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An observation on support and freshness in nominal sets
(Technical report)

Murdoch J. Gabbay

There are two natural ways of excluding an atom a in nominal techniques: we can either
consider the sets X such that a is fresh for X , or we can consider the sets X such that a is
fresh for every x ∈ X .

The statements of ‘being fresh for all the elements of that set’ and ‘being fresh for a set’
are not the same: it is not the case that ∀x ∈ X .a#x if and only if a#X .

Both notions encode natural notions of ‘fresh a’. In this paper, it is proved that these
notions lead naturally to two categories that are isomorphic, so that in a suitable generalised
sense they are the same.

The result is mathematically attractive and has an interesting reading: it is equivalent
to add a fresh atom to the underlying universe, and to add a symbol to the meta-language
referencing a fresh atom. Or to put it slightly differently: we prove the intuitively appealing
but non-obvious fact that a fresh atom in the object-level is categorically isomorphic to a
fresh atom in the meta-level.
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1 Introduction

1.1 A little background on nominal semantics

Nominal techniques were introduced in [14]. With Pitts, we considered the problem of giving
semantics to inductive definitions with binding. We did this by considering inductively defined
datatypes in Fraenkel-Mostowski set theory (FM sets).

FM sets was developed to prove the independence of the Axiom of Choice [2]. It is not
obvious that a representation of binding is to be found in a set theory from the earlier half of
the 20th century, but it is. This semantics is now used directly or through various logical and
operational presentations such as nominal logic, FreshML, or the nominal datatypes package.
See Mulligan’s online bibliography [21].

Nominal techniques give variable symbols a denotational reality as atoms, or urelemente. If
the reader is familiar with nominal logic [23], FreshML [26], or the nominal datatypes package
in Isabelle [28], they will recognise this idea in the datatype of atoms A, used to represent variable
symbols. Atoms are data.

The specific mathematical content here is in the fact that in FM sets and the systems which
were then derived from it, this ‘datatype of atoms’ displays some striking behaviour which is
a good semantic model of names and binding. This behaviour is distinctive and distinguishes
nominal techniques from models of variable symbols based on functions [22], numbers [5], or
links [1, Section 1].

Much of the content of FM sets is shared with work using presheaves [8]. The extra benefit
of using FM sets is its sets-based presentation, which enjoys a unique notion of support.1

1.2 The support of a set X is not the support of its elements x ∈ X

In FM sets, every element has a notion of support, supp(x) (full definitions will follow). This
generalises the syntactic notion of ‘free variable symbols of’. In the case that the set represents
an abstract syntax tree, support and ‘free variable symbols of’ can be made to coincide in a
natural way.

However, the support of X does not coincide with ‘atoms in the transitive closure of X ’, nor
with ‘union of the supports of all x ∈ X ’.2

In my own experience, it is hard for people to see how a set that ‘contains a’ might not
contain a in its support. There are strong intuitions that a ∈ X should imply a ∈ supp(X), and
that a 6∈ x for all x ∈ X should imply a 6∈ supp(X).

This will be very familiar to some readers, and perhaps less so to others. Here are two
illustrative examples:

Example 1.1. • supp(A)= ∅ but the atoms in the transitive closure of A is A. Also
⋃
{supp(x) |

x ∈ A}= A.

a is ‘in’ the set of all atoms, but because so is every other atom, it is not in the support of
the set of all atoms.

1Presheaves have a version of support, but in a sense that can be made entirely formal, it is possible for an
element to have many distinct supports. See [12] for a more detailed discussion.

2The transitive closure of X is the set containing the elements of X , the elements of the elements of X , and so on.
It is the least fixedpoint of the mapping X 7→ X ∪

⋃
X .
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• Also, supp(A\{a}) = {a} but the atoms in the transitive closure of A\{a} and
⋃
{supp(x) |

x ∈ A\{a}} are both equal to A\{a}.
a is ‘not in’ the set of all atoms minus a, but since it thus distinguishes itself by this
absence, it is in the support of the set of all atoms minus a.

The behaviour illustrated above is important: the correctness of the self-duality of the N-
quantifier, of atoms-abstraction, and the nominal model of abstract-syntax-with-binding, inti-
mately depend on this.

As standard, write a#x for a 6∈ supp(x). The fact is that it is not the case that a#X if and only
if ∀x ∈ X .a#x. This is why we not only do not, but can not define supp by induction on sets
(whereas ‘free variables of’ is and must be defined by induction). Thinking of X as a predicate
and x∈X as a datum, and using a bit of nominal jargon, this is related to the fact that in nominal
semantics equivariant functions and predicates can and do act on non-equivariant data.

1.3 The main results

In this paper, I will use a little bit of category theory and some elementary sets constructions to
exhibit a sense in which natural generalisations of ‘support of X ’ and ‘support of all x ∈ X ’ — are
equivalent.

For the reader already familiar with nominal techniques I will now briefly sketch the main
definition and two results of this paper; full details will follow.

Write FMSet for the category with objects FM sets and arrows function(-sets) between them
(see Definition 3.2 for the precise definition).

Our first main result is Theorem 3.3. This presents the strongest positive and direct connec-
tion I know of in general, between the support of X in FMSet and the support of x ∈ X .

To state the next result we need just a little notation.
Definition 1.2. Fix some atom a and define two new categories using FMSet:
• Define a category FMSet#a by:

– Objects are elements X of FMSet such that ∀x∈X .a#x.
– Arrows are the full set of arrows f : X −→ Y ∈ FMSet.

• Define a category FMSetνa by:
– Objects are elements X of FMSet such that a#X .
– Arrows are arrows f : X −→ Y ∈ FMSet such that a# f .

Remark 1.3. FMSet#a and FMSetνa both implement notions of ‘exclude a’:
• In FMSet#a, a is excluded in the sense of ‘fresh for all the elements of’.

• In FMSetνa, a is excluded in the sense of ‘fresh for’.
The second main result of this paper is Theorem 5.11. This states that FMSet#a and FMSetνa are
isomorphic categories. In this sense, ‘fresh for’ and ‘fresh for all elements of’ are the same after
all.

Another way of reading this is particularly interesting.
• In FMSet#a a is fresh ‘at the object level’; the arrows represent functions that operate on

elements without a in their support.
Note that the functions themselves will have a in their support; think of the characteristic
function of A\{a}.
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• In FMSetνa a is fresh ‘at the meta-level’; the arrows represent functions without a in their
support.
Note that the functions may operate on elements with a in their support; think of the
characteristic function of A.

(Just to locate all of this relative to the category of nominal sets NOM: the category NOM of
equivariant FM sets and equivariant functions between them is a limit of the νa construction. It
represents a totally equivariant meta-language, operating on data that need not be equivariant.)

The main result asserts an equivalence between freshness at the meta-level and freshness
at the object-level in the sense above. Or, to put it slightly differently: we prove the intuitively
appealing but non-obvious fact that a fresh atom in the object-level is categorically isomorphic
to a fresh atom in the meta-level.

This paper presents part of the mathematics of a larger manuscript [11], in a more accessible
form and with an exposition tailored to Theorems 3.3 and 5.11.

2 Basic nominal constructions

2.1 The cumulative hierarchy

Definition 2.1. Fix a countably infinite set A of atoms. a,b,c, . . . will range over distinct ele-
ments of A. We call this the permutative convention.

Definition 2.2. We define a collection of elements U in the style of von Neumann [17] by
ordinal induction as follows:

1. U0 = A.
2. If α < β and U ∈Uα then U ∈Uβ .
3. If U ⊆

⋃
α<β Uα then U ∈Uβ .

We let U be the collection of all x such that x ∈Uα for some α .

U is a standard cumulative hierarchy model of Zermelo-Fraenkel set theory with atoms
(ZFA). Examples are illustrated in Figure 1. This construction has been used for example in
[9, 14, 4].

U is the least pre-fixedpoint of the operator ‘take the powerset of’; powerset(U )⊆U .

Definition 2.3. Write x ∈U for ‘x ∈Uα , for some ordinal α’, and read this as x is an element. x
will range over elements of U .

Definition 2.4. Call a non-atomic element a set. That is, x is a set when x ∈U and x 6∈ A.
If X is a set then X = {x | x∈ X}. This is not the case of atoms. For example a 6= {x | x∈ a}= ∅.

Definition 2.5. Let x and y be elements. Let X and Y be sets. Implement the ordered pair (x,y)
and product set X×Y by

(x,y) = {{x},{x,y}} X×Y = {(x,y) | x ∈ X , y ∈ Y}.

Functions are implemented as graphs f = {(x, f (x)} that are sets, as is standard. We let f , g range
over elements that are function-sets.

Write X → Y for the set of function-sets with domain X and range a subset of Y .
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a ∈U0 b ∈U0 ∅⊆U0 A⊆U0

{a} ∈U1 {a,b} ∈U1 ∅ ∈U1 A ∈U1

{{a},{a,b}} ∈U2 {∅} ∈U2 A∪{A} ∈U2

...
N = {0,1,2, . . .} ∈Uω

...

Figure 1: Example sets in the cumulative hierarchy

2.2 Permutations

Definition 2.6. A permutation π is a bijection on A such that {a | π(a) 6= a} is finite (we say that
π has finite support). π,π ′,τ will range over permutations. We also use the following notation:

• Write id for the identity permutation, so id(a) = a always.

• Write ◦ for functional composition. So (π ◦π ′)(a) = π(π ′(a)).

• Write π -1 for the inverse of π , so π ◦π -1 = id = π -1 ◦π .

• Write P for the set of all permutations.

Definition 2.7. We define a permutation action inductively by:

π·a = π(a) π·X = {π·x | x ∈ X} (X not an atom)

Lemma 2.8. id·x = x and π ′·(π·x) = (π ′ ◦π)·x.
In words: permutation is a group action on U .

Proof. By a routine induction on U .

• The case of an atom a. From Definition 2.7 it is immediate that id·a = a and π ′·(π·a) =
π ′(π(a)) = (π ′ ◦π)·a.

• The case of a set X . From Definition 2.7 and the inductive hypothesis for every x∈X .

2.3 Support

Definition 2.9. Let A be a finite set of atoms.

• Write fix(A) = {π | ∀a ∈ A.π(a) = a}.
• Say that A supports x when π·x = x for all π ∈ fix(A).
• Say x has finite support when some finite A supporting x exists.
• Define supp(x) the support of x by

supp(x) =
⋂
{A | A a finite set of atoms supporting x}

if x has finite support, and supp(x) is undefined otherwise.
• Write a#x when a 6∈ supp(x) and call a fresh for x. Write a#x,y,z for ‘a#x and a#y and a#z’,

and so on.
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Remark 2.10. Not every element of U has finite support. Make a fixed but arbitrary choice
of bijection of A with the natural numbers {0,1,2,3,4,5, . . .}. Let comb ⊆ A be the element
corresponding under this bijection with the even numbers {0,2,4, . . .}.

comb contains ‘every other atom’ {a,c,e,g, . . .}.
There is no finite A⊆ A such that if π ∈ fix(A) then π·comb = comb.

Theorem 2.11. A supports x if and only if π·A supports π·x.
As an immediate corollary, π·supp(x) = supp(π·x).

Definition 2.12. If π is a permutation and A ⊆ A is a set of atoms, write π|A for the partial
function such that

π|A(a) =

{
π(a) if a ∈ A
undefined if a ∈ A\A.

Theorem 2.13. Let x be any element. If A and B are finite and support x then so does A∩B. As a
corollary:

1. If x has a finite supporting set then it has a least finite supporting set and this is equal to supp(x).
2. If π|supp(x) = π ′|supp(x) then π·x = π ′x.

Proof. Suppose τ fixes A∩B pointwise. We must show τ·x = x. Write

K for {a | τ(a) 6= a}.

Choose an injection ι of B\A into A\ (A∪B∪K). Define a permutation π by π(a) = ι(a) if
a ∈ B\A, π(ι(a)) = a if a ∈ B\A, and π(b) = b if b 6∈ B\A and ι -1(b) 6∈ B\A. Note that π ◦π = id,
so π = π -1. π fixes A pointwise so π·x = x. Also π ◦ τ ◦π fixes B pointwise so (π ◦ τ ◦π)·x = x. We
apply π to both sides, use Lemma 2.8, and simplify, and conclude that τ·x = x as required.

The first corollary follows from the fact that a descending chain of finite sets ordered by
strict subset inclusion, is finite. The second corollary follows directly from the definition of
support in Definition 2.9.

2.4 Equivariance

Definition 2.14. The language of ZFA set theory is first-order logic with equality = and a binary
predicate ∈ called set inclusion. φ will range over predicates in this language.

Theorem 2.15. Suppose φ(x) is a predicate mentioning only variables from the list x. Then

φ(x)⇔ φ(π·x).

Sketch proof. Atoms are atomic; if we build one model of ZFA sets then we can permute its
atoms to obtain another model. The result follows by soundness and completeness of first-
order logic [27].

The reader can find much more on permutations in [25]. Indeed, the use of permutations of
variable symbols predates nominal techniques; see for example [19, Subsection 9.2].

Definition 2.16. As is standard, we can specify a map χ using a predicate φ(x,z) such that

∀x.
(
(∃z.φ(x,z))∧ (∀z,z′.φ(x,z)∧φ(x,z′)⇒ z = z′)

)
.
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Corollary 2.17. Suppose χ(x) is a function specified using a predicate mentioning only variables from
the list x,z. Then

π·χ(x) = χ(π·x).

Proof. We unpack Definition 2.16 and use equivariance (Theorem 2.15).

Theorem 2.18 is useful and easy to prove:
Theorem 2.18. Suppose χ(x) is a function on variables included in x, which is x1, . . . ,xn. Suppose x
denotes elements with finite support. Then

supp(χ(x))⊆ supp(x1)∪·· ·∪ supp(xn).

As a corollary, if χ is injective then

supp(χ(x)) = supp(x1)∪·· ·∪ supp(xn).

Proof. The corollary follows by considering the result for χ and its inverse.
Suppose that π ∈ fix(supp(x1)∪·· ·∪ supp(xn)). We reason as follows:

π·χ(x) = χ(π·x) Corollary 2.17
= χ(x) Theorem 2.13

The result follows.

3 Relation between supp(X) and supp(x) for x ∈ X

Definition 3.1. Suppose that X is a set. If X has finite support and all x ∈ X have finite support
then say that X has finite support to level 1.

X and Y will range over sets with finite support to level 1.
Consider the notions ‘fresh for’ versus ‘fresh for all elements of’. In symbols, consider the

predicates
a#X versus ∀x ∈ X .a#x.

If X is finite then ‘fresh for’ and ‘fresh for all elements of’ coincide. This matches the naive ex-
pection discussed in the Introduction; this is exactly the behaviour displayed by (finite) name-
carrying abstract syntax.

Also as discussed in the Introduction, a central feature of nominal techniques is that if X
is infinite then the two notions part company, and no particular implication connects them in
general. Recall Example 1.1.

So just because a#X does not mean that a is fresh for every element in X , and conversely,
just because a#x for every x ∈ X does not mean that a is fresh for X overall.
Definition 3.2. Define the category FMSet by:
• Objects are sets X in U with finite support to level 1.
• Arrows f : X −→ Y are the function-sets in X → Y with finite support.
In [9, 14] we use the hereditarily finitely supported sets; in Definition 3.2 we use sets with

finite support to level 1, which is not quite the same. The difference will not be important.
Theorem 3.3 is new to the best of my knowledge. It gives the strongest direct equality I

know of between supp(X) and supp(x) for x ∈ X .
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Theorem 3.3. Suppose X has finite support to level 1. If
⋃
{supp(x) | x ∈ X} is finite then

supp(X) =
⋃
{supp(x) | x ∈ X}.

Proof. Suppose that
⋃
{supp(x) | x ∈ X} is finite. We prove two set inclusions:

• supp(X) ⊆
⋃
{supp(x) | x ∈ X}. If

⋃
{supp(x) | x ∈ X} is finite then the result follows by

Theorem 2.13 and the fact that π·X = {π·x | x ∈ X}.
•
⋃
{supp(x) | x ∈ X} ⊆ supp(X). Suppose x ∈ X and a ∈ supp(x). Choose fresh b (so b#X

and b#x′ for every x′ ∈ X). By Theorem 2.11 supp((b a)·x) = (b a)·supp(x). Since X has no
element y such that b ∈ supp(y), we know that (b a)·x 6= X and by Theorem 2.13 it must be
that a ∈ supp(X).

Remark 3.4. The special case of Theorem 3.3 where X is a finite set is known. See for example
[10, Lemma 2.22] or [16]. Note that Theorem 3.3 is more general, and holds for X infinite.

Thanks to anonymous referees of previous papers for suggesting the precise form of the
result stated here, and for providing the reference to the Isabelle code.

4 The Nquantifier

Definition 4.1. Suppose φ(z,a) is a predicate on variables included in z,a — here z is shorthand
for ‘any other variables mentioned in φ ’, and we intend a to range over atoms.

The NEW quantifier Na.φ(z,a) is defined by

Na.φ(z,a) is true when {a ∈ A | φ(z,a) is false} is finite.

Definition 4.2. If z is a list of variables z1, . . . ,zn write

a#z for a#z1∧ . . .∧a#zn.

Theorem 4.3 expresses the characteristic some/any property of the N-quantifier:

Theorem 4.3. Suppose φ(z,a) is a predicate on variables included in z,a. Suppose z denotes a list of
elements with finite support. Then the following are equivalent:

∀a. (a ∈ A∧a#z) =⇒ φ(z,a) ∀ form of Na.φ(z,a)
Na.φ(z,a)
∃a. a ∈ A∧a#z∧φ(z,a) ∃ form of Na.φ(z,a)

Proof. All top-to-bottom implications are easy. Now suppose there exists some atom a such
that a#z∧φ(z,a). Choose any other atom b such that b#z. By Theorems 2.15 and 2.13 it follows
that φ(z,b). The result follows.

Freshness a#x (Definition 2.9) can be characterised directly using Nand equality (see [14,
Equation 5] or [14, Equation 13]):

Theorem 4.4. Let x be an element with finite support. Then

a#x if and only if Nb.(b a)·x = x.
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Proof. Suppose a#x. By Theorem 2.13 if (b a)·x 6= x then b ∈ supp(x). supp(x) is finite by assump-
tion. The result follows.

Now suppose that Nb.(b a)·x = x. Let B be a finite set such that for all b ∈ A\B, (b a)·x = x.
Choose any pair of distinct atoms b and b′ in B. Note that

(b b′) = (b b′)◦ (b a)◦ (b a) = (b a)◦ (b′ a)◦ (b a).

Therefore (b b′)·x = x always.
fix(B∪{a}) is generated as a group by elements of the form (b′ b) and (b a) as considered

above. It follows that if π ∈ fix(B∪{a}) then π·x = x. Therefore a 6∈ supp(x).

5 Statement and proof of the isomorphism

Fix an atom a. Recall Definitions 3.1 and 1.2 for the definitions of FMSet, FMSet#a and FMSetνa.

5.1 a-fresh sets

Definition 5.1. If X ∈ FMSet write

X#a = {x ∈ X | a#x}.

Call this the a-fresh version of X .
If X ∈ FMSet and Y ∈ FMSet and f ∈ X −→ Y , write

f#a = {(x, f (x)) | x ∈ X#a}.

Definition 5.1 reprises a comment in [13, Section 7, page 9]. In [11] we use the construction
to give some nice proofs of properties of atoms-abstraction. The same construction is used by
Clouston in [4].

Lemma 5.2 underlines the distinctness of ‘fresh for’ and ‘fresh for all elements of’:

Lemma 5.2. a#X does not necessarily imply that X#a = X .

Proof. Consider a#A. Then A#a = A\{a} 6= A.

Lemma 5.3. If f : X −→ Y ∈ FMSetνa then f#a : X#a −→ Y#a ∈ FMSet#a.

Proof. Suppose f : X −→ Y ∈ FMSetνa. In particular, a# f . It follows using Theorem 2.18 that
f#a : X#a −→ Y#a.

5.2 Atoms-restriction

A notion of atoms-restriction will be useful:

Definition 5.4. Suppose X is an object in FMSet. Define νa.X by

νa.X = {π ′·x′ | π ′ ∈ fix(supp(X)\{a}), x′ ∈ X}.

We read νa.X as restrict a in X .
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νa.X is a model of the name-restriction of [6] and [24]; it is closely related to the permutation
orbits of [10].

Lemma 5.5. Suppose X is an object in FMset.

1. supp(νa.X)⊆ supp(X)\{a}.
2. It is not true in general that supp(νa.X) = supp(X)\{a}.
3. a#X if and only if νa.X = X .

Proof. 1. It is easy to check that if π ∈ fix(supp(X) \ {a}) then π·νa.X = νa.X . The result fol-
lows by Theorem 2.13.

2. It suffices to provide a counterexample. Choose any b and take X = (A×A) \ {(a,b)}
(Definition 2.5). It is easy to check that νa.X = A×A.

3. Suppose a#X . Suppose π ′ ∈ fix(supp(X) \ {a}) and x′ ∈ X . By Theorems 2.15 and 2.13,
π ′·x′ ∈ X . It follows easily that νa.X = X .
Conversely, if νa.X = X then by part 1 of this result a#X .

Lemma 5.6. 1. Suppose X is an object in FMSetνa. Then νa.(X#a) = X .
2. Suppose X is an object in FMSet#a. Then (νa.X)#a = X .

Proof. For the first part, we prove two set inclusions:

• Proof that X ⊆ νa.(X#a). Suppose x∈ X . Choose some fresh b (so b#x,X). By Theorem 2.13
(b a)·x ∈ X and furthermore by Theorem 2.11 (b a)·x ∈ X#a. It follows from Definition 5.4
that x ∈ νa.(X#a).

• Proof that νa.(X#a)⊆X . Suppose x∈ νa.(X#a). So x = π ′·x′ for some π ′ ∈ fix(supp(X#a)\{a})
and some x′ ∈ X#a. By Theorem 2.18 supp(X#a)\{a} ⊆ supp(X). Therefore π ′ ∈ fix(supp(X)).
Now x′ ∈ X , so by Theorem 2.13 π ′·x′ ∈ X .

For the second part, again we prove two set inclusions:

• Proof that X ⊆ (νa.X)#a. Suppose x ∈ X (so a#x). Then x ∈ νa.X and it is immediate that
x ∈ (νa.X)#a.

• Proof that (νa.X)#a ⊆ X . Suppose x ∈ (νa.X)#a. So x = π ′·x′ for some π ′ ∈ fix(supp(X)\{a})
and some x′ ∈ X (so a#x′). Now choose some entirely fresh b (so b#X ,x,a,π ′) and write
π = (b a) ◦π ′ ◦ (b a). It is a fact that π ∈ fix(supp(X)∪{a}), so by Theorem 2.13 π·X = X .
Since a#x′, it is also a fact that π|supp(x′) = π ′|supp(x′). By Theorem 2.13 π ′·x′ = π·x′. It follows
that x ∈ X , and by Theorem 2.11 it also follows that a#x.

Proposition 5.7. Suppose f ∈ X → Y is a function-set. Then π· f is a function-set in π·X → π·Y , and
it represents the function

λx ∈ π·X .π·( f (π -1·x)).

This is the conjugation action.

Proof. From equivariance (Theorem 2.15).
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Definition 5.8. Suppose f : X −→ Y ∈ FMSet#a. Define νa. f as follows: if x ∈ νa.X then we set

Nb. (νa. f )(x) = (b a)· f ((b a)·x).

We read νa. f as restrict a in f .

Lemma 5.9. If f : X −→ Y ∈ FMSet#a then:

• νa. f is well-defined (the choice of fresh b does not matter).
• νa. f : νa.X −→ νa.Y ∈ FMSetνa.
• supp(νa. f )⊆ supp( f )\{a}.

Proof. First, we review what has to be proved.
Suppose x ∈ νa.X . Choose some fresh b (so b# f ,a,x).
By Theorem 4.3 (∃ form), to calculate νa. f it suffices to calculate (b a)· f ((b a)·x). It is a fact

that if b#(b a)· f ((b a)·x) then this result does not depend on the choice of fresh b.
We must also check that supp(νa. f ) is finite, and a#νa. f ; there is no need for a separate proof

of this, since it is subsumed by a proof that supp(νa. f )⊆ supp( f )\{a}.
We sketch each part of the proof in turn:

• (b a)· f ((b a)·x) well-defined.

b#(b a)· f ((b a)·x) is immediate because we assumed that f ∈ FMSet#a.

What is slightly non-trivial is to prove that if x ∈ νa.X then (b a)·x ∈ X . Since x ∈ νa.X and
X ∈ FMSet#a, there exists some π ′ ∈ fix(supp(X) \ {a}) and some x′ ∈ X such that x = π ′·x′
and a#x′. We reason as follows:

(b a)·x fact= (b a)·π ′·x′ Lem. 2.8= ((b a)◦π
′ ◦ (b a))·(b a)·x′ a,b#x′,Thm. 2.13

= ((b a)◦π
′ ◦ (b a))·x′

It is a fact that ((b a) ◦π ′ ◦ (b a)) ∈ fix(supp(X)) and it follows by Theorems 2.15 and 2.13
that (b a)·x ∈ X .

• b#(b a)· f ((b a)·x). Using Theorem 2.11.

• b#(b a)· f ((b a)·x) ∈ νa.Y . It is a fact that f ((b a)·x) ∈ Y . The result follows by the defini-
tion of νa.Y .

We now prove that supp(νa. f )⊆ supp( f )\{a}. By Theorem 2.18 supp(νa. f )⊆ supp( f )∪{a}. By
Theorems 4.4 and 4.3 (∃ form) it then suffices to check that (a′ a)·(νa. f ) = νa. f for some fresh
a′ (so a′# f ,a). Choose some x ∈ νa.X and some fresh b. We reason as follows:

((a′ a)·νa. f )(x) = (b a)·((a′ a)· f )((b a)·(a′ a)·x) Theorem 4.3 (∀ form)
= (b a)·(a′ a)· f ((b a)·x) Proposition 5.7 and Lemma 2.8
= (b a)· f ((b a)·x). Theorems 2.18 and 2.11
= (νa. f )(x) Theorem 4.3 (∃ form)
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5.3 Statement and proof of the main result

Lemma 5.10. The following data specifies a pair of functors between FMSet#a and FMSetνa:

• -#a : FMSetνa−→FMSet#a maps X to X#a and f : X −→ Y to f#a : X#a→ Y#a.

• -νa : FMSet#a−→FMSetνa maps X to νa.X and f : X −→ Y to νa. f : νa.X → νa.Y .

Proof. By routine calculations.

Theorem 5.11. -#a and -νa define an isomorphism of categories between FMSet#a and FMSetνa.

Proof. That the functors are inverse on objects follows quickly from Lemma 5.6.
We check that these functors are inverse on arrows. Suppose f : X −→ Y ∈ FMSetνa. So

f ∈ X → Y and a# f ,X ,Y . We must check that νa.( f#a) = f . Take any x ∈ X and choose some
entirely fresh b. We reason as follows:

(νa.( f#a))(x) = (b a)· f ((b a)·x) Definition 5.4, Theorem 4.3 (∀ form)
= f ((b a)·(b a)·x) Theorems 2.15 and 2.13
= f (x) Lemma 2.8.

Suppose f : X −→ Y ∈ FMSet#a. So f ∈ X#a → Y#a. We must check that (νa. f )#a = f . Take any
x ∈ X#a and choose some entirely fresh b. We reason as follows:

(νa. f )#a(x) = (b a)· f ((b a)·x) Definition 5.4
= (b a)· f (x) Theorem 2.13
= f (x) Theorems 2.18 and 2.13.

6 Conclusions and related work

It is known that the category of nominal sets admits a representation as pullback-preserving
presheafs, but abstract categorical presentations of the properties of this ‘nominal’ category that
makes it ‘nominal’, have been lacking. There has been quite a lot of interest, especially recently,
in more abstract accounts of what ‘nominal’ really is.

As far as I know Menni was the first to think about this, for the N-quantifier [20]. Pitts and
Clouston are developing a notion of ‘FM category’ [4]. Kurz and Petrisan are pursuing not
dissimilar ideas, coming (speaking very roughly) from the point of view of many-sorted logic
and cylindric algebra [18]. Fiore and Hur are developing their own categorical framework
[7], of which aspects of nominal techniques are in a certain sense they make formal a special
case. There are, of course, other models of of names at a very abstract semantic level; examples
include [3] (not strictly speaking categorical) and [15].

Here, this paper could be timely and the observations in it could be of some use; to suggest
categorical equivalences to look for in the authors’ respective environments, or indeed directly
as a property of the category of FM sets FMSet.

Let me suggest an alternative reading of the results in this paper. FMSet#a and FMSetνa are
both categories with ‘an atom missing’. In FMSet#a, the atom is missing because it is fresh for
individual data. In FMSetνa, the atom is missing because it is fresh for the objects and arrows.
Let us shift our point of view and consider a reading of FMSet as a version of FMSet#a and
FMSetνa with an extra atom put in. In that sense, the two notions of freshness considered in this
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paper correspond to two notions of ‘add a fresh atom’: if we start from FMSet#a and add an
atom to the underlying data, we get FMSet; and if we start from FMSetνa and give the language
the power to resolve a, we also get FMSet. The main result of this paper is that these two
starting-points are isomorphic.

The equivalence of FMSet#a and FMSetνa seems an elegant result. Up to a categorical iso-
morphism, there is only one way to add/subtract an atom.
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