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Abstract. We present a generalisation of first-order unification to the practically im-
portant case of equations between terms involving binding operations. A substitu-
tion of terms for variables solves such an equation if it makes the equated terms � -
equivalent, i.e. equal up to renaming bound names. For the applications we have in
mind, we must consider the simple, textual form of substitution in which names oc-
curring in terms may be captured within the scope of binders upon substitution. We
are able to take a ‘nominal’ approach to binding in which bound entities are explic-
itly named (rather than using nameless, de Bruijn-style representations) and yet get
a version of this form of substitution that respects � -equivalence and possesses good
algorithmic properties. We achieve this by adapting an existing idea and introducing
a key new idea. The existing idea is terms involving explicit substitutions of names
for names, except that here we only use explicit permutations (bijective substitutions).
The key new idea is that the unification algorithm should solve not only equational
problems, but also problems about the freshness of names for terms. There is a simple
generalisation of the classical first-order unification algorithm to this setting which
retains the latter’s pleasant properties: unification problems involving � -equivalence
and freshness are decidable; and solvable problems possess most general solutions.

1 Introduction

Decidability of unification for equations between first-order terms and algorithms for com-
puting most general unifiers form a fundamental tool of computational logic with many ap-
plications to programming languages and computer-aided reasoning. However, very many
potential applications fall outside the scope of first-order unification, because they involve
term languages with binding operations where at the very least we do not wish to distinguish
terms differing up to the renaming of bound names.

There is a large body of work studying languages with binders through the use of various�
-calculi as term representation languages, leading to higher-order unification algorithms

for solving equations between
�

-terms modulo ����� -equivalence. However, higher-order
unification is technically complicated without being completely satisfactory from a prag-
matic point of view. The reason lies in the difference between substitution for first-order
terms and for

�
-terms. The former is a simple operation of textual replacement (some-

times called grafting [6], or context substitution [12, Sect. 2.1]), whereas the latter also
involves renamings to avoid capture. Capture-avoidance ensures that substitution respects� -equivalence, but it complicates higher-order unification algorithms. Furthermore it is the
simple textual form of substitution rather than the more complicated capture-avoiding form
which occurs in many informal applications of ‘unification modulo � -equivalence’. For
example, consider the following schematic rule which might form part of the inductive
definition of a binary evaluation relation � for the expressions of an imaginary functional
programming language: �
	�	��������� ������� ����! �" �$#%�'&(�)� �*�

�
(1)



Here
�

,
�

and � are metavariables standing for unknown programming language expres-
sions. The binders

���)��� � � � and
�! 
" �$# �'&(� � � � may very well capture free occurrences

of
�

when we instantiate the schematic rule by replacing the metavariable
�

with an expres-
sion. For instance, using the rule scheme in a bottom-up search for a proof of�� �" �$# � &(�)� � �

(2)

we would use a substitution that does involve capture, namely � ��� # � � ��� # ��� � � # ��� , to
unify the goal with the conclusion of the rule—generating the new goal

� 	�	 � ���)��� ��� � � � �
from the hypothesis of (1). The problem with this is that in informal practice we usu-
ally identify terms up to � -equivalence, whereas textual substitution does not respect � -
equivalence. For example, up to � -equivalence, the goal�! �"
	 # � &(� 	 � �

(3)

is the same as (2). We might think (erroneously!) that the conclusion of rule (1) is the same
as
�! �"�	 #%� & �)� � � without changing the rule’s hypothesis—after all, if we are trying

to make � -equivalence disappear into the infrastructure, then we must be able to replace
any part of what we have with an equivalent part. So we might be tempted to unify the
conclusion with (3) via the textual substitution � ��� # � � �� # 	 � � � # ��� , and then apply
this substitution to the hypothesis to obtain a wrong goal,

�
	�	��������� 	 � � � � � . Using
�

-
calculus and higher-order unification saves us from such sloppy thinking, but at the expense
of having to make explicit the dependence of metavariables on bindable names via the use
of function variables and application. For example, rule (1) would be replaced by�
	!	 � ��� � ��� � � ��� �*��! �" � � � � � � � � ��� or, modulo � -equivalence,

�
	�	 � �����)��� ����! 
" ��� �*� . (4)

Now goal (3) becomes
�� �" � � 	 � 	 � � and there is no problem unifying it with the conclu-

sion of (4) via a capture-avoiding substitution of
�

for
�

,
��� � �

for
�

and
�

for � .
This is all very fine, but the situation is not as pleasant as for first-order terms: higher-

order unification problems can be undecidable, decidable but lack most general unifiers, or
have such unifiers only by imposing some restrictions [20]; see [5] for a survey of higher-
order unification. We started out wanting to compute with binders modulo � -equivalence,
and somehow the process of making possibly-capturing substitution respectable has led to
function variables, application, capture-avoiding substitution and ��� -equivalence. Does it
have to be so? No!

For one thing, several authors have already noted that one can make sense of possibly-
capturing substitution modulo � -equivalence by using explicit substitutions in the term rep-
resentation language: see [6, 13, 15, 26]. Compared with those works, we make a number
of simplifications. First, we find that we do not need to use function variables, application
or ��� -equivalence in our representation language—leaving just binders and � -equivalence.
Secondly, instead of using explicit substitutions of names for names, we use explicit permu-
tations of names. The idea of using name-permutations, and in particular name-swappings,
when dealing with � -conversion dates back to [9] and there is growing evidence of its use-
fulness (see [3, 4], for example). When a name substitution is actually a permutation, the
function it induces from terms to terms is a bijection; this bijectivity gives the operation of
permuting names very good logical properties compared with name substitution. Consider
for example the � -equivalent terms

��� � � 	
and

��� � � 	
, where

�
,
	

and
�

are distinct. If we
apply the substitution � 	��� � � (renaming all free occurrences of

	
to be

�
) to them we get�
� ��� �

and
��� � � �

, which are no longer � -equivalent. Thus renaming substitutions do not re-
spect � -equivalence in general, and any unification algorithm using them needs to take extra



precautions to not inadvertently change the intended meaning of terms. The traditional solu-
tion for this problem is to introduce a more complicated form of renaming substitution that
avoids capture of names by binders. In contrast, the simple operation of name-permutation
respects � -equivalence; for example, applying the name-permutation

� � 	 �
that swaps all

occurrences of
�

and
	

(be they free, bound or binding) to the terms above gives
��� 	 � �

and�
� � � �
, which are still � -equivalent. We exploit such good properties of name-permutations

to give a conceptually simple unification algorithm.
In addition to the use of explicit name-permutations, we also compute symbolically with

predicates expressing freshness of names for terms. This seems to be the key novelty of our
approach. Although it arises naturally from the work reported in [10, 23], it is easy to see
directly why there is a need for computing with freshness, given that we take a ‘nominal’
approach to binders. (In other words we stick with concrete versions of binding and � -
equivalence in which the bound entity is named explicitly, rather than using de Bruijn-style
representations, for example as in [6, 26].) A basic instance of our generalised form of � -
equivalence identifies, for example,

���)� � �
with

��� 	 � ��� 	 ��� �
provided

	
is fresh for

�
,

where the subterm
� � 	 ��� �

indicates an explicit permutation—namely the swapping of
�

and
	
—waiting to be applied to

�
. We write ‘

	
is fresh for

�
’ symbolically as

	�� �
; the

intended meaning of this relation is that
	

does not occur free in any (ground) term that may
be substituted for

�
. If we know more about

�
we may be able to eliminate the explicit

permutation in
� � 	 ��� �

; for example, if we knew that
� � �

holds as well as
	�� �

, then� � 	 ��� �
can be replaced by

�
. It should already be clear from these simple examples that in

our setting the appropriate notion of term-equality is not a bare equation, �����
	 , but rather
a hypothetical judgement of the form �� ����� 	 (5)

where
�

is a freshness environment, i.e. a finite set � ��� � ��� � � � � ����� � �����
of freshness

assumptions. For example � � � � � 	�� ��� � ���)��� � � ��� 	 � �
is a valid judgement of

our nominal equational logic. Similarly, judgements about freshness itself will take the form�� � � � � (6)

To summarise: We will represent languages involving binders using the usual notion of
first-order terms over a many-sorted signature. These give us terms with: distinguished con-
stants naming bindable entities, that we call atoms; terms

��� � expressing a generic form of
binding of an atom

�
in a term � ; and terms � � � representing an explicit permutation of

atoms � waiting to be applied to whatever term is substituted for the variable
�

. Section 2
presents this term-language together with a syntax-directed inductive definition of the prov-
able judgements of the form (5) and (6) which for ground terms (i.e. ones with no variables)
agrees with the standard relations of � -equivalence and ‘not a free variable of’. However,
on open terms our judgements differ from these standard relations and appear to be an ex-
tension that has, in this form, not yet been studied in the literature (including [10, 24, 23]).
Section 3 considers unification problems in this setting. Solving equalities between abstrac-
tions (

��� ����� � 	 � � 	 ) entails solving both equalities ( ����� ��� � 	 ��� � 	 ) and freshness problems
(
� � � �!	 ). Therefore our general form of nominal unification problem is a finite collection

of individual equality and freshness problems. Such a problem " is solved by providing
not only a substitution # (of terms for variables), but also a freshness environment

�
(as

above), which together have the property that
�$� # � � � �%# � �&	 � and

�'� � � # � �!	 	 � hold
for each individual equality �(���)�*	 and freshness

� � �+�*	 	 in the problem " . Our main
result with respect to unification is that solvability is decidable and that solvable problems
possess most general solutions (for a reasonably obvious notion of ‘most general’). The



proof is via a unification algorithm which is very similar to the first-order algorithm given
in the now-common transformational style [18]. (See [17, Sect. 2.6] or [1, Sect. 4.6] for
expositions of this.) Section 4 considers the relationship of our version of ‘unification mod-
ulo � -equivalence’ to existing approaches. Section 5 assesses what has been achieved and
the prospects for applications. To appreciate the kind of problem that nominal unification
solves, you might like to try the following quiz about the

�
-calculus [2] before we apply our

algorithm to solve it at the end of Section 3.

Quiz Assuming that � and
�

are distinct variables, is it possible to find � -terms �����	���
������ that
make the following pairs of terms � -equivalent?

1. ����� � � ������� ��� and � � � ������������� � 3. ����� � � ��� � ��� � and � � � ������������ �
2. ����� � � ������� ��� and � � � ������������� � 4. ����� � � ��� � ��� � and ����� ��������� �� � .

If it is possible to find a solution for any of these four problems, can you describe what all possible
solutions for that problem are like? Answers:seeExample2.

2 Nominal equational logic

We take a concrete approach to the syntax of binders in which bound entities are explicitly
named. Furthermore we separate the names of bound entities from the names of variables,
which is inspired for example by the � -calculus [21], in which the restriction operator binds
channel names and these are quite different from names of unknown processes. Names of
bound entities will be called atoms. This is partly for historical reasons (stemming from the
work by the second two authors [10]) and partly to indicate that the internal structure of
such names is irrelevant to us: all we care about is their identity (i.e. whether or not one
atom is the same as another) and that the supply of atoms is inexhaustible.

Although there are several general frameworks in the literature for specifying languages
with binders, not all of them meet the requirements mentioned in the previous paragraph.
Use of the simply typed

�
-calculus for this purpose is common; but as discussed in the

Introduction, it leads to a problematic unification theory. Among first-order frameworks,
Plotkin’s notion of binding signature [25, 8], being unsorted, equates names used in binding
with names of variables standing for unknown terms; so it is not sufficiently general for us.
A first-order framework that does meet our requirements is the notion of nominal algebras
in [16]. The nominal signatures that we use in this paper are a mild (but practically useful)
generalisation of nominal algebras in which name-abstraction and pairing can be mixed
freely in arities (rather than insisting as in [16] that the argument sort of a function symbol
be normalised to a tuple of abstractions).

Definition 1. A nominal signature is specified by: a set of sorts of atoms (typical symbol! ); a disjoint set of sorts of data (typical symbol " ); and a set of function symbols (typical
symbol # ), each of which has an arity of the form $�%&" . Here $ ranges over (compound)
sorts given by the grammar ')(*( +-,/.102.435.6')78'/.:9;,=<>' �
Terms of sort ? !�@ $ are binding abstractions of atoms of sort ! over terms of sort $ . We will
explain the syntax and properties of such terms in a moment.
Example 1. Here is a nominal signature for expressions in a small fragment of ML:

sort of atoms: A	B�C function symbols: DFE ( A	B;CHGJILKNM
sort of data: ILKNM OQPRP ( ILKNM 7 ILKNM)GSILKNMTRU (V9 A	B;C < ILKNM)GWILKNMX D ( ILKNM 7Y9 A	B;C < ILKNM)GSILKNMX6T (V9 A	B;C < �L� 9 A	B�C < ILKNM � 7 ILKNM � GSILKNM .



The function symbol ��� constructs terms of sort ����� representing value identifiers (named
by atoms of sort �
	�� );

�
	!	
constructs application expressions from pairs of expressions;�
�

,
� � and

� �
construct terms representing respectively function abstractions (

����$#��  
),

local value declarations (
�! �" � � �  #  �� &(�  ��  ��� ) and local recursive function declara-

tions (
�! �" ���!����$#  �� &(�  ��  ���

). The arities of the function symbols specify which are
binders and in which way their arguments are bound. This kind of specification of binding
scopes is of course a feature of higher-order abstract syntax [22], using function types ! % $
in simply typed

�
-calculus where we use abstraction sorts ? !�@ $ . We shall see that the latter

have much more elementary (indeed, first-order) properties compared with the former. To
make this point clear we deliberately use a first-order syntax for terms, and not higher-order
abstract syntax, although we often refer to abstractions, binders and free atoms by analogy
with the

�
-calculus.

Definition 2. Given a nominal signature, we assume that there are countably infinite and
pairwise disjoint sets of atoms (typical symbol

�
) for each sort of atoms ! , and variables

(typical symbol
�

) for each sort $ . The terms over a nominal signature and their sorts are
inductively defined as follows, where we write � � $ to indicate that a term � has sort $ .

Unit value ? @ � � .
Pairs ? � � � ��� @ � $ ��� $�� , if � � � $ � and ��� � $�� .
Data #�� � " , if # is a function symbol of arity $ % " and � � $ .
Atoms

� � ! , if
�

is an atom of sort ! .
Atom-abstraction

� � � � ? !�@ $ , if
�

is an atom of sort ! and � � $ .
Suspension � � � � $ , if � # � � � 	 � � � � � 	 � �����
� � � � 	 � � is a finite list whose elements

���! 	  �
are pairs of atoms, with

�! 
and

	  
of the same sort, and

�
is a variable of sort $ . In the

case that � is the empty list � � , we just write
�

for � � � .

Recall that every finite permutation can be expressed as a composition of swappings
� �" 	  ��

;
the list � of pairs of atoms occurring in a suspension term � � � specifies a finite permutation
of atoms waiting to be applied once we know more about the variable

�
(by substituting

for it, for example). We represent finite permutations in this way because it is really the
operation of swapping which plays a fundamental role in the theory. Since, semantically
speaking (see Remark 1 below about semantics), swapping commutes with all term-forming
operations, we can normalise terms involving an explicit swapping operation by pushing
the swap in as far as it will go, until it reaches a variable (cf. Fig. 1 below); the terms in
Definition 2 are all normalised in this way, with explicit swappings ‘piled up’ in front of
variables giving what we have called suspensions.

We wish to give a definition of � -equivalence for terms over a nominal signature that is
respected by substitution of terms for variables, even though the latter may involve capture
of atoms by binders. To do so we will need to make use of an auxiliary relation of freshness
between atoms and terms, whose intended meaning is that the atom does not occur free
in any substitution instance of the term. As discussed in the Introduction, our judgements
about term equivalence ( ��� �*	 ) need to contain hypotheses about the freshness of atoms
with respect to variables (

� � �
); and the same goes for our judgements about freshness

itself (
� � � ). Figure 2 gives a syntax-directed inductive definition of equivalence and

freshness using judgements of the form� � ����� 	 and
�� � � �



� ��� � def+ �
�L�������V� � (*(�� � � � def+

��� �	 ��� if
� � � + �V�

�V� if
� � � + ���� � � otherwise

� � 9�< def+ 9�<
� � 9�
 ��� 
 � < def

+ 9�� � 
 ��� � � 
 � <� � �� 
 � def+  � � � 
 �� � ����� 
 � def+ � � � � � ��� � � 
 �� � � ��� ��� � def+ � ������� � ��� �
Fig. 1. Permutation action on terms,

� � 

.

where � and �!	 are terms of the same sort over a given nominal signature,
�

is an atom, and
the freshness environment

�
is a finite set of freshness constraints

� � �
, each specified

by an atom and a variable. Rules ( � -abstraction-2), ( � -suspension) and (
�

-suspension) in
Fig. 2 make use of the following definitions.

Definition 3. Recall from Definition 2 that we specify finite permutations of atoms by fi-
nite lists

� � � 	 � � � � � � 	 � �����
� ��� � 	 � � representing the composition of finitely many swappings� �� 	  �
, with

�� 
and

	  
of the same sort. Since we will apply permutations to terms on the

left, the order of the composition is from right to left. So with this representation, the com-
position of a permutation � followed by a swap

��� 	 �
is given by list-cons, written

��� 	 � � � � ;
the composition of � followed by another permutation � 	 is given by list-concatenation,
written as � 	���� ; the identity permutation is given by the empty list � � ; and the inverse of
a permutation is given by list reversal, written as ���

�
. The permutation action, � � � , of a

finite permutation of atoms � on a term � is defined as in Fig. 1; it pushes the list � into
the structure of the term � until it ‘piles up’ in front of suspensions (applying the actual
permutation that � represents to atoms that it meets on the way). The disagreement set of
two permutations � and � 	 (used in rule ( � -suspension) in Fig. 2) is defined by

��� � � � � 	 � def
# � ��� � � ���# � 	 � � ��� (7)

Note that every disagreement set of the lists � and � 	 is a subset of the finite set of atoms
occurring in either of the lists, since if

�
does not occur in those lists, then from Fig. 1 we

get � � � # � # � 	 � � . To illustrate the use of disagreement sets, consider

� � � � � � � � � � � � � � ��� 	 ��� � � � 	 � ��� �
which holds by ( � -suspension), because the disagreement set of

� � � � � � 	 �
and

� 	 � �
is� ��� � � .

Lemma 1.
� � � � � is an equivalence relation; it is preserved by all of the term-

forming operations in Definition 2; and it respects the freshness relation (i.e. if
� � � � �

and
� � � ���!	 , then

� � � � �*	 ). Both � and
�

are preserved by the permutation action
given in Fig. 1 in the following sense: if

�� ����� 	 , then
�� � � ��� � � � 	 ; and if

�� � � � ,
then

� � � � � � � � � .
Proof. Although reasoning about � and

�
is rather pleasant once the above facts are proved,

establishing them first is rather tricky—mainly because of the large number of cases, but also
because the facts in the lemma depend on each other which prevents to use any ‘short-cut’;
in addition some further properties of the permutation action and disagreement sets need to
be established first (statements omitted).1

1 A machine-checked proof of all the results using the theorem prover Isabelle can be found at� ��� P ( !"!$#"#�# � % X � %RO'&�� O�%4� (") !�* %+(-,".�. !'/ U10QT20 %RO �-043QU .



��� 9�<�� 9�< ( � -unit)

��� 
 � � 
 � � ��� 
 � � 
 � ���� 9�
 �
� 
 � <�� 9�
 � � � 
 � � < ( � -pair)
��� 
�� 
 �
���  
��  
 � ( � -function symbol)

��� 
�� 
 �
��� ��� 
�� ��� 
 � ( � -abstraction-1)

�	�+ � � ��� 
�� ����� � � � 
 � ��� ��
 
 �
��� ��� 
�� � � � 
 � ( � -abstraction-2)

��� � � � ( � -atom)
����
 � �� �

for all � � C��F� � � ��� ���� � ��� � � � ��� ( � -suspension)

��� ��
 9�< ( � -unit)

��� ��
 
 � ��� ��
 
 ���� ��
 9�
 �	� 
 � < ( � -pair)

��� ��
 

��� ��
  
 ( � -function symbol)

��� ��
 ��� 
 ( � -abstraction-1)
���+ � � ��� ��
 

��� ��
 � � � 
 ( � -abstraction-2)

�	�+ � ���� ��
 � � ( � -atom)
� ��� � � ��
 � ��� �
��� ��
 � ��� ( � -suspension)

Fig. 2. Inductive definition of
�

and 
 .

The main reason for using suspensions in the syntax of terms is to enable a definition of
substitution of terms for variables which allows capture of free atoms by atom-abstractions
while still respecting � -equivalence. The following lemma establishes this. First we give
some terminology and notation for term-substitution.

Definition 4. A substitution # is a sort-respecting function from variables to terms with the
property that # � ��� # � for all but finitely many variables

�
. We shall write ��������� � for

the finite set of variables
�

satisfying # � ��� �# �
. If �"!$# � # � consists of distinct variables� � � � � � ��� �

and # � �  � # �  for % # � � � & , we shall sometimes write # as

# # � ��� � # � � � � � � ��� � � # � � � � (8)

We write # � � � for the result of applying a substitution # to a term � ; this is the term obtained
from � by replacing each suspension � � � in � (as

�
ranges over �"!$# � # � ) by the term� � # � � � got by letting � act on the term # � � � using the definition in Fig. 1. For example, if# # � � � # ? 	 ��� @ � and � # ��� ��� 	 ��� � , then # � � ��# ��� ? � �(� � 	 ��� � @ .

Given substitutions # and # 	 , and freshness environments
�

and
� 	 , we write��� � � 	 � # � � � and

� 	 � � � # � # 	 (9)

to mean that (for a)
� 	 � � � # � ��� holds for each

� � � ���(' �
and (for b)

� � # � ��� �# 	 � ��� holds for all
�)' �"!*# � # ��+ �"!$# � # 	 � .

Lemma 2 (Substitution). Substitution commutes with the permutation action: # � � � � � #� ��� # � � � � . Substitution preserves � and
�

in the following sense:, if
� 	 � # � � � and

�� ��� �!	 , then
� 	 � # � � � � # � �!	 � ;, if

� 	 � # � � � and
�� � � � , then

� 	 � � � # � � � .
Proof. The first sentence follows by induction on the structure of � . The second follows by
induction on the proofs of

�� �����&	 and
�� � � � from the rules in Fig. 2, using the first

sentence and the (proof of) Lemma 1.

We claim that the relation � defined in Fig. 2 gives the correct notion of � -equivalence
for terms over a nominal signature. This is reasonable, given Lemma 1 and the fact that,



by definition, it satisfies rules ( � -abstraction-1) and ( � -abstraction-2). Further evidence is
provided by the following theorem, which shows that for ground terms � agrees with the
following more traditional definition of � -equivalence.

Definition 5 (Naı̈ve � -equivalence). Define the binary relation � #�� �!	 between the terms
over a nominal signature to be the least sort-respecting congruence relation satisfying� � � #�� 	 � � � ���	 � � whenever

	
is an atom (of the same sort as

�
) not occurring at all in

the term � . Here � � �� 	 � � indicates the result of replacing all free occurrences of
�

with
	

in � .
Theorem 1 (Adequacy). If � and �*	 are ground terms (i.e. terms with no variables and
hence no suspensions) over a nominal signature, then the relation � #�� �!	 of Definition 5
holds if and only if

� � � ���!	 is provable from the rules in Fig. 2. Furthermore,
� � � � �

is provable if and only if
�

is not in the set ��� � � � of free atoms of � .
Proof. The proof is similar to the proof of [10, Proposition 2.2].

For non-ground terms, the relations
#��

and � differ. For example
��� ��#�� 	 � �

always
holds, whereas

� � ��� � � 	 � �
is not provable unless

� # 	
. This disagreement is to

be expected, since we noted in the Introduction that
#��

is not preserved by substitution,
whereas from Lemma 2 we know that � is.

Remark 1 (Soundness and completeness). Further evidence for the status of � and
�

is
provided by a natural interpretation of judgements provable from the rules in Fig. 2 in the
universe of FM-sets [10]. The details will appear in the full version of this paper.

3 Unification

Given terms � and �!	 of the same sort over a nominal signature, can we decide whether or
not there is a substitution of terms for the variables in � and �&	 that makes them equal in the
sense of the relation � introduced in the previous section? Since instances of � in general
are established modulo freshness constraints, it makes more sense to ask whether or not
there is both a substitution # and a freshness environment

�
for which

�'� # � � � � # � � 	 �
holds. As for ordinary first-order unification, solving such an equational problem may throw
up several equational subproblems; but an added complication here is that because of rule
( � -abstraction-2) in Fig. 2, equational problems may generate freshness problems, i.e. ones
involving the relation

�
. We are thus led to the following definition of unification problems

for nominal equational logic.

Definition 6. A unification problem " over a nominal signature is a finite set of atomic
problems, each of which is either an equational problem � � ��� 	 where � and �*	 are terms of
the same sort over the signature, or a freshness problem

� � ��� where
�

is an atom and �
a term over the signature. A solution for " consists of a pair

� � � # � where
�

is a freshness
environment and # is a substitution satisfying�� � � # � � � � for each

� � � ��� � ' " � and
� � # � � � ��# � � 	 � � for each

� � ����� 	 �(' " �
Such a pair is a most general solution for " if given any other solution

� � 	 � # 	 � , then there
is a substitution # 	 	 satisfying

� 	 � # 	 	 � � � and
� 	 � # 	 	
	 # � # 	 . (Here we have used the

notation of (9); and # 	 	�	 # denotes the substitution composition of # followed by # 	 	 , given

by
� # 	 	�	�# � � ��� def

# # 	 	 � # � � � � .)



( ��� -unit) � 9�<����59�<����
	 �+��	
( ��� -pair) � 9�
 �	� 
 � < ��� 9�
 � � � 
 � � <�����	 �+� � 
 � ��� 
 � � � 
 � ��� 
 � � ���
	
( ��� -function symbol) �  
����  
 ������	 �+� � 
���� 
 ������	
( ��� -abstraction-1) �1��� 
 ��� ��� 
 ������	 �+� � 
���� 
 ������	
( ��� -abstraction-2) �1��� 
 ��� � � � 
 � ����	 �+� � 
���� ��� � � � � 
 � �L��
 � 
 � ����	 provided �	�+ � �
( ��� -atom) �1� ��� � ���
	 �+��	
( ��� -suspension) � � ��� ����� � ��� ����	 �+� �	��
 � � . � � C �R� � � ��� � ����	
( ��� -variable)

� 
���� � ��� ����	� � ��� ��� 
�����	����+���	 with
� + � � ( + � � � � 
 �

provided
�

does not occur in



( ��� -unit) �1��
 �59�<����
	��+��	
( ��� -pair) �	��
 �59�
 ��� 
 � <�����	��+� �	��
 � 
 �
�L��
 � 
 � ���
	
( ��� -function symbol) �1� 
 �  
�����	��+� �	��
 � 
����
	
( ��� -abstraction-1) �1��
 � ��� 
�����	 �+��	
( ��� -abstraction-2) �1� 
 � � � � 
�����	 �+� �	��
 � 
����
	 provided �	�+ � �
( ��� -atom) �	� 
 � � � ����	 �+��	

provided �	�+ � �
( ��� -suspension) �	��
 � � � � ����	! +��	

with
� + � ��� � � ��
 � �

Fig. 3. Labelled transformations.

Theorem 2 (Nominal unification). There is an algorithm which, given any nominal uni-
fication problem, decides whether or not it has a solution and if it does, returns a most
general solution.
Proof. We describe an algorithm using labelled transformations directly generalising the
presentation of first-order unification in [17, Sect. 2.6], which in turn is based upon the ap-
proach in [18]. (See also [1, Sect. 4.6] for a detailed exposition, but not using labels.) We
use two types of labelled transformation between unification problems, namely	 �+"�#	 � and

	$ +"�#	 �
where the substitution # is either the identity % , or a single replacement � � � # � � ; and
where the freshness environment

�
is either empty

�
, or a singleton � � � ���

. The legal
transformations are given in Fig. 3. This figure uses the notation "'&�" 	 to indicate disjoint
union of problem sets; and the notation # " to indicate the problem resulting from applying
the substitution # to all the terms occurring in the problem " .

Given a unification problem " , the algorithm proceeds in two phases. In the first phase
it applies as many (#*) transformations as possible (non-deterministically). If this results
in a problem containing no equational subproblems then it proceeds to the second phase;

otherwise it halts with failure. In the second phase it applies as many +#*) transformations
as possible (non-deterministically). If this does not result in the empty problem, then it halts
with failure; otherwise overall it has constructed a transformation sequence of the form	 �-,+"�/.0.1. �32+"�#	 �  ,+�4.1.5.  *6+"��7 (10)

(where " 	 does not contain any equational subproblems) and the algorithm returns the so-
lution

� � � + ���
��+ ��8 � # � 	 �
��� 	�# � � .
It is not hard to devise a well-founded ordering on nominal unification problems to show

that each phase of the algorithm must terminate. So one just has to show that

(a) if the algorithm fails on " , then " has no solution; and
(b) if the algorithm succeeds on " , then the result it produces is a most general solution.



When failure happens it is because of certain subproblems that manifestly have no solution
(e.g. in the first phase,

� ��� � 	 with
� �# � 	 , and � � � ����#�� or #�� ��� � � � with

�
occurring in � ; in the second phase,

� � � � ). Therefore part (a) is a consequence of the
following two properties of transformations, where we write � � " � for the set of all solutions
for a problem " :

if � � � � � � � ��� � 	 � and
	 �+"�#	 � � then � � � � � � � ��� � 	 � � and

� � � � ��� � � � �
(11)

if � � � � � � � ��� � 	 � and
	  +� 	 � � then � � � � � � ����� � 	 � � and

� � � � � � � � � (12)

For part (b), one first shows
if � � � � � � ����� � 	 � � and

	 �+��	 � � then � � � � � ��� � ����� � 	 � (13)

if � � � � � � ����� � 	 � � � 	  +"��	 �
and

� � � � � � � � � � then � � � � � � � � � � � ��� � 	 � � (14)

From these and the fact that
� � � % �(' � � � � , one gets that if a sequence like (10) exists, then� � � # � def

# � � � + ����� + � 8 � # � 	 ����� 	 # � � is in � � " � . Furthermore from (11) and (12), we
get that any other solution

� � 	 � # 	 � ' � � " � satisfies
� 	 � # 	 � � � and

� 	 � # 	 	 # ��# 	 , so
that

� � � # � is indeed a most general solution.

Example 2. Using the first three function symbols of the nominal signature of Example 1 to
represent

�
-terms, the Quiz at the end of the Introduction translates into the following four

unification problems over that signature, where
�

and
	

are distinct atoms of sort � 	�� and� � � � � � �����
are distinct variables of sort ��� � :	 � def+ � TRU ��� T6U � � O1PFP 9 � �	�LDRE � <���� TRU � � TRU ��� OQPFP 9 DFE ��� � � <�� ,	 � def+ � TRU ��� T6U � � O1PFP 9 � � �LDRE � <���� TRU � � TRU ��� OQPFP 9 DFE ��� � � <�� ,	 � def+ � TRU ��� T6U � � O1PFP 9 DFE � � � � < ��� TRU � � TRU ��� OQPFP 9 DFE ��� � � <�� ,	 � def+ � TRU ��� T6U � � O1PFP 9 DFE � � � � < ��� TRU ��� TRU ��� O1PFP 9 DFE ��� � � <�� .

Applying the nominal unification algorithm described above, we find that

, " � has no solution;, " � has a most general solution given by
�
� # �

and # � # � � � � # ��� 	 � ��	
� # ��� � � ;, " 	 has a most general solution given by
� 	 # �

and # 	 # � ��
 � # ��� 	 ��� ��� �
;, " 
 has a most general solution given by

� 
 # � 	 � ��� � and # 	 # � ���
� # � 	 � ��� ��� �
.

Derivations for " � and " 
 are sketched in Fig. 4. Using the Adequacy Theorem 1, one can
interpret these solutions as the following statements about the

�
-terms from the quiz.

Quiz answers
1. There is no � -term ��� making the first pair of terms � -equivalent.
2. The only solution for the second problem is to take � � + � and � � + � .
3. For the third problem we can take � � to be any � -term, so long as we take � � to be the result

of swapping all occurrences of � and
�

throughout � � .
4. For the last problem, we can take �� to be any � -term that does not contain free occurrences

of
�
, so long as we take � � to be the result of swapping all occurrences of

�
and � throughout� � , or equivalently (since

�
is not free in � � ), taking � � to be the result of replacing all free

occurrences of � in � � with
�
.

Remark 2 (Atoms are not variables). Nominal unification unifies variables, but it does not
unify atoms. Indeed the operation of identifying two atoms by renaming does not necessar-
ily preserve the validity of the judgements in Fig. 2. For example,

� � � � 	 � � � 	 holds if



� � ��������	��
� �������� ������� 
�� ��� �	��
� ������ ��� 
 ����� 
��! � � � �"�(��� �	� � � ����#� �����#� � � �%$ ( ��� -abstraction-2)����������#�&� � �%��� 
�� ��� ����#� ��� 
 ����� 
��! � � � ��� ��� �	� � � ����#� �����#� � � �%$ ( ��� -abstraction-1)'�'('�'�'(' '�'�'�������� � ���)��� 
 �*��� 
 ���+�,� 
��- .� � �"�(��� �	� � � ����#� �����#� � � �%$ ( ��� -pair)������ ��� 
 ���)�����#�"� ��� �	� � � ������ �������%��� 
��%$ with / �10 � �32 � ��� 
�4 ( ��� -variable)������
 ���)�#�"� ��� �	� � � ������ �������%��� 
��%$ ( ��� -fnctn symbol)57698;:
� � ��������	��
� ������ ��� 
 � � � � ��� �	� � � ����#� ������� � � ��$ ( ��� -abstraction-1)����������#� ��� 
 � � � � ��� ����#� ��� 
 ��� 
 � �! � � � � 
 ��� ������ ������� � � ��$ ( ��� -abstraction-2)'�'('�'�'(' '�'�'������
 ��� 
 � � � ���+� 
 � �- .� � � 
 ��� ����#� ������� � � ��$ ( ��� -fnctn symbol)�������� � ���<� 
 � �- � � � 
 ��� ����#� �����#� � � ��$ ( ��� -atom)������
 ��� ����#� ���"��� � � ��$ with / �10 � � 2 � � 
 � �- � � 4 ( ��� -variable)������
 ��� � ������� � � ��$ ( ��� -fnctn symbol)'�'('�'�'(' '�'�'������
 ���=��� 
 ��� � � $ ( ��� -fnctn symbol)������
 ��� � � $ ( ��� -atom) ���?> with @ �A�
 � � � $ ( ��� -suspension)

Fig. 4. Example derivations

	 �# ��� �
; but renaming

	
to be

�
in this judgement we get

� � ��� � � � � � , which does not
hold so long as

� �# �
. Referring to Definition 2, you will see that we do allow variables

ranging over sorts of atoms; and such variables can be unified like any other variables. How-
ever, if B is such a variable, then it cannot appear in abstraction position, i.e. as B

� � . This
is because we specifically restricted abstraction to range over atoms, rather than over arbi-
trary terms of atom sort. Such a restriction seems necessary to obtain single, most general,
solutions to nominal unification problems. For without such a restriction, because of rule
( � -abstraction-2) we would also have to allow variables to appear on the left-hand side of
freshness relations and in suspended permutations. So then we would get unification prob-
lems like � � BDC

���,E � � E��
, where B , C and

E
are variables of atom sort; this has two

incomparable solutions, namely
� � � � B � # C � � and

� �FB � E �
C � E���� % � .

4 Related work

Most previous work on unification for languages with binders is based on forms of higher-
order unification, i.e. solving equations between

�
-terms modulo � ��� -equivalence by capture-

avoiding substitution of terms for function variables. Notable among that work is Miller’s
higher-order pattern unification used in his GIH logic programming language [20]. This kind
of unification retains the good properties of first-order unification: a linear-time decision
procedure and existence of most general unifiers. However it imposes a restriction on the
form of

�
-terms to be unified; namely that function variables may only be applied to dis-

tinct bound variables. An empirical study by Michaylov and Pfenning [19] suggests that
most unifications arising dynamically in higher-order logic programming satisfy Miller’s
restriction, but that it rules out some useful programming idioms. For us, the main disad-
vantage of G H is one common to most approaches based on higher-order abstract syntax: one
cannot directly express the common idiom of possibly-capturing substitution of terms for
metavariables. Instead one has to replace metavariables,

�
, with function variables applied

to distinct lists of (bound) variables,
�KJ � � � ��J �

, and use capture-avoiding substitution.



Hamana [13, 14] manages to add possibly-capturing substitution to a language like
Miller’s G H . This is achieved by adding syntax for explicit renaming operations and by
recording implicit dependencies of variables upon bindable names in a typing context. The
mathematical foundation for Hamana’s system is the model of binding syntax of Fiore et
al [8]. The mathematical foundation for our work appeared concurrently [9] and is in a sense
complementary. For in Hamana’s system the typing context restricts which terms may be
substituted for a variable by giving a finite set of names that must contain the free names
of such a term; whereas we give a finite set of names which the term’s free variables must
avoid. Since � -conversion is phrased in terms of avoidance, i.e. freshness of names, our
approach seems more natural if one wants to compute � -equivalences concretely. On top
of that, our use of name permutations, rather than arbitrary renaming functions, leads to
technical simplifications. In any case, the bottom line is that Hamana’s system seems more
complicated than the one presented here and does not possess most general unifiers.

Relevant to nominal unification is also the work by Dowek et al [6, 7], which presents
two unification algorithms for

� # (a
�

-calculus with de-Bruijn indices and explicit sub-
stitutions): one for encoding higher-order unification problems into

� # , and the other for
encoding higher-order pattern unification problems. Although unification problems in

� #
are solved, like in nominal unification, by textual replacements of terms for variables, a
‘pre-cooking’ operation ensures that the textual replacements can be (faithfully) related to
capture-avoiding substitutions. We conjecture that nominal unification problems can be en-
coded into Dowek et al’s variant of the higher-order pattern unification using a non-trivial
translation that makes use of specific features of de-Bruijn indices and explicit substitutions.
The details of this encoding still remain to be investigated. But even if it turns out that it
is possible to simulate nominal unification in

� # , the calculations involved in translating
our terms into

� # and then using their unification algorithm are far more intricate than our
simple algorithm that solves nominal unification problems directly. We do not expect that a
similar encoding is possible into Miller’s original higher-order pattern unification algorithm.

5 Conclusion

In this paper we have proposed a solution to the problem of finding possibly-capturing
substitutions that unify terms involving binders up to � -conversion. To do so we consid-
ered a many-sorted first-order term language with distinguished collections of constants
called atoms and with atom-abstraction operations for binding atoms in terms. This pro-
vides a simple, but flexible, framework for specifying binding operations and their scopes,
in which the bound entities are explicitly named. By using variables prefixed with sus-
pended permutations, one can have substitution of terms for variables both allow capture of
atoms by binders and respect � -equivalence (renaming of bound atoms). The definition of� -equivalence for the term language makes use of an auxiliary freshness relation between
atoms and terms which generalises the ‘not a free atom of’ relation from ground terms to
terms with variables; furthermore, because variables stand for unknown terms, hence with
unknown free atoms, it is necessary to make hypotheses about the freshness of atoms for
variables in judgements about term equivalence and freshness. This reliance on ‘freshness’
is the main novelty—it arises from the work reported in [10, 23]. It leads to a new notion of
unification problem in which instances of both equivalence and freshness have to be solved
by giving term-substitutions and (possibly) freshness conditions on variables in the solution.
We showed that this unification problem is decidable and unitary.



Currently we are investigating the extent to which nominal unification can be used in
resolution-based proof search for a form of first-order logic programming for languages
with binders (with a view to providing better machine-assistance for structural operational
semantics). Such a logic programming language should permit a concrete, ‘nominal’ ap-
proach to bound entities in programs while ensuring that computation (which in this case is
the computation of answers to queries) respects � -equivalence between terms. This is illus-
trated with the following Prolog-like program, which implements a simple typing algorithm
for

�
-terms.

type Gamma (var X) A :- mem (pair X A) Gamma.

type Gamma (app M N) B :- type Gamma M (arrow A B), type Gamma N A.

type Gamma (lam x.M) (arrow A B) / x#Gamma :- type (pair x A) 2 2 Gamma M B.

mem A A 2 2 Tail.
mem A B 2 2 Tail :- mem A Tail.

Interesting is the third clause. First, note the term (lam x.M), which unifies with any
�

-
abstraction. The binder x, roughly speaking, has in the ‘nominal’ approach a value which
can be used in the body of the clause, for example for adding (pair x A) to the context
Gamma. Second, the freshness constraint x#Gamma ensures that Gamma cannot be replaced
by a term that contains x freely. Since this clause is intended to implement the usual rule
for typing

�
-abstractions � � (���������� � (��

��� � � � � (��
	��
its operational behaviour is given by: choose fresh names for Gamma, x, M, A and B (this
is standard in Prolog-like languages), unify the head of the clause with the goal formula,
apply the resulting unifier to the body of the clause and make sure that Gamma is not re-
placed by a term that contains freely the fresh name we have chosen for x. Similar facilities
for functional programming already exist in the FreshML language, built upon the same
foundations: see [24] and ����

� � �  ������ � ��� �� . We are also interested in the special case of
‘nominal matching’ and its application to term-rewriting modulo � -equivalence.

If these applications show that nominal unification is practically useful, then it becomes
important to study its complexity. The presentations of the term language in Section 2 and
of the algorithm in Section 3 were chosen for clarity and to make the proof of correct-
ness easier2 rather than for efficiency. In any case, it remains to be investigated whether the
swapping and freshness computations that we have added to ordinary, first-order unification
result in greater than linear-time complexity.
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