ and
a 6∈ fa(r′).

Proof. By Lemmas 7.5.2 and Lemma 7.6.2. �

7.7 Design of nominal algebra
We designed nominal algebra originally to axiomatise substitution, first-order logic,
and the λ-calculus [GM06a; GM06c; GM08a; GM08c; GM09a].

We encountered two design decisions: whether to include freshness axioms, and
whether to include atoms-abstraction as primitive.

We disallowed freshness axioms because they are a definitional extension of the
system without them, and we chose to include atoms-abstraction as primitive because—
even though they too are a definitional extension (see next paragraph)—they make for
more compact derivations and proofs and we knew that the reader would expect to
see them in a ‘nominal’ paper. These decisions do not matter for expressivity because
of the following two equalities from [GP01], here written in the language of FM sets:

(Freshness) a#x⇔ Nb.(b a)·x = x

(Abstraction) Nb.([b](b a)·x = [a]x)

In Subsection 11.1 we express the equalities above in PNL. In [Gab12b], we do the
same in nominal algebra, showing how to compile nominal algebra with semantic
freshness judgements and atoms-abstraction down to the core logic without it.

Nabove is the new-quantifier meaning ‘for some/any fresh atom’ [GP01; Gab11b].14

Ndoes not care which fresh atom we choose (the some/any property [Gab11b, Theo-
rem 6.5]). So, we do not have to be exact about supp(x) when we choose fresh b;

14In words: ‘a is fresh for x if for some/any fresh b, (b a)·x = x’ and ‘for some/any fresh b, [b](b a)·x =
[a]x’.
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any will do, and for instance Proposition 7.6.1 is an ‘if and only if’ even though we
chose b 6∈ fa(r) (syntactic freshness) instead of b 6∈ supp(JrK) (semantic freshness),
and it may be that supp(JrK) $ fa(r). More on this Subsection 11.1.

Note that including atoms-abstraction is orthogonal to the rest of the logic in the
sense that it is isolated by the sort system: if we provide no term-formers injecting
atoms-abstraction into base sorts, then it cannot interact with the rest of the logic.

The permissive-nominal algebra of this paper differs from the nominal algebra of
[GM09a] in the following respects:

• The system here is sorted, the system in [GM09a] is not.
• We use permissive-nominal terms and semantics here, and ‘vanilla’ nominal

terms and nominal sets in [GM09a]. That is, the logic here is permissive-
nominal algebra. Freshness conditions a#X and a#r translate to a 6∈ supp(X)
and a 6∈ fa(r) here.

• Axioms are exactly equalities, with no freshness contexts: permission sets play
this role instead.

• The syntax here admits non-equivariant constant symbols, that of [GM09a]
does not. That does not matter if we are using finitely-supported models (as is
the case in [GM09a]) because finite non-equivariance can be emulated using
term-formers applied to finitely many atoms. Here, elements can have infinite
support, which cannot be emulated using (finite) equivariant term-formers.

• The syntax here admits the possibility of unknowns with empty support ranging
over closed elements (so it includes the •t freshness constraint of [FG07,
Subsection 9.2]), unknowns with finite support ranging over finitely-supported
elements, unknowns with support equal to a permission set, and whatever else
we can imagine in-between.
• The development is parameterised over the set of unknowns X and also the

group of permutations P. In particular we admit (but do not insist on) the
possibility of infinite permutations, including the shift-permutations considered
in Subsection 3.6.

• Substitutions and valuations are—rather elegantly—treated as equivariant func-
tions on X the set of unknowns.

In spite of these many differences, the spirit of the proofs remains the same. The details
become simpler, and in particular the non-equivariant constants make construction
of the free term model easier.15

8 THE NOMINAL HSP THEOREM

The HSP theorem states that a class of Σ-algebras is equational if and only if it is
closed under Homomorphism, Subobject, and Product. Definitions follow below, and
the main result is Theorem 8.7.3.

The result was first proved for the case of ‘ordinary’ algebra (using first-order
terms and not over nominal sets) by Birkhoff [Bir35]. It is also called Birkhoff’s

15In [GM09a] to build the free term model we enriched syntax with n-ary term-formers applied to
atoms. This idea goes back to a completeness proof in [Gab07a].
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theorem [BS81, Theorem 11.12]. We prefer ‘HSP’ since this is more descriptive and
Birkhoff’s name is attached to several other results.

The result was first proved for nominal algebra by the author [Gab09], and an
alternative proof was provided by Kurz and Petrişan [KP10]. The new proof presented
here is also rather short.

HSP was interesting for two reasons: first, it is not obvious that nominal algebra
is a true logic of equality, because of the freshness side-conditions which give the
nominal algebra as presented e.g. in [GM09a] or in Mathijssen’s thesis [Mat07] a
prima facie flavour of conditional equalities. The HSP result holding for nominal
algebra was a way of making formal that this is a logic of equality.

The use of permission sets to phrase the logic entirely in terms of equality (freshness
migrates to the types, as permission sets) is a step forward from this point of view:
the nominal algebra of this paper is more visibly an equational logic. Still, HSP
along with soundness and completeness (Theorem 7.4.6 and Corollary 7.5.12) form
a triumvirate of results of interest for an algebraic reasoning framework.

The proofs here are much shorter and clearer than those of [Gab09]—and the
final result is strictly stronger than [Gab09; KP10], which actually proved an HSPA
theorem that a class of Σ-algebras is equational if and only if it is closed under
Homomorphism, Subobject, Product, and Atoms-abstraction.

That is, we have dropped the ‘atoms-abstraction’ from the closure conditions. How
can this be? The use of permission sets gives us finer control over the support of
valuations; we needed atoms-abstraction in the proof of [Gab09, Theorem 9.8] to
eliminate ‘extra’ atoms introduced by a valuation ς—‘extra’ relative to the freshness
information in a freshness context ∆. Here, because freshness contexts/permission
sets are fixed, this cannot happen.

8.1 Algebra homomorphisms

DEFINITION 8.1.1. Suppose Σ = (A,B, C,X ,F , ar) is a signature and suppose
X and Y are interpretations of Σ. A Σ-homomorphism Θ from X to Y is a family
of equivariant functions Θα from JαKX to JαKY for each sort α in the sort-signature
(A,B) such that:

• Θν(aX) = aY.
• Θ(α1,...,αn)(x1, . . . , xn)X = (Θα1

(x1), . . . ,Θαn(xn))Y.
• Θ[ν]α([a]Xx) = [a]YΘα(x).
• Θτ (fX(x)) = fY(Θα(x)) where f : (α)τ is in F .

DEFINITION 8.1.2. CallY a homomorphic image ofXwhen there is a Σ-homomorphism
Θ from X to Y such that Θα is surjective for every sort α in (A,B).

Call Θ injective when Θα is injective for every sort α in (A,B).

LEMMA 8.1.3. Suppose Σ is a signature and X and Y are Σ-algebras. Suppose Θ is
a Σ-algebra homomorphism from X to Y.

Suppose that ς is a valuation to X. Define Θ(ς) a valuation to Y by Θ(ς)(X) =
Θsort(X)(ς(X)) for every X ∈ X .

Then for every r : α, Θα(JrKXς ) = JrKYΘ(ς).
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Proof. By an easy induction on r. �

LEMMA 8.1.4. Suppose Σ is a signature and T = (Σ, Ax) is a theory. Suppose X

and Y are Σ-algebras and Y is a homomorphic image of X under Θ.
Then if X is a model of T, then so is Y.

Proof. Choose (r = s) ∈ Ax and a valuation ς to Y. It suffices to show that
JrKYς = JsKYς .

We construct a valuation ς ′ toX as an equivariant extension (Definition 2.5.4) of the
following data. For each unknown X : α let XX = {x ∈ |Xα| | Θ(x) = ς(X)}. We
construct a valuation ς ′ to X by for each orbit and representative X ∈ orb(X) ∈ X
setting ς ′(X) = x for some choice of x ∈ XX .

By construction Θς ′ = ς . By assumption JrKXς ′ = JsKXς ′ . We apply Θ to both sides
and use Lemma 8.1.3. �

8.2 Subalgebras

DEFINITION 8.2.1. For Σ-algebras X and Y, call X a subalgebra of Y when:

• |τX| ⊆ |τY| for every τ ∈ B.
• The subset inclusion maps form a Σ-algebra homomorphism (Definition 8.1.1).16

LEMMA 8.2.2. For Σ-algebras X, Y and a theory T = (Σ,Ax ), if Y is a model of T
and X is a subalgebra of Y then X is a model of T.

8.3 Products

DEFINITION 8.3.1. Let I be a (possibly countably infinite) indexing set and (Xi)i∈I
be an I-indexed collection of Σ-algebras. The product algebra Πi∈IXi is the Σ-
algebra such that:

• For each α in Σ, αΠi∈IXi = Πi∈Iα
Xi as defined in Definition 2.4.5.

• The ith projection map to Xi is a Σ-algebra homomorphism for every i ∈ I .

LEMMA 8.3.2. For any I-indexed collection of Σ-algebras (Xi)i∈I , if Xi is a model
of T = (Σ,Ax ) for every i ∈ I then so is Πi∈IXi.

Proof. Suppose (r = s) ∈ Ax . Suppose ς is a valuation to Πi∈IXi. For each i ∈ I
we obtain a valuation ςi to Xi by projecting to the ith component. It follows that
JrKXiςi = JsKXiςi , and thus JrKΠi∈IXi

ς = JsKΠi∈IYi
ς . �

16That is:

– aX = aY for every atom a.
– (x1, . . . , xn)X = (x1, . . . , xn)Y for every x1 ∈ |Jα1KX|, . . . , xn ∈ |JαnKY|.
– [a]Xx = [a]Yx for every x ∈ |JαKX|.
– For every term-former f in F , fX(x) = fY(x) for every x ∈ |JαKX| where ar(f) = (α)τ .
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8.4 Ground term models and extending a signature

DEFINITION 8.4.1. Call r ground when fU (r) = ∅.

Definition 8.4.2 exactly follows Definition 7.5.1 (cf. Remark 8.4.6):

DEFINITION 8.4.2. Suppose T = (Σ,Ax ) is a theory. For each sort α in Σ define
[r]gnd

T and G(T)α by

[r]gnd
T = {r′ : α | T ` r = r′} (r : α, r ground)

G(T)α = {[r]gnd
T | r : α, r ground}.

Make each G(T)α into a permissive-nominal set by giving it a permutation action

π·[r]gnd
T = [π·r]gnd

T .

LEMMA 8.4.3. supp([r]gnd
T ) ⊆ fa(r).

Proof. From Definition 7.5.1 and Lemma 2.3.3. �

DEFINITION 8.4.4. We construct the ground free term interpretation G(T) of T
as follows:

We take G(T)α as in Definition 8.4.2. We define:

aG(T) = [a]gnd
T

[a]G(T)[r]gnd
T = [[a]r]gnd

T

([r1]gnd
T , . . . , [rn]gnd

T )G(T) = [(r1, . . . , rn)]gnd
T

fG(T)([r]gnd
T ) = [f(r)]gnd

T

CG(T) = [C]gnd
T

Above, f ranges over each term-former f : (α)τ in Σ and C ranges over each constant
in Σ.

LEMMA 8.4.5. Definition 8.4.4 is well-defined and is an interpretation.

Proof. As the proof of Lemma 7.5.5. �

REMARK 8.4.6. Definition 7.5.1 is a special case of Definition 7.5.1. We obtain
F(T) as G(T′) where T′ is obtained from T by extending its signature with a copy of
X as constants (the construction is made formal in Definition 8.5.2 below).

Doing this in Definition 7.5.1 would have complicated the presentation for no
immediate gain, so it seemed kinder on the reader to build the special case first by
hand.

Note that we need to use ground terms now, for the proof of Theorem 8.5.3 to
work. The reason is that F(T) has elements in each sort given by the elements [X]T,
whereas G(T) lacks these elements.
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8.5 Surjective maps onto algebras
Fix a signature Σ and any collection of Σ-algebras V .
DEFINITION 8.5.1. Suppose T = (Σ,Ax ) and suppose X and Yi for i ∈ I are
models of T. Suppose θi ∈ X→ Yi is a family of homomorphisms.

Write Πiθi for the natural map from X to ΠiYi, mapping x ∈ |Xα| to (θi(x))i ∈
|ΠiYi|.

It is easy to verify that Πiθi is a Σ-algebra homomorphism.
DEFINITION 8.5.2. Suppose Σ and Σ′ are signatures. Say Σ′ extends Σ with fresh
constants when Σ = (A,B, C,X ,F , ar ′) and Σ′ = (A,B, C ∪D,X ,F , ar ′) where
D ∩ C = ∅ and ar ′(C) = ar(C) for every C ∈ C.
THEOREM 8.5.3. Suppose T = (Σ,Ax ) is a theory and V is a model of T. Then
there exists a theory T′ = (Σ′,Ax ) where Σ′ extends Σ with some fresh constants D
such that V is a homomorphic image of G(T′).

Proof. We take D =
⋃
α |Vα| and construct a homomorphism based on mapping

x ∈ Vα (as a constant in D) to itself (as an element of |Vα|). �

8.6 Injections out of free algebras

DEFINITION 8.6.1. Suppose Σ is a signature and V is a set of Σ-algebras. Let
T = (Σ,Ax ) where Ax is the collection of judgements valid in all V ∈ V for all
valuations. Call T the (Σ-)theory generated by V .
REMARK 8.6.2. So (r = s) ∈ Ax in Definition 8.6.1 when for every V ∈ V and
every valuation ς to V, it is the case that JrKVς = JsKVς .
DEFINITION 8.6.3. Define the constants of a term consts(r) just as Definition 3.3.2
except that we take consts(C) = {orb(C)} and consts(X) = ∅.
LEMMA 8.6.4. Suppose Σ is a signature and Σ′ extends Σ with some fresh constants
D. Suppose Σ has enough unknowns (Definition 3.1.10).

If g is a ground term in Σ′ then there exists a term g-1 in Σ and substitution θ such
that g-1θ = g.

Proof. For each orbit in consts(r) choose a representativeC ∈ orb(C) ∈ consts(r),
and some distinct unknownXC with sort(XC) = sort(C) and supp(C) ⊆ supp(XC)—
we can do this because we have assumed enough unknowns and it is a fact that
consts(r) is finite. Define θ to be the equivariant extension of this choice, so
θ(π·XC) = π·C and (for all the other unknowns) θ(Y ) = Y . This is well-defined
by Proposition 2.5.5.

It is now easy to generate g-1 by replacing each C in g with XC (modulo some
permutations). �

THEOREM 8.6.5. Suppose V is a collection of Σ-algebras and Σ has enough un-
knowns. Let T = (Σ,Ax ) be the Σ-theory generated by V . Suppose Σ′ extends Σ
with some fresh constants D and write T′ = (Σ′,Ax ).

Then there exists some indexing set I , set of algebras {Vi ∈ V | i ∈ I}, and an
injective Σ-algebra homomorphism Θ from G(Σ′) to Πi∈IVi.
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Proof. Take I to be the set of all pairs (g, h) of ground terms in Σ′ such that
T′ 6` g = h.

Consider some i = (g, h) ∈ I . By Lemma 8.6.4 there exist g-1, h-1, and θi
such that g-1θi = g and h-1θi = h. We assumed that T′ 6` g = h and it follows
using Lemma 7.2.4 that T 6` g-1 = h-1. Since T is the theory generated by V there
exists a model Vi ∈ V and a valuation ς such that Jg-1KViς 6= Jh-1KViς . We define
a Σ-homomorphism Θi from G(T′) to Vi as an equivariant extension of mapping
C ∈ D to ς(XC), where C and XC are as chosen in the proof of Lemma 8.6.4.

It follows by the choice of Vi that Πi∈Iθi from G(T′) to Πi∈IVi is injective as a
map on underlying sets. �

8.7 Proof of the HSP theorem
We can now prove Theorem 8.7.3; a similar result for nominal algebra is proved in
[Gab09].
DEFINITION 8.7.1. Suppose Σ is a signature. Suppose V is a collection of Σ-
algebras. Then:

• Call V a (Σ-)variety when it is closed under Homomorphic image (Defi-
nition 8.1.1), Subalgebra (Definition 8.2.1), and countable Product (Defini-
tion 8.3.1).

• Call V (Σ-)equational when it is the collection of Σ-algebras that are models
of T = (Σ,Ax ) for some set of axioms Ax .

LEMMA 8.7.2. Suppose Σ is a signature with enough unknowns. Suppose V is a
Σ-variety and let T = (Σ,Ax ) be the Σ-theory generated by V . Suppose Σ′ extends
Σ with some fresh constants D and write T′ = (Σ′,Ax ). Then G(T′) ∈ V .

Proof. By Theorem 8.6.5 there is some indexing set I , set of Σ-algebras {Vi ∈ V |
i ∈ I}, and injective Σ-algebra homomorphism Θ from G(T′) to Πi∈IVi. V is closed
under products so Πi∈IVi ∈ V . The image of |G(T′)| is a subalgebra of Πi∈IVi,
and is a homomorphic image of that subalgebra (by inverting Θ). V is closed under
subalgebras and homomorphic images, so the result follows. �

THEOREM 8.7.3. Suppose Σ is a signature with enough unknowns. A collection of
Σ-algebras V is equational if and only if it is a variety

Proof. Suppose V is equational. By Lemma 8.3.2 V is closed under products. By
Lemma 8.1.4 V is closed under homomorphic images. By Lemma 8.2.2 V is closed
under subalgebras. Therefore V is a variety.

Conversely, suppose V is a variety. Let T be the theory on Σ generated by V as
described in Definition 8.6.1. Let V be any model of T. By Theorem 8.5.3 there
exists a signature Σ′ extending Σ with some fresh constants D such that V is a
homomorphic image of G(T′). By Lemma 8.7.2 G(T′) ∈ V . Since V is closed under
homomorphisms, V ∈ V as required. Therefore V is equational. �
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Permissive-nominal logic: ∀X

9 PERMISSIVE-NOMINAL LOGIC

We now add quantification over unknowns—that is, ∀X—to permissive-nominal
terms. Permissive nominal techniques makes the theory ofα-equivalence easy here: if
we used ‘vanilla’ nominal terms, then the development below might not be impossible,
but we believe that it would be harder. We obtain a first-order logic which we call
permissive-nominal logic.

Permissive-nominal logic (PNL) is just first-order logic, enriched with nominal-
style names. Thus, the derivation rules in Figure 5 are (virtually) identical to those of
first-order logic. Only the term language is really changed.

In this section we set up PNL as a sequent derivation system (Figure 5), interpret it
in permissive-nominal sets (Definition 9.3.2), and prove soundness and completeness
(Theorems 9.3.6 and 9.4.16).

In Section 10 we undertake as an extended case study a sound and complete finite
axiomatisation of arithmetic inside PNL.

9.1 Syntax
The notions of sort-signature (A,B) and sort language are as in Definition 3.1.1. An
interpretation I for (A,B) consists of an assignment of a permissive-nominal set τI
to each τ ∈ B, and we extend I to sorts as in Definition 7.3.1.

DEFINITION 9.1.1. For this section it is convenient to take X to be specifically
example 2 of Example 3.1.7.

REMARK 9.1.2. So an unknown X takes the form

π·Xα = {(π′, Xα) | ∀a∈A< .π(a) = π′(a)}.

In this case, in the light of Remark 3.1.8, we may take fU (r) to be equal to the set of
Xα occurring in r.

It is now easy to define binding of unknowns (level 2 variables) in terms. A more
abstract account of level 2 binding is also available [Gab11c].
DEFINITION 9.1.3. A PNL signature over a sort-signature (A,B) is a tuple (C,F ,P, ar)
where:

• C is a permissive-nominal set of constants.
• F is a set of equivariant term-formers.
• P is a set of equivariant predicate-formers.
• ar assigns

– to each constant C ∈ C an arity τ ,
– to each f ∈ F a term-former arity (α)τ , and
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– to each P ∈ P a proposition-former arity α, where
α and τ are in the sort-language determined by (A,B).

A (PNL) signature S is then a tuple (A,B, C,F ,P, ar).
DEFINITION 9.1.4. Suppose S = (A,B, C,F ,P, ar) is a PNL signature.

Terms are defined as in Definition 3.2.1 for the signature (A,B, C,X ,F ,
ar).17

Propositions are defined as follows:

⊥ proposition

φ proposition ψ proposition

φ⇒ ψ proposition

r : α (ar(P) = α)

P(r) proposition

φ proposition

∀Xα.φ proposition

Here ∀Xα binds Xα in φ. We can use nominal abstract syntax to do this.
NOTATION 9.1.5. Write ∀X.φ as shorthand for ∀Xα.φ where X = {(π′, Xα) |
∀a∈A< .π′(a) = π(a)} for some π.
LEMMA 9.1.6. Support and the permutation action as characterised for terms on
Lemma 3.2.5 extend to propositions as follows:

supp(⊥) = ∅ supp(P(r)) = supp(r)
supp(φ⇒ ψ) = supp(φ) ∪ supp(ψ) supp(∀X.φ) = supp(φ)

π·⊥ = ⊥ π·P(r) = P(π·r)
π·(φ⇒ ψ) = (π·φ)⇒ π·ψ π·∀X.φ = ∀X.π·φ

NOTATION 9.1.7. We may write fa(φ) for supp(φ).

9.2 Derivability
DEFINITION 9.2.1. Φ and Ψ will range over sets of propositions. We may write
φ,Φ and Φ, φ as shorthand for {φ} ∪Φ. We may write Φ,Ψ as shorthand for Φ ∪Ψ.

Write fU (Φ) =
⋃
{fU (φ) | φ ∈ Φ}.

A sequent is a pair Φ ` Ψ.

DEFINITION 9.2.2 (Derivable sequents). The derivable sequents are defined in
Figure 5.

REMARK 9.2.3. As standard, the intuition of Φ ` Ψ being derivable is “the con-
junction (logical and) of the propositions in Φ entails the disjunction (logical or) of

17The reader who would answer ‘Can you pass the salt?’ with ‘Yes.’ should note that we have to adjust
ar to remove P and add X mapping X to α where (π, Xα) ∈ X .
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(Ax)
Φ, φ ` π·φ, Ψ

(⊥L)
Φ, ⊥ ` Ψ

Φ ` φ, Ψ Φ, ψ ` Ψ
(⇒L)

Φ, φ⇒ ψ ` Ψ

Φ, φ ` ψ, Ψ
(⇒R)

Φ ` φ⇒ ψ, Ψ

Φ, φ[X:=r] ` Ψ
(fa(r)⊆supp(X), r:sort(X))

(∀L)
Φ, ∀X.φ ` Ψ

Φ ` φ, Ψ (X 6∈ fU (Φ,Ψ))
(∀R)

Φ ` ∀X.φ, Ψ

Φ ` φ, Ψ Φ, φ ` Ψ
(Cut)

Φ ` Ψ

Figure 5: Sequent derivation rules of Permissive-Nominal Logic

the propositions in Ψ”. So for instance, intuitively the axiom rule (Ax) expresses
that φ if and only if π·φ.

The permutation π in (Ax) is deliberate and represents equivariance (preservation
of truth under permuting atoms) within permissive-nominal logic. Because of this
permutation π, free atoms can behave like variables ranging over distinct atoms.

Thus in PNL we can express a theory of atoms-inequality as follows: Suppose
a name sort Atm and a proposition-former neq : (Atm,Atm), along with a single
proposition neq(a, b) for two distinct atoms in Atm—and, if we wish, another propo-
sition neq(a, a)⇒ ⊥. The permutation π in (Ax) ensures that a and b represent any
two distinct atoms.
REMARK 9.2.4. The condition fa(r) ⊆ supp(X) in (∀L) might suggest that ∀X.φ
means “φ[X:=r] for every r such that fa(r) ⊆ supp(X)”. This is so, but the π
in (Ax) means that what supp(X) in ∀X.φ really restricts is capture, as we now
discuss.

• Suppose a name sort Atm and suppose X : Atm and P : Atm. Suppose
b ∈ pmss(X). By considering the swapping (b a) and (Ax), and (∀L),
∀X.P(X) ` P(b) for all a, even if a 6∈ supp(X), as follows:

(Ax) π = (b a)
P(b) ` P(a)

(∀L) [X:=b]
∀X.P(X) ` P(a)

So we can derive P(a) from ∀X.P(X), even if a is not permitted in X .

• This may not work if we have to ‘shift’ infinitely many atoms; e.g. there is
no finite π such that fa(π·(X, a)) ⊆ supp(X) where a 6∈ supp(X). If P has
shift-permutations (Definition 3.6.1), then we can use them.
Consider any sort α and suppose X : α and supp(X) = S. Suppose Q : α.
Consider any other Y : α with supp(Y ) = S ∪ {a} where a 6∈ S. We will
show that given shift-permutations, ∀X.Q(X) ` Q(Y ) is derivable.
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Suppose S ∪ {a} = π·S. We derive as follows:

(Ax)
Q(π·Y ) ` Q(Y )

(∀L) [X:=π·Y ]
∀X.Q(X) ` Q(Y )

• Nevertheless, ∀X.φ does not mean “φ[X:=r] for every r”. This is because
permutations are bijective. For example, suppose X : Atm, a 6∈ supp(X), and
P : ([Atm]Atm). Then ∀X.P([a]X) ` P ([a]r) for all r such that a 6∈ fa(r),
and also ∀X.P([b]X) ` P ([b]r) for all r and all b such that b 6∈ fa(r). However,

∀X.P([a]X) 6` P ([a]a), and for all b, ∀X.P([a]X) 6` P ([b]b).

The fact that a 6∈ supp(X) forbids capture by an instantiation, in a suitable
sense.

9.3 Interpretation and soundness

DEFINITION 9.3.1. Suppose S = (A,B, C,F ,P, ar) is a signature.
A (PNL) interpretation I for S consists of the following data:

• An interpretation for the sort-signature (A,B) (Definition 7.3.1).
• For every f ∈ F with ar(f) = (α′)α an equivariant function fI from Jα′KI to

JαKI (Definition 2.3.1).
• For every P ∈ P with ar(P) = α an equivariant function PI from

JαKI to {0, 1} (Definition 2.4.1).

DEFINITION 9.3.2. Suppose that I is an interpretation. Define an interpretation
of propositions by:

JP(r)KIς = PI(JrKIς)
J⊥KIς = 0

Jφ⇒ ψKIς = max{1−JφKIς , JψKIς}
J∀X.φKIς = min{JφKIς[X:=x] | x∈Jsort(X)KI, supp(x)⊆supp(X)}

LEMMA 9.3.3. JφKIς = Jπ·φKIς always.

Proof. By induction on φ. We consider two cases:

• The case ∀X.φ. Suppose J∀X.φKIς = 1. This means that JφKIς[X:=x] = 1
for all x ∈ JαKI such that supp(x) ⊆ supp(X). By inductive hypothesis
Jπ·φKIς[X:=x] = 1 for all x ∈ JαKI such that supp(x) ⊆ supp(X). Therefore
J∀X.π·φKIς = 1. The result follows, since π·(∀X.φ) = ∀X.π·φ.

• The case P(r). We have JP(r)KIς = PI(JrKIς). As PI is equivariant, we get
JP(r)KIς = PI(π·JrKIς). By Lemma 7.3.6 π·JrKIς = Jπ·rKIς . Thus JP(r)KIς =
PI(Jπ·rKIς) = Jπ·P(r)KIς .
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�

LEMMA 9.3.4. JφKIς[X:=JtKIς ] = Jφ[X:=t]KIς .

Proof. By a routine induction on the definition of JφKIς in Definition 9.3.2. We
consider one case:

• The case of JP(r)KIς[X:=t]. We reason as follows:

JP(r)KIς[X:=JtKIς ] = PI(JrKIς[X:=JtKIς ]) Definition 9.3.2
= PI(Jr[X:=t]KIς) Lemma 7.4.5
= JP(r)[X:=t]KIς Definition 9.3.2.

�

Validity and soundness

DEFINITION 9.3.5 (Validity). Call the proposition φ valid in I when JφKIς = 1 for
all ς .

Call the sequent φ1, . . . , φn ` ψ1, . . . , ψp valid in I when (φ1 ∧ · · · ∧ φn) ⇒
(ψ1 ∨ · · · ∨ ψp) is valid.
THEOREM 9.3.6 (Soundness). If Φ ` Ψ is derivable, then it is valid in all interpre-
tations.

Proof. By induction on derivations (Figure 5). The case of (Ax) uses Lemma 9.3.3.
The case of (∀L) uses Lemma 9.3.4. The case of (∀R) uses Lemma 7.4.2. Other
rules are routine by unpacking definitions. �

9.4 Completeness
In this subsection we prove Theorem 9.4.16: a converse to Theorem 9.3.6, that if φ is
valid in all interpretations, then φ it is derivable.

For this subsection fix the following data:

• A signature S = (A,B, C,F ,P, ar).
• A formula φ such that 6` φ.

We will construct an interpretation I and a valuation ς (Definition 7.3.1) such that
JφKIς = 0. This suffices to prove the result.

Maximally consistent set of propositions

DEFINITION 9.4.1. Make a fixed but arbitrary order on propositions ξ1, ξ2, ξ3, . . .
Define Φ1 = {¬φ} (where φ was fixed above). For each i ≥ 1 we define Φi+1 as

follows:

• If Φi ` ξi then write ξ = ξi.
• If Φi ` ¬ξi then write ξ = ¬ξi.
• If Φi 6` ξi and Φi 6` ¬ξi then write ξ = ξi.
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There are now two cases:

• If ξ has the form¬∀X.ξ′ then we define Φi+1 = Φi∪{ξ,¬ξ′[X:=Z]}whereZ
is some fixed but arbitrary choice of unknown that is not free in any proposition
in Φi and is such that supp(Z) = supp(X) and sort(Z) = sort(X).

• Otherwise, we define Φi+1 = Φi ∪ {ξ}.
Finally, we define Φω by Φω =

⋃
i Φi.

LEMMA 9.4.2. For every i, Φi 6` ⊥.

Proof. By induction on i:

• By definition Φ1 = {¬φ}. As 6` φ, we have ¬φ 6` ⊥
• Suppose Φi 6` ⊥.

Either Φi+1 = Φi ∪ {¬ξ} or Φi+1 = Φi ∪ {¬ξ,¬ξ′[X:=Z]}—we consider
the first, simpler case; the second case is similar. Suppose Φi, ξ ` ⊥. It follows
that Φi ` ¬ξ. So we are not in the third case of Definition 9.4.1 and we are
either in the first or the second. So Φi ` ξ and thus Φi ` ⊥; a contradiction.

�

LEMMA 9.4.3. Φω 6` ⊥.

Proof. Assume Φω ` ⊥. So there exists a finite subset Γ of Φω such that Γ ` ⊥. As
Γ is finite it is included in some Φi, and Φi ` ⊥, contradicting Proposition 9.4.2. �

REMARK 9.4.4. It is well-known that in nominal sets, least upper bounds can
sometimes not exist if there are ‘too many’ atoms; so sometimes we have to be careful
to not make too many arbitrary choices.18

The reader familiar with nominal techniques will be alert to the possibility that
Φω might fail to have a supporting permission set, and that this could cause problems.
In fact, in this particular case this is a non-issue: (Ax) from Figure 5 ensures that
Φω is not only supported, but in fact equivariant.
LEMMA 9.4.5. For every ξ, at least one of ξ ∈ Φω and ¬ξ ∈ Φω holds.

Proof. We check of Definition 9.4.1 that for every i, either ξi ∈ Φi+1 or ¬ξi ∈ Φi+1.
The result follows. �

LEMMA 9.4.6. For every ξ, if ¬∀X.ξ ∈ Φω then there exists a Z such that
¬ξ[X:=Z] ∈ Φω .

Proof. There exists an i such that ξi = ¬∀X.ξ. Since Φω ` ξi and Φω 6` ⊥, we have
that Φω 6` ¬ξi, and so Φi 6` ¬ξi. Thus Φi+1 = Φi ∪ {¬∀X.ξ, ¬ξ[X:=Z]}. The
result follows. �

LEMMA 9.4.7. If Φω ` φ then φ ∈ Φω .

Proof. As, by Lemma 9.4.3, Φω 6` ⊥, if Φω ` φ then ¬φ 6∈ Φω. Thus by
Lemma 9.4.5, φ ∈ Φω . �

18For instance, in permissive-nominal sets it is possible represent a well-order of each permission set,
but not to represent a well-ordering of the set of all atoms (which is a limit of permission sets). This is
also the feature which Fraenkel and Mostowksi used to prove the independence of the axiom of choice
from the other axioms of set theory.
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COROLLARY 9.4.8.

1. (φ⇒ ψ) ∈ Φω if and only if (φ 6∈ Φω or ψ ∈ Φω).

2. ∀X.φ ∈ Φω if and only if
(for every r such that r : sort(X) and fa(r) ⊆ supp(X), φ[X:=r] ∈ Φω).

Proof.

1. Suppose (φ⇒ ψ) ∈ Φω and φ ∈ Φω. Then Φω ` ψ and so by Lemma 9.4.7
ψ ∈ Φω .
Suppose φ 6∈ Φω. By Lemma 9.4.5 ¬φ ∈ Φω. So Φω ` ¬φ and therefore
Φω ` φ⇒ ψ. By Lemma 9.4.7 (φ⇒ ψ) ∈ Φω .
Suppose ψ ∈ Φω. Then Φω ` ψ and so Φω ` φ ⇒ ψ. By Lemma 9.4.7
(φ⇒ ψ) ∈ Φω .

2. Suppose ∀X.φ ∈ Φω . By Lemma 9.4.7, if r : sort(X) and fa(r) ⊆ supp(X)
then φ[X:=r] ∈ Φω .
Conversely, suppose φ[X:=r] ∈ Φω for every r such that r : sort(X) and
fa(r) ⊆ supp(X). We proceed by contradiction: suppose ∀X.φ 6∈ Φω. By
Lemma 9.4.5 ¬∀X.φ ∈ Φω and by Lemma 9.4.6, there exists a Z such that
¬φ[X:=Z] ∈ Φω. So Φω ` ¬φ[X:=Z], and so Φω ` φ[X:=Z], and so
Φω ` ⊥, contradicting Lemma 9.4.3.

�

The term interpretation

DEFINITION 9.4.9. Define the term interpretation I by:

• JαKI = {r | r : α}.
• fI maps r to f(r).
• PI maps r1, . . . , rn to 1 if P(r1, . . . , rn) ∈ Φω and to 0 otherwise.

Define ς by ς(X) = X for all X ∈ X and endow JαKI with a permutation action
given by the action on terms.

REMARK 9.4.10. In Definition 7.5.4 we built an interpretation to prove completeness
of nominal algebra (Corollary 7.5.12). There, we built our interpretation out of terms
quotiented by derivable equality; here we just use terms. Why the difference?

In nominal algebra the judgement-form of the logic is equality—so it makes sense
to build an interpretation such that equality maps to denotational identity.
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LEMMA 9.4.11.

1. If ar(f) = (α)τ then fI is well-defined, equivariant, and maps JαKI to JτKI.

2. If ar(P) = α then PI is well-defined, equivariant, and maps JαKI to {0, 1}.

PROPOSITION 9.4.12. I is an interpretation of the signature S = (A,B,F ,
P, ar) which we fixed at the beginning of this subsection. In addition, ς is a valuation
to I.

Proof. By Lemma 9.4.11 for each f : (α′)α ∈ F , fI is an equivariant map from Jα′KI
to JαKI and for each P : α ∈ P , PI is an equivariant function from JαKI to {0, 1}.

By construction ς(X) ∈ Jsort(X)KI always. Equivariance is easy. �

LEMMA 9.4.13. JrKIς = r.
LEMMA 9.4.14. JξKIς = 1 if and only if ξ ∈ Φω .

Proof. By induction on the definition of JξKIς (Definition 9.3.2):

• The case of JP(r)KIς . We reason as follows:
JP(r)KIς = 1 ⇔ PI(JrKIς) = 1 Definition 9.3.2

⇔ PI(r) = 1 Lemma 9.4.13
⇔ P(r) ∈ Φω Definition 9.4.9

• The case of J⊥KIς . By definition J⊥KIς = 0. By part 1 of Corollary 9.4.8,
⊥ 6∈ Φω .

• The case of Jφ⇒ ψKIς . We reason as follows:
Jφ⇒ ψKIς = 1 ⇔ JφKIς = 0 or JψKIς = 1 Definition 9.3.2

⇔ φ 6∈ Φω or ψ ∈ Φω ind. hyp.
⇔ φ⇒ ψ ∈ Φω Cor. 9.4.8, part 2

• The case of J∀X.φKIς , where α = sort(X) and S = supp(X).
J∀X.φKIς=1 ⇔ ∀t∈JαKI.supp(t)⊆S ⇒ JφKIς[X:=t]=1 Definition 9.3.2

⇔ ∀t∈JαKI.supp(t)⊆S ⇒ Jφ[X:=t]KIς = 1 Lems. 7.4.2, 9.4.13
⇔ Jφ[X:=t]KIς = 1 every t:α s.t. fa(t)⊆S supp(t) = fa(t)
⇔ φ[X:=t]∈Φω every t:α s.t. fa(t)⊆S ind. hyp.
⇔ ∀X.φ∈Φω Cor. 9.4.8, part 4

�

LEMMA 9.4.15. If 6` φ, then there exists an interpretation I and a valuation ς such
that JφKIς = 0.

Proof. As ¬φ∈Φ0⊆Φω and Φω 6`⊥, we have φ 6∈Φω. By Lemma 9.4.14, we get
JφKIς = 0. �

As a corollary we get Theorem 9.4.16:

THEOREM 9.4.16 (Completeness). If φ is valid in all interpretations, then φ is
derivable.
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10 CASE STUDY: ARITHMETIC IN PERMISSIVE-NOMINAL LOGIC

Because term-formers in PNL can bind, we can axiomatise first-order logic. Thus
assume a sort o whose terms reflect formulas of first-order logic. Then PNL quan-
tification ∀Z where Z : o has the quality of an axiom schema, and we can use those
terms to axiomatise arithmetic (a theory which in first-order logic famously involves
an axiom schema).

So, we should be able to use PNL to give a finite, first-order axiomatisation of
arithmetic. Writing down some plausible-looking axioms is one thing—proving
they do what we expect them to do, is another. In this section, as a case study of an
application of PNL, we do just that.

We proceed as as follows, starting with the following PNL definitions:

• Figure 6 gives
.
L a signature for a shallow embedding of terms and formulas of

first-order logic as PNL terms of sort ι and o respectively.
• Figure 7 gives equality axioms, as a transitive reflexive symmetric congruence

for the term-formers in
.
L.

• Figure 8 axiomatises substitution. We can have some confidence in this ax-
iomatisation because it was already considered for nominal algebra in [GM08a]
and proven correct.

• Figure 9 gives axioms for first-order logic.
• Finally, Figure 10 gives axioms for arithmetic. As discussed above, the in-

duction axiom schema is captured using a universal quantification (the ∀Z in
(PInd)).

Subsection 10.4 briefly recalls the syntax and derivability relation of ‘real’ first-order
logic. Then Subsection 10.5 maps this into the PNL theory we just constructed.
Subsection 10.6 briefly recalls Peano arithmetic in the ‘real’ first-order logic.

Finally, in Subsection 10.7 by arguments on models we show our main result of
this section: Theorem 10.7.7. A formula is derivable in ‘real’ Peano arithmetic if and
only if its translation in PNL is derivable in the PNL theory for arithmetic.

The permissive-nominal terms, PNL, permission-sets, and permissive-nominal
sets semantics, all work together, and at the end of it all we really can embed a
non-trivial theory with binding in PNL, and know it is correct.

10.1 The signature
.
L and the axioms

DEFINITION 10.1.1. A signature
.
L suitable for writing out a PNL theory of first-

order logic is given in Figure 6.

NOTATION 10.1.2. We introduce the following syntactic sugar:

• We may write subo([a]r, t) as r[a7→t].
• We may write subι([a]r, t) as r[a7→t].
• We may write both ≈ι and ≈o just as ≈.

Examples of this in use, follow immediately below.
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We assume one atomic sort ν and two base sorts ι and o.
We assume term-formers and proposition-formers as follows:

.
0 : ι

.
succ : (ι)ι

.
+: (ι, ι)ι

.∗: (ι, ι)ι.
⊥ : o .⇒: (o, o)o

.
∀ : ([ν]o)o

.≈: (ι, ι)o
var : (ν)ι subι : ([ν]ι, ι)ι subo : ([ν]o, ι)o

≈ι: (ι, ι) ≈o: (o, o) ε : (o)

Figure 6: Signature
.
L suitable for a PNL specification of arithmetic

(≈2) ∀X ′, X, Y ′, Y.(X ′≈X∧Y ′≈Y )⇒
(
X ′

.
+ Y ′ ≈ X

.
+ Y ∧

X ′
.∗ Y ′ ≈ X .∗ Y ∧

X ′ .⇒ Y ′ ≈ X .⇒ Y ∧
X ′

.≈ Y ′ ≈ X .≈ Y
)

(≈1) ∀X ′, X. X ′≈X ⇒ .
succ(X ′) ≈ .

succ(X)
(≈0) ∀X. X ≈ X
(≈

.
∀) ∀Z ′, Z. Z ′≈Z ⇒

.
∀([a]Z ′) ≈

.
∀([a]Z)

(≈sub) ∀X ′, X, Y ′, Y.(X ′≈X∧Y ′≈Y )⇒
(
subι([a]X ′, Y ′) ≈ subι([a]X,Y ) ∧
subo([a]X ′, Y ′) ≈ subo([a]X,Y )

)
(≈o) ∀Z ′, Z. Z ′≈Z ⇒ (ε(Z ′)⇔ ε(Z))
(≈ι) ∀X ′, X. X ′≈X ⇒ ε(X ′

.≈ X)

We fill in sorts as appropriate. Thus,
.
⊥ ≈o

.
⊥ whereas 0 ≈ι 0, and so on. The

permission sets of all unknowns are equal to A< , and a ∈ A< .
Figure 7: EQU: axioms for equality as a PNL theory

10.2 The axioms: equality, substitution, first-order logic, and arith-
metic

Equality

Axioms for equality ≈: (ι, ι) and equality ≈: (o, o) are given in Figure 7.

Substitution

Axioms for substitution subι and subo are given in Figure 8.
We arguably abuse notation in Figure 8 when we use unknowns of sort ι and o as

appropriate not necessarily giving them distinct names (e.g. in (sub∗) X has sort ι,
whereas in (sub .⇒) we use another unknown also written X with sort o).

First-order logic

Axioms for (a shallow reflection of) first-order formulas as terms in PNL (the
.
⊥, .⇒,

and
.
∀) are given in Figure 9.
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(subvar) ∀X. var(a)[a7→X] ≈ X
(sub#) ∀X,Z. Z[a7→X] ≈ Z
(sub

.
succ) ∀X ′, X. .

succ(X ′)[a7→X] ≈ .
succ(X ′[a7→X])

(sub
.
+) ∀X ′′, X ′, X. (X ′′

.
+ X ′)[a7→X] ≈ (X ′′[a7→X]

.
+ X ′[a7→X])

(sub
.∗) ∀X ′′, X ′, X. (X ′′

.∗ X ′)[a7→X] ≈ (X ′′[a7→X]
.∗ X ′[a7→X])

(sub .⇒) ∀X ′′, X ′, X. (X ′′ .⇒ X ′)[a7→X] ≈ (X ′′[a7→X] .⇒ X ′[a7→X])
(sub

.≈) ∀X ′′, X ′, X. (X ′′
.≈ X ′)[a7→X] ≈ (X ′′[a7→X]

.≈ X ′[a7→X])

(sub
.
∀) ∀X,Z. (

.
∀([b]Z))[a7→X] ≈

.
∀([b](Z[a7→X]))

(subid) ∀X. X[a7→var(a)] ≈ X

a ∈ A< and b 6∈ A< . The permission set of X ′′, X ′, and X is equal to A< .
The permission set of Z is equal to (b a)·A< .

Figure 8: SUB: axioms for substitution as a PNL theory

( .⇒) ∀Z ′, Z. ε(Z ′ .⇒ Z) ⇔ (ε(Z ′)⇒ ε(Z))

(
.
∀) ∀Z.

(
ε(

.
∀([a]Z))⇔ ∀X.ε(Z[a7→X])

)
(

.
⊥) ε(

.
⊥) ⇒⊥

Here Z ′ and Z have sort o, permission set A< , and a ∈ A< .
Figure 9: FOL: axioms for first-order formulas as a PNL theory

(PS0) ∀X. .
succ(X) ≈

.
0⇒ ⊥

(PSS) ∀X ′, X. .
succ(X ′) ≈ .

succ(X)⇒ X ′ ≈ X
(P+0) ∀X. X

.
+

.
0 ≈ X

(P+succ) ∀X ′, X. X ′
.
+

.
succ(X) ≈ .

succ(X ′)
.
+X

(P∗0) ∀X. X
.∗
.
0 ≈

.
0

(P∗succ) ∀X ′, X. X ′ .∗ .
succ(X) ≈ (X ′

.∗X)
.
+X

(PInd) ∀Z.ε(Z[a7→
.
0])⇒(

∀X.(ε(Z[a7→X])⇒ ε(Z[a7→ .
succ(X)]))

)
⇒

∀X.ε(Z[a7→X])

The permission set of X , X ′, and Z is A< , and a ∈ A< .
Figure 10: ARITH: axioms for arithmetic as a PNL theory

Arithmetic

Given EQU, SUB, and FOL, it is not hard to write axioms for arithmetic in PNL. This
is in Figure 10. Later on in Theorem 10.7.7 we prove that this is an axiomatisation of
arithmetic in PNL.

10.3 Comments on the axioms

REMARK 10.3.1. SUB is a PNL rendering of the nominal algebra theory naSUB
from Example 7.1.3; the universal quantifiers which are implicit in the nominal
algebraic judgement-form are made explicit here. This is essentially the same axioma-
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tisation as studied in [GM06a; GM08a]. Soundness and completeness are proved, so
providing some formal sense in which the axioms of SUB are ‘right’.

In [GM08c] first-order logic is equationally axiomatised using nominal algebra
(so the axioms involve only equality). Because PNL is already a first-order logic, we
can use ⊥,⇒, and ∀ directly to capture the behaviour of

.
⊥, .⇒, and

.
∀. So note that

FOL here is not the axiomatisation of [GM08c]; there we had to work a little harder
because the ambient logic, nominal algebra, was purely equational.
REMARK 10.3.2. Instead of the axioms for equality EQU, we could directly extend
PNL by adding derivation rules Figure 5 as follows:

Φ, r ≈ s, φ[X:=r], φ[X:=s] ` Ψ (fa(r)∪fa(s) ⊆ supp(X))
(≈S)

Φ, r ≈ s, φ[X:=r] ` Ψ

Φ, r ≈ r ` Ψ
(≈R)

Φ ` Ψ

REMARK 10.3.3. Every unknown has a sort, and a permission set.
Different choices of permission set may yield logically equivalent results. For

example, in (sublam) it is not vital that supp(Z) is exactly (b a)·A< . The important
point is that a 6∈ supp(Z).

Similarly, in (subapp) it is not vital that supp(X ′′) = supp(X ′); when we use
the axiom we can instantiate X ′′ and X ′ to r′′ and r′ such that fa(r′′) 6= fa(r′), and
conversely if we take supp(X ′′) 6= supp(X ′) then we can still instantiate X ′′ and
X ′ to r′′ and r′ such that fa(r′′) = fa(r′) ⊆ supp(X ′′) ∩ supp(X ′).

10.4 First-order logic L
We will use the atoms Aν from

.
L in Section 10 as variables of our first-order logic

(this is not necessary, but it is convenient). So for this section, a, b, c, . . . will range
over distinct atoms in Aν .
DEFINITION 10.4.1. Define terms and formulas of L by:

t ::= a | 0 | succ(t) | t+ t | t ∗ t
ξ ::= t ≈ t | ⊥ | ξ ⇒ ξ | ∀a.ξ

Substitution t′[a:=t] and ξ[a:=t] is as usual for first-order logic. We write sequents
Ξ ` χ where Ξ and χ are sets of formulas. Derivability is as usual for first-order
logic.
DEFINITION 10.4.2. Define a mapping (-). from terms and formulas of L to terms
of

.
L (Subsection 10.1) by:

(a)
.

= a (0)
.

=
.
0

(succ(t))
.

=
.

succ((t)
.
) (t′ + t)

.
= (t′)

. .
+ (t)

.

(t′ ∗ t). = (t′)
. .∗ (t)

.

(t′ ≈ t). = (t′)
. .≈ (t)

.
(⊥)

.
=

.
⊥

(ξ′ ⇒ ξ)
.

= (ξ′)
. .⇒ (ξ)

.
(∀a.ξ). =

.
∀[a](ξ)

.
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DEFINITION 10.4.3. Extend (-). to first-order logic sequents Ξ ` χ as follows:

(Ξ ` χ)
.

= ε(
.
∀[a1] . . .

.
∀[an]((ξ1 ∧ . . . ∧ ξk)⇒ (χ1 ∨ . . . ∨ χl))

.
)

Here, Ξ = {ξ1, . . . , ξk}, χ = {χ1, . . . , χl}, and the free variables of Ξ and χ are
{a1, . . . , an} (in some order).

NOTATION 10.4.4. Write S for EQU ∪ SUB ∪ FOL.
LEMMA 10.4.5. S ` (t′[a:=t]). ≈ (t′)

.
[a7→(t)

.
] and

S ` (ξ[a:=t]). ≈ (ξ)
.
[a 7→(t)

.
].

Proof. By routine inductions on t and ξ. �

THEOREM 10.4.6 (Correctness). If Ξ ` χ is derivable in first-order logic then
S ` (Ξ ` χ)

. is derivable in PNL.

Proof. By a long but routine inspection we can check that EQU, SUB, and FOL allow
us to model the behaviour of ‘real’ first-order logic. We use Lemma 10.4.5. �

10.5 Interpretation of first-order logic

We recall the usual definition of interpretations in first-order logic:

DEFINITION 10.5.1. A nominal (first-order logic) interpretation M is a car-
rier set M , and elements:

0M ∈M, succM ∈M →M,
+M ∈ (M ×M)→M, and ∗M ∈ (M ×M)→M.

It is convenient to fix some M from here until Theorem 10.7.7.
DEFINITION 10.5.2. Define ValuAν (M) by:

ValuAν (M) = {ε ∈ Aν →M | ∃A ⊆ Aν .A finite ∧ ∀a, b 6∈ A.ε(a) = ε(b)}

Call elements of ValuAν (M) Aν-valuations (toM ). εwill range over Aν-valuations.
If x ∈M write ε[a:=x] for the valuation mapping b to ε(b) and mapping a to x:

ε[a:=x](a) = x
ε[a:=x](b) = ε(b)

Give ε ∈ ValuAν (M) and X ⊆ ValuAν (M) a pointwise permutation action:

(π·ε)(a) = ε(π-1(a)).
π·X = {π·ε | ε ∈ X}.

U, V will range over finitely-supported subsets of ValuAν (M)—so there exists some
finite A ⊆ Aν such that for all π, if π(a) = a for all a ∈ A then π·U = U .
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(ps0) ∀a. succ(a) ≈ 0⇒ ⊥
(pss) ∀a′, a. succ(a) ≈ succ(a′)⇒ a ≈ a′
(p+0) ∀a. a+0 ≈ a
(p+succ) ∀a′, a. a′+succ(a) ≈ succ(a′)+a
(p∗0) ∀a. a∗0 ≈ 0
(p∗succ) ∀a′, a. a′∗succ(a) ≈ (a′∗a)+a

(pind) ξ[a:=0]⇒
(
∀a.(ξ ⇒ ξ[a:=succ(a)])

)
⇒ ∀a.ξ

(every ξ, every a)

Figure 11: arithmetic: axioms for arithmetic in first-order logic

REMARK 10.5.3. ValuAν (M) would normally just be called ‘the set of valuations’.
We are more specific since we separately also have valuations on unknowns X
(Definition 7.3.3).

PNL atoms are serving as variable symbols of L. To conveniently apply nominal
techniques, it is useful to restrict to valuations that are finite in the sense given in
Definition 10.5.2. In any case, any term or formula will only contain finitely many
atoms.

DEFINITION 10.5.4. We extend the interpretation to first-order logic syntax as
follows:

JaKMε = ε(a)
J0KMε = 0M

Jsucc(t)KMε = succM(JtKMε )
Jt′ + tKMε = +M(Jt′KMε , JtKMε )
Jt′ ∗ tKMε = ∗M(Jt′KMε , JtKMε )

J⊥KMε = 0
Jξ′ ⇒ ξKMε = max{1−Jξ′KMε , JξKMε }

J∀a.ξKMε = min{JξKMε[a:=x] | x ∈M}
Jt′ ≈ tKMε = 1 if Jt′KMε = JtKMε and 0 otherwise

DEFINITION 10.5.5. Call the formula ξ valid in M when JξKMε = 1 for all ε.
Call ξ1, . . . , ξk ` χ1, . . . , χl valid in M when (ξ1 ∧ . . . ∧ ξk)⇒ (χ1 ∨ . . . ∨ χl)

is valid.

10.6 A theory of arithmetic in L

DEFINITION 10.6.1. Define a first-order theory of arithmetic by the axioms in
Figure 11.
An interpretation M is a model of arithmetic when JξKM = 1 for ξ each of (ps0),
(pss), (p+0), (p+succ), (p∗0), (p∗succ), and every instance of (pind).
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REMARK 10.6.2. (pind) the induction axiom-scheme is of course of particular
interest. We therefore unpack what its validity

Jξ[a:=0]⇒ ∀a.(ξ ⇒ ξ[a:=succ(a)])⇒ ∀a.ξKM = 1 (every ξ, every a)

means, in a little more detail. For every a and ξ:

• If Jξ[a:=0]KMε = 1, and
• if for every x ∈M , JξKMε[a:=x] = 1 implies that Jξ[a:=succ(a)]KMε[a:=x] = 1,
• then for every x ∈M , JξKMε[a:=x] = 1.

In (pind) we take ‘every a’, and in (PInd) we do not. This is because in (PInd),
a is α-convertible,

10.7 Building an interpretation for
.
L from one for L

Recall the PNL signature
.
L from Subsection 10.1. SupposeM is a model of arithmetic.

We use it to build an interpretation N of
.
L.

DEFINITION 10.7.1. Extend L to L+M where we add all elements of M as con-
stants, and extend the interpretation to interpret these constants as themselves in M .
(So if x ∈M then x is a constant symbol in L+M and JxKMε = x.)

Define an Aν-valuation ε0 ∈ ValuAν (M) by

ε0(a) = 0M always.

If t is a term, we write JtKM for the function λε.JtKMε . If ξ is a formula, we write
JξKM for the function λε.JξKMε .

We now define an interpretation N for
.
L. We give a denotation to the base sorts ι

and o of
.
L, as follows:

ιN = {JtKM | t a term of L+M}
oN = {JξKM | ξ a formula of L+M}

We give a denotation to the term-formers and proposition-formers of
.
L, as follows:

varN a ε= ε(a).
0N ε= 0M

.
succN u ε= succM(uε).

+N (u, v) ε= +M(uε, vε).∗N (u, v) ε= ∗M(uε, vε)
subNι ([a]u, v) ε=u(ε[a:=vε]).

⊥N ε= 0

subNo ([a]u, v) ε=u(ε[a:=vε])
.⇒N (U, V ) ε= max{1−U(ε), V (ε)}.
∀N [a]U ε= min{U(ε[a:=x]) | x ∈M}.≈N (u, v) ε=≈M(uε, vε)
≈N
ι (u, v) = 1 if u=v and 0 otherwise

≈N
o (U, V ) = 1 if U=V and 0 otherwise

εN U =U(ε0)

Here, u and v range over ιN and U and V range over oN.
LEMMA 10.7.2.
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1. Jt′[a:=t]KMε = Jt′KMε[a:=JtKMε ].
2. Jξ[a:=t]KMε = 1 if and only if JξKMε[a:=JtKMε ] = 1.

LEMMA 10.7.3. The following equalities all hold:

varN(a) = JaKM.
0N = J0KM.

succN(JtKM) = Jsucc(t)KM.
+N(Jt′KM, JtKM) = Jt′ + tKM.∗N(Jt′KM, JtKM) = Jt′ ∗ tKM

subNι ([a]Jt′KM, JtKM) = Jt′[a:=t]KM
subNo([a]JξKM, JsKM) = Jξ[a:=s]KM.

⊥N = J⊥KM
.⇒N(Jξ′KM, JξKM) = Jξ′ ⇒ ξKM.
∀N([a]JξKM) = J∀a.ξKM.≈N(JrKM, JsKM) = Jr ≈ sKM

Proof. We compare Definitions 10.7.1 and 10.5.4. Most cases are immediate; we
consider only the slightly less trivial ones:

varN(a) = (λa.λε.ε(a))a Definition 10.7.1
= (λa.JaKM)a Definition 10.5.4
= JaKM fact

subNι ([a]Jt′KM, JtKM) = λε.Jt′KM(ε[a:=JtKMε]) Definition 10.7.1
= λε.Jt′[a:=t]KM Lemma 10.7.2

Other cases are no harder. �

LEMMA 10.7.4. N (Definition 10.7.1) is a PNL interpretation.

Proof. We must check that:

• ιN and oN are permissive-nominal sets.
By routine calculations. (In fact, ιN and oN are nominal sets; that is, their
elements all have finite support.)

• The functions defined in Definition 10.7.1 map elements of ιN, oN, [A]ιN, and
[A]oN correctly to the appropriate sets.
By Lemma 10.7.3.

• εN is equivariant from oN to {0, 1}.
By routine calculations using the fact that (a b)·ε0 = ε0.

�

LEMMA 10.7.5. If (Ξ ` χ)
. is valid in N, then Ξ ` χ is valid in M.

Proof. We calculate that if (Ξ ` χ)
. is valid in N, then

J(ξ1 ∧ . . . ∧ ξk)⇒ (χ1 ∨ . . . ∨ χl)KMε0
= 1

But the proposition written out above is closed, so for all valuations ε, J(ξ1 ∧ . . . ∧
ξk)⇒ (χ1 ∨ . . . ∨ χl)KMε = 1. �

Recall from Notation 10.4.4 that we write S for EQU ∪ SUB ∪ FOL.
PROPOSITION 10.7.6. The axioms of S ∪ ARITH are valid in N.



NOMINAL TERMS AND NOMINAL LOGICS 81

Proof. By a routine verification. We consider the axiom (
.
∀) from Figure 9. We

unpack definitions and see that we must prove that for every ξ in L+M ,

• ∀x∈M.ε0[a:=x] ∈ (ξ)
. if and only if

• ε0[a:=(t)
.
] ∈ (ξ)

. for every t a term of L+M .

This follows, because L+M has a constant symbol for every x ∈M . Validity of the
other axioms is no harder. �

THEOREM 10.7.7. arithmetic,Ξ ` χ in first-order logic if and only if
S ∪ ARITH ` (Ξ ` χ)

. in PNL.

Proof. We prove two implications. The top-to-bottom implication follows using
Theorem 10.4.6.

For the bottom-to-top implication, we reason as follows: Suppose S ∪ ARITH `
(Ξ ` χ)

. in PNL. Choose an arbitrary interpretation M of first-order logic that
is a model of arithmetic, with carrier set M . By Soundness (Theorem 9.3.6) and
Proposition 10.7.6, (Ξ ` χ)

. is valid in N. By Lemma 10.7.5 Ξ ` χ is valid in M.
M was arbitrary, so by completeness of first-order logic [Sho67, §4.2] it follows that
Ξ ` χ is derivable. �

11 FURTHER PROPERTIES OF PNL

11.1 More PNL theories
We briefly mention on how to express some familiar ‘nominal’ constructs in PNL.

Inductive types

Permissive-nominal logic can express the principles of nominal abstract syntax de-
veloped in [GP01].

Suppose a base sort ι, a name sort ν, and term-formers

var : (ν)ι, app : (ι, ι)ι, and lam : ([ν]ι)ι.

Fix an unknown U : ι and for brevity write φ[U :=r] as φ(r) for every φ. Suppose an
axiom-scheme, for every φ:

φ(var(a))⇒
∀X.(φ(X)⇒ φ(lam([a]X)))⇒
∀X,Y.(φ(X)⇒ φ(Y )⇒ app(X,Y ))⇒

∀X.(φ(X))

Here X and Y have sort ι and we make a fixed but arbitrary choice of atom a ∈
supp(X).
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We can also express this finitely, if we axiomatise a sort for predicates (as we did
for arithmetic). Here is the axiom-scheme above made finite by using the theories
EQU, SUB, and FOL from Section 10:

∀Z.ε(Z[a7→var(a)])⇒
∀X.(ε(Z[a7→X])⇒ ε(Z[a7→lam([a]X)))⇒
∀X,Y.(ε(Z[a7→X])⇒ ε(Z[a 7→Y ])⇒ ε(Z[a7→app(X,Y )]))⇒

∀X.ε(Z[a7→X])

The Nquantifier

Nominal sets support the N-quantifier [GP01]. PNL also includes the N-quantifier;
the way in which it does this is quite interesting, as we shall see in a moment.

Nhas some distinctive properties which are reflected in nominal logic (NL) and
the logic of FM sets (FM):

∀x.(P(x)⇒ Na.Q(a, x))
==================
∀x. Na.(P(x)⇒ Q(a, x))

∀x. Na. Nb.(b a)·x≈x
=============================
Na. Nb.∀x.(a#x⇒ b#x⇒ (b a)·x≈x)

Here and below we write a double horizontal line for ‘is provably equivalent to’. N
appears absent from Permissive-Nominal Logic (PNL). It is ‘hiding’ in the permission
sets. Corresponding propositions are, where a, b 6∈ supp(X)

∀X.(P(X)⇒ Q(a,X))
=================
∀X.(P(X)⇒ Q(a,X))

∀X.(b a)·X ≈ X
=============
∀X.(b a)·X ≈ X

We see from these examples that two things are happening: first, freshness conditions
are hard-coded into the syntax by permission sets—and second, so is the N-quantifier.

It is interesting to consider another example. In NL/FM:

Na.P(a) ∧ Na.Q(b)
================
Na. Nb.(P(a) ∧ Q(b))

Na.P(a) ∧ Na.Q(b)
==============

Na.(P(a) ∧ Q(a))

Correspondingly in PNL we have:

P(a) ∧ Q(b)
=========
P(a) ∧ Q(b)

P(a) ∧ Q(b)
=========
P(a) ∧ Q(a)

It is easy to use the rule (Ax) from Figure 5 to construct a derivation proving that
P(a)∧Q(b) and P(a)∧Q(a) are indeed logically equivalent in Permissive-Nominal
Logic.

The π in (Ax) expresses that truth is preserved by permutative renaming, or in
symbols: ` φ⇔ π·φ always.

A permission set S can be viewed in two ways: as giving permission to instantiate
using free atoms in S—but also as a form of Nfor the atoms not in S.
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Semantic freshness

To express in permissive-nominal algebra that a is fresh for the denotation of s it
suffices to assert (b a)·s = s where b 6∈ supp(s). Thus the theory of a semantic
freshness predicate Fresh has one axiom Fresh(a,X) ⇔ (b a)·X = X where
a ∈ supp(X) and b 6∈ supp(X) (and we fill in sorts as appropriate). In PNL with
equality, the axiom is ∀X.Fresh(a,X)⇔ (b a)·X = X .

Atoms-abstraction

Atoms-abstraction can also be expressed as a theory in permissive-nominal algebra.
For a base sort sort τ and name sort ν assume a base sort [ν]τ and a term-former
abs : (ν, τ)([ν]τ), along with a single axiom abs(a,X) = abs(b, (b a)·X) where
a ∈ supp(X) and b 6∈ supp(X). In PNL with equality, the axiom is ∀X.abs(a,X) =
abs(b, (b a)·X).

11.2 Admissibility of Cut

We indicate how (Cut) is admissible in the presence of the other rules in Figure 5.

DEFINITION 11.2.1. Suppose fa(r) ⊆ supp(X) and r : sort(X). Define Φ[X:=r]
by

Φ[X:=r] = {φ[X:=r] | φ ∈ Φ}.

Lemma 11.2.2 is proved by routine arguments like those in [DGM10; UPG04]:

LEMMA 11.2.2. Suppose Y 6∈ fV (t). Then

r[Y :=u][X:=t] = r[X:=t][Y :=u[X:=t]].

LEMMA 11.2.3. Suppose fa(r) ⊆ supp(X) and r : sort(X). Then

Φ ` Ψ implies Φ[X:=r] ` Ψ[X:=r].

Proof. By a routine induction on derivations. The case of (Ax) uses Lemmas 3.4.10
and 11.2.2. The case of (∀L) uses Lemma 11.2.2. �

LEMMA 11.2.4.

1. If there exists a derivation ∆ of Φ ` ψ, Ψ then there exists a derivation of
Φ ` π·ψ, Ψ.

2. If there exists a derivation ∆ of Φ, φ ` Ψ then there exists a derivation of
Φ, π·φ ` Ψ.

Proof. By a simultaneous induction on ∆. The case of (∀L) uses Lemma 3.4.10. (We
need the simultaneous induction for (⇒L) and (⇒R), since parts of the proposition
move between left and right.) �
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NOTATION 11.2.5. An instance of (Cut) rests on two sub-derivations. It is conve-
nient to call them the left branch and right branch as illustrated:

··· Left branch
Φ, φ ` Ψ

··· Right branch
Φ ` φ,Ψ

(Cut)
Φ ` Ψ

THEOREM 11.2.6 (Cut-elimination). If Φ ` Ψ is derivable with a derivation that
uses (Cut), then it is derivable with a derivation that does not use (Cut).

Proof. The proof is as for first-order logic. The only differences are a π in (Ax) and
a side-condition fa(r) ⊆ supp(X) in (∀L). These affect terms and have no effect on
the structure of derivations; for the purposes of this proof they are irrelevant.

We commute instances of (Cut) upwards, as usual, following the method of
[Dum77, pages 139-145] or [Gab11a]. At each step, the following measure based on
the depth of subderivations and the size of the cut formula, decreases:

• The size of the cut formula, and
• the longest path up the derivation the cut, that the formula persists,

lexicographically ordered.

• The commutation cases between rules for⇒ and ∀ are as standard for first-order
logic.

• The essential case for⇒ is as standard.

• For the essential case for ∀, suppose the subderivation has the following form:

Φ, φ[X:=r] ` Ψ
(∀L)

Φ, ∀X.φ ` Ψ

··· ∆
Φ ` φ, Ψ

(∀R)
Φ ` ∀X.φ, Ψ

(Cut)
Φ ` Ψ

By Lemma 11.2.3 there is a derivation ∆[X:=r] of Φ ` φ[X:=r], Ψ. We
eliminate the essential case as follows:

Φ, φ[X:=r] ` Ψ

··· ∆[X:=r]
Φ ` φ[X:=r], Ψ

(Cut)
Φ ` Ψ

• Suppose the subderivation has the following form:

(Ax)
Φ, φ ` π·φ,Ψ

··· ∆
Φ, π·φ ` Ψ

(Cut)
Φ, φ ` Ψ

We use Lemma 11.2.4 to obtain a derivation ∆′ of Φ, φ ` Ψ (the transfor-
mations involved in the proof of Lemma 11.2.4 do not increase the inductive
measure).

�
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11.3 Exhausting the available atoms
We conclude with a brief discussion on a subtle point in the PNL design. Suppose
a name sort ν, a base sort τ , and a proposition former # : (ν, τ). Suppose an
atom a and an unknown X : τ with supp(X) = A< . Suppose an unknown Y : ν
with supp(Y ) = A< . Consider an interpretation in which #(a,X) is interpreted as
a 6∈ supp(ς(X)) and τ is interpreted as L (Definition 2.4.4).

That is, # is interpreted as freshness and τ is interpreted as well-orderings of
permission-sets.

In the PNL of this paper, the interpretation of the proposition φ = ∀X.∃Y.#(Y,X)
is false: we take ς(X) to well-order A< and there is no a ∈ supp(Y ) such that
a 6∈ supp(ς(X)).

Suppose we decide that we want a version of PNL in which φ is true. In this case,
we can consider denotations such that every element has support of the form π·A�
where A� is infinite and A� ⊆ A< and A< \ A� is also infinite. In this way, an
unknown X cannot ‘exhaust’ A< .

The lesson we draw from this small example is that nominal semantics offer a
host of interesting and inspiring design options. In this paper, we have cut one path
through this design space which is expressive enough to get the results we want. Other
paths are possible.

12 CONCLUSIONS

This paper reflects a research arc by the author in collaboration with others, roughly
from 2005 to 2012. Thanks to improvements in presentation and the use of permissive-
nominal techniques, definitions and proofs are simpler than in previous literature,
and new properties emerge.

We have constructed permissive-nominal sets. We gave a nominal syntax for them
and explored their computational properties in nominal unification and rewriting.
We considered nominal algebra and proved soundness, completeness, and HSP over
permissive-nominal sets. We gave nominal terms a ∀-quantifier over unknowns and
used this to build a first-order logic permissive-nominal logic. Finally, in an extended
case study we gave finite axiomatisations of first-order logic and arithmetic and proved
correctness.

Mathematical foundations influence language, and (famously) language influences
thought. Nominal sets are a foundation with a model of names which is different from
what has been considered before, so the question is: what new languages, and new
thoughts, can emerge? This chapter attempts to address that question by illustrating
the broad sweeps of what a ‘nominal’ meta-mathematics might look like.

We are not and cannot be encyclopaedic or exhaustive. For other work we should
mention αProlog, which allows Horn clauses [CU08] (this preceded PNL, and could
be viewed as a subset of it). The author in collaboration has proved correctness for
several non-trivial theories in nominal syntaxes, including equational treatments of
substitution [GM06a; GM08a], λ-calculus [GM08b; GM10], and first-order logic
[GM06c; GM08c], as well as the finite first-order nominal axiomatisation of arithmetic
[DG10; DG12a] which we considered in Section 10. There are translations from
nominal terms to λ-terms by Levy and Villaret and by Dowek, the author, and
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Mulligan [LV08; DGM10], including a translation of algebraic reasoning (so, not
just unification) [GM09b]; and there is a translation of permissive-nominal logic to
higher-order logic in [DG12b] which illustrates the differences and similarities of the
two logics, and exploits some unusual model-theoretic ideas.

We also mention a translation of nominal terms to many-sorted first-order syntax
by Kurz and Petrişan [KP10], and a categorical treatment of nominal Lawvere theories
in [Clo09]. It may also prove useful to consider nominal languages over nominal
structures other than sets, for instance over nominal domains [Tur09].

See also the ‘atlas of nominal languages’ in Appendix A.
This research is developing a topic which this author believes could become an

immense field; the informal meta-level having been relatively unformalised until now
for want of a denotation with names, which is what nominal sets provide.

It is important to realise that this story is not just about nominal sets, nor is it
just about semantics; there is also the issue of finding appropriate syntaxes for our
semantics. The logic of FM sets, nominal logic, and the Nominal Isabelle package
[GP01; Pit03; Urb08] are all first-order axiomatisations of nominal sets.19 In all these
cases, the syntax is that of ‘ordinary’ first- or higher-logic.20 These are denotations
for syntax-with-binding.

Nominal terms and permissive-nominal terms, and the syntaxes based on them
such as nominal rewriting, algebra, and permissive-nominal logic, do not follow auto-
matically from nominal sets. They are syntaxes for meta-mathematics of independent
interest. Thus, this chapter has surveyed the author’s attempts, via methods which are
both syntactic and also semantic, to outline what meta-mathematics could look like if
it were based on nominal foundations. The fact that—for instance—we were able to
finitely axiomatise arithmetic in the nominal first-order that is PNL in Subsection 10.2,
is one demonstration that this meta-mathematics is a new and different place from
what the reader may be used to.

In a sense this paper is a sequel to the survey of [Gab11b] (written in 2008 and
submitted in early 2009). But whereas [Gab11b] concentrated on applications of
nominal sets to syntax with binding, this paper considers nominal sets as a basis for
meta-mathematics. Hints of this appeared in nominal rewriting [FGM04; FG07],
which allowed arbitrary oriented equality theories over nominal terms. Perhaps
unwisely, we shall succumb to a wordplay: [Gab11b; GP01] explore denotation of
specification with binding; whereas here we explore specification of denotation with
binding.

Thus, in this document we have explored the consequences of taking FM-sets style
names seriously in meta-mathematics. But even that does not exhaust the potential
applications of nominal techniques. Mathematics and computer science are evolving
in ways which increase the importance of names, and nominal techniques have arisen

19Essentially, [GP01] is the first third of the author’s thesis; [Pit03] is the same but minus the cumulative
sets hierarchy; and [Urb08] is an extensive implementation in higher-order logic, with a library of powerful
macros. One reason this is non-trivial has to do with automatically deriving the equivariance properties
described e.g. in [Gab11b, Subsection 4.2].

20Sometimes, authors write ‘nominal logic’ for that logic obtained by adding for each atom a constant
symbol to the syntax of first-order logic, and adding infinitely many axioms reflecting nominal sets
(equalities of swapping atoms, fresh atoms, and so on). This is nominal sets wearing a ‘syntactic disguise’:
consider by analogy a theory of arithmetic with a constant symbol for each number and an axiom for every
arithmetic equality.
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from this; we can expect that evolution to continue.
This motivates us to revisit certain foundational design decisions; whether to

admit atoms—to sound more mathematical, we say urelemente and to sound less
mathematical, we say names—and what properties these should have. Linguists
might well call these referents, and have been studying them for a long time.

Whatever we call them, they exist and we use them all the time. So we will
conclude with two slogans:

• Names are data.
• Names with additional properties are ubiquitous.

This chapter has studied formal languages with which to specify some of the possible
additional properties of names, such as ‘having a substitution action’ or ‘being
universally quantifiable’. But more generally, by this combination of a new point of
view and a rigorous mathematics, nominal techniques have the potential to simplify,
factor out common properties, and help control some of a modern mathematics of
logic and computation.

Names are not just a technical issue, to be ignored or circumvented with ‘tricks’.
Names are a philosophical, foundational, linguistic, and computational issue. The
mathematics of names is the mathematics of mathematics.

Dov Gabbay wrote in his preface to the second edition that

the researcher ... is having more and more in common with the tradi-
tional philosopher who has been analysing such questions for centuries
(unrestricted by the capabilities of any hardware). ... I believe the day
is not far away in the future when the computer scientist will wake up
one morning with the realisation that he is actually a kind of formal
philosopher!

We would add “and philosophers, linguists—and some artists too—may wake up
one morning with the realisation that they are actually a kind of abstract computer
scientist”. Amen.
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Appendix

A AN ATLAS OF NOMINAL LANGUAGES

The reader coming to the nominal literature could be forgiven for finding it perplexing.
What are ‘Fraenkel-mostowski sets’, ‘nominal sets’, ‘nominal terms’, ‘nominal logic’,
‘nominal rewriting and algebra’, ‘αProlog’, ‘nominal equational logic’, ‘permissive-
nominal algebra’, ‘permissive-nominal logic’ (with/without shift-permutations)? In
this Appendix we will give a brief annotated bibliography covering, loosely, the
relevant publications. This list is not meant to be exhaustive.

Traditionally, nominal sets are understood as a tool for the mathematical analysis
of syntax, as described for instance in the author’s previous survey/research paper
[Gab11b], or in slides of an excellent course of lectures by Pitts [Pit11]. This author
takes a view of nominal sets not just as a foundation for syntax with binding, but as a
foundation for mathematics itself—names and binding, after all, appear everywhere.
The atlas below surveys relevant publications.

For each item in the list below, we reference where the idea was introduced to the
‘nominal’ literature, and any other relevant conference and journal papers.

FM set theory [GP99; GP01]. Fraenkel-Mostowski set theory (FM) and nominal
sets (called ‘equivariant FM sets’ in that paper) are the foundational semantics for
nominal techniques.

Fraenkel-Mostowski sets were already known and had been used for other purposes;
see [Gab11b, Remark 2.22] for more detailed historical comments. Nominal sets
were familiar as e.g. the Schanuel topos. So both semantics were known.

What was new to [GP01] was the observation by the author and Pitts of the notions
of support, atoms-abstraction, the self-dual behaviour of the Nquantifier, and the
application to what is now called nominal abstract syntax.21

Nominal logic [Pit01; Pit03]. The constructions of [GP01] are repeated, but in
a first-order axiomatisation of nominal sets rather than one of the FM cumulative
hierarchy. Pitts also coined the catchy label ‘nominal’.

Sometimes authors identify the nominal logic of [Pit03] with nominal techniques
in general. This is limiting, and it gets the mathematical development the wrong way
round. Nominal logic is a Hilbert-style axiomatisation in first-order logic. These
axioms have meaning because of the underlying nominal sets models, and not the
other way around; nor does the axiomatisation per se contribute to new syntax or
proof-theory with which to study names.

21At the same time, Fiore Plotkin and Turi developed an approach to abstract syntax which was really
exactly the same thing [FPT99]. The key difference turned out to be that nominal sets admit a relatively
elementary sets-based interpretation of the presheaves. As argued in [GH08] there are ‘fewer presheaves’
in the nominal semantics, we feel that an elementary presentation of the mathematics—where this is
possible—is a powerful advantage not just for the reader but also for the practicing theorist.

Fiore has continued this line of research in collaboration and produced logics which in some sense
which has never been made formal, parallel the development here. For an example of this see [FH10].
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In order to make progress, we needed new syntax that more explicitly represents
atoms and their properties.

Thus for instance the nominal logic programming developed by Cheney and Urban
[CU08] (also referenced below) is called logic-programming in nominal logic, but
we also see from Figures 6, 7, and 8 of [CU08] that the syntax and axioms used are a
variant of nominal terms.

Proof-theories for the N-quantifier [Gab07a; GC04; Che05b]. Some attempts
have been made to give the distinctive N-quantifier of nominal techniques, a proof-
theory. In arguably increasing order of elegance these are [Gab07a] (this was received
by the journal in 2003 but took four years to get printed), [GC04] (written with Cheney
to develop on [Gab07a]), and [Che05b].

The permissive-nominal logic (PNL) of this survey is another item on that list,
and perhaps it is one of the nicest; certainly the PNL treatment of Nis very different
from what has come before, see Subsection 11.1.

Complete semantics for this family of logics are in [Gab07a], [Che06], and in
[DG12a]. See also Subsection 9.4 of this survey.

Nominal terms [UPG03; UPG04]. This new syntax introduced the distinctive
freshness side-conditions and the nominal terms syntax, with its separation of atoms
a and unknowns X into two syntactic classes. [UPG04] is where the syntactic ideas
of this survey were born, if not the specific ‘permissive’ implementation, which came
later (permissive-nominal terms below).

There is now quite a substantial body of work devoted to computing efficiently
on nominal terms; notably [Cal10; LV10]. There is also a body of work devoted to
translating between nominal terms and higher-order patterns [MNPS89]. We are far
from exhaustive, but good places to start reading are [Che05a], [LV08; LV12], and
[GM09b; DGM10].

Nominal rewriting [FGM04; FG07] and αProlog [CU03; CU08]. These were
the first logical languages using nominal terms as a general-purpose assertion lan-
guage; nominal rewriting was designed explicitly to allow us to assert (directed)
equalities between terms such as β or η-equivalence. αProlog was intended by its
designers for reasoning on nominal abstract syntax, and explicitly presented as such—
but in retrospect it can also be viewed as a general-purpose ‘nominal’ reasoning
system in the same family as nominal rewriting and later work.22

Nominal algebra [Gab05; GM06a; GM07; GM09a]. Nominal algebra is sim-
ply the undirected version of nominal rewriting.23 What makes nominal algebra
interesting above and beyond nominal rewriting is the different theorems we prove
about equality instead of rewriting; for instance the HSPA theorem of [Gab09] (much

22James Cheney, private communication.
23Actually, this is a simplification. There is a significant difference, which is described in [FG10]:

nominal rewriting does not have an explicit rule to generate fresh atoms, whereas nominal algebra does.
To the level of detail we wish to go into here, this does not matter. The permissive-nominal syntax of this
survey makes the issue obsolete because fresh atoms are a structural fact of the permission sets.
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simplified here in Section 8), and various correctness results for axiomatisations of
e.g. substitution, λ-calculus, and first-order logic [GM06a; GM08a; GM06c; GM08b;
GM08c; GM10].

The paper [GM06a] is where the permutative convention of Definition 2.1.2 was
introduced, used by the author consistently since then. This comes from the author’s
work formalising nominal reasoning in Isabelle in [Gab01] and spares us from having
to explicitly enumerate all inequalities between atoms. Thus, if pressed to be entirely
formal, ‘a and b’ refers to two meta-variables ranging over distinct atoms.

Kurz and Petrişan proved an HSP theorem for nominal algebra by treating nominal
algebra as a kind of many-sorted first-order logic [KP10]—the sorts are finite sets
of atoms and come from the categorical view of nominal sets as presheaves. The
effect of nominal theories can thus be attained in many-sorted first-order syntax. That
syntax is just standard first-order syntax is potentially a big advantage, for instance if
one wants to transfer results directly from universal algebra. This offers alternative
and effective methods of semantic proof; e.g. [KP10] significantly simplifies the
proofs of [Gab09]. We pay for this convenience with infinities; e.g. even the simplest
theory is infinite since equalities are replicated at every sort. Of course, the theory
may still be finitely presentable. Section 8 of the current paper contains another,
further simplified, HSP proof.

Nominal equational logic [CP07; Clo11]. Call the judgement ‘a is fresh for the
syntax s’ syntactic freshness and ‘a is fresh for the denotation of s’ semantic fresh-
ness. Nominal Equational Logic (NEL) closely resembles NA, but whereas both have
a semantic equality judgement (s = t), NEL adds a semantic freshness judgement.

In [CP07] Clouston and Pitts claimed that NEL was significantly more complete
than NA because of this, but they had missed that semantic freshness is expressible
using equality and syntactic freshness (see for instance [GM07, Theorem 5.5] and
[GM09a, Lemma 4.51]).24

Note that two distinct logics have been called NEL: one in [CP07], and one in
[Clo11] which restricts semantic freshness to the left of the turnstile; compare Figure 5
of [CP07] with Figure 1 of [Clo11]. Both have syntactic freshness: see the side-
condition a#(ā, t, t′) in the Atm-Intro and Atm-Elim rules of Figure 5, and similar
side-conditions in Figure 1. Thus, when Clouston writes in [Clo11] that “[syntactic]
freshness in NA is sound, but not complete, for freshness in the underlying nominal
sets interpretation [semantic freshness]”, echoing similar comments in [CP07], this
omits mention that NEL also has a syntactic freshness.

It is in any case a red herring. If we can choose fresh atoms and compare elements
for semantic equality, then semantic freshness makes the logic ‘do equality twice’
and just adds complexity [Gab12b]—without equality, the story can be different; this
was encountered in the first attempt at a nominal functional programming language,
in which we included freshness information in the types [Gab01].

Permissive-nominal terms [GM09b; DGM09; DGM10]. These simplify and im-
prove classical nominal terms in two ways: we give explicitly the (countably infinite)

24Syntactic freshness appears in this paper as a 6∈ fa(r). We considered semantic freshness in Section 11.
See also Proposition 7.6.1.
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atoms that may be free / are guaranteed to be fresh in every unknown, and since fresh-
ness information is stored directly we eliminate the need for freshness contexts. Thus
good properties emerge: permissive-nominal terms can be constructed as nominal
abstract syntax, we can directly choose a name fresh for a term (which is not possible
in nominal terms without expanding the freshness context), and properties and proofs
can then be expressed for terms alone, rather than for terms-in-freshness-context.

For instance, in classical nominal terms a solution of a nominal unification problem
is a pair of a substitution and a freshness context; a nominal rewrite rule is a left
and a right-hand side term and a freshness context; the proof-theory of nominal
algebra requires an explicit freshness rule to generate fresh atoms, and so on. In
fact, manipulating nominal terms almost always requires us to manipulate an external
structure representing freshness constraints.

In contrast permissive terms are ‘self-sufficient’, like ordinary syntax. Proofs and
algorithms have more of the look and feel of ordinary syntax. We have seen how, in
the body of this survey. A detailed treatment of permissive-nominal syntax, including
a simple translation from the nominal terms of [UPG04] into permissive-nominal
terms, is also in [DGM10].

Permissive-nominal algebra ([GM09b], and Section 7). The permissive-nominal
algebra of Section 7 uses permissive-nominal terms and has a significantly different
proof-theory.

The notable differences are, aside from being permissive-nominal, the inclusion (if
we want them) of infinitely-supported constant symbols and of infinitely-supported
permutations. So previous work is a special case of the general framework of this
survey, but what we do here goes strictly beyond what was possible in previous work,
also in some significant mathematical properties such as satisfying an HSP instead of
an HSPA result; see the discussion opening Section 8.

Permissive-nominal logic ([DG10; DG12a] and Section 9). As we discuss in this
survey, permissive-nominal logic (PNL) adds universal quantification over unknowns
X . This is non-evident for nominal terms because of their freshness contexts; in nom-
inal terms X behaves like an element with cofinite support so we lose α-equivalence
whereas in permissive-nominal terms X has coinfinite support and we can always
α-rename bound atoms. We get a proof-theory which is pleasingly close to that of
first-order logic, a sound and complete semantics, and we can axiomatise and prove
correct a non-trivial and mathematically relevant theory, such as arithmetic.
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Name Intended model Refs Notes
FM set theory Cumulative hierarchy /

Cat. of FM sets
[GP99; GP01] Previously used to prove independence of

AC
Nominal / FM sets Themselves [GP99; GP01] Nominal sets called ‘equivariant FM sets’

in these papers
Nom. logic Schanuel topos / Cat. of

nom. sets
[Pit01; Pit03] States axioms of nominal sets, used word

‘nominal’
Nom. terms Nom. sets [UPG03; UPG04] Introduced a, X , a#X , [a]X , π·X
Nom. rewriting Nom. terms [FGM04; FG07] First framework for asserting general theo-

ries on nominal terms
αProlog Nom. terms [CU03; CU08] Intended as logic programming language

for abstract syntax, but can be viewed more
generally

Nom. algebra Nom. sets [Gab05; GM06a; GM07;
GM09a]

Axiomatisation & models for binders like
[a7→t], λa, ∀a

Nom. equational logic Nom. sets / Nom.
Lawvere Theories

[CP07; Clo09] Also provides semantics for nominal alge-
bra

Permissive-nom. terms Nom. sets or
permissive-nom. sets

[DGM09; GM09b; DGM10] Eliminate freshness contexts; add shift-
permutation; standardise α-equivalence

Permissive-nom. algebra Permissive-nom. sets or
nom. sets

[GM09b], this survey More expressive, esp. in presence of shift-
permutation

Permissive-nom. logic Permissive-nom. sets or
nom. sets

[DG10; DG12a], this survey A first-order logic for nom. terms

Figure 12: Cheat-sheet of nominal languages
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equivariance
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nominal interpretation of, 77
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homomorphism
of nominal algebra interpretations,

60
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nominal
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theory, 50
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nominal rewriting, 40
(joinable) peak, 41
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confluent, 41
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normal form, 43
orthogonal rewrite theory, 44
parallel reduction, 44
position/context, 40
rewrite rule, 39
uniform rule, 42

nominal term
atomic substitution, 23
closed, 48
constants of, 63
explicit atoms of, 47
fa-functional, 48
free atoms of, 22



98 INDEX

ground term, 62
interpretation of, 54
occurrences in, 29
permissive-nominal terms, 20
position/context, 40
signature, 19
substitution, 23
substitution action, 24
support of, 21
unknowns of, 22

nominal unification
instantiation ordering, 36
simplification, 31
solution, 31

principal/most general solution,
36

unification algorithm, 33
correctness of, 38

Permissive-nominal logic, see PNL
permutation
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permutative convention, 9
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permutative convention, 8, 9
PNL
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arithmetic
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proposition, 66
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maximally consistent set of, 70
valid, 69

sequent, 66
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soundness, 69
term interpretation, 71

substitution
as a nominal algebra, 51

support, 12
strong support, 17


