
Nominal (universal) algebra:

equational logic with names and binding

Murdoch J. Gabbay∗ Aad Mathijssen†

May 27, 2009

Abstract

In informal mathematical discourse (such as the text of a paper on theoretical computer
science) we often reason about equalities involving binding of object-variables. We find our-
selves writing assertions involving meta-variables and capture-avoidance constraints on where
object-variables can and cannot occur free. Formalising such assertions is problematic because
the standard logical frameworks cannot express capture-avoidance constraints directly.

In this paper we make the case for extending the logic of equality with meta-variables and
capture-avoidance constraints, to obtain ‘nominal algebra’. We use nominal techniques that
allow for a direct formalisation of meta-level assertions, while remaining close to informal prac-
tice. We investigate proof-theoretical properties, we provide a sound and complete semantics
in nominal sets, and we compare and contrast our design decisions with other possibilities
leading to similar systems.

∗http://www.gabbay.org.uk
†A.H.J.Mathijssen@tue.nl

1

http://www.gabbay.org.uk

CONTENTS 2

Contents

1 Introduction 3

2 Syntax 7
2.1 Terms and signatures . 7
2.2 Judgement forms, axioms and theories . 8

3 Derivations 10
3.1 Permutation and substitution actions . 10
3.2 Inference rules . 11
3.3 Proof-theoretical results . 16

4 Denotations 21
4.1 Nominal sets . 22
4.2 Interpretations, models and validity . 24
4.3 Free term models . 27
4.4 Completeness for equality derivations . 29
4.5 Completeness for freshness . 32

5 Design alternatives 33
5.1 N-abs: nominal algebra without atoms-abstraction 33
5.2 N+feq: nominal algebra with stronger freshness derivation rules 36

6 Conclusions 39
6.1 Related work . 39
6.2 Future work . 42

A Equivariance 46

1 INTRODUCTION 3

1 Introduction

Perhaps equality is the simplest possible judgement form. Informal specification of logic and
computation often involves equalities with binding, subject to conditions about freshness. For
example:

λ-calculus: λx.(ex) = e if x 6∈ fv(e)
First-order logic: ∀x.(φ ⊃ ψ) = φ ⊃ ∀x.ψ if x 6∈ fv(φ)
π-calculus: νx.(P | Q) = P | νx.Q if x 6∈ fv(P)
Process algebra with data:

∑
x.p = p if x 6∈ fv(p)

And for any binder ζ ∈ {λ,∀, ν,
∑
}:

Substitution: (ζy.e′)[x 7→ e] = ζy.(e′[x 7→ e]) if y 6∈ fv(e)

Here fv(e) denotes the free variables of e. It is not hard to extend this short list with many more
examples.1

In the equalities between expressions above there are two levels of variable:

• x and y range over variable symbols. These are sometimes called object-level variables.

• e, e′, φ, ψ, P , Q and p range over expressions. These are sometimes called meta-level
variables.

These equalities are subject to freshness side-conditions x 6∈ fv(e), placing conditions between the
object-level variable denoted by x, and the syntax of the expressions denoted by e. These freshness
side-conditions make these equalities something other than ‘just equalities’.

A straightforward way to formalise these meta-level properties is to enrich to the logic of equality
with meta-variables. In a setting with binders, we have to face the following problems:

• When is an object-variable fresh for a meta-variable? We only know this when the meta-
variable is instantiated to a concrete expression (not mentioning meta-variables).

• What is a suitable representation of α-conversion of object-variables in the setting with
meta-variables?

• In the presence of meta-variables, substitution of expressions for object-variables becomes
non-trivial: what does it mean when we try to substitute an expression for a variable in a
meta-variable?

A number of different solutions have been proposed for these problems. The state of the art
solution is based on the use of some kind of (typed) λ-calculus. For example a typical higher-order
logic [vB01, Mei92] has a base type of ‘individuals’, and then uses higher types of functions to
operate on individuals (or other functions). Other methods include the use of combinators [CF58,
Bar84] and cylindric techniques [HMT85, LS04].

Unfortunately, none of these solutions allows for a natural formalisation of the kind of schematic
specification of informal discourse discussed above. They feature a two-level structure of object-
level and meta-level variables and freshness side-conditions.

A consequence of this is that the formalisation of schemas of theorems and proofs are not always
a matter of simple refinement, but sometimes requires a fair amount of emulation. In De Bruijn’s
words [dB91]:

“I think that in formalizing mathematics, and in particular in preparing mathematics
for justification, it is usually elegant as well as efficient to do everything in the natural
way.”

There have been solutions to the problem of binding and meta-variables that embrace the
difference between object- and meta-variables. One of these solutions uses so-called nominal

1Process algebras with data are discussed in [Gro97, Lut02, GMR+08].

1 INTRODUCTION 4

techniques [GP01], which has two levels of variable called atoms and unknowns in [UPG04] —
and a built-in notion of freshness of atoms with respect to unknowns.

Nominal techniques have been applied to unification [UPG04], term rewriting [FG07] and first-
order logic [Pit03]. The application was purely to represent and reason about formal syntax with
meta-variables.

In this paper we explore nominal algebra, an application of nominal techniques to represent
algebraic reasoning in the presence of atoms, unknowns, and freshness side-conditions. In this
way, and consistent with de Bruijn’s philosophy, we hope to provide a natural and yet fully formal
representation of the kind of algebraic-style reasoning seen in informal mathematical practice.

Nominal algebra derivation rules are in Figures 1 and 2 (see Section 3 for full details; the relevant
definition is Definition 3.10). These rules were first presented and studied in a workshop paper
[GM06b] and longer technical report [GM06c]; the material was expanded on in a conference paper
[GM07] and in the second author’s thesis [Mat07]. This paper is the journal version of [GM07].

It turns out that in nominal algebra, informal equivalences can be represented as axioms almost
symbol-for-symbol. For example the equalities between expressions from the beginning of the
Introduction are represented by:

λ-calculus: a#X ` λ[a](Xa) = X
First-order logic: a#X ` ∀[a](X ⊃ Y) = X ⊃ ∀[a]Y
π-calculus: a#X ` ν[a](X | Y) = X | ν[a]Y
Process algebra with data: a#X `

∑
[a]X = X

Substitution: b#X ` (ζ[b]Y)[a 7→ X] = ζ[b](Y [a 7→ X])

The equalities here are between nominal terms, which are the formal syntax which we will use to
represent the expressions above (the formal definition is in Definition 2.4, later in this paper). Here
a and b are distinct atoms representing object-level variables; X and Y are unknowns representing
meta-level variables; [a]t is an atoms-abstraction of an atom a. Each equality is equipped with a
freshness condition of the form a#X that guarantees that X can only be instantiated to a term
for which a is fresh. The rest of this paper makes this formal.

We develop the proof theory of nominal algebra and show that it supports the following key
features of meta-level reasoning:

• instantiation of meta-variables, by means of capturing substitution of expressions for meta-
variables;

• α-renaming of object-variables and capture-avoiding substitution of expressions for object-
variables in the presence of meta-variables;

• generation of fresh object-variables inside a derivation.

Furthermore, we provide a denotation in so-called nominal sets. Nominal sets were introduced
by Gabbay and Pitts in [GP01].2 They have proved to be an effective model for syntax with
names and binding (see for example [Pit03]). In fact, nominal sets have inspired the design of
nominal terms, which form the basis of nominal algebra. For this reason, nominal sets permit a
natural semantic interpretation of atoms a, abstractions [a]t, and freshness a#t, which are not
conveniently definable on ‘ordinary’ sets.

Overview. We introduce the syntax of nominal algebra in Section 2. In Section 3 we provide a
notion of derivation of freshness and equality with the ability to impose axioms, and we provide
examples and proof-theoretical results. We provide a denotation of nominal algebra in terms
of nominal sets in Section 4, and we show how derivability is complete for this denotation. In
Section 5 we discuss variations on the nominal algebra theme; a simplified variant N-abs which
drops atoms-abstraction without losing expressivity, and an enriched variant N+feq with two extra

2In [GP01], nominal sets are called FM-sets, named after the Fraenkel and Mostowski who devised a permutation
model of set theory in order to prove the independence of the axiom of choice from the other axioms of Zermelo-
Fraenkel set theory with atoms [Bru96].

1 INTRODUCTION 5

(#ab)
a#b

π-1(a)#X
(#X) (π 6= id)

a#π ·X

(#[]a)
a#[a]t

a#t
(#[]b)

a#[b]t

a#t1 · · · a#tn
(#f)

a#f(t1, . . . , tn)

Figure 1: Derivation rules for freshness

(refl)
t = t

t = u
(symm)

u = t

t = u u = v
(tran)

t = v

t = u
(cong[])

[a]t = [a]u

t = u
(congf)

f(t1, . . . , t, . . . , tn) = f(t1, . . . , u, . . . , tn)

∇πσ
(ax∇`t=u)

tπσ = uπσ

a#t b#t
(perm)

(a b) · t = t

[a#X1, . . . , a#Xn] ∆
···

t = u
(fr) (n ≥ 1, a 6∈ t, u,∆)

t = u

Figure 2: Derivation rules for equality

1 INTRODUCTION 6

rules for freshness derivations. In each case we justify the design decisions we made in Sections 2
and 3, using a combination of arguments on derivations and models. Finally in the Conclusions
(Section 6) we discuss the development of nominal algebra so far, and related and future work.

Comments on symbols for equality. ‘Equality’ plays a central rôle in this paper, and (just
like the Eskimos have more than one word for snow) we have more than one symbol for equality.
All our usages are standard, but we take a moment to give an overview:

• The symbol = is used as part of the formal syntax of nominal algebra equality judgement
form ‘∆ ` t = u’. This is derivable equality between terms and is defined in Subsection 2.2.

• The symbol = is also used in the meta-level discourse of this paper, to express equality of
elements. This is denotational equality. When we write ‘π = π′’, we mean ‘π and π′ denote
the same permutation’.

• This is a standard overloading of the symbol = but it creates a problem; how to unambigu-
ously indicate equality of formal syntax (syntactic identity); the notion ‘denote the same
syntax-tree’. We do not want to write t = u for syntactic identity because it might not
always be instantly obvious whether we intend ‘t and u represent the same syntax-tree’ or
‘we can derive that the denotations of the syntax-trees represented by t and u, are equal’.
We therefore write ≡ for syntactic identity (Definition 2.8) between terms.

• In Examples 2.6 and 2.15 an object-level equality term-former ≈ is mentioned. As far as
this paper is concerned, ≈ is just a binary term-former and t ≈ u is just a term. It does
intuitively represent object-level equality and Example 2.15 mentions the relevant axioms
(Esubst) and (Erefl); this is studied in full detail elsewhere [GM06d, GM08c].

Comments on the word ‘algebra’. The word ‘algebra’ in the title is used differently in
different parts of the literature: there are (at least) ‘algebra’ in the sense of solving equations
like x2 + bx + c = 0; ‘algebra’ as the dedicated study of structures like groups rings and fields;
‘process algebras’ in the theory of concurrency; ‘algebras and co-algebras’ in category theory; and
‘universal algebra’ the study of the logic of equality.

It seems prudent to be clear about what is meant by algebra in this paper. We mean algebra
in the sense of universal algebra as presented for example in [BS81]. Algebra for us is a logic of
equality, whose basic judgement form is ‘t is equal to u’, bells and whistles notwithstanding. The
denotation is such that a derivable equality is interpreted by denotational identity — so if we can
prove that t is equal to u, then the denotations of t and u must be identical in all models. A
(univeral) algebraic theory is a collection of axioms asserting equalities between terms. A model
of an algebraic theory is a set3 with functions on it interpreting the signature of the theory, such
that the equalities of the theory are valid identities.

From that point of view, our goal in this paper is to present a minimal extension of univer-
sal algebra whose axioms, derivations, and denotations provide built-in support for the kinds of
equalities involving names, binding, and freshness side-conditions that we considered above.

We will usually write ‘nominal universal algebra’ as just ‘nominal algebra’.

Comments on foundations. Mathematical papers are usually written using an informal set
theory which, if their authors were pressed to be more formal, would turn out to be Zermelo-
Fraenkel set theory (with or without the Axiom of Choice). Part of the idea of what is now called
nominal techniques, which is described in [GP01], is to base our foundation on Zermelo-Fraenkel
set theory with atoms (ZFA). In particular, we use a foundation in ZFA in this paper.

It is the atoms of ZFA sets that we use in our nominal terms syntax for nominal algebra, and
also in the nominal sets denotation which follows. Why should we be concerned about this? Can
we not model variable symbols using, say, ordinals?

3In this paper it will be a nominal set, but here we do not care about the difference.

2 SYNTAX 7

Treating variable symbols as atomic, we can prove theorems about their behaviour which have
specifically to do with them being atomic, and so having no internal structure. These theorems
are not true of ordinals because they do have internal structure, although the theorems will still be
provable, on a case-by-case basis, if the constructions involved do not use that internal structure
— that is, if the constructions treat the ordinals as if they were atomic. We find it simpler to
just take variables to be atomic in the first place.

One such theorem, which we will use in our proofs, is meta-level equivariance. Informally
this states that validity and provability are invariant under permuting atoms; since atoms have no
internal structure, we can permute them. The definition, discussion, and proof are in Appendix A.

2 Syntax

We now develop nominal terms [UPG04] as a formal syntax in which the example expressions in
the Introduction may be represented.

2.1 Terms and signatures

Definition 2.1. Fix disjoint countably infinite collections of atoms, unknowns, and term-
formers.
a, b, c, . . . will range permutatively over atoms, X,Y, Z, . . . will range permutatively over un-

knowns, and f, g, . . . will range permutatively over term-formers. Here permutative means that
distinct meta-variables represent distinct elements, so that for example ‘a and b’ means ‘two dis-
tinct atoms’, ‘X and Y and Z’ means ‘three distinct unknowns’, and ‘f and g’ means ‘two distinct
term-formers’.

We also assume that to each term-former f is associated some unique arity n which is a non-
negative number; we write f : n to indicate that f has arity n. It is convenient to assume that
there are infinitely many term-formers of each arity.

For the purpose of α-conversion, we need to be able to rename atoms. We use permutations of
atoms instead of substitutions of atoms for atoms because permutations have better mathematical
properties; most notably, permutations are capture-avoiding by definition (see the Introduction
of [GP01] and [Pit03] for a detailed exposition).

Definition 2.2. Let A = {a, b, c, . . .}. A (finite) permutation π of atoms is a total bijection
A→ A with finite support, meaning that for some finite set of atoms (which may be empty)
π(a) 6= a, but for all atoms not in that set, π(a) = a.

Finite support is a mathematical notion of ‘most’: π is a bijection on atoms such that π(a) = a
for most a.

We introduce some notation for permutations that we will need later on.

Definition 2.3. Write id for the identity permutation such that id(a) = a always. Write π ◦ π′
for functional composition and write π-1 for inverse. This makes permutations into a group
— write P for the set of all permutations. Write (a b) for the permutation that swaps a and b,
i.e. the permutation that maps a to b, b to a and all other c to themselves.

Using the above ingredients we can form nominal terms.

Definition 2.4. (Nominal) terms t, u, v are inductively defined by:

t ::= a | π ·X | [a]t | f(t1, . . . , tn)

We call [a]t an atoms-abstraction; it represents the ‘x.e’ or x.φ’ part of expressions such as
‘λx.e’ or ‘∀x.φ’. We call π ·X a moderated unknown. We write id ·X just as X, for brevity.

In Section 3 we will see that in π ·X the unknown X will get substituted for a term and then
π will permute the atoms in that term. This notion is grounded in semantics [GP01] and permits
a succinct treatment of α-renaming atoms (see Section 3.3.3 and [UPG04]).

2 SYNTAX 8

Definition 2.5. A signature Σ is a set of term-formers with their arities.

Example 2.6. Here are some example signatures:

• {lam : 1, app : 2} is a signature for the λ-calculus [GM09a, GM09b].

We show how the terms in this signature relate to ‘ordinary’ λ-calculus expressions. For
convenience identify atoms with variable symbols, then the syntax of the untyped λ-calculus
is inductively defined by:

e ::= a | λa.e | ee

The map -′ from untyped λ-calculus expressions to nominal terms is inductively defined by:

a′ = a (λa.e)′ = lam([a](e′)) (e1e2)′ = app(e′1, e
′
2)

We generally sugar lam([a]t) to λ[a]t and app(t, u) to tu.

• {⊥ : 0,⊃: 2,∀ : 1,≈: 2} is a signature for first-order logic with equality (the symbol for
equality inside the logic is ≈) [GM06d, GM08c].

We sugar ⊥() to ⊥, ⊃(t, u) to t ⊃ u, ∀([a]t) to ∀[a]t and ≈(t, u) to t ≈ u.

A little more on this is in Example 2.15.

Remark 2.7. Consistent with previous work on nominal rewriting [FG07] we do not impose an a
priori sort system on terms. Although this allows us to write ‘silly terms’ like λ(tu) and ∀(t ≈ u),
it simplifies the presentation, and the results specialise easily to the more specific cases.

Definition 2.8. Write t ≡ u for syntactic identity of terms.

Note that if π = π′ then π ·X ≡ π′ ·X, since permutations are represented by themselves. There
is no quotient by abstraction so for example [a]a 6≡ [b]b.

Definition 2.9. We define a ∈ t inductively by:

a ∈ a a ∈ [a]t
a ∈ t
a ∈ [b]t

(π(a) 6= a)

a ∈ π ·X
a ∈ ti (1 ≤ i ≤ n)

a ∈ f(t1, . . . , tn)

We read a ∈ t as ‘a occurs in (the syntax of) t’. We write a 6∈ t when a ∈ t does not hold, and
we read this as ‘a does not occur in t’.

We define X ∈ t inductively by:

X ∈ π ·X
X ∈ t
X ∈ [b]t

X ∈ ti (1 ≤ i ≤ n)

X ∈ f(t1, . . . , tn)

We read X ∈ t as ‘X occurs in (the syntax of) t’. We write X 6∈ t when X ∈ t does not hold,
and we read this as ‘X does not occur in t’.

2.2 Judgement forms, axioms and theories

Definition 2.10. A freshness is a pair a#t of an atom a and a term t. Call a freshness a#X (so
t ≡ X) primitive. Write ∆ and ∇ for finite sets of primitive freshnesses and call them freshness
contexts.

Recall that the atom a corresponds with a variable symbol x, and the unknown X corresponds
with a meta-variable e or φ. Intuitively, a#X corresponds with ‘x is not a free variable symbol in
g/φ’.

Definition 2.11. We may drop set brackets in sets of freshnesses, e.g. writing a#t, b#u for
{a#t, b#u}. Also, we may write a#t, u for a#t, a#u. Furthermore, for any set of freshnesses S
write a ∈ S when a occurs anywhere in S, and X ∈ S when X occurs anywhere in S.

2 SYNTAX 9

Definition 2.12. An equality is a pair t = u where t and u are terms.

Equalities will be used to state that two terms are provably equal.

Definition 2.13. Nominal algebra has two judgement forms:

• A freshness judgement form ∆ ` a#t is a pair of a freshness context ∆ and a freshness
a#t.

• An equality judgement form ∆ ` t = u is a pair of a freshness context ∆ and an equality
t = u.

We may write ∅ ` a#t as ` a#t, and ∅ ` t = u as ` t = u.

Definition 2.14. A theory T = (Σ,Ax) is a pair of a signature Σ and a possibly infinite set of
equality judgement forms Ax in that signature; we call them the axioms.

We do not allow freshness judgements as axioms, but see Subsection 5.2.

Example 2.15. Here are some nominal algebra theories — we make these axioms ‘do’ something
in Section 3 when we discuss derivations, which can use axioms; so for the moment these axioms
have just a suggestive status illustrating use of the nominal terms’ syntax:

• CORE is a family of theories with no axioms; there is one such theory for each signature Σ.
It has built-in α-equivalence, so for example λ[a]a is equal to λ[b]b.4

Theory CORE is discussed in Subsection 3.3.3.

• SUB gives substitution term-former sub the correct behaviour in theories LAM and FOL. It
is a family of theories, one for each signature Σ that includes sub, with axioms

(var 7→) ` a[a 7→ X] = X
(# 7→) a#Y ` Y [a 7→ X] = Y
(f 7→) ` f(Y1, . . . , Yn)[a 7→ X] = f(Y1[a 7→ X], . . . , Yn[a 7→ X])

(abs 7→) b#X ` ([b]Y)[a 7→ X] = [b](Y [a 7→ X])
(id 7→) ` Y [b 7→ b] = Y
(η 7→) b#X ` [a]sub(X, a) = X

For each term-former f (including sub), there is one axiom (f 7→). Note the use of freshness
side-conditions to manage the relationship between atoms and unknowns.

We study this in [GM06a, GM08a].

• LAM has signature {lam : 1, app : 2, sub : 2}, the axioms of SUB for this signature, and two
axioms

(β) ` (λ[a]Y)X = Y [a 7→ X]
(η) a#X ` λ[a](Xa) = X

where we sugar sub([a]t, u) to t[a 7→ u].

We study this in [GM09a, GM08b, GM09b].

• FOL has signature {⊥ : 0,⊃: 2,∀ : 1,≈: 2, sub : 2}, the axioms of SUB for this signature, and
seven axioms

(MP) ` > ⊃ X = X
(Mer) ` ((((X ⊃ Y) ⊃ (¬Z ⊃ ¬W)) ⊃ Z) ⊃ V)

⊃ ((V ⊃ X) ⊃ (W ⊃ X)) = >
(Qinst) ` ∀[a]X ⊃ X[a 7→ Y] = >
(Qdist) ` ∀[a](X ∧ Y)⇔ ∀[a]X ∧ ∀[a]Y = >
(Qextr) a#X ` ∀[a](X ⊃ Y)⇔ X ⊃ ∀[a]Y = >
(Esubst) ` Z ≈ Y ∧X[a 7→ Y] ⊃ X[a 7→ Z] = >
(Erefl) ` X ≈ X = >

4α-equivalence is expressed as a derivation rule: the (perm) rule from Figure 2. The (perm) rule is discussed
in detail in Subsection 3.2.2.

3 DERIVATIONS 10

Here we use standard classical logic sugar for >, ¬, ∧ and ⇔.

Axioms (MP) and (Mer) characterise propositional logic; axioms (Qinst), (Qdist) and
(Qextr) characterise quantification; and axioms (Esubst) and (Erefl) characterise object-
level equality.

We study this in [GM06d, GM08c].

Similar developments for other systems with binding, such as process algebra with data [Gro97,
Lut02, GMR+08] and the π-calculus [Par01] from the Introduction should also be possible.

3 Derivations

In this section we define notions of derivation which represent freshness assumptions on meta-
variables (Figure 1), and permit axioms involving abstraction that are conditioned by freshness
assumptions (Figure 2), just like we do in informal practice.

3.1 Permutation and substitution actions

Before we introduce our calculus, we elaborate on two important prequisites for the instantiation
of axioms; we need to be able to permute atoms in terms, and substitute terms for unknowns in a
capturing way.

Definition 3.1. The (object-level) permutation action π · t on terms is inductively defined
by:

π · a ≡ π(a) π · (π′·X) ≡ (π ◦ π′) ·X π · [a]t ≡ [π(a)](π · t)
π · f(t1, . . . , tn) ≡ f(π · t1, . . . , π · tn)

Intuitively, π propagates through the structure of t until it reaches an atom or a moderated
unknown.

Composition and identity of permutations extend to terms:

Lemma 3.2. (π ◦ π′) · t ≡ π · (π′ · t) and id · t ≡ t.

Proof. By induction on the structure of t, using Definition 3.1.

Substitution is the mechanism by which unknowns become terms, and this is necessary in algebra
so that we can define instances of axioms:

Definition 3.3. A substitution (on unknowns) σ is a function from unknowns to terms.

Definition 3.4. The (meta-level) substitution action tσ on terms is inductively defined by:

aσ ≡ a (π ·X)σ ≡ π · σ(X) ([a]t)σ ≡ [a](tσ)

f(t1, . . . , tn)σ ≡ f(t1σ, . . . , tnσ)

Intuitively, σ propagates through the structure of t until it reaches an atom or a moderated
unknown. σ acts on the X in π ·X; then π acts on σ(X). We suggest reading π ·X as ‘permute
as π in whatever X becomes’. For example suppose σ(X) ≡ a; then

((a b) ·X)σ ≡ (a b) · b ≡ a.

Substitution does not avoid capture. For example,

([a]X)σ ≡ [a]a.

This corresponds with what happens when we write ‘instantiate - to x in λx.-’; we obtain λx.x.

3 DERIVATIONS 11

Lemma 3.5. π · tσ ≡ (π · t)σ.

Proof. By induction on the structure of t, using Definitions 3.1 and 3.4. The case of t ≡ π′ ·X
uses Lemma 3.2.

Another permutation action is useful.

Definition 3.6. The meta-level permutation action tπ on terms t is inductively defined by:

aπ ≡ π(a) (π′ ·X)π ≡ π ◦ π′ ◦ π-1 ·X ([a]t)π ≡ [π(a)]tπ

f(t1, . . . , tn)π ≡ f(t1
π, . . . , tn

π)

Also for this permutation action, composition and identity of permutations extend to terms.

Lemma 3.7. tπ◦π
′ ≡ tπ′

π
and tid ≡ t.

Proof. By induction on the structure of t, using Definition 3.6.

In the presence of substitution, the two permutation actions π · t and tπ are interdefinable;
however, sometimes one is more natural than the other, we shall point out how later (Remark 3.14).

Lemma 3.8. Given a term t, let σ be a substitution that maps each X ∈ t to π ·X, and let σ′ be
a substitution that maps each X ∈ t to π-1 ·X.

Then π · t ≡ tπσ and tπ ≡ (π · t)σ′.

Proof. By induction on the structure of t, using Definitions 3.1, 3.6 and 3.4 of π · t, tπ and tσ. The
only interesting case is when t ≡ π′ ·X. Then we need to show π · (π′ ·X) ≡ (π′ ·X)πσ. Since
(π′ ·X)πσ ≡ (π ◦ π′ ◦ π-1) · (π ·X) by Definitions 3.6 and 3.4, it suffices to show

π · (π′ ·X) ≡ (π ◦ π′ ◦ π-1) · (π ·X).

This follows using Definition 3.1 and the fact that π ◦ π′ = π ◦ π′ ◦ π-1 ◦ π.
The proof of (π′ ·X)π ≡ (π · (π′ ·X))σ′ follows similar lines.

Definition 3.9. We extend notation for tπ, π · t and tσ to freshness contexts ∆ as follows:

∆π is {π(a)#X | a#X ∈ ∆}
π ·∆ is {π(a)#π ·X | a#X ∈ ∆}

∆σ is {a#σ(X) | a#X ∈ ∆}

Note that ∆π is a freshness context, but π ·∆ and ∆σ need not be.

3.2 Inference rules

For the reader’s convenience we recall some conventions:

• a, b, c, . . . range permutatively over atoms.

• X,Y, Z, . . . range permutatively over unknowns.

• f, g, . . . range permutatively over term-formers.

• π, π′ range over permutations (not permutatively; it may be that π = π′).

• t, t1, . . . , tn, u, . . . range over terms (not permutatively).

Definition 3.10. Define a notion of derivability by the natural deduction rules in Figures 1
and 2.

We will use the following notation:

3 DERIVATIONS 12

• We write ∆ ` a#t when a derivation of a#t exists using the elements of ∆ as assumptions.
We say ‘∆ ` a#t is derivable’, or just ‘∆ ` a#t’.

We write ∆ 0 a#t when ∆ ` a#t is not derivable.

Note that the rules for freshness are syntax-directed, so if t is in a signature Σ then every
term in the derivation of ∆ ` a#t must also be in Σ.

When S is a set of freshnesses we write ∆ ` S to mean ‘∆ ` a#t for each a#t ∈ S’ as a
convenient shorthand.

• Suppose that T = (Σ,Ax) is a theory. We write ∆ `
T
t = u when t = u may be derived such

that:

– The derivation uses (at most) assumptions from ∆.

– For each instance of (ax∇`t=u) used in the derivation, (∇ ` t = u) ∈ Ax .

– The derivation mentions only terms in the signature Σ.

We say ‘∆ `
T
t = u is derivable (in T)’, or just ‘∆ `

T
t = u’.

We write ∆ 0
T
t = u when ∆ `

T
t = u is not derivable.

In Figure 2, the rules (refl), (symm) and (tran) ensure that equality is an equivalence relation,
and the rules (cong[]) and (congf) ensure that it is a congruence. The (ax∇`t=u) rule instantiates
axioms in derivations and is discussed in Subsection 3.2.1. The (perm) rule expresses α-conversion,
and is discussed in Subsection 3.2.2. Finally, (fr) (read bottom-up) introduces ‘a fresh atom a’
into a derivation. Here, the square brackets denote discharge in the sense of natural deduction (as
in implication introduction) [Pra65] of these extra assumptions a#X1, . . . , a#Xn. (fr) is discussed
in Subsection 3.2.3.

Remark 3.11 (Natural deduction vs. sequent derivation presentation). We define our notion of
entailment in natural deduction style; ‘t = u’ has no meaning on its own but it can form part of
the syntax of a natural deduction derivation proving that the sequent ∆ ` t = u is derivable.

The reader who prefers to specify their notions of entailment based entirely on sequents, can
rephrase the rules in Figures 1 and 2 in sequent form (a sequent version of (fr), the only even
slightly non-trivial rule to translate, is given in Subsection 3.2.3).

We prefer the natural deduction presentation for its simplicity and compactness (we do not have
to write ‘∆ `’ everywhere); example derivations follow below. This is just a matter of presentation.
However, we should draw the reader’s attention to one subtlety of natural deduction derivation;
a#X ` a#X is derivable, and the natural deduction derivation that proves that this sequent is
derivable is the (sublimely concise) tree

a#X.

This derivation has one assumption, and one conclusion, and they are the same. Thus, in natural
deduction there is no need for an explicit ‘identity’ rule, as is needed in a sequent presentation.

Note finally that a#X is actually shorthand for a#id · X, though we will elide the id (for
example, in (#X)).

Remark 3.12. Not very deeply hidden in the rules in Figure 1 is the standard definition of ‘not in
the free variables of’: (#ab) corresponds with ‘x 6∈ fv(y)’; (#[]a) corresponds with ‘x 6∈ fv(λx.t)’
(or ‘x 6∈ fv(∀x.φ)’, and so on); we leave the interpretation of (#[]b) and (#f) to the reader.

Freshness # cannot only formalise a known definition, it must also generalise to account for
unknowns X; these are intended to represent ‘unknown terms’, so (#X) expresses that π(a) is
fresh for π · X provided that we have assumed that a is fresh for X (perhaps this is one point
where the use of permutations, rather than atom-for-atom substitutions, is key). (#X) excludes the
identity permutation id to guarantee a nice computational property, that the algorithm naturally
obtained by reading the freshness derivation rules bottom-up, must terminate.

Note that because freshness models the informal judgement ‘x 6∈ fv(t)’, its derivability does not
depend on the theory T; in other words, the judgement-form for freshness is ∆ ` a#t and not
∆ `

T
a#t. More on this in Subsection 5.2.

3 DERIVATIONS 13

Example 3.13 (Freshness derivations). In the signature of theory LAM (Example 2.15) we can
derive:

(#ab)
a#b

(#[]b)
a#[b]b

(#f)
a#λ[b]b

a#X

(#[]a)
a#[a]Y

(#f)
a#λ[a]Y

(#f)
a#X(λ[a]Y)

The following are non-derivable freshnesses in this signature:

0 a#a 0 a#X(λ[a]Y) 0 a#(λ[a]b)a

In the signature of theory FOL (Example 2.15), derivable freshnesses are:

` a#∀[a]P a#T ` a#(a ≈ a)[a 7→ T] a#X ` b#(b a) ·X.

Non-derivable freshnesses in this signature are:

0 a#∀[b]P 0 a#(a ≈ a)[a 7→ T] a#X 0 a#(b a) ·X.

Examples of derivability of equality can be found in the rest of this section.

3.2.1 The (ax∇`t=u) rule: instantiating axioms

(ax∇`t=u) allows us to permutatively rename atoms and to instantiate unknowns. This gives the
effect that atoms in axioms can be understood to range over any (distinct) atoms, and unknowns
can be understood to range over any terms (this idea goes back to the use of nominal rewrite rules
in nominal rewriting [FG07]).

Consider a simple axiom: ` X = Y . Here, we intend X and Y to be instantiated; so we do not
also need the axiom ` X = Z or ` X = 2 (suppose a term-former 2), because these can all be
obtained from ` X = Y by instantiation. Thus, in the case of an axiom a single piece of syntax
with variables (unknowns) represents the infinite collection of all of its instantiation instances.
This is standard.

Now consider an axiom ` a = X. Here, we intend X to be instantiated — and we intend a to
be permuted. In this way it is not necessary to consider a scheme of axioms ` a = X, ` b = X,
` c = X (one for every possible atom); the permutation π in the axiom rule gives us this power
from a single axiom mentioning, say, a.

In this sense, unknowns in axioms are variables, and atoms in axioms are also variables; whereas
unknowns intuitively range by instantiation over all terms, atoms intuitively range permutatively
over all atoms (it is possible to endow a substitution structure on atoms but it is not necessary to
‘hard-wire’ this; we use axioms, e.g. SUB from Example 2.15).

We will now consider some examples of the use of axioms.

(axβ)
(λ[b]a)b = a[b 7→ b]

(axβ)
(λ[b]b)a = b[b 7→ a]

(id7→)
b[a 7→ a] = b

(β)
(λ[a]b)a = b

are valid derivations in theory LAM (Example 2.15). Note that substitution of terms for unknowns
does not avoid capture, reflecting the intuition that they represent meta-variables.

The use of the (ax∇`t=u) rule can introduce freshness proof obligations:

(#ab)
a#b

(axη)
λ[a](ba) = b !!

!!
!!a#a

(axη)
λ[a](aa) = a

The left derivation is valid but the right one is not, because a#a is not derivable.

3 DERIVATIONS 14

Note that instantiation of axioms (abs 7→) and (id 7→) from theory SUB (Example 2.15), which
both mention distinct atoms a and b, can never identify these atoms. For example,

c#X

(axabs7→)
([c]Y)[c 7→ X] = [c](Y [c 7→ X])

is not a valid instance of (abs7→) since permutations are bijective: there is no π such that both
π(a) = c and π(b) = c.

In informal practice, derivations are often presented in a calculational style, e.g. the sequence
of equalities

λx.(((λx.y)x)x) =β λx.(yx) =η y

represents that two expressions can be related by (reading from left to right) first applying β-
conversion followed by η-conversion. This is fully formally represented by the following derivation:

(axβ)
(λ[a]b)a = b[a 7→ a]

(#ab)
a#b

(ax# 7→)
b[a 7→ a] = b

(tran)
(λ[a]b)a = b

(congf)
((λ[a]b)a)a = ba

(cong[])
[a](((λ[a]b)a)a) = [a](ba)

(congf)
λ[a](((λ[a]b)a)a) = λ[a](ba)

(#ab)
a#b

(axη)
λ[a](ba) = b

(tran)
λ[a](((λ[a]b)a)a) = b

Reading the derivation bottom-up, the instance of (tran) in the conclusion introduces two equal-
ities that correspond directly to the two equations in the above sequence of equalities. The
derivation of the right equality takes care of η-equality: it instantiates the (η) axiom, and shows
that the freshness side-condition is satisfied. The derivation of the left equality takes care of the
β-equality: it instantiates the (β) axiom, which introduces a substitution, and we show how this
substitution is applied.

Remark 3.14. Another version of the (ax∇`t=u) rule is possible, which uses the object-level
action π · t instead of the meta-level action tπ:

π · ∇σ
(ax′∇`t=u).

π · tσ = π · uσ

However in this case, atoms in substitution σ are renamed according to π. For example, ` [b]a = [a]a
is derivable using (ax[a]X=[b]X) where we choose π = (b a) and σ(X) ≡ a and σ(Y) ≡ id · Y for
all other Y . It is also derivable using (ax′[a]X=[b]X), but we must choose π = (b a) and σ(X) ≡ b
and σ(Y) ≡ id · Y for all other Y . We find (ax′∇`t=u) slightly less natural than (ax∇`t=u).

Note that we do not allow freshness axioms (ax∇`a#t). The effect of freshness axioms can be
obtained by an equality axiom ∆, b#X1, . . . , b#Xn ` (b a) · t = t where b is fresh and X1, . . . , Xn

are the unknowns mentioned in ∆ and t. More on this in Subsections 4.5 and 5.2.

3.2.2 The (perm) rule: α-equivalence

The (perm) rule concisely expresses α-equivalence. To illustrate this, the following derivations
are valid in CORE (the theory with no axioms):

(#ab)
a#b

(#[]b)
a#[b]b

(#[]a)
b#[b]b

(perm)
[a]a = [b]b

a#X
(#[]b)

a#[b]X
(#[]a)

b#[b]X
(perm)

[a](b a) ·X = [b]X

3 DERIVATIONS 15

So `
CORE

[a]a = [b]b and a#X `
CORE

[a](b a) ·X = [b]X. To see that the instances of (perm) are
valid, we note that [a]a ≡ (b a) · [b]b and [a](b a) ·X ≡ (b a) · [b]X.

As another example, we show how we use the (perm) rule to rename a bound variable in a
(representation of a) λ-calculus expression. Consider the following derivation in the λ-calculus:

(λx.xx)(λx.λy.xy) =β (λx.λy.xy)(λx.λy.xy) =β λy.(λx.λy.xy)y =β λy.λz.yz.

In the last step the bound variable x is implicitly renamed during β-reduction to avoid capture.
Nominal algebra makes this explicit. We present the nominal algebra derivation of this last step
as a calculation:

λ[b](λ[a]λ[b]ab)b = λ[b](λ[b]ab)[a 7→ b] (β)

= λ[b]λ([b]ab)[a 7→ b] (f 7→)

= λ[b]λ([c]ac)[a 7→ b] (perm) (` b#[c]ac, ` c#[c]ac)

= λ[b]λ[c](ac)[a 7→ b] (abs7→) (` c#b)
= λ[b]λ[c](a[a 7→ b])(c[a 7→ b]) (f 7→)

= λ[b]λ[c]b(c[a 7→ b]) (var 7→)

= λ[b]λ[c]bc (# 7→) (` a#c)

In each step of the calculation, we have indicated in the hint which derivation rule is applied and
which freshness constraints it had to satisfy (if any), and we have underlined the subterm on which
the axiom is applied. It is not hard to reconstruct the derivation tree using (cong[]), (congf) and
(tran).

As a final example we show that we can rename an atom which is substituted for, using the
explicit substitution term-former sub from theory SUB (Example 2.15):

Lemma 3.15. b#X `
CORE

X[a 7→ T] = ((b a) ·X)[b 7→ T]

Proof. De-sugaring, we derive sub([a]X,T) = sub([b](b a) ·X,T) from b#X:

(#[]a)
a#[a]X

b#X
(#[]b)

b#[a]X
(perm)

[b](b a) ·X = [a]X
(symm)

[a]X = [b](b a) ·X
(congf)

sub([a]X,T) = sub([b](b a) ·X,T)

In Subsection 3.3.3 we will show that derivability in CORE precisely corresponds to α-equivalence
on nominal terms, in the sense of nominal unification [UPG04, Figure 2] and nominal rewrit-
ing [FG07, p.13].

Remark 3.16. (perm) admits a representation as an axiom:

a#X, b#X ` (a b) ·X = X.

It is not hard to see that with this axiom, (perm) becomes an instance of (ax). Our intended
semantics is in nominal sets so (perm) is mandatory for soundness (Theorem 4.24) to hold, and
accordingly we have built it into the derivation system.

3.2.3 The (fr) rule: introducing fresh atoms

(fr) allows us to introduce a fresh atom into the derivation. We may wish to do this, for example,
in order that we can α-convert an abstracted atom to be ‘fresh’. In the absence of unknowns X
we can ‘just rename’. In the presence of unknowns X, there only exists an a fresh for X if we
assume a#X; within the proof-theory of nominal algebra, (fr) is designed to guarantee we have
an infinite supply.

3 DERIVATIONS 16

In a sequent style presentation of nominal algebra, (fr) would be

∆, a#X1, . . . , a#Xn ` t = u

∆ ` t = u
(n ≥ 1, a 6∈ t, u,∆).

To prove that (fr) gives us extra deductive power we consider a theory C with one axiom
a#X ` X = a.

Lemma 3.17. We can derive `
C
X = Y with (fr), and not without it.

Proof. First, we derive `
C
X = Y with (fr):

[a#X]1
(axa#X`X=a)

X = a

[a#Y]1
(axa#X`X=a)

Y = a
(symm)

a = Y
(tran)

X = Y
(fr)1

X = Y

In the derivation above the superscript 1 is an annotation which associates the instance of the
rule (fr) with the assumptions it discharges in the derivation, as is standard notation in natural
deduction.

To show that it is impossible to derive `
C
X = Y without (fr) we show the more general property

that for all t, if t 6≡ X then X = t and t = X are not derivable without the use of (fr).
We proceed by contradiction. Let Π be a smallest derivation tree of X = t or t = X where

t 6≡ X. By the structure of the rules, Π cannot conclude with (refl), (cong[]) or (congf). Also by
the structure of the rules, Π cannot conclude with (axa#X`X=a) or (perm), since they require a
freshness condition on X.

We now consider (symm) and (tran). We only consider the case that Π is a derivation of X = t
case; the case that Π is a derivation of t = X is similar. Suppose Π concludes in:

• (symm). Then X = t is derived from t = X, and we have a smaller derivation tree of X = t
or t = X, which is a contradiction.

• (tran). Then X = t is derived from X = u and u = t. There are two cases depending
on whether u ≡ X or u 6≡ X, but in either case we obtain a smaller derivation tree and a
contradiction.

The result follows.

Remark 3.18. The (fr) rule can be simulated by a number of steps using the following more
compact rule:

[a#X] ∆
···

t = u
(fr′) (a 6∈ t, u)

t = u

We use (fr) because it allows us to express ‘let a be a fresh atom’ in a single, atomic reasoning
step. However, whether to prefer (fr′) and (fr) seems mostly a matter of taste.

3.3 Proof-theoretical results

We provide a number of proof-theoretical results for freshness and equality that will be used
throughout this paper.

3 DERIVATIONS 17

3.3.1 Equivariance

Definition 3.19. We naturally extend notation for tπ and ∆π to theories: given a theory
T = (Σ,Ax), write Tπ for (Σ,Axπ) such that ∇π ` tπ = uπ ∈ Axπ if and only if ∇ ` t = u ∈ Ax .

Lemma 3.20. If ∆ `
T
t = u then ∆ `

Tπ
t = u.

Proof. By induction on derivations. The only non-trivial case is (ax∇`t=u), where after applying
the inductive hypothesis we need to show that

∆ `
Tπ
∇π
′
σ implies ∆ `

Tπ
tπ
′
σ = uπ

′
σ.

By Lemma 3.7, it is equivalent to show that

∆ `
Tπ
∇π

π′◦π-1

σ implies ∆ `
Tπ
tπ
π′◦π-1

σ = uπ
π′◦π-1

σ.

This follows by (ax∇π`tπ=uπ) taking permutation π′ ◦ π-1 and substitution σ.

Theorem 3.21 states that we may permute atoms in freshnesses and equality at the meta-level.
This property is one way in which nominal algebra reflects internally the properties of atoms, as
expressed by Theorem A.4, which give ‘nominal techniques’ much of their character:

Theorem 3.21 (Meta-level equivariance). For any π:

1. if ∆ ` a#t then ∆π ` π(a)#tπ;

2. if ∆ `
T
t = u then ∆π `

T
tπ = uπ.

Proof. For the second case suppose
∆ `

T
t = u.

By equivariance (Theorem A.4) also

∆π `
Tπ
tπ = uπ.

By Lemma 3.20 we obtain
∆π `

Tπ
π-1 t

π = uπ.

Using Lemma 3.7 we easily show that Tπ
π-1

is syntactically identical to T, so ∆π `
T
tπ = uπ as

required.
The proof of the first part is direct from equivariance (Theorem A.4).

We can permute atoms in freshnesses and equations at the object-level (without changing the
freshness context):

Theorem 3.22 (Object-level equivariance). For any π:

1. if ∆ ` a#t then ∆ ` π(a)#π · t;
2. if ∆ `

T
t = u then ∆ `

T
π · t = π · u.

Proof. By induction on the structure of derivations. We consider the most interesting cases only.
Suppose the derivation concludes in. . .

• (#X). Then a#π′ ·X is derived from π′-1(a)#X, for some π′ 6= id , and we need to show
π(a)#π · (π′ ·X). By Lemma 3.2, this is equivalent to π(a)#(π ◦ π′) ·X. We continue by
case distinction:

– If π ◦ π′ = id then π(a)#(π ◦ π′) ·X is equivalent to the assumption π′-1(a)#X, since
π = π′-1 by basic permutation group theory.

3 DERIVATIONS 18

– If π ◦ π′ 6= id then by (#X) (which may now be applied),

π(a)#(π ◦ π′) ·X follows from (π ◦ π′)-1(π(a))#X.

This is equivalent to the assumption π′-1(a)#X, since (π ◦ π′)-1(π(a)) = π′-1(a).

• (ax∇`t=u). Then tπ
′
σ = uπ

′
σ is derived and ∆ `

T
∇π′σ. We need to derive π · tπ′σ = π · uπ′σ

from ∆. By Lemma 3.5, π · tπ′σ = π · uπ′σ is equivalent to (π · tπ′)σ = (π · uπ′)σ. Now let σ′

map each X ∈ ∇, t, u to π ·X, then by Lemma 3.8 it suffices to derive

tπ
′π

(σ′ ◦ σ) = uπ
′π

(σ′ ◦ σ).

By Lemma 3.7, this is equivalent to tπ◦π
′
(σ′ ◦ σ) = uπ◦π

′
(σ′ ◦ σ). Now this follows from

∇π◦π′(σ′ ◦ σ) by (ax∇`t=u) with permutation π ◦ π′ and substitution σ′ ◦ σ. By Lemmas 3.5,
3.8 and 3.7 this is equivalent to π · ∇π′σ. We are done since this follows from ∆ by the
inductive hypothesis.

• (fr). Then ∆, a#X1, . . . , a#Xn `T
t = u for some a 6∈ ∆, t, u and we assume the inductive

hypothesis of this derivation. If π(a) = a there is no problem since then a 6∈ ∆, π · t, π · u
and we may extend the derivation with (fr).
However, suppose π(a) 6= a and so (possibly) a ∈ π · t, π · u. We observe that the predicate

“if the labelled tree Π is a valid derivation of ∆ `
T
t = u, then for all permutations

π′ there are derivations of ∆ `
T
π′ · t = π′ · u”

has free variables Π, ∆, T, t and u.
By equivariance (Theorem A.4), the predicate above holds of Π(a′ a), ∆(a′ a), T(a′ a), t(a

′ a) and
u(a
′ a) (the informal notation Π(a′ a) denotes Π in which all atoms are permuted according

to (a′ a)).5 Now using Lemma 3.20 we deduce the inductive hypothesis of

∆, a′#X1, . . . , a
′#Xn `T

t = u for any a′ such that a′ 6∈ ∆, t, u and π(a′) = a′.

Then
∆, a′#X1, . . . , a

′#Xn `T
π · t = π · u

and we extend the derivation with (fr) to deduce ∆ `
T
π · t = π · u as required.

3.3.2 Substitution, weakening and strengthening

We can substitute terms for unknowns provided those terms violate no freshness assumptions
made on the unknowns:

Theorem 3.23 (Meta-level substitution). Suppose ∆′,∆, σ are such that ∆′ ` a#(tσ) for every
a#t ∈ ∆.

1. If ∆ ` a#t then ∆′ ` a#tσ.

2. If ∆ `
T
t = u then ∆′ `

T
tσ = uσ.

Proof. Natural deduction derivations are such that the conclusion of one derivation may be
‘plugged in’ to an assumption in another derivation. For (#X) we use object-level equivari-
ance (Theorem 3.22). For (fr) we use equivariance (Theorem A.4) to rename the freshly chosen
atom a if it is mentioned by ∆′, tσ or uσ.

Corollary 3.24. Suppose that t and u do not mention unknowns. If `
T
t = u then it has a

derivation that does not mention any unknowns, instances of (#X), or instances of (fr).

5Instead of using equivariance we can work by induction on a notion of the depth of derivations. This would
ignore that atoms are atomic, and have no internal structure, and so can be permuted. Equivariance gives more
compact, more readable proofs.

3 DERIVATIONS 19

Proof. Let Π be a derivation of `
T
t = u. Take c to be a fresh atom (so c does not occur in Π).

Let Π′ be Π in which:

• each unknown X is mapped to c;

• each instance of (#X) is replaced by (#ab); that is, each instance of (#X) is of the form

[π-1(a)#X]
(#X),

a#π ·X

where square brackets denote discharge of the freshness assumption. This is replaced by

(#ab).
a#c

We write c, not π(c), because we chose c fresh so that π(c) = c.

By Theorem 3.23 it follows that Π′ is a derivation of t = u, and it does not mention unknowns.
The instances of (fr) do not discharge any assumptions (they have been removed in the previous
step), and these instances can now be removed. The result follows.

The (fr) rule is a form of explicit strengthening rule of freshness contexts, for derivable equality.
A similar property is admissible for derivable freshness:

Lemma 3.25 (Strengthening).

1. If ∆, a#X1, . . . , a#Xn ` b#t, where n ≥ 1 and a 6∈ ∆, t, then ∆ ` b#t.
2. If ∆, a#X1, . . . , a#Xn `T

t = u, where n ≥ 1 and a 6∈ ∆, t, u, then ∆ `
T
t = u.

Proof. The equational case is precisely (fr). For the freshness case, we inductively transform a
derivation of ∆, a#X1, . . . , a#Xn ` b#t to a derivation of ∆ ` b#t:

• If ∆, a#X1, . . . , a#Xn ` b#X by assumption, then b#X ∈ ∆, so ∆ ` b#X by assumption.

• (#ab) and (#[]a) carry over directly.

• (#X), (#[]b) and (#f) follow using the inductive hypothesis and the following properties:
if a 6∈ π ·X then a 6∈ X, if a 6∈ [c]t then a 6∈ t, and if a 6∈ f(t1, . . . , tn) then a 6∈ ti for all i.

We can leverage the existing results to prove a proof-theoretic version of a characteristic semantic
property of atoms described in Lemma 4.17:

Corollary 3.26. If ∆ `
T
a = b is derivable, then `

T
c = d for all c and d.

Proof. Suppose ∆ `
T
a = b. By Lemma 3.25 `

T
a = b. The result follows by object-level equivari-

ance (Theorem 3.22).

3.3.3 A more computational presentation of CORE

In Example 2.15 we defined CORE as a family of nominal algebra theories with no axioms (one
for each signature). In Subsection 3.2 we have given some examples to show that the (perm) rule
expresses α-equivalence with meta-variables.

We will now prove that theory CORE corresponds to the existing syntax-directed notion of α-
equivalence on nominal terms from [UPG04, FG07]. So, the core notion of equality of nominal
algebra is α-equivalence in the sense of nominal terms.

We will use this correspondence to show that equality in CORE is decidable and that theory
CORE is consistent (does not equate all terms). Definition 3.29 was introduced in [UPG04,
Figure 2]; the proofs follow the method presented in [FG07, p.13].

Definition 3.27. We write ds(π, π′) for the difference set {a | π(a) 6= π′(a)} of π and π′. We
write ds(π, π′)#t for the set of freshnesses {a#t | π(a) 6= π′(a)}.

3 DERIVATIONS 20

(Ax)
a ≈∆ a

∆ ` ds(π′, π)#X
(Ds)

π ·X ≈∆ π′ ·X

t ≈∆ u
(Absaa)

[a]t ≈∆ [a]u

(b a) · t ≈∆ u ∆ ` b#t
(Absab)

[a]t ≈∆ [b]u

t1 ≈∆ u1 · · · tn ≈∆ un
(F)

f(t1, . . . , tn) ≈∆ f(u1, . . . , un)

Figure 3: Syntax-directed rules for CORE

Lemma 3.28. If ∆ ` ds(π, π′)#t then ∆ `
CORE

π · t = π′ · t.

Proof. We work by induction on the number of elements in ds(π, π′). If this set is empty then
π = π′ and the result follows easily by (refl). Now suppose a ∈ ds(π, π′). We construct a partial
derivation of the proof obligation:

π · t = ((π(a) π′(a)) ◦ π′) · t
π(a)#π′ · t π′(a)#π′ · t

(perm)
((π(a) π′(a)) ◦ π′) · t = π′ · t

(tran)
π · t = π′ · t

The following proof obligations remain:

1. π · t = ((π(a) π′(a)) ◦ π′) · t follows from ds(π, (π(a) π′(a)) ◦ π′)#t by the inductive hypoth-
esis, provided that

|ds(π, (π(a) π′(a)) ◦ π′)| < |ds(π, π′)|.

This condition is satisfied, since

ds(π, (π(a) π′(a)) ◦ π′) = ds(π, π′) \ {a}.

The remaining proof obligation ds(π, (π(a) π′(a)) ◦ π′)#t follows by assumption ds(π, π′)#t.

2. π(a)#π′ · t follows from π′-1(π(a))#t by object-level equivariance (Theorem 3.22). Now
this is one of the assumptions ds(π, π′)#t: by Definition 3.27, π′-1(π(a)) ∈ ds(π, π′) when
π(π′-1((π(a))) 6= π(a), and, using the fact that 6= is invariant under permutation, this follows
from the assumption π(a) 6= π′(a).

3. π′(a)#π′ · t follows from a#t by object-level equivariance (Theorem 3.22). This follows
directly from assumption ds(π, π′)#t, since a ∈ ds(π, π′).

Definition 3.29. Let t ≈∆ u be an ordered tuple of a term t, a freshness context ∆, and a term
u. Let the derivable equalities of t ≈

∆
u be inductively defined by the rules in Figure 3.

Theorem 3.30 (Equivalence of CORE and ≈
∆

). ∆ `
CORE

t = u is derivable if and only if t ≈
∆
u

is derivable using the rules of Figure 3.

Proof. The left-to-right direction is by induction on the structure of nominal algebra derivations
of ∆ `

CORE
t = u. By the inductive hypothesis it suffices to show:

• Syntax-directed equality ≈
∆

is an equivalence relation and a congruence. This is [FG07,
Theorem 24].

• If ∆ ` a#t and ∆ ` b#t then (a b) · t ≈
∆
t. By induction on t.

4 DENOTATIONS 21

• If t ≈
∆,a#X1,...,a#Xn

u where a 6∈ t, u,∆ then t ≈∆ u. By straightforward induction on the
structure of derivations of t ≈

∆,a#X1,...,a#Xn
u. The case of (Absab) uses strengthening

(Lemma 3.25) to strengthen the assumption ∆, a#X1, . . . , a#Xn ` c#t to ∆ ` c#t.

For the right-to-left direction we work by induction on derivations of t ≈∆ u. By the inductive
hypothesis it suffices to show:

• ∆ `
CORE

a = a. This is an instance of (refl).

• If ∆ ` ds(π, π′)#X then ∆ `
CORE

π ·X = π′ ·X. This is Lemma 3.28.

• If ∆ `
CORE

ti = ui for 1 ≤ i ≤ n, then ∆ `
CORE

f(t1, . . . , tn) = f(u1, . . . , un). Using a number
of instances of (tran) and (congf).

• If ∆ `
CORE

t = u then ∆ `
CORE

[a]t = [a]u. This is (cong[]).

• If ∆ `
CORE

(b a) · t = u and ∆ ` b#t then ∆ `
CORE

[a]t = [b]u. Suppose that Π and Π′ are
derivations of ∆ `

CORE
(b a) · t = u and ∆ ` b#t respectively. Then the following is a

derivation of ∆ `
CORE

[a]t = [b]u:

··· Π
′

b#t
(#[]b)

b#[a]t
(#[]a)

a#[a]t
(perm)

[b](b a) · t = [a]t
(symm)

[a]t = [b](b a) · t

··· Π
(b a) · t = u

(cong[])
[b](b a) · t = [b]u

(tran)
[a]t = [b]u

As corollaries of Theorem 3.30, we obtain syntactic criteria for determining equality in CORE,
consistency of CORE, and preservation of freshness for CORE.

Corollary 3.31 (Decidability of CORE). ∆ `
CORE

t = u precisely when one of the following holds:

1. t ≡ a and u ≡ a.

2. t ≡ π ·X and u ≡ π′ ·X and ∆ ` ds(π, π′)#X.

3. t ≡ [a]t′ and u ≡ [a]u′ and ∆ `
CORE

t′ = u′.

4. t ≡ [a]t′ and u ≡ [b]u′ and ∆ ` b#t′ and ∆ `
CORE

(b a) · t′ = u′.

5. t ≡ f(t1, . . . , tn) and u ≡ f(u1, . . . , un) and ∆ `
CORE

ti = ui for 1 ≤ i ≤ n.

Proof. By Theorem 3.30 it suffices to inspect the rules for t ≈∆ u, which are just a rendering of
the above criteria in terms of derivation rules.

Corollary 3.32 (Consistency of CORE). For all ∆ there are t and u such that ∆ 0
CORE

t = u.

Proof. By Corollary 3.31, ∆ `
CORE

a = b is never derivable.

Corollary 3.33 (Preservation of freshness for CORE). If ∆ `
CORE

t = u then

∆ ` a#t if and only if ∆ ` a#u.

Proof. By induction on t using the syntactic criteria of Corollary 3.31.

4 Denotations

In this section we provide a denotation of nominal algebra in terms in nominal sets. We give a
brief overview of nominal sets in Subsection 4.1. In Subsection 4.2 we show how we can interpret
freshness and equality in nominal sets, we define what constitutes a model of a theory (a signature

4 DENOTATIONS 22

with a set of axioms), and we show that our notion of derivability is sound with respect to
the semantics. In Subsection 4.3 we define the notion of free term models. We need this to
show completeness of equality derivations in Subsection 4.4. Finally, we express a sense in which
semantic freshness is complete in Subsection 4.5.

4.1 Nominal sets

We briefly review the parts of nominal sets relevant to this paper. For full treatments see [GP01]
or [Pit03] ([Pit03] contains a simplified presentation of [GP01]).

Recall from Definitions 2.2 and 2.3 that we write A for the set of all atoms, P for the set
of all permutations, id and ◦ for the identity and composition of permutations, and recall from
Definition 3.27 that we write ds(π, π′) for the difference set of π and π′.

Definition 4.1. A P-action · on a set X is a function · : P× X→ X, write it infix as π · x, such
that id ·x = x and π · (π′ ·x) = (π ◦π′) ·x for all x ∈ X. Say that a finite set of atoms A supports
x when for any permutation π:

if π(a) = a for each a ∈ A, then π · x = x.

Say that x has finite support when there exists such a set of atoms.
A nominal set is a set X equipped with a P-action on X such that each x ∈ X has finite support.

In [GP01, Proposition 3.4] it is shown that if an element x ∈ X has finite support, then there is
a unique least finite set of atoms that supports x.

Definition 4.2. When x ∈ X has finite support, call the least finite set of atoms that supports x
the support of x, and write it as supp(x).

When a 6∈ supp(x) we write a#semx and we say that a is fresh for x.

Lemma 4.3. Basic results on nominal sets are:

1. supp(x) = {a ∈ A | {b ∈ A | (a b) · x 6= x} is not finite}.
2. If ds(π, π′) ∩ supp(x) = ∅ then π · x = π′ · x.

3. a#semx if and only if π(a)#semπ · x.

Proof. Elsewhere [GP01, Proposition 3.4] and by calculations.

A corollary will be useful later:

Corollary 4.4. Suppose X is a nominal set and suppose x ∈ X. Suppose that b#semx. Then a#semx
if and only if (b a) · x = x.

Proof. Suppose that (b a) · x = x. By assumption b 6∈ supp(x). By part 3 of Lemma 4.3 it follows
that a 6∈ supp((b a) · x). The result follows.

Suppose that a#semx. Then a 6∈ supp(x). By part 3 of Lemma 4.3 it follows that b 6∈ supp((b a) · x).
The result follows.

Remark 4.5. Note that properties of denotational equality like ‘if x = y then π · x = π · y’ and
‘if x = y then a ∈ supp(x) if and only if a ∈ supp(y)’ are immediate since an element has exactly
the same properties as itself. This contrasts with similar properties of derivable equality, which as
discussed in the Introduction we also write =, such as Theorem 3.22 and Corollary 3.33. These
require proof.

Note further that in this paper we also use notions of derivable and denotational freshness.
While the reader is probably familiar with derivable and denotational equality, they are perhaps
not as familiar with derivable and denotational freshness. Correspondingly we go to more effort
to be precise in our notation: we use # for derivable freshness as in ∆ ` a#t; and we write #sem

for denotational freshness (Definition 4.2) as in a#semx.

4 DENOTATIONS 23

Example 4.6.

1. The set A of all atoms with action π · a = π(a) is a nominal set; supp(a) = {a}. Note that
for x, y ∈ A, x ∈ supp(y) when x = y.

2. The powerset P(A) = {U | U ⊆ A} of A with action π · U = {π · u | u ∈ U}, is not a nominal
set: enumerate atoms as a1, a2, a3, . . .; then the comb

comb = {a1, a3, a5, . . .} ∈ P(A)

does not have finite support.

3. It is routine to use Lemma 4.3 to verify that the set of all finite sets of atoms, with the
pointwise action inherited from P(A), is a nominal set. If U ⊆ A is finite then supp(U) = A.

4. Call U ⊆ A cofinite when A\U is finite. It is also routine to use Lemma 4.3 to verify that
the set of all cofinite sets of atoms, with the pointwise action, is a nominal set. If U ⊆ A is
cofinite, then supp(U) = A\U .
Note that the support of A\{a} is {a}, so b#semA\{a} but not a#semA\{a}.

5. The set Pfs(A) of finite and cofinite subsets of A is a nominal set (fs stands for finite support).
It can be proved that a set of atoms is finitely-supported if and only if it is finite or cofinite.
Generalisations of the notion of finite support have been considered; to any ultrafilter
[Che06], and to any well-orderable set of atoms [Gab07b].

6. The empty set ∅ with the trivial action is a nominal set.

7. The set of infinitary λ-calculus expressions [KKSdV97] with the pointwise action is not a
nominal set: expressions might mention an infinite number of different atoms, so they do
not adhere to the finite support property. This problem can be overcome by moving to
FMG (Fraenkel Mostowski Generalised) [Gab07b]. This generalises the countable set of
atoms to any large cardinality, and finite sets of atoms to any strictly smaller cardinality
(well-orderable sets to be precise).

Remark 4.7. We should think of supp(x) as a sets-based notion of ‘occurs in x conspicuously ’.
An element can be conspicuous by its absence, as well as its presence; consider the example of
supp(A\{a}) = {a} from Pfs(A) above.

Definition 4.8. If X and Y are nominal sets write X× Y for

{(x, y) | x ∈ X, y ∈ Y} with action π · (x, y) = (π · x, π · y).

This is a nominal set; the support of (x, y) ∈ X× Y is the union of the supports of x and y. In
symbols, supp((x, y)) = supp(x) ∪ supp(y) ⊆ A.

If X is a nominal set write Xn for

{(x1, . . . , xn) | xi ∈ X, 1 ≤ i ≤ n} with action π · (x1, . . . , xn) = (π · x1, . . . , π · xn).

Again, this is a nominal set; the support of an element (x1, . . . , xn) is the union of the supports
of the xi. In symbols: supp((x1, . . . , xn)) =

⋃
{supp(xi) | 1 ≤ i ≤ n} ⊆ A.

Definition 4.9. For any nominal sets X,Y, call a function f ∈ X→ Y (on the underlying sets)
equivariant when π · f(x) = f(π · x) for any x ∈ X.

Lemma 4.10. Suppose X and Y are nominal sets. Suppose f ∈ X→ Y is equivariant and suppose
x ∈ X. Then

supp(f(x)) ⊆ supp(x).

As a corollary, a#semx implies a#semf(x).

Proof. By Definition 4.9 π · f(x) = f(π · x), so if π · x = x then π · f(x) = f(x).
The corollary follows by Definition 4.2.

4 DENOTATIONS 24

Subsets of (the underlying set of) a nominal set will be important later when we build free term
algebras.

Definition 4.11. X ⊆ X inherits a pointwise action π · X = {π · x | x ∈ X}.
We will always use this action on X ⊆ X.

a#semX does not imply that a#semx for every x ∈ X . For example A ⊆ A and it is a fact that a#semA
— but a ∈ A and not a#sema. Furthermore X ⊆ X does not imply that X is finitely supported. For
example recall comb from Example 4.6; comb ⊆ A but comb is not finitely supported. However,
the finitely-supported subsets of X form a nominal set — they have a permutation action, and are
finitely supported.

We conclude with a useful technical lemma:

Lemma 4.12. Suppose X is a nominal set and suppose X ⊆ X is finitely-supported and nonempty.
Suppose that

a1#semX , . . . , an#semX

Then there exists some x ∈ X such that

a1#semx, . . . , an#semx.

Proof. Choose any y ∈ X . Since X and y are finitely-supported, we can find (distinct) atoms
b1, . . . , bn such that bi#semX and bi#semy for 1 ≤ i ≤ n. Then by part 2 of Lemma 4.3 we have that
(b1 a1) · · · (bn an) · X = X .

Write x = (b1 a1) · · · (bn an) · y. Then x ∈ X by Definition 4.11 and we conclude ai#semx for
1 ≤ i ≤ n by part 3 of Lemma 4.3 and the assumption bi#semy.

4.2 Interpretations, models and validity

Nominal algebra is a logic of equality, tailored to nominal sets; in this subsection we give that
observation concrete mathematical force, by defining a notion of semantics for nominal algebra
theories, in nominal sets. Recall the definition of an equivariant function (Definition 4.9).

Definition 4.13. An interpretation of a signature Σ is a tuple

I =
(
|I|, Iatm , Iabs , {If | f ∈ Σ}

)
where:

• |I| is a nominal set.
This is the underlying set (also often called the carrier set) of the interpretation.

• Iatm ∈ A→ |I| is an equivariant function.
We use this to interpret atoms.

• Iabs ∈ |I| × |I| → |I| is an equivariant function such that a#semIabs(Iatm(a), x) for all a ∈ A
and x ∈ |I|.
We use this to interpret abstraction.

• If ∈ |I|n → |I| is an equivariant function for each term-former f : n in Σ.
We use this to interpret term-formers. (|I|n is defined in Definition 4.8.)

We extend the notion of interpretation to terms, where we use a valuation to map unknowns to
elements in |I|:

Definition 4.14. A valuation (to |I|) ς maps unknowns X to elements ς(X) ∈ |I|. We write
JtKIς for the interpretation of a term t under a valuation ς, inductively defined by:

JaKIς = Iatm(a) Jπ ·XKIς = π · ς(X) J[a]tKIς = Iabs(Iatm(a), JtKIς)
Jf(t1, . . . , tn)KIς = If(Jt1KIς , . . . , JtnKIς)

4 DENOTATIONS 25

Remark 4.15. In view of the fact that in an atoms-abstraction [a]t the syntax insists on an
atom and a term, the reader might have expected correspondingly that Iabs should be a func-
tion in A× |I| → |I| (instead of a function in |I| × |I| → |I|), such that a#semIabs(a, x) for all
(a, x) ∈ A× |I|. If we do that, then a model and valuation may exist such that JaKIς = JbKIς , and
J[a]XKIς 6= J[b]XKIς . There is nothing actually wrong with that (in the formal sense that soundness
and completeness will still hold, see [Mat07] for details), but we find it convenient to exclude such
models.

Interpretations are equivariant:

Lemma 4.16. For any π, π · JtKIς = Jπ · tKIς .

Proof. By induction on the structure of t, using Lemma 4.10 for the cases of a, [a]t and f(t1, . . . , tn).

Lemma 4.17 is the semantic analogue of Corollary 3.26:

Lemma 4.17. If JaKIς = JbKIς then JcKIς′ = JdKIς′ for all c, d, and ς ′.

Proof. Unpacking the definitions, it suffices to prove that if Iatm(a) = Iatm(b) then Iatm is a
constant function. Choose any other atom d. We reason as follows:

Iatm(d) = (d a) · Iatm(a) Equivariance (Definition 4.9)
= (d a) · Iatm(b) Assumption
= Iatm((d a)(b)) Equivariance
= Iatm(b) Fact

The result follows.

Using the interpretations of signatures and terms, we define the notion of validity on judgement
forms as follows:

Definition 4.18. For any interpretation I, say that:

J∆KIς (is valid) when a#semς(X) for each a#X ∈ ∆

J∆ ` a#tKIς when J∆KIς implies a#semJtKIς

J∆ ` t = uKIς when J∆KIς implies JtKIς = JuKIς

J∆ ` a#tKI when J∆ ` a#tKIς for all valuations ς

J∆ ` t = uKI when J∆ ` t = uKIς for all valuations ς

Validity is equivariant in a sense very similar to that described in Theorem 3.21:

Lemma 4.19. For any π,

1. J∆ ` a#tKI if and only if J∆π ` π(a)#tπKI.

2. J∆ ` t = uKI if and only if J∆π ` tπ = uπKI.

Proof. Direct from ZFA equivariance (Theorem A.4).

Then a model of a theory is an interpretation that validates its axioms:

Definition 4.20. An interpretation I of T is a model when

J∇ ` t = uKI for all axioms ∇ ` t = u of T.

Lemma 4.21. Define the singleton interpretation S to have underlying set {∗} (a singleton
set containing a single, equivariant element), with Satm , Sabs , and Sf constant functions with value
∗.

Then S is an interpretation and a model for every theory.

4 DENOTATIONS 26

Proof. By routine verifications.

Remark 4.22. By Lemma 4.17, Iatm is either injective (so atoms ‘live in’ |I|), or constant. We
do not insist that Iatm ∈ A→ |I| is injective (i.e. we allow Iatm to be constant). We prefer this,
for two reasons:

• We want the singleton interpretation of Lemma 4.21 to be an interpretation and to be a
model for all theories, just as it is for universal algebra.

• We want to avoid that ∆ `
T
a = b implies that T has no model; by Lemma 4.17 this would

happen, if we insisted that Iatm is a constant function.

In particular, we want the theory with a single axiom ` a = b to have a model, and we want
the ‘universal theory’ with axiom ` X = Y to have a model.

We find this more elegant, and more in keeping with our completeness result (Theorem 4.39).

Definition 4.23. For any theory T, define validity with respect to T for judgement forms as
follows:

• Write ∆ |=
T
a#t when J∆ ` a#tKI for all models I of T.

• Write ∆ |=
T
t = u when J∆ ` t = uKI for all models I of T.

Note the T subscript in |=
T
, which indicates that semantic freshness is not a purely syntax-

directed affair, as is freshness derivability, but it also depends on the axioms of theory T. More
on this in Subsections 4.5 and 5.2.

Derivability of freshness and equality is sound for the semantics:

Theorem 4.24 (Soundness). For any T, ∆, a, t, u:

1. If ∆ ` a#t then ∆ |=
T
a#t.

2. If ∆ `
T
t = u then ∆ |=

T
t = u.

Proof. Let I be a model of T. We must show for any valuation ς that if ∆ ` a#t and J∆KIς then
a#semJtKIς , and that if ∆ `

T
t = u and J∆KIς then JtKIς = JuKIς .

We work by induction on derivations (Figures 1 and 2). Fix some valuation ς.

• (#ab). We must show a#semJbKIς , i.e. a#semIabs(b). By Lemma 4.10 this follows from a#semb
(see part 1 of Example 4.6).

• (#X). By the inductive hypothesis we know π-1(a)#semς(X). By part 3 of Lemma 4.3 we
conclude a#semπ · ς(X).

• (#[]a). a#semIabs(Iatm(a), JtKIς) holds by assumption (recall Definition 4.13).

• (#[]b). a#semJtKIς implies a#semIabs(Iatm(b), JtKIς), by Lemma 4.10.

• (#f). If a#semJtiKIς for 1 ≤ i ≤ n then a#semIf(Jt1KIς , . . . , JtnKIς) follows using Lemma 4.10.

• (refl), (symm), (tran), (cong[]), (congf). By properties of equality.

• (perm). We know that a#semJtKIς and b#semJtKIς imply (a b) · JtKIς = JtKIς by part 2 of Lemma 4.3.
We conclude J(a b) · tKIς = JtKIς by Lemma 4.16.

• (ax∇`t=u). Suppose J∇πσKIς . Then π(a)#semJσ(X)KIς holds for all a#X ∈ ∇. By part 3 of
Lemma 4.3 also a#semπ

-1 · Jσ(X)KIς for all a#X ∈ ∇. Let ς ′ be defined as

ς ′(X) = π-1 · Jσ(X)KIς for every X.

Then a#semς
′(X) for all a#X ∈ ∇, so J∇KIς′ holds. Since ∇ ` t = u is an axiom of T, we

know JtKIς′ = JuKIς′ . Then trivially also π · JtKIς′ = π · JuKIς′ , and by Lemma 4.16 we ob-
tain Jπ · tKIς′ = Jπ · uKIς′ . Now by a straightforward induction on syntax we can verify that
Jπ · tKIς′ = JtπσKIς and Jπ · uKIς′ = JuπσKIς , and we conclude JtπσKIς = JuπσKIς .

4 DENOTATIONS 27

• (fr). Suppose ∆ `
T
t = u is derived from ∆, a#X1, . . . , a#Xn `T

t = u, where a 6∈ t, u,∆.
By equivariance (Theorem A.4) then also

∆, a′#X1, . . . , a
′#Xn `T

t = u

for all other a′ not occurring in ∆, t or u, and we retain the inductive hypothesis for
∆, a′#X1, . . . , a

′#Xn `T
t = u.

We must show that J∆ `
T
t = uKIς for any ς. Given ς, pick an a′ 6∈ ∆, t, u such that a′#semς(Xi)

for 1 ≤ i ≤ n. Then by the inductive hypothesis we obtain J∆, a′#X1, . . . , a
′#Xn `T

t = uKIς .
But this is equivalent to J∆ `

T
t = uKIς , since Ja′#X1, . . . , a

′#XnKIς . The result follows.

4.3 Free term models

In order to show that derivability of equality is complete with respect to the semantics, we need
the notion of a free term model, which is slightly but significantly different from the definition
normally used for universal algebra.

Definition 4.25. In this subsection fix a signature Σ, a theory T = (Σ,Ax), and fix a set of
term-formers D disjoint from Σ.

In Subsection 4.4 we will construct a specific D and use it to prove Completeness, but nothing
in this subsection depends on that choice; here, D can be any set of term-formers, including an
infinite set, or the empty set.

The usual technique to obtain models for a theory T is to add constant symbols to the language
(to ensure a supply of ‘arbitrary elements’) and quotient by provable equality. But in nominal
algebra constants have empty support; if d has arity 0 then ` a#d is derivable for any a. Adding
constants only ensures a supply of elements with empty support.

To reflect in syntax that an element of a nominal set can have support, we use n-ary term-formers
d applied to n distinct atoms. This idea goes back to [Gab07a]. We now give the construction in
detail.

Definition 4.26. Let free terms be inductively generated by the following grammar:

g ::= a | [a]g | f(g1, . . . , gn) | d(a1, . . . , an)

Here f : n ranges over elements of Σ, and d : n ranges over elements of D.

Recall the notation π · t for the object-level permutation action on a term t from Definition 3.1.

Lemma 4.27. The set of free terms with action π · g is a nominal set; the support of g is
{a ∈ A | a ∈ g}.

As a corollary, a 6∈ g if and only if a#semg.

Proof. supp(g) = {a ∈ A | a 6∈ g} follows by an induction on the structure of g, using part 1 of
Lemma 4.3. This result is obvious; we are now thinking of g just as a labelled tree structure. Our
notion of equality is syntactic identity ≡ so that, for example, [a]a 6≡ [b]b and thus a#sem[a]a is
false.6 The corollary follows by Definition 4.2.

Definition 4.28. Write (congd) for an instance of the (congf) rule when f ∈ D. Write [g]
T

for
the set of free terms g′ such that a derivation of `

T
g = g′ exists that does not mention (congd)

for any d ∈ D.
Let the set of free terms up to T be the set {[g]

T
| g a free term}.

6The reader may find it useful to recall the meta-level permutation action (Definition 3.6). It is a fact that on
free terms this coincides with the object-level permutation action (Definition 3.1). Intuitively, the native notion
of equality for the object-level permutation action is derivable equality, and the native notion of equality for the
meta-level permutation action is synactic identity. It is this latter notion of identity which we are concerned with
when we judge whether a is fresh for g as a labelled tree structure.

4 DENOTATIONS 28

Lemma 4.29. The set of free terms up to T with action π · [g]
T

= [π · g]
T

is a nominal set; [g]
T

is supported by {a ∈ A | a ∈ g}.

Proof. It is easy to check that π·[g]
T

= [π·g]
T

defines a permutation action. Let π be a permutation
such that π(a) = a for all a ∈ g. We must show π · [g]

T
= [g]

T
. By assumption π · [g]

T
= [π · g]

T
,

and by part 2 of Lemma 4.3 and Lemma 4.27 we obtain that (or we can inductively prove that)
π · g ≡ g. The result follows by (refl).

The following technical corollary will be useful later:

Corollary 4.30. a1#sem[g]
T
, . . . , an#sem[g]

T
if and only if one of the following holds:

• There is some g′ ∈ [g]
T

such that a1#semg
′, . . . , an#semg

′.

• There is some g′ ∈ [g]
T

such that a1 6∈ g′, . . . , an 6∈ g′.

Proof. By Lemma 4.27 the two alternatives are equivalent.
The left-to-right implication is from Lemma 4.12. For the right-to-left implication, suppose

there is some g′ ∈ [g]
T

(so [g]
T

= [g′]
T
) such that a1 6∈ g′, . . . , an 6∈ g′. The result follows since by

Lemma 4.29 a1#sem[g′]
T
, . . . , an#sem[g′]

T
.

The following example illustrates how Corollary 4.30 is non-trivial.

Example 4.31. Consider a theory ATOM with one axiom ` a = b. It is easy to verify that
a#sem[a]

ATOM
(since [a]

ATOM
= A), but a#sema is false. Of course, `

ATOM
a = b is derivable and a#semb

is true. Similarly in LAM it is a fact that a#sem[(λ[a]b)a]
LAM

but not a#sem(λ[a]b)a. Of course,
`

LAM
(λ[a]b)a = b is derivable and a#semb is true.

Definition 4.32. We construct the free term model T of T over D as follows:

• Take |T | equal to the set of free terms up to T (Definition 4.28) with action π · [g]
T

= [π · g]
T
.

• Tatm(a) = [a]
T
.

• We set Tabs(y, x) = [[a]g]
T

for some g ∈ x and atom a ∈ y, if some such atom a exists (we
prove this is well-defined in Theorem 4.36 below).
Otherwise, we set Tabs(y, x) = x.

• Tf(x1, . . . , xn) = [f(g1, . . . , gn)]
T

for some g1 ∈ x1, . . . , gn ∈ xn
(for each term-former f : n in Σ).

Remark 4.33. It is usual to build free term models by quotienting by derivable equality; we
exclude (congd) to avoid the following degenerate case:

If we allow (congd) and T contains an axiom such as ` a = b, then supp[d(a1, . . . , an)]
T

= ∅.
This is not the behaviour we want. Similarly our syntax of free terms does not allow terms of the
form d(g1, . . . , gn) in general.

Consistent with a construction used in [Gab07a], the only purpose of [d(a1, . . . , an)]
T

is to ‘be
an unknown element with support a1, . . . , an’.

We need two technical lemmas:

Lemma 4.34. For any free term g, if a 6∈ g or a#semg then ` a#g.

Proof. We note that by Lemma 4.27, a 6∈ g and a#semg are equivalent. We prove that a 6∈ g implies
` a#g by an easy induction on syntax, using the rules in Figure 1.

Lemma 4.35. a#sem[[a]g]
T

always.

Proof. By Corollary 4.30 it suffices to exhibit some g′ ∈ [[a]g]
T

such that a 6∈ g′. Unpacking def-
initions and using Corollary 4.30 it suffices to exhibit some g′ such that `

T
g′ = [a]g and such

that a 6∈ g′. We choose fresh b (so b 6∈ [a]g) and set g′ ≡ [b](b a) · g; it is easy to check that a 6∈ g′.
By (#[]a) we know ` a#[a]g. By assumption b 6∈ [a]g so by Lemma 4.34 also ` b#g. It fol-
lows by (perm) that `

T
(b a) · [a]g = [a]g; since g′ ≡ (b a) · [a]g we deduce g′ ∈ [[a]g]

T
. The result

follows.

4 DENOTATIONS 29

Theorem 4.36. T is an interpretation of Σ.

Proof. |T | is a nominal set by Lemma 4.29.
We must show that Tatm , Tabs , and JfKT are equivariant.
We must show that Tabs and JfKT are well-defined.

• Tabs(y, x) is well-defined. There are three cases.

– If there exists no a ∈ A such that a ∈ y then Tabs(y, x) = x and there is nothing to
prove.

– Suppose that a ∈ A is unique such that a ∈ y. Suppose that g ∈ x and h ∈ x. That
is, [g]

T
= [h]

T
, so `

T
g = h. It follows by (cong[]) that `

T
[a]g = [a]h. Therefore

[[a]g]
T

= [[a]h]
T

as required.

– Suppose that a ∈ A and b ∈ A and a ∈ y and b ∈ y. Thus, `
T
a = b, so by Corol-

lary 3.26 for every pair of atoms c and d, `
T
c = d. Now suppose that g ∈ x and h ∈ x,

so `
T
g = h. It is now routine to construct a derivation of `

T
[a]g = [b]h. Therefore

[[a]g]
T

= [[b]h]
T

as required.

• a#semTabs([a]
T
, [g]

T
) always. a ∈ [a]

T
and g ∈ [g]

T
so by definition Tabs([a]

T
, [g]

T
) = [[a]g]

T
.

The result follows by Lemma 4.35.

• JfKT is well-defined. Suppose that g1 ∈ x1, . . . , gn ∈ xn and h1 ∈ x1, . . . , hn ∈ xn. Thus,
`

T
gi = hi for 1 ≤ i ≤ n. The result follows using (congf).

Theorem 4.37. T is a model of T.

Proof. Theorem 4.36 states that T is an interpretation of T. It remains to show that T validates
the axioms.

Suppose ∇ ` t = u is an axiom of T. Suppose that ς is a valuation to |T | and that a#semς(X)
for every a#X ∈ ∇. We must show that JtKTς = JuKTς .

Let X be the set of all unknowns mentioned in ∇, t, or u. By Corollary 4.30, for every X ∈ X
there is an element g

X
∈ ς(X) such that a#semgX for every a#X ∈ ∇. Let σ be the substitution

such that σ(X) = g
X

when X ∈ X and σ(X) = X when X 6∈ X . By Lemma 4.34 ` ∇σ, and so
`

T
tσ = uσ by (ax∇`t=u). Since this derivation does not mention (congd), we know [tσ]

T
= [uσ]

T

by Definition 4.28. By an induction on syntax we verify that [tσ]
T

= JtKTς and [uσ]
T

= JuKTς , and
the result follows.

4.4 Completeness for equality derivations

Definition 4.38. For this subsection, fix a signature Σ, a theory T = (Σ,Ax), and terms t, u and
a freshness context ∆ in signature Σ.

We will show that derivability of ∆ `
T
t = u is complete. That is, we will prove:

Theorem 4.39 (Completeness). If ∆ |=
T
t = u then ∆ `

T
t = u.

The proof takes up the rest of this subsection.
We shall consider a specific free term model and a specific valuation that preserves sufficient

information to allow us to reconstruct a derivation of ∆ `
T
t = u.

Definition 4.40. Let X be the unknowns mentioned in ∆, t, u, and let A be the atoms mentioned
in ∆, t, u. For each X ∈ X :

• let aX1, . . . , aXkX be the atoms in A (in some arbitary but fixed order) such that aXi#X 6∈ ∆;

• let dX : kX be a term-former.

4 DENOTATIONS 30

For each unknown X 6∈ X , let dX : 0 be a term-former.
Let D be the set of all dXs (so dX ∈ D for each X).

Definition 4.41. Let σ be the following substitution:

σ(X) = dX(aX1, . . . , aXkX) (X ∈ X)
σ(X) = dX() (X 6∈ X)

We consider the free term model T of T over D (Definition 4.32), and the valuation ς specified
by ς(X) = [σ(X)]

T
.

Lemma 4.42. [tσ]
T

= JtKTς and [uσ]
T

= JuKTς .

Proof. By an induction on syntax.

Lemma 4.43. J∆KTς holds.

Proof. Suppose a#X ∈ ∆. We must show that a#semς(X).
By construction X ∈ X so ς(X) = [dX(aX1, . . . , aXkX)]T . But also a 6∈ {aX1, . . . , aXkX} by construc-

tion so a 6∈ dX(aX1, . . . , aXkX) . The result follows by Corollary 4.30.

Definition 4.44. Let Π be a derivation of `
T
tσ = uσ without using (congd). By Corollary 3.24

we assume that Π does not contain unknowns or instances of (#X) and (fr).
Let A′ be A extended with:

• atoms mentioned anywhere in Π (that were not already in A);

• a set B of fresh atoms, in bijection with A — for convenience, we fix a bijection and write
bXi for the atom corresonding under that bijection with aXi — and

• one fresh atom c (so c does not occur in A, Π, or B).

Let ∆′ be ∆ extended with freshness assumptions a′#X for every X ∈ X and every a′ ∈ A′ \ A.

Definition 4.45. For the rest of this subsection let g and h range over free terms in Σ ∪ D that
mention only atoms from A′ \ (B ∪ {c}). Define an inverse mapping --1 from such free terms to
terms in Σ inductively as follows:

a-1 ≡ a
([a]g)-1 ≡ [a]g-1

f(g1, . . . , gn)-1 ≡ f(g-11 , . . . , g
-1
n)

dX(a′X1, . . . , a
′
XkX

)-1 ≡ (a′X1 bX1) ◦ · · · ◦ (a′XkX bXkX) ◦ (bX1 aX1) ◦ · · · ◦ (bXkX aXkX) ·X (X ∈ X)
dX()-1 ≡ c (X 6∈ X)

(Here, we relax our permutative convention and permit the possibility that a′Xi = aXj for some i
and j.) We extend the notation --1 to freshnesses and freshness contexts by acting on the terms
they mention.

The inverse mapping is equivariant (for the terms we care about):

Lemma 4.46. ∆′ `
CORE

(π · g)-1 = π · g-1 when {a | π(a) 6= a} ⊆ A′ \ (B ∪ {c}).

Proof. By induction on the structure of g. The only non-trivial case is when g ≡ dX(a′X1, . . . , a
′
XkX

)
with X ∈ X . Then we must show

∆′ `
CORE

π′ ·X = π′′ ·X,

where we used the following abbreviations:

π′ = (π(a′X1) bX1) ◦ · · · ◦ (π(a′XkX) bXkX) ◦ (bX1 aX1) ◦ · · · ◦ (bXkX aXkX)
π′′ = π ◦ (a′X1 bX1) ◦ · · · ◦ (a′XkX bXkX) ◦ (bX1 aX1) ◦ · · · ◦ (bXkX aXkX)

4 DENOTATIONS 31

By the syntactic criteria for CORE derivability (Corollary 3.31) it suffices to show

∆′ ` ds(π′, π′′)#X.

The result follows by a case analysis on the atoms in the difference set, using the fact that
π(b

Xi
) = b

Xi
.

Lemma 4.47. ∆′ `
CORE

tσ-1 = t and ∆′ `
CORE

uσ-1 = u.

Proof. We show ∆′ `
CORE

vσ-1 = v for each subterm v of t and u. We do this by induction on the
structure of v. The proof of the case of v ≡ π ·X is analogous to the dX(a′X1, . . . , a

′
XkX

) case in the
proof of Lemma 4.46.

Lemma 4.48. If `
T
tσ = uσ without using (congd) then ∆ `

T
t = u.

If ` a#tσ then ∆ ` a#t.

Proof. Suppose we could transform derivations of

` a#tσ or `
T
tσ = uσ

into derivations of

∆′ ` a#tσ-1 or ∆′ `
T
tσ-1 = uσ-1 respectively.

Given this, the result follows because:

• For freshness, by Lemmas 4.47 and 3.33 we deduce ∆′ ` a#t. We obtain ∆ ` a#t by part 1
of Lemma 3.25.

• For equality, by Lemma 4.47, (symm) and (tran) we deduce ∆′ `
T
t = u and we obtain

∆ `
T
t = u with (fr).

Our transformation is inductive on derivations. Suppose the derivation of ` a#tσ or `
T
tσ = uσ

concludes with an instance of . . .

• (#ab), (#[]a), (#[]b), (refl), (symm), (tran) or (cong[]). Then the result trivially follows
by an instance of the same rule, possibly using the inductive hypothesis.

• (#X) or (fr). This is impossible by assumption (see Definition 4.44).

• (#f). There are three cases to consider:

– The case of ` a#f(g1, . . . , gn) for f ∈ Σ.
It follows that ` a#gi for 1 ≤ i ≤ n, and ∆′ ` a#g-1i by the inductive hypothesis. We
conclude ∆′ ` a#f(g-11 , . . . , g

-1
n) using (#f).

– The case of ` a#dX(a′X1, . . . , a
′
XkX

) for dX ∈ D and X ∈ X , where a is not necessarily
distinct from the aXi or a′Xi.
It follows that ` a#a′Xi for 1 ≤ i ≤ kX , and so, examining (#ab), it is the case that
a 6= a′Xi. We must show ∆′ ` a#π ·X, where

π = (a′X1 bX1) ◦ · · · ◦ (a′XkX bXkX) ◦ (bX1 aX1) ◦ · · · ◦ (bXkX aXkX).

By (#X), this follows from ∆′ ` π-1(a)#X. Since a 6= a′Xi and also a 6= bXi for all i, we
have π-1(a) = (bX1 aX1) ◦ · · · ◦ (bXkX aXkX)(a). We proceed by a case distinction on a:

∗ If a = aXi for some i, then (bX1 aX1) ◦ · · · ◦ (bXkX aXkX)(a) = bXi, and the result follows
since bXi#X ∈ ∆′ by construction.

∗ If a 6= aXi for all i, then (bX1 aX1) ◦ · · · ◦ (bXkX aXkX)(a) = a since also a 6= bXj for any
j. Then by construction a#X ∈ ∆ since the aXi are the only atoms in A for which
aXi#X 6∈ ∆. The result follows.

4 DENOTATIONS 32

– The case of ` a#dX() for dX ∈ D and X 6∈ X .
It is immediate by (#ab) that ` a#c.

• (congf). We consider two cases:

– The case of f ∈ Σ follows using the inductive hypothesis.

– The case of d ∈ D is impossible, since we assumed that Π does not mention (congd).

• (perm). By the inductive hypothesis we have ∆′ ` a#g-1 and ∆′ ` b#g-1. Then

∆′ `
T

(a b) · g-1 = g-1

by (perm). Using Lemma 4.46, we conclude ∆′ `
T

((a b) · g)-1 = g-1.

• (ax∇`v=w). Then ` ∇πτ and `
T
vπτ = wπτ for some permutation π and substitution τ such

that ∇τ , vτ and wτ do not mention any unknowns. We must show ∆′ `
T

(vπτ)-1 = (wπτ)-1.
Let τ ′ be the substitution such that τ ′(X) = τ(X)-1 when τ(X) 6= X and τ ′(X) = X when
τ(X) = X. Then (vπτ)-1 ≡ vπτ ′, (wπτ)-1 ≡ wπτ ′ and (∇πτ)-1 ≡ ∇πτ ′, so it suffices to show
∆′ `

T
vπτ ′ = wπτ ′. By (ax∇`v=w), this follows from ∆′ ` ∇πτ ′, i.e. ∆′ ` (∇πτ)-1. By the

inductive hypothesis, this follows from the assumption ` ∇πτ .

We are now ready for the main result of this subsection:

Proof of Theorem 4.39. Suppose ∆ |=
T
t = u, so J∆ ` t = uKTς for the free term model T and valu-

ation ς constructed above. Now J∆KTς by Lemma 4.43 so JtKTς = JuKTς . By Lemma 4.42 [tσ]
T

= JtKTς
and [uσ]

T
= JuKTς . Therefore by construction `

T
tσ = uσ without using (congd). It follows by

Lemma 4.48 that ∆ `
T
t = u.

4.5 Completeness for freshness

Remark 4.49. Recall that the design of nominal algebra is such that

• atoms a model object-level variable symbols,

• unknowns X model meta-variables, and

• freshnesses a#X model freshness side-conditions.

We have seen examples of this scheme in the Introduction; it is common in informal practice. This
intuition guides the design of the derivation rules for freshness in Figure 1. For example, recall
from Example 2.15 the theory LAM. Note that

0 a#(λ[a]b)a and ` a#b and `
LAM

(λ[a]b)a = b.

This corresponds with the informal judgements ‘x is free in the expression (λx.y)x’, ‘x is not a
free variable symbol in the syntax y’, ‘(λx.y)x is αβη-convertible with y’.

So derivable freshness, modelling ‘not in the free variables of’, does not respect derivable equality
and cannot be complete for semantic freshness.

Nominal algebra does satisfy an indirect notion of completeness for semantic freshness, which
we develop in this subsection (Theorem 4.52), and we return to this issue in Subsection 5.2.

We need a definition:

Definition 4.50. Let ∆ ` a#t be a freshness judgement. Let S ⊆ A be the collection of atoms
appearing in ∆ ` a#t (so S = {c | ∃Z.c#Z ∈ ∆} ∪ {a} ∪ {c | c ∈ t}). Now make a fixed but arbi-
trary choice of fresh atom b (so b 6∈ S).

Write ∆+ for the freshness context ∆, b#X1, . . . , b#Xn where {X1, . . . , Xn} = {X | X ∈ t}
(the unknowns mentioned in t).

5 DESIGN ALTERNATIVES 33

Now and for the rest of this paper, we will write

∆+ ` (b a) · t = t

for the equality judgement obtained from ∆ ` a#t as outlined above.

Lemma 4.51. Suppose t is a term in a signature Σ and suppose I is an interpretation of Σ.
Then

J∆ ` a#tKI if and only if J∆+ ` (b a) · t = tKI .

Proof. We prove two implications.
Suppose J∆ ` a#tKI and suppose J∆+KIς holds. Since ∆ ⊆ ∆′ it follows that J∆KIς holds. By

assumption a#semJtKIς . By an induction on syntax using Lemma 4.10 we prove that b#semJtKIς . It
follows by part 2 of Lemma 4.3 that (b a) · JtKIς = JtKIς . The result follows by Lemma 4.16.

Assume J∆+ ` (b a) · t = tKI and suppose J∆KIς holds. By part 1 of Lemma 4.19 we may assume
without loss of generality (freshening b if necessary) that b#semς(X) for every X ∈ t. It follows that
J∆+KIς holds. By assumption

J(b a) · tKIς = JtKIς .

By an induction on syntax using Lemma 4.10 we prove that b#semJtKIς . By Corollary 4.4

a#semJtKIς if and only if (b a) · JtKIς = JtKIς .

The result follows by Lemma 4.16.

Theorem 4.52. ∆ |=
T
a#t if and only if ∆+ `

T
(b a) · t = t.

Proof. Direct from Lemma 4.51 and from completeness for equality (Theorem 4.39).

In words: “semantic freshness in nominal algebra models is captured within the theory of
equality”.

5 Design alternatives

In this section we consider two design alternatives to nominal algebra as presented in the rest of
the paper; we call them N-abs (Subsection 5.1) and N+feq (Subsection 5.2).

We will write ∆ `NA a#t and ∆ `NA
T

t = u for the freshness and equality judgements when
considered part of nominal algebra, and ∆ |=NA a#t and ∆ |=NA

T
t = u for nominal algebra

validity; see Definitions 3.10 and 4.23. This is to differentiate from the notions of derivability and
validity of N-abs and N+feq which we are about to develop.

5.1 N-abs: nominal algebra without atoms-abstraction

In this subsection we show that atoms-abstraction [a]t is redundant given the rest of the nominal
algebra framework. This is expressed formally by Theorem 5.7 and Corollary 5.8.

Let N-abs be the logic derived from nominal algebra by deleting everything to do with atoms-
abstraction. That is:

• In Definition 2.4 we delete [a]t from the syntax.

• In Definition 2.13 and 2.14 we only admit t and u in judgements and theories if they are
in the restricted syntax (that is, if they do not mention atoms-abstraction), and similarly
throughout the rest of the syntax, for example in the syntax of derivations (Figures 1 and 2).

• In Figure 1 we delete (#[]a) and (#[]b) from the freshness derivation rules.

• In Figure 2 we delete (cong[]) from the equality derivation rules.

5 DESIGN ALTERNATIVES 34

• In Definition 4.13 we delete Iabs from the notion of an interpretation of a signature, and
thus also from the notion of model in Definition 4.20.

We write ∆ `N-abs a#t and ∆ `N-abs
T

t = u for the freshness and equality judgements in N-abs,

and ∆ |=N-abs
T

a#t and ∆ |=N-abs
T

t = u for the corresponding notions of validity in N-abs inter-
pretations.

Theorem 5.1. Derivable freshness in N-abs is sound for the N-abs notion of interpretation and
model. Also, derivable equality in N-abs is sound and complete for the N-abs notion of interpreta-
tion and model.

Proof. By a routine modification of the proofs of Theorem 4.24 and 4.39. We merely remove the
case of abstraction. We sketch what is required:

In the proof of Theorem 4.24 we delete the cases for (#[]a), (#[]b), and (cong[]).
In the proof of Theorem 4.39, which occupies Subsection 4.4, we delete the construction of

Tabs in Definition 4.32 and consideration of it in Theorem 4.36, we delete the case of [a]g in
Definition 4.45 and the consideration of (#[]a), (#[]b), and (cong[]) in Lemma 4.48.

We intend to exploit Theorems 4.24, 4.39 and 5.1 to give a precise sense in which nominal
algebra and N-abs are equivalent. This takes up the rest of this subsection.

Define a translation from nominal algebra signatures to N-abs signatures by:

Definition 5.2. For each nominal algebra signature Σ we make a fixed but arbitrary choice of
fresh binary term-former abs (so abs 6∈ Σ). We define Σ′ = Σ ∪ {abs}.

We define a translation from nominal algebra terms and judgements in Σ to N-abs terms and
judgements in Σ′ by:

Definition 5.3. We define a translation -′ taking t a nominal algebra term in Σ to t′ an N-abs
term in Σ′, inductively by:

a′ ≡ a (π ·X)′ ≡ π ·X ([a]t)′ ≡ abs(a, t′) f(t1, . . . , t
′
n)′ ≡ f(t′1, . . . , t

′
n)

We extend the translation to judgement forms by defining

(∆ ` a#t)′ = (∆ ` a#t′) and (∆ ` t = u)′ = (∆ ` t′ = u′).

We define a translation from nominal algebra theories to N-abs theories by:

Definition 5.4. Given a nominal algebra theory T = (Σ,Ax) let T′ = (Σ′,Ax ′) be the N-abs
theory such that Ax ′ has:

• An axiom ∇ ` t′ = u′, for each (∇ ` t = u) ∈ Ax .

• The axiom b#X ` abs(b, (b a) ·X) = abs(a,X).

We define a map from interpretations I of Σ to interpretations I ′ of Σ′:

Definition 5.5. Let Σ be a signature. We map from a nominal algebra interpretation I of Σ to
an N-abs interpretation I ′ of Σ′ by:

• |I ′| = |I|. I ′atm = Iatm . I ′f = If for every f ∈ Σ.

• I ′abs = Iabs .

Lemma 5.6. Let Σ be a signature. If I is a NA interpretation of Σ then I ′ from Definition 5.5
is an N-abs interpretation of Σ′.

Proof. Routine.

5 DESIGN ALTERNATIVES 35

Theorem 5.7. Jt′KIς = JtKI ′ς .
As a corollary, I is a model of T = (Σ,Ax) if and only if I ′ is a model of T′ = (Σ′,Ax ′).

Proof. The first part is by a routine induction on the syntax of t. For the second part we prove
two implications, starting with the left-to-right implication.

Suppose I is a model of T. Then I is a NA interpretation of Σ and J∇ ` t = uKI for every
(∇ ` t = u) ∈ Ax . By Lemma 5.6 I ′ is a N-abs interpretation of Σ′. We must check that every
axiom in Ax ′ is valid in I ′. Fix a valuation ς to |I| = |I ′|. There are two cases:

• The case of (∇ ` t′ = u′) ∈ Ax ′ because (∇ ` t = u) ∈ Ax. Suppose that a#semς(X) for ev-
ery a#X ∈ ∇. By assumption JtKIς = JuKIς . It follows by the first part of this result that
Jt′KI ′ς = Ju′KI ′ς .

• The case of (b#X ` abs(b, (b a) ·X) = abs(a,X)) ∈ Ax ′. We must show that

Jb#X ` abs(b, (b a) ·X) = abs(a,X)KI ′.

Expanding definitions, we must show that

if x ∈ |I| and b ∈ A is such that b#semx, then Iabs(Iatm(b), (b a) · x) = Iabs(Iatm(a), x).

By assumption a#semIabs(Iatm(a), x). Using Lemma 4.10 also b#semIabs(Iatm(a), x). By part 2
of Lemma 4.3

(b a) · Iabs(Iatm(a), x) = Iabs(Iatm(a), x).

The result follows by equivariance of Iabs and Iatm .

Conversely, suppose that I ′ is a model of T′, so that I ′ is a N-abs interpretation of Σ,
J∇ ` t′ = u′KI ′ for every (∇ ` t = u) ∈ Ax , and Jb#X ` abs(b, (b a) ·X) = abs(a,X)KI ′.

Suppose ∇ ` t = u ∈ Ax . We must check that J∇ ` t = uKI . Fix a valuation ς to |I| = |I ′| and
suppose a#semς(X) for every a#X ∈ ∇. By construction (∇ ` t′ = u′) ∈ Ax ′ so by assumption
Jt′KI ′ς = Ju′KI ′ς . It follows by the first part of this result that JtKIς = JuKIς .

We must also check that I is a NA interpretation of Σ. The only non-trivial part here is
to verify that a#semIabs(Iatm(a), x) always. Choose some x ∈ |I| and choose any fresh b (so
b#semx). By assumption Iabs(Iatm(b), (b a) · x) = Iabs(Iatm(a), x). Also, by Lemma 4.10 we have
b#semIabs(Iatm(b), (b a) · x). The result follows.

Corollary 5.8. ∆ `N-abs
T′

t′ = u′ if and only if ∆ `NA
T

t = u.

Proof. We reason as follows:

∆ `NA
T

t = u if and only if ∆ |=NA
T

t = u Theorem 4.24

if and only if ∆ |=N-abs
T′

t′ = u′ Theorem 5.7

if and only if ∆ `N-abs
T′

t′ = u′ Theorem 5.1

A proof of Corollary 5.8 is also possible by transforming nominal algebra derivations in T into
N-abs derivations in T′. This is not hard, though it is longer to write out.

Remark 5.9. The constructions above, ending with Corollary 5.8, give a precise sense in which
atoms-abstraction in nominal algebra is redundant; modulo a trivial translation of syntax we can
characterise the same structures, and derive the same judgements, as if our notion of nominal
algebra had admitted only atoms a, moderated unknowns π · X, and term-formers applied to
terms f(t1, . . . , tn).

We included atoms-abstraction [a]t nonetheless. Atoms-abstraction is a conspicuous feature of
nominal terms and we expect readers will want to see it given primitive support. However, in

5 DESIGN ALTERNATIVES 36

view of the results above we should be aware that it is a derived behaviour within what we can
consider a minimal nominal algebraic system.

We imagine an analogy may exist here with the status of implication ⊃, conjunction ∧, and
negation ¬ in classical and intuitionistic logic. In the classical case ⊃ can be expressed using ∧
and ¬, but not in the intuitionistic case. It may be that in some interesting weakenings of nominal
algebra, which have yet to be created, atoms-abstraction might not be expressible using the rest
of the system, just as ⊃ is not expressible using ∧ and ¬ in an intuitionistic context. In that case,
the proofs in this paper concerning atoms-abstraction will become mathematically independent.

5.2 N+feq: nominal algebra with stronger freshness derivation rules

In Subsection 4.5 we showed how to express freshness in the models using nominal algebra. In this
subsection we investigate what happens if we augment nominal algebra with two extra rules (the
two rules are (#=) and (ax∇`a#t) below) designed to make the syntactic freshness # complete
for the semantic freshness #sem; see Theorems 5.17 and 5.20, and Remark 5.18.

As it turns out, the result is a system with less expressive power, though some derivable judge-
ments can be derived more succinctly. See Remarks 5.18 and 5.19.

Definition 5.10. Let N+feq have the syntax and judgements of nominal algebra (Definitions 2.4
and 2.13).

We then make the following changes:

• The notion of a theory (Definition 2.14) is augmented; we allow equality and freshness
axioms.

That is, we take T = (Σ,Ax) where Σ is a signature and Ax is a possibly infinite set of
equality or freshness judgements.

• We augment the derivation rules for freshness (Figure 1) with the following two rules:

a#t t = u
(#=)

a#u

∇πσ
(ax∇`a#t)

π(a)#tπσ

• In our notion of derivability (Definition 3.10) we write ∆ `
T
a#t instead of ∆ ` a#t (because

now, the derivability of a freshness can depend on axioms and derivable equalities). We insist
that the derivation of ∆ `

T
a#t should mention only terms in the signature of T, and use

only instances of (ax∇`a#t) or (ax∇`t=u) where ∇ ` a#t or ∇ ` t = u respectively is an
axiom in T.

It is routine to extend the proof-theoretical results of Subsection 3.3 to N+feq: Lemma 3.20
acquires a second case: If ∆ `

T
a#t then ∆ `

Tπ
a#t. In Theorem 3.21 we write ‘if ∆ `

T
a#t

then ∆π `
T
π(a)#tπ’ (note the `

T
instead of `). In Theorem 3.22 we write ‘if ∆ `

T
a#t then

∆ `
T
π(a)#π · t’. In Theorem 3.23 we write ‘if ∆ `

T
a#t then ∆′ `

T
a#tσ’. Corollary 3.24 ac-

quires a corresponding case for `
T
a#t. In Lemma 3.25 ` becomes `

T
. The results of Subsec-

tion 3.3.3 about the theory CORE are not affected, since CORE has no axioms and Corollary 3.33
proves that (#=) is admissible in that theory.

The syntax and judgements of N+feq are identical to those of nominal algebra, so the no-
tions of of interpretation, valuation, model, and validity are not greatly affected: The notions
of interpretation and valuation (Definitions 4.13 and 4.14) are unchanged. The notion of model
(Definition 4.20) acquires an extra clause, because theories can mention freshness axioms:

J∇ ` a#tKI for all axioms ∇ ` a#t of T.

The notion of validity is unchanged from Definition 4.18.
We can then prove Theorem 5.11; derivable freshness and equality in N+feq is sound for the

nominal sets semantics:

5 DESIGN ALTERNATIVES 37

Theorem 5.11 (Soundness). Suppose T is an N+feq theory.

1. If ∆ `N+feq
T

a#t then ∆ |=N+feq
T

a#t.

2. If ∆ `N+feq
T

t = u then ∆ |=N+feq
T

t = u.

Proof. The proof used in Theorem 4.24 carries through without any changes except that we add
cases for (#=) and (ax∇`a#t):

• (#=). a#semJtKIς and JtKIς = JuKIς imply that a#semJuKIς .

• (ax∇`a#t). Suppose J∇πσKIς . Then π(a)#semJσ(X)KIς holds for all a#X ∈ ∇. By part 3 of
Lemma 4.3 also a#semπ

-1 · Jσ(X)KIς for all a#X ∈ ∇. Let ς ′ be defined as

ς ′(X) = π-1 · Jσ(X)KIς for every X.

Then a#semς
′(X) for all a#X ∈ ∇, so J∇KIς′ holds. Since ∇ ` a#t is an axiom of T, we

know a#semJtKIς′ . Then by part 3 of Lemma 4.3 also π(a)#semπ · JtKIς′ , and by Lemma 4.16
we obtain π(a)#semJπ · tKIς′ . By a straightforward induction on syntax we can verify that
Jπ · tKIς′ = JtπσKIς , so π(a)#semJtπσKIς as required.

Remark 5.12. Recall LAM from Example 2.15 and recall the discussion and examples from
Remark 4.49. In N+feq we derive

`N+feq
LAM

a#app(lam([a]b), a) as follows:

(id 7→)
b[a 7→ a] = b

(β)
(λ[a]b)a = b

(#ab)
a#b

(#=).
a#(λ[a]b)a

Of course, x is free in the λ-calculus expression (λx.y)x; intuitively the derivation above works by
reducing it to y and then proving that x is not free in the syntax y.

Thus, ∆ `N+feq
T

a#t is unsound for the informal interpretation ‘is not a free variable symbol in
the syntax’, because this is not in general respected by derivable equality. Instead, it is sound for
#sem, as we formally observed in Theorem 5.11. In Theorem 5.20 we shall also prove it complete. So
in N+feq corresponds with the intuition ‘is not in the support of the denotation of the syntax’
or perhaps (trying to relate this back to informal practice) ‘is not free in the syntax of a derivably
equal term’; this is respected by derivable equality by construction.

Recall from Definition 4.50 the specification of ∆+ ` (b a) · t = t from ∆ ` a#t.

Definition 5.13. We define a map -′ from N+feq judgements to nominal algebra judgements as
follows:

• ∆ ` t = u maps to ∆ ` t = u.

• ∆ ` a#t maps to ∆+ ` (b a) · t = t.

We map an N+feq theory T = (Σ,Ax) to a nominal algebra theory T′ = (Σ,Ax ′) such that

Ax ′ = {A′ | A ∈ Ax}.

(Recall that an N+feq theory is allowed to mention freshness axioms ∇ ` a#t. A nominal algebra
theory is not, and note that (∇ ` a#t)′ = (∇+ ` (b a) · t = t).)

Definition 5.13 is correct in the following sense:

Lemma 5.14. Suppose T = (Σ,Ax) is a theory and I is an interpretation of Σ. Then I is an
N+feq model of T if and only if I is a nominal algebra model of T′.

5 DESIGN ALTERNATIVES 38

Proof. Suppose that I is an N+feq model of T. We must show that

• for every (∇ ` a#t) ∈ Ax , J∇+ ` (b a) · t = tKI , and

• for every (∇ ` t = u) ∈ Ax , J∇ ` t = uKI .

The first part is by Lemma 4.51. The second part is immediate. The reverse implication is
similar.

Lemma 5.15. Suppose T is an N+feq theory.

1. If ∆ `NA
T′

t = u is derivable then so is ∆ `N+feq
T

t = u.

2. If ∆+ `NA
T′

(b a) · t = t is derivable then so is ∆ `N+feq
T

a#t.

Proof. The first part is by a routine induction on derivations. The only interesting case is when
the derivation uses (ax∇+`(b a)·t=t), for (∇+ ` (b a) · t = t) ∈ Ax ′ because (∇ ` a#t) ∈ Ax . We
translate this into N+feq according to the following sketch:

∇+πσ···
π(b)#tπσ

···
∇πσ

(ax∇`a#t)
π(a)#tπσ

(perm)
(π(b) π(a)) · tπσ = tπσ

For the second part, we observe that by the first part ∆+ `N+feq
T

(b a) · t = t. The result then
follows using freshness derivation rules, (#=), and (fr).

Lemma 5.16 proves the reverse implication to Lemma 5.15. We could also prove Lemma 5.16
by manipulating derivations using an argument similar to, but more complex than, that used to
prove Lemma 5.15.7 With the results we have already proved, an argument on models is shorter
and sweeter:

Lemma 5.16. Suppose T is an N+feq theory.

• If ∆ `N+feq
T

t = u is derivable then so is ∆ `NA
T′

t = u.

• If ∆ `N+feq
T

a#t is derivable then so is ∆+ `NA
T′

(b a) · t = t.

Proof. Suppose ∆ `N+feq
T

t = u is derivable. By Theorem 5.11 also ∆ |=N+feq
T

t = u. By Lemma 5.14
this is equivalent to ∆ |=NA

T′
t = u. By Theorem 4.39 ∆ `NA

T′
t = u.

Suppose ∆ `N+feq
T

a#t. By Theorem 5.11 ∆ |=N+feq
T

a#t. By Lemma 5.14 this is equivalent to
∆+ |=NA

T′
a#t. By Theorem 4.52 ∆+ `NA

T′
(b a) · t = t.

Theorem 5.17. Suppose T is an N+feq theory.

• ∆ `N+feq
T

t = u if and only if ∆ `NA
T′

t = u.

• ∆ `N+feq
T

a#t if and only if ∆+ `NA
T′

(b a) · t = t.

Proof. From Lemmas 5.16 and 5.15.

Remark 5.18. A word on what Theorem 5.17 means relative to Theorem 4.52.

• Theorem 4.52 gives a precise sense in which an explicit semantic freshness judgement form
is redundant in nominal algebra; it is already captured in equality.

• Theorem 5.17 gives a precise sense in which extra derivation rules (#=) and (ax∇`a#t) are
also redundant.

7We transform instances of (ax∇`a#t) into instances of (ax∇+`(b a)·t=t) followed by (#=) and (fr), and we

then commute instances of (#=) and (fr) down the derivation.

6 CONCLUSIONS 39

In fact we can say a little more: the addition of (#=) loses some expressive power; we noted in
Remark 5.12 in N+feq the intuition of # meaning ‘is not a free variable symbol in the syntax’
is unsound, and this model of meaning for #, corresponding with freshness side-conditions in
informal practice, is destroyed by (#=) and cannot be recovered.

Remark 5.19. Note that a logic ‘with more rules’ does not necessarily mean a logic ‘with more
expressivity’: Consider a first-order predicate logic with at least one constant c, and an extra
derivation rule (AllEqual)

t = u . We can derive more entailments in this new logic, but it is
a fact that up to a simple syntactic translation the resulting derivation system is equivalent to
propositional logic.

It is easy to generate other examples of this. An extreme case is the rule (Triv)
⊥ which

certainly lets us derive more entailments, but up to a simple syntactic translation the resulting
derivation system is equivalent to a ‘logic’ with one predicate >, and no logical connectives or
derivation rules!

In a similar way, adding (#=) lets us derive more sequents but in the sense we have made
formal, the resulting logic is strictly less expressive than what we started with.

Given our results so far, it is easy to leverage nominal algebra completeness to a nice corollary:

Theorem 5.20 (Completeness). Suppose T is an N+feq theory.

• If ∆ |=N+feq
T

t = u then ∆ `N+feq
T

t = u.

• If ∆ |=N+feq
T

a#t then ∆ `N+feq
T

a#t.

Proof. From Theorem 5.17 and nominal algebra completeness (Theorem 4.39).

6 Conclusions

Nominal terms embrace the difference between the object-level and the meta-level. There are two
classes of variables, atoms a and unknowns X. Substitution for X can capture abstractions by a.
For instance the syntactic identity

(λ[a]X)σ ≡ λ[a]a

where σ(X) ≡ a formally reflects the informal sentence

instantiate e to x in λx.e; obtain λx.x.

Freshnesses like a#X capture the habitual side-conditions which come with such statements, and
correspond with ‘x is not a free variable symbol in the syntax t’.

We present nominal algebra as a logical model which is ‘ε away from’ the informal meta-level
of equality with binding, and also ‘ε away from’ universal algebra. We have seen how the flavour
of both universal algebra and of informal practice is maintained in the nominal algebra setting,
while at the same time being completely rigorous.

As discussed in the Introduction, ‘algebra’ is used in several senses in the literature. For us,
‘universal algebra’ means ‘the logic of equality and nothing else’, as presented for example in
[BS81].

From a wider perspective, this paper pursues a programme by the authors arguing that names
can be studied as mathematical entities in both new logics and in new denotations. From that
point of view, nominal algebra is a rigorous universal algebraic system in which term-formers can
be given properties (just as in universal algebra) — and so can atoms. For example, SUB from
Example 2.15 can be read as ‘names, with a capture-avoiding substitution action’.

6.1 Related work

6.1.1 Previous work on nominal algebra

The first work to consider arbitrary theories of equality on nominal terms was nominal rewriting
[FGM04, FG07] (we can think of a rewrite as a directed equality).

6 CONCLUSIONS 40

The outline of nominal algebra itself was first presented in a workshop [GM06b] and accom-
panying technical report [GM06c]; this was followed by a conference paper [GM07] and by the
second author’s thesis [Mat07]. Nominal algebra has also been used in the following applications:

• We axiomatise and study capture-avoiding substitution [GM06a, GM08a].

• We axiomatise the λ-calculus [GM09a, GM08b, GM09b].

• We axiomatise first-order logic [GM06d, GM08c] (and we use this axiomatisation to develop
a sequent-style proof-theory for a variant of first-order logic with explicit meta-variables
standing for ‘unknown predicates’).

Also, and most technically challenging, is [Gab09]. This proves that nominal algebra satisfies
a form of the HSP theorem (also called Birkhoff’s theorem). The HSP theorem is a fundamental
theorem of universal algebra. Proving a version of it for nominal algebra gives a precise and
powerful sense in which nominal algebra is a universal algebra system in the classic sense of the
term.

This paper is a journal version of the conference paper [GM07], and extends and improves on the
relevant parts of [Mat07]. Full proofs are included, the presentation is revised and extended, and
we give several new mathematical results which indicate the design space within which nominal
algebra exists, and stating formally in what senses these are all equivalent.

6.1.2 Nominal equational logic and nominal logic

Since the conception of nominal algebra, Clouston and Pitts presented nominal equational logic
(NEL) [CP07]. This corresponds roughly with N+feq from Subsection 5.2 plus a sorting system
similar to that used in [UPG04, FG07], though there are also differences at the level of syntax
(notably, nominal equational logic does not use nominal terms, and atoms and abstractions are
modelled using families of term-formers indexed by an infinite collection of atoms). Note also that
NEL conflates freshness and equality judgements into a single judgement form ∆ ` a#t = u, but
this difference is inessential. Using the notation in this paper, we can draw up a small table of
what meanings are given to the different judgements in the two systems:

• Equality judgements ∆ ` t = u.

– Nominal algebra. Derivable equality = corresponds with semantic equality, also writ-
ten =.

– NEL. Derivable equality = corresponds with semantic equality, also written =.

• Freshness judgements ∆ ` a#t.

– Nominal algebra. Derivable freshness # corresponds with ‘not free in’, written 6∈ fv .

– NEL. Derivable freshness # corresponds with semantic freshness, written #sem.

In the conclusions of their paper [CP07] Clouston and Pitts observe that nominal algebra freshness
is not complete for freshness in the model #sem. This observation is correct as far as it goes, but it
leaves several things unsaid:

• Conversely, NEL freshness judgements are unsound for ‘not free in’ (see Remarks 4.49, 5.12,
and 5.18).

• In Subsection 4.5 we demonstrate how to soundly and completely express semantic freshness
#sem using equality in nominal algebra (Theorem 4.52). Thus, semantic freshness is redundant
in nominal algebra.

This observation is not new. The original equation for defining semantic freshness [GP01,
equation 13, page 8] uses semantic equality plus the Gabbay-Pitts Nquantifier which, from
the point of view of this paper, looks just like the ‘fresh b’ in ∆+ in Definition 4.50. (This
expands on Theorem 5.5 of the conference version [GM07].)

6 CONCLUSIONS 41

• In Subsection 5.2 we demonstrate how adding extra deductive power to make derivable
freshness # complete for semantic freshness #sem, is also redundant (Theorems 5.17 and 5.20).

Indeed, this actually loses some expressivity (Remark 5.18). Put another way, it is not
the case that versions of Theorems 4.52 and 5.17 hold in the ‘reverse direction’; N+feq is
expressible in terms of nominal algebra, but not vice versa.

• It may also be worth noting that NEL freshness is in general undecidable, whereas nominal
algebra freshness is always decidable, because the rules, presented in Figure 1, are syntax-
directed.

Related to this is an observation by theoreticians in process algebras, that the set of atoms
which can take part in the behaviour of a process (in our terminology; the atoms which are
not semantically fresh for their particular notion of semantics), is undecidable [BW90].

We should mention the caveat that N+feq is not NEL8 but to the level of detail of the comment
‘# is not complete for #sem’, comparing N+feq with nominal algebra is adequate to argue the
point. Modulo this caveat it seems to us that nominal algebra, compared with nominal equational
logic, is simpler and more compact, and that it may offer easier syntax, semantics, and proofs for
mathematical study9 — or perhaps we should say this rather of N-abs, since abs is also redundant
given the rest of the nominal algebra framework (as discussed in Subsection 5.1).

Concerning applications, at the time of writing there is no NEL analogue of our applications for
nominal algebra [GM06a, GM08a, GM09a, GM09b, GM06d, GM08c, Gab09]; investigating these
results for NEL would be future work. Of course, one way to obtain these results cheaply might
be via a translation to nominal algebra based on the development in Subsection 5.2.

Note that nominal algebra is not ‘just’ the equality fragment of nominal logic [Pit03]. Such a
fragment would satisfy (#=) (Definition 5.10), and nominal algebra does not.

Since this paper was written, Fiore and Hur have completed a general study of nominal and
other equational logics, using the language of categories. This places nominal algebra in a general
context [FH08]. It would also be interesting to express the ideas in this paper in a format directly
modelled on Lawvere theories [Law63] (see [HP07] for an interesting discussion with references).

6.1.3 Higher-order techniques

At the heart of nominal algebra is the capturing substitution of unknowns for terms. There is a
whole other thread of research devoted to systems based on capture-avoiding substitution and/or
αβη-equivalence (though not all are necessarily algebraic ones). The theory of contexts [Mic01]
can be used to axiomatise systems with binding. So, differently, can higher-order algebra [Mei92].
So indeed can simply-typed λ-calculus [Bar00]. These systems are different and intended for
different purposes but they share a core which is in essence simply-typed λ-calculus expressions
up to αβη-equivalence. Just as is the case for nominal terms this richer term-language gives more
expressivity, which can be used to give stronger axioms. This inherits the distinctive capture-
avoiding substitution which for us is not a direct model of the behaviour seen at the informal
meta-level as discussed in the Introduction. See [GP01, Subsection 1.1] and [Pit03, Section 9] for
excellent discussions.

We note that in [GJ02, Joj04], Geuvers and Jojgov extend higher-order logic with explicit
meta-variables. Although the approach of their oHOL language is similar to ours, there are some
fundamental differences: the default notion of instantiation of meta-variables in oHOL is capture-
avoiding; capturing instantiation can be achieved by parameterising the meta-variable. Also,
meta-variables are equipped with pending substitutions of object-variables in oHOL. In nominal

8NEL syntax tends to have ‘more term-formers’ in a style which we find quite reminiscent of cylindric techniques,
discussed below; see [CP07, Remark 3.2] (note that what we call term-formers are in NEL terminology called
operation symbols). Nominal algebra uses nominal terms’ syntax and follows [UPG04, FG07]. Also, we have also
not considered a sort system for the nominal terms syntax; we would expect that imposing a sort system like that
of [UPG04, FG07] to be routine.

9. . . albeit one which may need sugar to be palatable to the user of an implemented system, but this is just as
true of most other mathematically convenient systems.

6 CONCLUSIONS 42

algebra meta-variables are equipped with α-renamings of object-variables. Note that we could
record these substitutions by using the explicit substitutions from theory SUB (Example 2.15).

6.1.4 Binding algebras

Sun’s binding algebras [Sun99] are based on a functional semantics for binding, whereas we work
according to the relatively newer nominal semantics which is decidedly non-functional; currently
the two strands are essentially independent and it remains to see what ideas might flow between
them.

Fiore, Plotkin and Turi’s binding algebras [FPT99] use categories of presheaves, whereas we use
nominal sets. Categories of presheaves do not have a notion of “least supporting set” like nominal
sets do [GP01, Related Work]. So in its current form, the freshness judgement of a#x cannot be
expressed in their framework. For this reason, it is not clear how an easy and direct connection
can be made between the two frameworks.

6.1.5 Cylindric techniques and combinatory techniques

A host of ‘cylindric’ algebraic techniques exist. These embrace meta-variables and reject object-
level variables, preferring to encode their expressive power in the term-formers. Examples are
lambda-abstraction algebras [Sal00] for the λ-calculus and cylindric algebras [BS81, ANS01] for
first-order logic. Combinators [Bar84] reject object-level variables altogether. These systems are
effective for their applications, but we do not see that they naturally represent equalities with
binding and meta-variables, from the simple fact that there are no object-variables.

6.2 Future work

There is much possible future work.

6.2.1 Axiomatisations of other systems

We have seen examples of three fundamental systems axiomatised in nominal algebra: (capture-
avoiding) substitution, the λ-calculus, and first-order logic. In [GM06a, GM08a, GM06d, GM08c]
we study the axiomatisations of substitution and first-order logic. We would like to employ the
methods of this paper to formalise reasoning on other systems with binding. We speculate on
applications to axiomatising substructural logics with quantifiers [Res99]; also to process calculi,
some of which feature complex binding side-conditions and for which algebraic reasoning principles
are of interest [AG97, Lut02, KD02]; and perhaps even to logics for state such as Bunched Impli-
cations and Separation Logic [OP99, Rey02] where atoms (with suitable axioms) could represent
locations and freshness might then nicely express separation. To this end an enriched freshness
judgement t′#t could be useful, generalising a#t and asserting a separation between the atoms
not derivably fresh in t and t′.

Calculi of explicit substitution represent the process of substitution and so represent different
aspects of name structure explicitly depending on the particular system [Les94]. A discussion
exists of how one might use nominal rewriting to express rewrite systems for λ-calculi with explicit
substitutions [FG07, Section 9]; enriching freshness contexts with other judgements would allow
reduction strategies to be expressed as part of the rewrite rules. It would also be interesting
to attempt nominal algebra or nominal rewriting axiomatisations of λ-calculi with non-standard
treatments of binding, such as Adbmal [HvO03].

6.2.2 Hierarchies of variables

We are interested in developing logics with hierarchies of ‘increasingly meta-’variables. Since
nominal algebra offers two levels of variable, why not extend this to allow an infinite hierarchy of
variables, by analogy with type hierarchies in the λ-calculus [Bar84]? Work has already started in
this direction by extending nominal terms with a hierarchy of variables [Gab05, Gab07c, GL08].

REFERENCES 43

6.2.3 Implementation

We are interested in exploring how well nominal algebra could serve as the basis for an implementa-
tion of an interactive proof assistent. This may be useful because, as discussed in the Introduction,
nominal algebra permits a particularly direct translation between informal mathematical practice
and formal syntax. The algorithmic properties of nominal terms remain to be explored; some work
in that direction is [Che04].

References

[AG97] Mart́ın Abadi and Andrew D. Gordon. A calculus for cryptographic protocols: the spi
calculus. In CCS ’97: Proc. of the 4th ACM conf. on Computer and Communications
Security, pages 36–47. ACM Press, 1997.

[ANS01] H. Andréka, I. Németi, and I. Sain. Algebraic logic. In D.M. Gabbay and F. Guenth-
ner, editors, Handbook of Philosophical Logic, 2nd Edition, volume 2, pages 133–249.
Kluwer, 2001.

[Bar75] Jon Barwise. Admissible Sets and Structures: an approach to definability theory.
Perspectives in mathematical logic. Springer, 1975.

[Bar84] H. P. Barendregt. The Lambda Calculus: its Syntax and Semantics (revised ed.).
North-Holland, 1984.

[Bar00] H. P. Barendregt. Lambda calculi with types. In S. Abramsky, D. M. Gabbay, and
T. S. E. Maibaum, editors, Handbook of Logic in Computer Science, Volume 2, pages
117–309. OUP, 2000.

[Bru96] Norbert Brunner. 75 years of independence proofs by Fraenkel-Mostowski permuta-
tion models. Mathematica Japonica, 43:177–199, 1996.

[BS81] S. Burris and H. Sankappanavar. A Course in Universal Algebra. Graduate texts in
mathematics. Springer, 1981.

[BW90] J. C. M. Baeten and W. P. Weijland. Process Algebra, volume 18 of Cambridge Tracts
in Theoretical Computer Science. Cambridge University Press, 1990.

[CF58] Haskell B. Curry and R. Feys. Combinatory Logic, volume 1. North Holland, 1958.

[Che04] James Cheney. The complexity of equivariant unification. In Proc. 31st Int’l Col-
loquium on Automata, Languages and Programming (ICALP 2004), volume 3142 of
Lecture Notes in Computer Science, pages 332–344. Springer, 2004.

[Che06] James Cheney. Completeness and Herbrand theorems for nominal logic. Journal of
Symbolic Logic, 71:299–320, 2006.

[CP07] Ranald A. Clouston and Andrew M. Pitts. Nominal equational logic. Electronic Notes
in Theoretical Computer Science, 172:223–257, 2007.

[dB91] N.G. de Bruijn. Checking mathematics with computer assistance. Notices of the
American Mathematical Society (AMS), 38(1):8–15, 1991.

[FG07] Maribel Fernández and Murdoch J. Gabbay. Nominal rewriting. Information and
Computation, 205(6):917–965, 2007.

[FGM04] Maribel Fernández, Murdoch J. Gabbay, and Ian Mackie. Nominal Rewriting Systems.
In Proc. 6th Int. ACM SIGPLAN Conf. on Principles and Practice of Declarative
Programming (PPDP’2004), pages 108–119. ACM Press, 2004.

http://www.gabbay.org.uk/papers.html#nomr-jv
http://www.gabbay.org.uk/papers.html#nomr

REFERENCES 44

[FH08] Marcelo Fiore and Chung-Kil Hur. Term equational systems and logics. Electronic
Notes in Theoretical Computer Science, 218:171–192, 2008.

[FPT99] Marcelo P. Fiore, Gordon D. Plotkin, and Daniele Turi. Abstract syntax and variable
binding. In LICS ’99: 14th Annual Symposium on Logic in Computer Science, pages
193–202. IEEE, 1999.

[Gab00] Murdoch J. Gabbay. A Theory of Inductive Definitions with alpha-Equivalence. PhD
thesis, Cambridge, UK, 2000.

[Gab05] Murdoch J. Gabbay. A NEW calculus of contexts. In PPDP ’05: Proc. of the 7th
ACM SIGPLAN symposium on Principles and Practice of Declarative Programming,
pages 94–105. ACM, 2005.

[Gab07a] Murdoch J. Gabbay. Fresh Logic. Journal of Applied Logic, 5(2):356–387, June 2007.

[Gab07b] Murdoch J. Gabbay. A General Mathematics of Names. Information and Computa-
tion, 205(7):982–1011, July 2007.

[Gab07c] Murdoch J. Gabbay. Hierarchical Nominal Terms and Their Theory of Rewriting.
Electronic Notes in Theoretical Computer Science, 174(5):37–52, 2007.

[Gab09] Murdoch J. Gabbay. Nominal algebra and the HSP theorem. Journal of Logic and
Computation, 19(2):341–367, 2009.

[GJ02] Herman Geuvers and Gueorgui I. Jojgov. Open proofs and open terms: A basis for
interactive logic. In Computer Science Logic: 16th International Workshop, pages
537–552, 2002.

[GL08] Murdoch J. Gabbay and Stéphane Lengrand. The lambda-context calculus. Electronic
Notes in Theoretical Computer Science, 196:19–35, 2008.

[GM06a] Murdoch J. Gabbay and Aad Mathijssen. Capture-avoiding Substitution as a Nominal
Algebra. In ICTAC 2006: Theoretical Aspects of Computing, volume 4281 of Lecture
Notes in Computer Science, pages 198–212, 2006.

[GM06b] Murdoch J. Gabbay and Aad Mathijssen. Nominal Algebra. In 18th Nordic Workshop
on Programming Theory, 2006.

[GM06c] Murdoch J. Gabbay and Aad Mathijssen. Nominal Algebra. Technical Report HW-
MACS-TR-0045, Heriott-Watt, 2006.

[GM06d] Murdoch J. Gabbay and Aad Mathijssen. One-and-a-halfth-order logic. In PPDP ’06:
Proc. of the 8th ACM SIGPLAN symposium on Principles and Practice of Declarative
Programming, pages 189–200. ACM, 2006.

[GM07] Murdoch J. Gabbay and Aad Mathijssen. A Formal Calculus for Informal Equality
with Binding. In WoLLIC’07: 14th Workshop on Logic, Language, Information and
Computation, volume 4576 of Lecture Notes in Computer Science, pages 162–176.
Springer, 2007.

[GM08a] Murdoch J. Gabbay and Aad Mathijssen. Capture-Avoiding Substitution as a Nom-
inal Algebra. Formal Aspects of Computing, 20(4-5):451–479, June 2008.

[GM08b] Murdoch J. Gabbay and Aad Mathijssen. A nominal axiomatisation of the lambda
calculus. Technical Report 08-18, Technische Universiteit Eindhoven, 2008.

[GM08c] Murdoch J. Gabbay and Aad Mathijssen. One-and-a-halfth-order Logic. Journal of
Logic and Computation, 18(4):521–562, August 2008.

http://www.gabbay.org.uk/papers.html#thesis
http://www.gabbay.org.uk/papers.html#newcc
http://www.gabbay.org.uk/papers.html#frelog
http://www.gabbay.org.uk/papers.html#genmn
http://www.gabbay.org.uk/papers.html#hienr
http://www.gabbay.org.uk/papers.html#lamcc
http://www.gabbay.org.uk/papers.html#capasn
http://www.gabbay.org.uk/papers.html#capasn
http://www.gabbay.org.uk/papers.html#noma-nwpt
http://www.gabbay.org.uk/papers.html#noma-tr
http://www.gabbay.org.uk/papers.html#oneaah
http://www.gabbay.org.uk/papers.html#forcie
http://www.gabbay.org.uk/papers.html#forcie
http://www.gabbay.org.uk/papers.html#capasn-jv
http://www.gabbay.org.uk/papers.html#capasn-jv
http://www.gabbay.org.uk/papers.html#noma-tr
http://www.gabbay.org.uk/papers.html#noma-tr
http://www.gabbay.org.uk/papers.html#oneaah-jv

REFERENCES 45

[GM09a] Murdoch J. Gabbay and Aad Mathijssen. Festschrift in Honour of Peter B. Andrews
on his 70th Birthday, chapter The lambda-calculus is nominal algebraic. Studies in
Logic and the Foundations of Mathematics. IFCoLog, 2009. To appear.

[GM09b] Murdoch J. Gabbay and Aad Mathijssen. A nominal axiomatisation of the lambda-
calculus. Journal of Logic and Computation, 2009. In press.

[GMR+08] Jan Friso Groote, Aad Mathijssen, Michel A. Reniers, Yaroslav S. Usenko, and Muck
van Weerdenburg. Analysis of distributed systems with mCRL2. In Michael Alexander
and William Gardner, editors, Process Algebra for Parallel and Distributed Processing,
pages 99–128. Chapman and Hall, 2008.

[GP01] Murdoch J. Gabbay and A. M. Pitts. A New Approach to Abstract Syntax with
Variable Binding. Formal Aspects of Computing, 13(3–5):341–363, 2001.

[Gro97] Jan Friso Groote. The syntax and semantics of timed µCRL. Technical Report
SEN-R9709, CWI, Amsterdam, 1997.

[HMT85] L. Henkin, J. D. Monk, and A. Tarski. Cylindric Algebras. North Holland, 1971 and
1985. Parts I and II.

[HP07] Martin Hyland and John Power. The category theoretic understanding of universal
algebra: Lawvere theories and monads. Electronic Notes in Theoretical Computer
Science, 172:437–458, 2007.

[HvO03] Dimitri Hendriks and Vincent van Oostrom. Adbmal. In CADE 2003: Conference
on Automated Deduction, pages 136–150, 2003.

[Joh87] P. T. Johnstone. Notes on logic and set theory. Cambridge University Press, 1987.

[Joj04] Gueorgui I. Jojgov. Incomplete Proofs and Terms and Their Use in Interactive The-
orem Proving. PhD thesis, Technische Universiteit Eindhoven, 2004.

[KD02] Joost-Pieter Katoen and Pedro R. D’Argenio. General distributions in process al-
gebra. In Lectures on formal methods and performance analysis: first EEF/Euro
summer school on trends in computer science, pages 375–429. Springer, 2002.

[KKSdV97] J.R. Kennaway, J.W. Klop, M.R. Sleep, and F.J. de Vries. Infinitary lambda calculus.
Theoretical Computer Science, 175:93–125, 1997.

[Law63] F. W. Lawvere. Functorial Semantics of Algebraic Theories. PhD thesis, Columbia
University, 1963. Available with commentary as TAC Reprint 5.

[Les94] Pierre Lescanne. From lambda-sigma to lambda-upsilon: a journey through calculi of
explicit substitutions. In Proc. 21st ACM SIGPLAN-SIGACT Symposium on Prin-
ciples of Programming Languages (POPL’94), pages 60–69. ACM Press, 1994.

[LS04] S. Lusin and A. Salibra. The lattice of lambda theories. Journal of Logic and Com-
putation, 14 n.3:373–394, 2004.

[Lut02] Bas Luttik. Choice Quantification in Process Algebra. PhD thesis, University of
Amsterdam, 2002.

[Mat07] Aad Mathijssen. Logical Calculi for Reasoning with Binding. PhD thesis, Technische
Universiteit Eindhoven, 2007.

[Mei92] K. Meinke. Universal algebra in higher types. Theoretical Computer Science,
100(2):385–417, 1992.

http://www.gabbay.org.uk/papers.html#lamcna
http://www.gabbay.org.uk/papers.html#nomalc
http://www.gabbay.org.uk/papers.html#nomalc
http://www.gabbay.org.uk/papers.html#newaas-jv
http://www.gabbay.org.uk/papers.html#newaas-jv

A EQUIVARIANCE 46

[Mic01] Marino Miculan. Developing (meta)theory of lambda-calculus in the theory of con-
texts. Electronic Notes in Theoretical Computer Science, 1(58), 2001.

[OP99] Peter W. O’Hearn and David J. Pym. The logic of bunched implications. Bulletin of
Symbolic Logic, 2(5):215–244, 1999.

[Par01] Joachim Parrow. An introduction to the pi-calculus. In Jan Bergstra, Alban Ponse,
and Scott Smolka, editors, Handbook of Process Algebra, pages 479–543. Elsevier
Science, 2001.

[Pit03] A. M. Pitts. Nominal logic, a first order theory of names and binding. Information
and Computation, 186(2):165–193, 2003.

[Pra65] Dag Prawitz. Natural Deduction: A Proof Theoretical Study. Almqvist and Wiksell,
Stockholm, 1965.

[Res99] Greg Restall. An Introduction to Substructural Logics. Routledge, 1999.

[Rey02] John C. Reynolds. Separation logic: A logic for shared mutable data structures. In
LICS ’02: Proceedings of the 17th Annual IEEE Symposium on Logic in Computer
Science, pages 55–74. IEEE Computer Society, 2002.

[Sal00] Antonino Salibra. On the algebraic models of lambda calculus. Theoretical Computer
Science, 249(1):197–240, 2000.

[Sun99] Yong Sun. An algebraic generalization of Frege structures - binding algebras. Theo-
retical Computer Science, 211:189–232, 1999.

[UPG04] Christian Urban, Andrew M. Pitts, and Murdoch J. Gabbay. Nominal Unification.
Theoretical Computer Science, 323(1–3):473–497, 2004.

[Urb08] Christian Urban. Nominal reasoning techniques in Isabelle/HOL. Journal of Auto-
matic Reasoning, 40(4):327–356, 2008.

[vB01] Johan van Benthem. Higher-order logic. In Handbook of Philosophical Logic, 2nd
Edition, volume 1, pages 189–244. Kluwer, 2001.

Acknowledgements. Thanks to the anonymous referees. Supported by grant RYC-2006-002131 at
the Polytechnic University of Madrid.

A Equivariance

We introduce atoms in this paper, when we write ‘Fix a countably infinite collection of atoms
a, b, c, . . .’ in Definition 2.1.

Atoms have a very special property: we can tell them apart — a 6= b is true and a = b is false
— but they have no internal structure (set-theorists should think of urelemente with good reason;
the concrete model we used to develop our treatment of names is based on Fraenkel-Mostowski
set theory [Gab00, Bru96]).

This gives atoms a useful meta-mathematical property of equivariance; this property refers to
the assertions written in English in this paper about nominal algebra, equational logic and so on.

Definition A.1. The language of ZFA set theory is first-order logic with equality with in addition:

• A binary predicate symbol ∈ called set membership.

• A constant term-former A called the set of atoms.

We use standard sugar of classical logic.

http://www.gabbay.org.uk/papers.html#nomu-jv

A EQUIVARIANCE 47

Definition A.2. ZFA set theory has the axioms in Figure 4.
In this figure, φ ranges over all predicates, φ[y/x] denotes the predicate obtained by capture-

avoiding substitution of x by y, and F (y) represents any function which can be expressed in the
language of ZFA sets. We also use the following sugar:

x = {z | z ∈ x} is sugar for ∀y.(∀z.(z ∈ x⇔ z ∈ y) ⊃ x = y)
y = {z ∈ x | φ} is sugar for ∀z.(z ∈ y ⇔ (z ∈ x ∧ φ))
z = {F (y) | y ∈ x} is sugar for ∀u.(u ∈ z ⇔ ∃y.(F (y) = u ∧ y ∈ x))
z = {x, y} is sugar for ∀u.(u ∈ z ⇔ (u = x ∨ u = y))
z = {y | ∃y′.(y ∈ y′ ∧ y′ ∈ x)} is sugar for ∀y.(y ∈ z ⇔ ∃y′.(y ∈ y′ ∧ y′ ∈ x))
z = {y | y ⊆ x} is sugar for ∀y.(y ∈ z ⇔ ∀y′.(y′ ∈ y ⊃ y′ ∈ x))
∅ ∈ x is sugar for ∃z.(z ∈ x ∧ ∀z′.z′ 6∈ z)
y ∪ {z} ∈ x is sugar for ∃u.(u ∈ x ∧ ∀u′.(u′ ∈ u⇔ u ∈ y ∨ u = z))

The syntactic sugar used in set theory is very rich; further details can be found elsewhere [Joh87].
The only property we care about is that set theory is a foundational theory and is rich enough to
express, in principle at least, all the mathematics in the rest of this paper.

(Sets) ∀x.((∃y.y ∈ x) ⊃ x 6∈ A)

(Extensionality) ∀x.(x 6∈ A ⊃ x = {z | z ∈ x})
(Comprehension) ∀x.∃y.(y 6∈ A ∧ y = {z ∈ x | φ}) (y not free in φ)

(∈-Induction) ∀x.(∀y.(y ∈ x ⊃ φ[y/x]) ⊃ φ) ⊃ ∀x.φ
(Replacement) ∀x.∃z.(z 6∈ A ∧ z = {F (y) | y ∈ x})
(Pairset) ∀x.∀y.∃z.(z = {x, y})
(Union) ∀x.∃z.(z 6∈ A ∧ z = {y | ∃y′.(y ∈ y′ ∧ y′ ∈ x)})
(Powerset) ∀x.∃z.(z = {y | y ⊆ x})
(Infinity) ∃x.(∅ ∈ x ∧ ∀y.(y ∈ x ⊃ y ∪ {y} ∈ x))

Figure 4: Axioms of ZFA set theory

Definition A.3. We define a permutation action on ZFA sets by:

π · a = π(a) π ·X = {π · x | x ∈ X} (X 6∈ A)

This definition is by ε-induction, a standard method in set theory [Joh87] which relies on a
well-foundedness property implied by (∈-Induction).

Recall that φ ranges over predicates of ZFA. Write φ(x1, . . . , xn) to range over predicates which
mention at most x1, . . . , xn as free variable symbols.

Theorem A.4 (ZFA equivariance). If φ(x1, . . . , xn) is a predicate of ZFA set theory then

φ(x1, . . . , xn)⇔ φ(π · x1, . . . , π · xn)

is always provable.
As a corollary, φ(x1, . . . , xn) and φ(π ·x1, . . . , π ·xn) are interchangeable in proof and in validity

on models.

Proof. We work by induction on the syntax of φ.

• By definition, x ∈ y implies π · x ∈ π · y follows directly from the fact that π · y = {π · y′ | y′ ∈ y}.
The reverse implication is easy using π-1.

• Similarly, x = y if and only if π · x = π · y.

• The case of ⊥ is trivial, and the cases of φ1 ⊃ φ2 and ∀z.φ′ follow using the inductive
hypothesis.

A EQUIVARIANCE 48

• π · A = A is provable, so x ∈ A if and only if π · x ∈ A, and A ∈ y if and only if A ∈ π · y,
and similarly x = A if and only if π · x = A and A = y if and only if A = π · y.

The result follows.

Equivariance was first observed by Fraenkel and Mostowski and used to prove the independence
of the axiom of choice from the other axioms of set theory [Bru96]. Atoms are atomic objects
with no internal structure, so it is natural to use these to model variable symbols. This idea
appears already in [Bar75]. To our knowledge the first author’s PhD thesis [Gab00] observed the
application of equivariance to practical reasoning on variables in computer science as we use it in
this paper.

We have used equivariance in structural inductive proofs in this paper to rename atoms in in-
ductive hypotheses while remaining fully formal. We have found this to be a very useful technique.
To our knowledge the proof of Lemma 8.3 in [Gab07a] is the first use of equivariance to rename
variable symbols in a discoursive inductive proof on abstract syntax; it is used also, for example,
in the proofs of Theorems 5.1, 5.2, 5.3, and Lemma 5.7 in [GM08c]. If we wish to be fully for-
mal but ignore equivariance then we must work by induction on measures such as term length or
derivation depth. Such proofs tend to be longer and they are rarely given in full detail outside of
a theorem-prover; we do not see the point of this effort, given that equivariance is available. Inte-
grating the equivariance reasoning principle into a theorem-prover is a problem which remains to
be completely solved. The first author comments on this for example in Subsection 18.3, Remark
19.3.1, and Section 20 of his thesis [Gab00]. Since then much progress has been made [Urb08]. In
any case, outside a theorem-prover at the informal meta-level which is the discourse of this paper,
equivariance serves us well.

	Introduction
	Syntax
	Terms and signatures
	Judgement forms, axioms and theories

	Derivations
	Permutation and substitution actions
	Inference rules
	Proof-theoretical results

	Denotations
	Nominal sets
	Interpretations, models and validity
	Free term models
	Completeness for equality derivations
	Completeness for freshness

	Design alternatives
	N-abs: nominal algebra without atoms-abstraction
	N+feq: nominal algebra with stronger freshness derivation rules

	Conclusions
	Related work
	Future work

	Equivariance

