
ONE-AND-A-HALFTH-ORDER LOGIC

MURDOCH J. GABBAY AND AAD MATHIJSSEN

Abstract. The practice of first-order logic is replete with meta-level concepts.
Most notably there are meta-variables ranging over formulae, variables, and
terms, and properties of syntax such as alpha-equivalence, capture-avoiding
substitution and assumptions about freshness of variables with respect to meta-
variables. We present one-and-a-halfth-order logic, in which these concepts
are made explicit. We exhibit both sequent and algebraic specifications of
one-and-a-halfth-order logic derivability, show them equivalent, show that the
derivations satisfy cut-elimination, and prove correctness of an interpretation
of first-order logic within it.

We discuss the technicalities in a wider context as a case-study for nominal
algebra, as a logic in its own right, as an algebraisation of logic, as an example
of how other systems might be treated, and also as a theoretical foundation
for future implementation.
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1. Introduction

Consider the following valid sequents in first-order predicate logic with equality
(FOL) [3, 5], written in standard notation:

• ` φ ⊃ (ψ ⊃ φ),
• if a 6∈ fn(φ) then φ ` φJa 7→ tK,
• if b 6∈ fn(φ) then ∀a.φ ` ∀b.(φJa 7→ bK),
• if a 6∈ fn(φ) then φ ` ∀a.φ,
• if a 6∈ fn(φ) then φ, ψ ` ∀a.φ,
• if a 6∈ fn(φ) then φ,∀a.(φ ⊃ ψ) ` ∀a.ψ,
• ∀b.∀a.φ ` ∀a.(φJb 7→ aK).

These sequents cannot be derived in FOL, since derivations involve FOL syntax
only, while the syntax of the sequents just given contains meta-variables φ, ψ, a, b
and t. These are not FOL syntax, they vary over it. Also we refer to properties of
syntax when we write ‘a 6∈ fn(φ)’ and ‘φJa 7→ tK’, but FOL syntax cannot represent
these explicitly.
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Of course to us humans this is all obvious. One reason is that the derivations fall
into a limited number of schema. For example the ‘derivation’ below on the left

(Ax)
ψ, φ ` φ

(⊃R)
φ ` ψ ⊃ φ

(⊃R)
` φ ⊃ (ψ ⊃ φ)

(Ax)
⊥,⊥ ` ⊥

(⊃R)
⊥ ` ⊥ ⊃ ⊥

(⊃R)
` ⊥ ⊃ (⊥ ⊃ ⊥)

is not a derivation, but it obviously represents a schema of derivations of which the
(real) derivation on the right is an instance setting φ and ψ to ⊥. But is there a
logic in which the beast on the left is a derivation too?

It is not a new observation that meta-variables varying over syntax are not
syntax, and that schematic derivations are not derivations [27, page 7] (Hodges
calls them ‘argument schema’). Many authors do leave meta-variables at the meta-
level. Some suggest that this is where they belong.

Yet logic teaches us that reasoning can and should be formalised, not only its
conclusions. So if we use meta-variables in reasoning, we can and should ask ‘what
is the mathematics of this reasoning’?

This paper presents one-and-a-halfth-order logic. This logic generalises first-
order logic by adding explicit meta-variables (unknowns) P and Q which in the
logic represent the φ and ψ of the derivations above.

If we think about how we might do this we immediately encounter serious tech-
nical barriers, due to the interaction of unknowns with quantifiers.

• ∀a.φ and ∀b.φ need not be α-convertible if φ mentions a and b free. So
if we permit terms with unknowns such as ∀a.P and ∀a.Q, what is the
suitable generalisation of α-equivalence? It is not acceptable to write ‘a
does not occur in the syntax of P and Q’ (even though this is quite true)
— because P and Q are syntax representing unknown predicates and should
also represent the intuition of φ and ψ that they might be instantiated to
predicates mentioning a.

Yet we do need to generalise α-equivalence, for example so that we can
represent the ∀ right quantifier introduction rule (∀R):

φ ` ψ
(∀R) (a 6∈ fn(φ))

φ ` ∀a.ψ
Here as is well-known we expect to be able to α-rename a to guarantee the
side-condition. We would still like to be able to do so in a derivation with
unknowns, but it is absolutely not clear how to do so if we are just given a
sequent P ` ∀a.Q, because P and Q are just variable symbols (representing
unknown predicates) and it is quite unclear how to rename a in Q to avoid
capture in P .

• In the presence of meta-variables, substitution becomes nontrivial. For
example φJa 7→ tK where Ja 7→ tK means ‘replace a by t’ has some meaning
if we can rely on φ and t being meta-variables which are bound to ‘real’
syntax. What is a correct representation of substitution which permits us
to write P Ja 7→ T K and thus represent the ∀ left introduction rule:

φJa 7→ tK ` ψ
(∀L)

∀a.φ ` ψ
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So in this paper we are seeking to construct a logic that enriches the syntax of first-
order logic with explicit meta-variables, and which still permits generalised forms
of α-equivalence, substitution, capture-avoidance, and quantifier introduction rules
which are only ε (a very small distance) away from the ‘schematic derivations’ which
we see all the time in informal practice, such as:

···
φ, (φ ⊃ ψ)Ja 7→ aK ` ψ

(∀L)
φ,∀a.(φ ⊃ ψ) ` ψ

(∀R) (a 6∈ fn(φ))
φ,∀a.(φ ⊃ ψ) ` ∀a.ψ

We shall demonstrate not only that such a logic exists, but that it satisfies many of
the good properties of first-order logic including cut-elimination. Even though one-
and-a-halfth-order logic is a completely formal logic with clearly-specified derivation
rules, we shall see that reasoning in one-and-a-halfth-order logic is remarkably close
to reasoning in informal practice using schematic derivations. One of the obvious
future applications of this logic is as a basis for a theorem-prover with some of the
generality of second-order logic, but with the flavour of familiar pencil-and-paper
schematic derivations in first-order logic.

Map of the paper. In Section 2 we introduce the syntax of one-and-a-halfth-order
logic. In Sections 3 to 5 we develop a sequent calculus and establish proof-theoretical
properties including cut-elimination. In Section 6 we give an equational axiomatisa-
tion of one-and-a-halfth-order logic and show it equivalent to the sequent calculus.
In Section 7 we show that a subset of one-and-a-halfth-order logic is equivalent to
first-order logic. We discuss related and future work in the Conclusions.

2. Nominal terms

We need a syntax in which expressions with meta-variables may be represented.
Examples we have already mentioned include ∀a.φ, a 6∈ fn(φ), and φJa 7→ tK.

We use Nominal Terms [42] because they offer built-in support for meta-variables,
abstraction, and freshness in a way that is close to informal practice.

2.1. Sorts and terms. Our sorts will be very tailored to the needs of this paper;
see elsewhere for a more general exposition [18, 19].

Fix base sorts:

• F of formulae,
• T of terms.

Fix a countably infinite collection A of atoms. Then sorts τ are inductively
defined by:

τ ::= F | T | [A]F | [A]T.
The intuition of [A]τ is ‘elements of τ with an atom abstracted’.

[A]τ has no intuitive functional denotation; we should not think of [A]τ as a
space of functions (in a standard notation: as A → τ). So for example [τ ′]τ is not
a valid sort. We should think of [A]τ as the set of α-equivalence classes of elements
of τ with a distinguished bound atom.

So much for the sorts. Now we construct the terms.
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Let atoms a, b, c, . . . be the elements of A. For each sort τ ∈ {F,T} fix a count-
ably infinite collection Xτ , Yτ , Zτ , . . . of unknowns of sort τ . Atoms and sets of
unknowns are all distinct.

Atoms represent object-level variable symbols, for examples see a, b in the Intro-
duction. Unknowns represent meta-level variables, for examples see φ, ψ, t in the
Introduction. We may drop the sorting subscript and write Xτ as X. We may also
write X : τ as shorthand for ‘X, which has sort τ ’. We tend to give unknowns of
sort F names P,Q,R and unknowns of sort T names T,U .

A permutation π of atoms is a total bijection A → A with finite support,
meaning that for some finite set of atoms (which may be empty) π(a) 6= a, but for
all atoms not in that set, π(a) = a.

This is a mathematical notion of ‘most’: π is a bijection on atoms such that
π(a) = a for most a.

As usual, we write Id for the identity permutation, π-1 for the inverse of π,
and π ◦ π′ for the composition of π and π′, i.e. (π ◦ π′)(a) = π(π′(a)). Id is also
the identity of composition, i.e. Id ◦ π = π and π ◦ Id = π.

Terms t, u, v are inductively defined by:

t ::= a | π ·X | [a]t | ⊥ | t ⊃ t | ∀t | t ≈ t | sub(t, t)
| f1(t1, . . . , tn1) | f2(t1, . . . , tn2) | . . .

Call π ·X a moderated unknown. We may abbreviate Id ·X to X.
We call the symbols

⊥, ⊃, ∀, ≈, sub, f1, f2, . . .

term-formers. We shall usually let f vary over term-formers.
Amongst the fi the reader should understand symbols such as 0, S, +, issocrates

and greek, but also λ, Σ, fixpoint, ∃! (standard notation for the ‘there exists exactly
one’ quantifier), and so on.

We define sorting assertions t : τ (t has sort τ) inductively by:

a : T
(τ ∈ {F,T})

π ·Xτ : τ

t : τ
(τ ∈ {F,T})

[a]t : [A]τ

⊥ : F

t : F u : F

t ⊃ u : F
t : [A]F

∀t : F

t : T u : T

t ≈ u : F

t : [A]τ u : T
(τ ∈ {F,T})

sub(t, u) : τ

There may be additional sorting rules for other term formers, such as:

0 : T

t : T

S(t) : T
t : T u : T

t+ u : T

t : T

issocrates(t) : F

t : T

greek(t) : F

t : [A]T

λt : T

t : [A]T

Σt : T

t : [A]T

fixpoint(t) : T
t : [A]F

∃!t : F
We write t : τ as a shorthand for ‘t of sort τ ’. We may call terms φ : F formulae.
Let a be any atom, t, u : T be any terms, and φ, ψ be any formulae. We discuss

some intuitions and introduce some sugar:
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• ⊥ represents false.
• φ ⊃ ψ is a logical implication.
• We write ∀([a]φ) as ∀[a]φ; this represents a universal quantification (which

takes an abstraction of a formula and yields a formula).
• We write sub([a]φ, t) and sub([a]u, t) as φ[a 7→ u] and t[a 7→ u], representing

capture-avoiding substitution in the object-language. We may also refer to
these terms as substitutions.

• t ≈ u is equality in the object-language.
• a is a term of sort T, representing an object-level variable symbol of sort T.
• We may use some other standard notation for term-formers with suggestive

names; e.g. we may write t+ u as shorthand for +(t, u).
• We use standard classical logic sugar:

¬φ is φ ⊃ ⊥ > is ¬⊥
φ ∧ ψ is ¬(φ ⊃ ¬ψ) φ ∨ ψ is ¬φ ⊃ ψ

φ⇔ ψ is (φ ⊃ ψ) ∧ (ψ ⊃ φ) ∃[a]φ is ¬∀[a]¬φ

Note that these are abbreviations, not term-formers.
To save on (unnecessary) parentheses, take [a] , [ 7→ ], ≈, {¬,∀,∃},

{∧,∨}, ⊃, ⇔ as the descending order of precedence. So for example
P ∧Q ⊃ R ∨ S is (P ∧Q) ⊃ (R ∨ S) and ∀[a]P ∧Q is (∀[a]P ) ∧Q. Also
let ∧, ∨, ⊃ and ⇔ associate to the right; for example P ⊃ Q ⊃ R is
P ⊃ (Q ⊃ R).

If a term-former forms terms of sort T call it an object-level term-former.
If a term-former forms terms of sort F call it a predicate term-former. 0, S,
+, λ, Σ and fixpoint are object-level term-formers and issocrates, greek and ∃! are
predicate term-formers. These extra term-formers would cause no difficulties for
the results which follow — aside from some extra cases.

We will not want any term-former to make terms of sort [A]T or [A]F directly;
the correct way to form an abstraction is to use [a].

Write syntactic identity of terms t, u as t ≡ u. This emphasises the difference
from provable equality t = u, which is a logical assertion defined later in Section 4.2,
and object-level equality t ≈ u, which is a term.

Note that the sorting system is such that a well-sorted term of the form ∀t must
be of the form ∀[a]t′ (so t ≡ [a]t′), and a well-sorted term of the form sub(t1, t2)
must be of the form t[a 7→ t2].

We write a ∈ t (or X ∈ t) for ‘a (or X) occurs in (the syntax of) t’. Occur-
rence is literal, e.g. a ∈ [a]a and a ∈ π ·X if π(a) 6= a. We omit inductive definitions.
Similarly we may write a 6∈ t and X 6∈ t for ‘does not occur in the syntax of t’.

Call t closed when t mentions no unknowns — t may still mention atoms, e.g.
the terms a and [a]b are closed and the terms X and [a]X are not.

2.2. Freshnesses. A freshness (assertion) is a pair a#t of an atom and a term.
Intuitively we should read a#t as meaning ‘a 6∈ fn(t)’ or in words ‘a is fresh for t’.

Call the assertion a#X (so t ≡ X) primitive. Write ∆ for a (possibly infinite)
set of primitive freshnesses and call it a freshness context. We may drop set
brackets in freshnesses, e.g. writing a#t, b#u for {a#t, b#u}. Also, we may write
a#t, u for a#t, a#u.
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(#ab)
a#b

π-1(a)#X
(#X)

a#π ·X
(π 6= Id)

(#[]a)
a#[a]t

a#t
(#[]b)

a#[b]t

a#t1 · · · a#tn
(#f)

a#f(t1, . . . , tn)

Figure 1. Derivation rules for freshness

A reason this notion is quite subtle in nominal techniques is the unknowns X;
a#X is not necessarily true even though a 6∈ X is a fact of the syntax. X represents
an unknown term in the syntax; a#X has the quality of a promise or assertion
about what term that can be, or put another way, about what we can instantiate
X to.

Freshness enjoys a notion of derivation which will be very useful:

Definition 2.1. Write ∆ ` a#t when a derivation of a freshness assertion a#t
exists using the elements of ∆ as assumptions, according to the rules in Figure 1.
Say that ∆ entails a#t or a#t is derivable from ∆.

In Figure 1. . .
• a and b permutatively range over atoms, i.e. a and b represent any two

distinct atoms;
• π ranges over permutations.1

• X ranges over unknowns;
• t and t1, . . . , tn range over terms;
• f ranges over term-formers.

We use similar conventions henceforth.
Examples of derivable freshness assertions are:

` a#∀[a]P a#T ` a#(a ≈ a)[a 7→ T ] a#X ` b#(b a) ·X.

Examples of non-derivable freshness assertions are:

` a#a ` a#∀[b]P ` a#(a ≈ a)[a 7→ T ] a#X ` a#(b a) ·X.

Note that freshness is decidable; we obtain an algorithm by reading the rules in
Figure 1 bottom-up.

3. Derivations of one-and-a-halfth-order logic

Recall that by our terminology a formula φ is a term of sort F.
Let (formula) contexts Φ,Ψ be finite (possibly empty) sets of formulae. A

sequent is a triple Φ `∆ Ψ where ∆ is a freshness context and Φ and Ψ are formula
contexts; when a context appears to the right of ` we may call it a co-context.

We may write φ for {φ}, φ,Φ for {φ}∪Φ, and Φ,Φ′ for Φ∪Φ′, and we may omit
empty formula contexts, e.g. writing `∆ for ∅ `∆ ∅.

1The (#X) rule excludes the empty permutation Id. While there is no mathematical reason
for this, there is a nice computational one: the algorithm obtained by reading rules bottom-up,
must terminate.
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Extend the notions of occurrence, closedness, permutation actions and substitu-
tion action to formula contexts elementwise; for example a ∈ Φ if a ∈ φ for some
φ ∈ Φ.

Definition 3.1. Let the valid sequents of one-and-a-halfth-order logic be induc-
tively specified by the rules in Figure 2.

We may call the set of valid sequents an entailment relation.
Our rules resemble those of Gentzen’s sequent calculus for classical first-order

logic with equality [8, 23, 39], but with the following distinctive features:

• Unknown formulae and unknown terms are represented explicitly as un-
knowns of sort F and T respectively.

• We can make freshness assumptions about unknowns (using (Fr)), and
these affect derivability, for example in (∀R).

• A theory of equality of terms up to α-equivalence and capture-avoiding
substitution is represented by an equality ∆ `

SUB
t = u in a theory SUB

(formally defined in the next section).
• Side-conditions on substitution, freshness and atoms not occurring in terms,

are all decidable.

Call (StructL) and (StructR) structural rules. (Cut) can emulate them, but
we would lose cut-elimination. Note that the side-conditions of these rules refer to
equational derivability in SUB. (StructL) and (StructR) exist to help us manage
substitutions, see the example derivations below.

(Fr) helps us to introduce new atoms into a derivation. The difficulty is that
one-and-a-halfth-order logic has explicit meta-variables, so we need (Fr) so that we
can enrich the freshness context with information that the atom is fresh for those
meta-variables.

Example derivations in one-and-a-halfth-order logic are in Figure 3. We give
some intuitions:

• ` P ⊃ (Q ⊃ P ) represents a family of tautologies of propositional logic
φ ⊃ (ψ ⊃ φ). The only difference is that here we are using the provision of
explicit meta-variables to represent this family directly as a single sequent.

• P `
a#P

P [a 7→ T ] represents a family of tautologies of predicate logic. The
condition a#P intuitively guarantees that whatever formula P represents,
it is not one that mentions a free in its syntax. It corresponds to writing
a 6∈ fn(φ).

A side-condition verifies formally that if a 6∈ fn(φ) then φ and φ[a 7→ t]
are the same. Since unknowns represent meta-variables ranging over formu-
lae and terms, such an equality is not a syntactic fact; it becomes something
worthy of proof. We develop the theory of this equality next.

• ∀[a]P `
b#P

∀[b](P [a 7→ b]) is α-equivalence. . . in the presence of unknowns!
The derivation exploits the power to prove equalities in SUB.

• P `
a#P

∀[a]P expresses that if a does not appear free in φ and φ holds, then
so does ∀a.φ.

• P,Q `
a#P

∀[a]P expresses the same as the previous example, except that
we have an additional assumption Q. The derivation becomes significantly
more complex: we cannot use (∀R) on ∀[a]P because we do not know a#Q.
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(Ax)
φ, Φ `∆ Ψ, φ

(⊥L)
⊥, Φ `∆ Ψ

Φ `∆ Ψ, φ ψ, Φ `∆ Ψ
(⊃L)

φ ⊃ ψ, Φ `∆ Ψ

φ, Φ `∆ Ψ, ψ
(⊃R)

Φ `∆ Ψ, φ ⊃ ψ

φ[a 7→ t], Φ `∆ Ψ
(∀L)

∀[a]φ, Φ `∆ Ψ

Φ `∆ Ψ, ψ
(∀R)

Φ `∆ Ψ, ∀[a]ψ
(∆ ` a#Φ,Ψ)

φ[a 7→ t′], Φ `∆ Ψ
(≈L)

t′ ≈ t, φ[a 7→ t], Φ `∆ Ψ
(≈R)

Φ `∆ Ψ, t ≈ t

φ′, Φ `∆ Ψ
(StructL) (∆ `SUB φ

′ = φ)
φ, Φ `∆ Ψ

Φ `∆ Ψ, ψ′

(StructR)
Φ `∆ Ψ, ψ

(∆ `SUB ψ
′ = ψ)

Φ `∆,a#X1,...,a#Xn
Ψ

(Fr) (n ≥ 1, a 6∈ Φ,Ψ,∆)
Φ `∆ Ψ

Φ `∆ Ψ, φ φ′, Φ `∆ Ψ
(Cut) (∆ `SUB φ = φ′)

Φ `∆ Ψ

Figure 2. Sequent calculus for one-and-a-halfth-order logic

The solution is to use (Fr) to generate b#P,Q, use structural rules to α-
rename, and then use (∀R). This use of (Fr) is essential: we need this
mechanism to introduce a fresh atom into the derivation.

• P,∀[a](P ⊃ Q) `
a#P

∀[a]Q represents another family of tautologies of pred-
icate logic [12, page 4, axiom (2a)]. For the instance of (∀R) to be valid we
must show a#∀[a](P ⊃ Q). We have made no assumptions about what is
fresh for Q, but the abstraction by a guarantees this property anyway.

• ∀[b]∀[a]P ` ∀[a](P [b 7→ a]) is a relatively non-trivial tautology which might
be written in semi-formal notation as ‘∀a.∀b.φ(a, b) implies ∀a.φ(a, a)’.

4. Nominal algebra

We now develop the theory of equality of nominal terms up to substitution and
formally construct the judgement ∆ `

SUB
t = u which we used in Figure 2. This

framework is called nominal algebra [18, 19]. In this section we omit proofs of most
lemmas and theorems. Full proofs are available elsewhere [19].

4.1. Permutations and substitutions. We write π · t for the action of a per-
mutation on a term, defined inductively on syntax by:

π · a ≡ π(a) π · (π′ ·X) ≡ (π ◦ π′) ·X π · [a]t ≡ [π(a)](π · t)
π · f(t1, . . . , tn) ≡ f(π · t1, . . . , π · tn)

Lemma 4.1. π · (π′ · t) ≡ (π ◦ π′) · t and Id · t ≡ t.

A substitution σ is a finitely supported sort-respecting function from unknowns
to terms. Here, finitely supported means that for some finite set of unknowns
σ(X) 6≡ Id · X, but for all other unknowns σ(X) ≡ Id · X. Sort-respecting
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(Ax)
Q,P `∅ P

(⊃R)
P `∅ Q ⊃ P

(⊃R)
`∅ P ⊃ (Q ⊃ P )

(Ax)
P `a#P P

(StructR) (a#P `SUB P = P [a 7→ T ])
P `a#P P [a 7→ T ]

(Ax)
∀[a]P `b#P ∀[a]P

(StructR) (b#P `SUB ∀[a]P = ∀[b](P [a 7→ b]))
∀[a]P `b#P ∀[b](P [a 7→ b])

(Ax)
P `a#P P

(∀R) (a#P ` a#P )
P `a#P ∀[a]P

(Ax)
P,Q `a#P,b#P,Q P

(StructR) (a#P, b#P,Q `SUB P = (a b) · P )
P,Q `a#P,b#P,Q (a b) · P

(∀R) (a#P, b#P,Q ` b#P,Q)
P,Q `a#P,b#P,Q ∀[b](a b) · P

(StructR) (a#P, b#P,Q `SUB ∀[b](a b) · P = ∀[a]P )
P,Q `a#P,b#P,Q ∀[a]P

(Fr) (b 6∈ P, Q, ∀[a]P, a#P )
P,Q `a#P ∀[a]P

(Ax)
P `a#P Q,P

(Ax)
Q,P `a#P Q

(⊃L)
P, P ⊃ Q `a#P Q

(StructL) (a#P `SUB P ⊃ Q = (P ⊃ Q)[a 7→ a])
P, (P ⊃ Q)[a 7→ a] `a#P Q

(∀L)
P, ∀[a](P ⊃ Q) `a#P Q

(∀R) (a#P ` a#P, ∀[a](P ⊃ Q))
P, ∀[a](P ⊃ Q) `a#P ∀[a]Q

(Ax)
P [b 7→ c][a 7→ c] `c#P P [b 7→ c][a 7→ c]

(∀L)
∀[a](P [b 7→ c]) `c#P P [b 7→ c][a 7→ c]

(StructL) (c#P `SUB ∀[a](P [b 7→ c]) = (∀[a]P )[b 7→ c])

(∀[a]P )[b 7→ c] `c#P P [b 7→ c][a 7→ c]
(∀L)

∀[b]∀[a]P `c#P P [b 7→ c][a 7→ c]
(∀R) (c#P ` c#∀[b]∀[a]P )

∀[b]∀[a]P `c#P ∀[c](P [b 7→ c][a 7→ c])
(StructR) (c#P `SUB ∀[c](P [b 7→ c][a 7→ c]) = ∀[a](P [b 7→ a]))

∀[b]∀[a]P `c#P ∀[a](P [b 7→ a])
(Fr) (c 6∈ ∀[b]∀[a]P, ∀[a](P [b 7→ a]))

∀[b]∀[a]P `∅ ∀[a](P [b 7→ a])

Figure 3. Example derivations in one-and-a-halfth-order logic
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means that for each X the term σ(X) should have the same sort as X. Write
[t1/X1, . . . , tn/Xn] for the substitution σ such that σ(Xi) ≡ ti and σ(Y ) ≡ Id · Y ,
for all Y 6≡ Xi, 1 ≤ i ≤ n. Write [] for the empty substitution, which maps each
X to Id ·X.

Write a ∈ σ if there exists an X such that a ∈ σ(X), and similarly write a 6∈ σ
if there is no such X. For example a ∈ [a/X] and a 6∈ [].

A substitution σ has a natural action on terms t, inductively defined by:

aσ ≡ a (π ·X)σ ≡ π · σ(X) ([a]t)σ ≡ [a](tσ)

f(t1, . . . , tn)σ ≡ f(t1σ, . . . , tnσ)

Give substitution and permutation actions higher precedence than abstraction
and any of the sugared term-formers, and put substitution before permutation.

Note how substitution interacts with permutation in the case of an unknown, for
example ((a b) ·X)[b/X] ≡ (a b) · b ≡ a. So π in X is ‘waiting for a substitution to
arrive’, as also made formal in the following property:

Lemma 4.2. π · tσ ≡ (π · t)σ.
Another permutation action will be useful. Write tπ for the meta-level action

of π on t, which is defined by:

aπ ≡ π(a) (π′ ·X)π ≡ (π ◦ π′ ◦ π-1) ·X ([a]t)π ≡ [π(a)](tπ)

f(t1, . . . , tn)π ≡ f(t1π, . . . , tnπ)

Lemma 4.3. Fix t and π, and let σ map X ∈ t to π · X, and σ′ map X ∈ t to
π-1 ·X. Then π · t ≡ tπσ and tπ ≡ (π · t)σ′.

So the two permutation actions are interdefinable in the presence of substitution
σ; however, sometimes one is more natural than the other, we shall point out how,
later.

We extend notation for tπ, π · t and tσ to freshness contexts ∆ as follows:

∆π = {π(a)#X | a#X ∈ ∆}
π ·∆ = {π(a)#π ·X | a#X ∈ ∆}

∆σ = {a#σ(X) | a#X ∈ ∆}
Note that ∆π is a freshness context, but π ·∆ and ∆σ need not be.

4.2. Assertions, axioms and derivations. An equality assertion is a pair of
terms t = u of the same sort. Call a pair ∆ ` t = u of a finite freshness context ∆
and an equality assertion t = u an axiom. If ∆ = ∅, we may write just t = u.

Definition 4.4. Call a (possibly infinite) set of axioms T a theory.
Write ∆ `

T
t = u when a derivation of t = u exists using the rules in Figure 4,

such that every assumption used is a freshnesses from ∆, and for every use of
(axA) for some A, that A is an element of T. Say that ∆ entails t = u or t = u
is derivable from ∆.

For example,
• In the theory with axioms a = b and [a]X = [b]Y , the derivations

(axa=b)
b = c

(ax[a]X=[b]Y)
[b]b = [a]a

are valid. We take π = (a b c) and any σ, and π = (a b) and σ = [b/X, a/Y ],
respectively.
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(refl)
t = t

t = u
(symm)

u = t

t = u u = v
(tran)

t = v

a#t b#t
(perm)

(a b) · t = t

t = u
(cong[])

[a]t = [a]u

t = u
(congf)

f(t1, . . . , t, . . . , tn) = f(t1, . . . , u, . . . , tn)

∆πσ
(ax∆`t=u)

tπσ = uπσ

[a#X1, . . . , a#Xn] ∆
···

t = u
(fr) (n ≥ 1, a 6∈ t, u,∆)

t = u

Figure 4. Derivation rules of nominal algebra

• We cannot use axiom f1(a, b) = f2 to derive that f1(a, a) = f2, because no
permutation can identify a with b (assuming term-formers f1 and f2).

• Taking C to be a#X ` [a]X = [b]X, of the derivations

(#ab)
a#b

(axC)
[a]b = [b]b

a#a
(axC)

[a]a = [b]a

the left one is valid, but the right one is not, because a#a is not derivable.
In (ax∆`t=u), unknowns get arbitrarily instantiated and atoms get arbitrarily

permuted. Thus in an axiom two distinct unknowns represent any two terms but
two distinct atoms represent any two distinct atoms.

In (fr) square brackets denote discharge in the sense of natural deduction (as in
implication introduction [27]); ∆ denotes the other assumptions of the derivation
of t = u.

In a sequent style presentation of nominal algebra, (fr) would be
∆, a#X1, . . . , a#Xn ` t = u

∆ ` t = u
(n ≥ 1, a 6∈ t, u,∆).

To see how (fr) increases the power of the system consider a theory with just one
axiom a#T ` T = a, which we call S. With (fr) we can derive ` T = a. Without
(fr) we can derive ` b = a but we cannot derive ` T = a (proof omitted).

[a#T ]1
(axS)

T = a
(fr)1

T = a

(#ab)
a#b

(axS)
b = a

In the left derivation, the superscript number one 1 is an annotation associating the
instance of the rule (fr) with the assumption it discharges in the derivation. This
is standard natural deduction notation.

Useful properties of nominal algebra include:

Lemma 4.5. For any π:
(1) if ∆ ` a#t then ∆ ` π(a)#π · t;
(2) if ∆ `

T
t = u then ∆ `

T
π · t = π · u.

Lemma 4.6. If ∆ `
T
t = u then ∆ `

T
v[t/X] = v[u/X].
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Proof. By an easy induction on the structure of v. �

Theorem 4.7. For any ∆′,∆, σ, if ∆′ ` ∆σ then:
(1) if ∆ ` a#t then ∆′ ` a#tσ;
(2) if ∆ `

T
t = u then ∆′ `

T
tσ = uσ.

This has as an easy corollary:

Corollary 4.8. If ∆ ⊆ ∆′ then:
(1) if ∆ ` a#t then ∆′ ` a#t;
(2) if ∆ `

T
t = u then ∆′ `

T
t = u.

The reader may wonder why we do not use the following alternative axiom rule:
π ·∆σ

(ax′∆`t=u)
π · tσ = π · uσ

.

This is just a matter of taste. Using (ax′∆`t=u), atoms in the substitution σ are
renamed according to permutation π. This we personally find rather mind-bending.
For example, from the axiom [a]X = [b]X it is immediate that ` [b]a = [a]a is
derivable using (ax[a]X=[b]X) where we choose π = (b a) and σ = [a/X]. If we
use (ax′[a]X=[b]X) we must choose π = (b a) and σ = [b/X].

4.3. The theories CORE and SUB. We have seen examples of one-and-a-halfth-
order logic derivations. We have seen that structural rules and freshnesses play an
important rôle in the control of the explicit meta-variables.

In the rest of this section we formally define the valid judgements of the form
∆ `

SUB
t = u. In [17], we have shown that SUB really is capture-avoiding substitu-

tition, and that this theory is decidable. In this section, we will only show some
examples. In Section 7, we will show that equality in SUB coincides with the usual
notion of capture-avoiding substitution, such as the one used in first-order logic
with equality (FOL).

Write CORE for the theory with no axioms. This is a theory of α-equivalence on
nominal terms.

Write SUB for the theory with the axioms in Figure 5. Here a, b are distinct
atoms, P,Q,R are distinct unknowns of sort F, T,U, V are distinct unknowns of
sort T, and X is an unknown of the appropriate sort.

There may also be axioms, which we shall not dwell on, to distribute substitutions
through any other term-formers such as λ, +, and so on. These cause no extra
issues; if the term-former takes terms of abstraction sort the equality should include
a freshness side-condition in the same style as (∀7→).

The following two lemmas are useful:

Lemma 4.9 (α-conversion). b#Z `
CORE

X[a 7→ T ] = ((b a) ·X)[b 7→ T ]

Proof. De-sugaring, we must derive sub([a]X,T ) = sub([b](b a) ·X,T ) from b#X.

(#[]a)
a#[a]X

b#X
(#[]b)

b#[a]X
(perm)

[a]X = [b](b a) ·X
(congf)

sub([a]X,T ) = sub([b](b a) ·X,T )
�
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(var 7→) a[a 7→ T ] = T
(# 7→) a#X ` X[a 7→ T ] = X
(⊃ 7→) (P ⊃ Q)[a 7→ T ] = (P [a 7→ t]) ⊃ (Q[a 7→ t])
(≈ 7→) (U ≈ V )[a 7→ T ] = (U [a 7→ t]) ≈ (V [a 7→ t])
(∀ 7→) b#T ` (∀[b]P )[a 7→ T ] = ∀[b](P [a 7→ T ])

(sub 7→) b#T ` X[b 7→ U ][a 7→ T ] = X[a 7→ T ][b 7→ U [a 7→ T ]]
(ren 7→) b#X ` X[a 7→ b] = (b a) ·X

Figure 5. Axioms of SUB

Lemma 4.10. `
SUB

X[a 7→ a] = X is derivable.

Proof.

(#[]a)
a#[a]X

[b#X]1
(#[]b)

b#[a]X
(perm)

[b](b a) ·X = [a]X
(symm)

[a]X = [b](b a) ·X
(congf)

X[a 7→ a] = ((b a) ·X)[b 7→ a]

[b#X]1
(#X)

a#(b a) ·X
(axren 7→)

((b a) ·X)[b 7→ a] = X
(tran)

X[a 7→ a] = X
(fr)1

X[a 7→ a] = X

�

Lemma 4.11. a#U, b#T `
SUB

X[a 7→ T ][b 7→ U ] = X[b 7→ U ][a 7→ T ] is derivable.

Proof. By (tran), it suffices to deriveX[a 7→ T ][b 7→ U ] = X[b 7→ U ][a 7→ T [b 7→ U ]]
and X[b 7→ U ][a 7→ T [b 7→ U ]] = X[b 7→ U ][a 7→ T ] from assumptions a#U and
b#T . The former follows from axiom (sub 7→) and assumption a#U . By (congf),
the latter follows from T [b 7→ U ] = T , which follows from the assumption b#T by
axiom (# 7→). �

For a dedicated investigation of SUB see elsewhere [17].
Now we recall Figure 3.
• The side-condition a#P `

SUB
P ⊃ Q = (P ⊃ Q)[a 7→ a] in the derivation of

P,∀[a](P ⊃ Q) `
a#P

∀[a]Q is an instance of Lemma 4.10.
• The side-condition a#P, b#P,Q `

SUB
∀[b](a b) ·P = ∀[a]P in the derivation

of P,Q `
a#P

∀[a]P is an instance of Lemma 4.9.
In Figure 6 we show derivations of a few of the more interesting side-conditions

used in Figure 3. The final derivation is given in two parts, one of which we call Π,
for typographic reasons.

5. Proof-theoretical results

This section shows two important properties of the sequent calculus for one-and-
a-halfth order logic:

• In derivations, atoms may be permuted and unknowns may be instantiated.
We will call these properties equivariance and substitution.
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a#P
(ax#7→)

P [a 7→ T ] = P
(symm)

P = P [a 7→ T ]

c#P
(#[]b)

c#[a]P
(#f)

c#∀[a]P
(#[]b)

c#[b]∀[a]P
(#f)

c#∀[b]∀[a]P

([]a)
a#[a]P

b#P
([]b)

b#[a]P
(perm)

[b](b a) · P = [a]P
(symm)

[a]P = [b](b a) · P

b#P
(axren7→)

P [a 7→ b] = (b a) · P
(symm)

(b a) · P = P [a 7→ b]
(cong[])

[b](b a) · P = [b](P [a 7→ b])
(tran)

[a]P = [b](P [a 7→ b])
(congf)

∀[a]P = ∀[b](P [a 7→ b])

(#ab)
a#c

(ax∀7→)
(∀[a]P )[b 7→ c] = ∀[a](P [b 7→ c])

(symm)
∀[a](P [b 7→ c]) = (∀[a]P )[b 7→ c]

Π = (#[]a)
a#[a](P [b 7→ a])

c#P
(#b)

c#[b]P
(#ab)

c#a
(#f)

c#P [b 7→ a]
(#[]b)

c#[a](P [b 7→ a])
(perm)

[c](((c a) · P )[b 7→ c]) = [a](P [b 7→ a])
(symm)

[a](P [b 7→ a]) = [c](((c a) · P )[b 7→ c])

Π

c#P
(axren7→)

P [a 7→ c] = (c a) · P
(symm)

(c a) · P = P [a 7→ c]
(cong[])

[b]((c a) · P ) = [b](P [a 7→ c])
(congf)

((c a) · P )[b 7→ c] = P [a 7→ c][b 7→ c]

Lemma 4.11

P [a 7→ c][b 7→ c] = P [b 7→ c][a 7→ c]
(tran)

((c a) · P )[b 7→ c] = P [b 7→ c][a 7→ c]
(cong[])

[c](((c a) · P )[b 7→ c]) = [c](P [b 7→ c][a 7→ c])
(tran)

[a](P [b 7→ a]) = [c](P [b 7→ c][a 7→ c])
(symm)

[c](P [b 7→ c][a 7→ c]) = [a](P [b 7→ a])
(congf)

∀[c](P [b 7→ c][a 7→ c]) = ∀[a](P [b 7→ a])

Figure 6. Derivations of side-conditions
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• The cut-elimination property of first-order predicate logic is preserved by
the extension to one-and-a-halfth-order logic.

5.1. Equivariance and substitution. Fix a freshness context ∆, a context and
cocontext Φ and Ψ, and a derivation Π.

We extend notation for permutation and substitution actions tπ, π · t and tσ to
contexts Φ and cocontexts Ψ, writing Φπ, π · Φ and Φσ, and Ψπ, π ·Ψ and Ψσ for
the result of applying the actions to the terms in the syntax of Φ and Ψ.

Write Ππ and π ·Π for the derivation obtained from Π by translating each part
according to the following table:

part of Π in Ππ replaced by in π ·Π replaced by
sequent Φ `∆ Ψ Φπ `∆π Ψπ π · Φ `∆ π ·Ψ
equality side-condition ∆ `

SUB
φ = ψ ∆π `

SUB
φπ = ψπ ∆ `

SUB
π · φ = π · ψ

freshness side-condition ∆ ` a#Φ,Ψ ∆π ` π(a)#Φπ,Ψπ ∆ ` π(a)#π · Φ, π ·Ψ
side-condition a 6∈ Φ,Ψ,∆ π(a) 6∈ Φπ,Ψπ,∆π a 6∈ Φ,Ψ,∆

So Ππ renames every part of Π, while π ·Π renames everything except for freshness
contexts and the side-condition of the (Fr) rule.

Theorem 5.1. If Π is a valid derivation of Φ `∆ Ψ then Ππ is a valid derivation
of Φπ `∆π Ψπ.

Call this property meta-level equivariance.

Proof. The statement
‘Π is a valid derivation of Φ `∆ Ψ’

has four parameters and so by ZFA equivariance (Appendix A) is invariant under
permuting atoms (in the values of) those parameters. The result follows.2 �

Theorem 5.2. If Π is a valid derivation of Φ `∆ Ψ then π ·Π is a valid derivation
of π · Φ `∆ π ·Ψ.

Call this property object-level equivariance.

Proof. By induction on Π. Base cases (Ax) and (⊥L) are direct. We consider the
inductive cases in turn:

(1) The case of (⊃R): Suppose Φ `∆ Ψ, φ ⊃ ψ is derived using (⊃R). Then
there exists a derivation Π′ of φ,Φ `∆ Ψ, ψ, and by the inductive hypothesis
π ·Π′ is a derivation of π · φ, π · Φ `∆ π ·Ψ, π · ψ. Then

··· π ·Π
′

π · φ, π · Φ `∆ π ·Ψ, π · ψ
(⊃R)

π · Φ `∆ π ·Ψ, π · φ ⊃ π · ψ
is the required derivation π ·Π of π · Φ `∆ π ·Ψ, π · φ ⊃ π · ψ.

The cases (⊃L), (∀L), (≈L) and (≈R) are similar.
(2) The case of (∀R): Suppose Φ `∆ Ψ, ∀[a]ψ is derived using (∀R). Then

∆ ` a#Φ,Ψ holds and Π′ is a derivation of Φ `∆ Ψ, ψ. By Lemma 4.5
∆ ` a#π · Φ, π ·Ψ, and by inductive hypothesis π ·Π′ is a derivation of
π · Φ `∆ π ·Ψ, π · ψ. We conclude that π · Φ `∆ π ·Ψ, ∀[a]π · ψ is deriv-
able by extending π ·Π′ with (∀R), as required.

2A proof by induction on derivations is possible, but longer.
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The cases (StructL), (StructR) and (Cut) are similar.
(3) The case of (Fr): Suppose Φ `∆ Ψ is derived using (Fr). Then Π′ is a

derivation of Φ `∆,a#X1,...,a#Xn
Ψ where a 6∈ Φ,Ψ,∆. By meta-level equiv-

ariance (Theorem 5.1) also Π′(a′ a) is a derivation of Φ `
∆,a′#X1,...,a′#Xn

Ψ,
where a′ is chosen fresh (i.e. a′ 6∈ a,Φ,Ψ,∆, π).3

By ZFA equivariance (Appendix A) validity of the property

‘Π′ has the inductive hypothesis’

is itself invariant under permuting atoms. So

‘Π′(a′ a) has the inductive hypothesis’

is also valid.
By inductive hypothesis π ·Π′(a′ a) is a derivation of π · Φ `

∆,a′#X1,...,a′#Xn
π ·Ψ.

Since a′ 6∈ Φ,Ψ,∆, π we may deduce π · Φ `∆ π ·Ψ using (Fr), as required.
�

Write Π(σ,∆′) for the substitution action on derivations. We inductively
define it on the structure of Π as follows:

• If Π concludes with a rule (R) different from (Fr), it is of the form
··· Π1

Φ1 `∆ Ψ1 · · ·

··· Πk

Φk `∆ Ψk
(R) (cond)

Φ `∆ Ψ

where k ∈ {0, 1, 2} and cond is ∆ `
SUB

φ = ψ, ∆ ` a#Φ′ or empty.
Then Π(σ,∆′) is

··· Π1(σ,∆′)
Φ1σ `∆′ Ψ1σ · · ·

··· Πk(σ,∆′)
Φkσ `∆′ Ψkσ

(R) (cond ′)
Φσ `

∆′ Ψσ

where cond ′ is ∆′ `
SUB

φσ = ψσ, ∆′ ` a#Φ′σ or empty, respectively.
• Otherwise, the derivation concludes in

··· Π
′

Φ `∆,a#X1,...,a#Xn
Ψ

(Fr) (n ≥ 1, a 6∈ Φ,Ψ,∆).
Φ `∆ Ψ

Let Y1, . . . , Ym be all unknowns mentioned in σ(Xi), for 1 ≤ i ≤ n, choose
the atom a′ to be fresh (i.e. a′ 6∈ a,Φ,Ψ,∆,∆′, σ), and let ∆′′ = ∆′, a′#Y1, . . . , a

′#Ym.
Then:

– If m ≥ 1, then Π(σ,∆′) is
··· Π

′(a′ a)(σ,∆′′)
Φσ `

∆′′ Ψσ
(Fr) (m ≥ 1, a′ 6∈ Φσ,Ψσ,∆′),

Φσ `
∆′ Ψσ

– If m = 0, then Π(σ,∆′) is just Π′(a′ a)(σ,∆′′); no extra freshness as-
sumptions need to be introduced. Note that ∆′′ = ∆′ in this case.

3If already a 6∈ π · Φ, π · Ψ, ∆ then renaming a to a′ in Π is not strictly necessary.
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So σ is consistently applied throughout the formula contexts occurring in Π, ∆′

replaces ∆, and (Fr) may generate slightly different freshness assumptions.

Theorem 5.3. Suppose that ∆′ ` ∆σ, and suppose that Π is a valid derivation of
Φ `∆ Ψ. Then Π(σ,∆′) is a valid derivation of Φσ `

∆′ Ψσ.

Call this property meta-level substitution.

Proof. By induction on Π, similar to the proof of Theorem 5.2.
The cases (∀R), (StructL), (StructR) and (Cut) use meta-level substitution

on freshness and equality (Theorem 4.7).
We treat the case of (Fr) in more detail. Suppose Φ `∆ Ψ is derived using (Fr).

Then Π′ is a derivation of Φ `∆,a#X1,...,a#Xn
Ψ where a 6∈ Φ,Ψ,∆.

Let Y1, . . . , Ym be all the unknowns mentioned in σ(Xi), 1 ≤ i ≤ n, choose a′ is
fresh (i.e. a′ 6∈ a,Φ,Ψ,∆,∆′, σ), and let ∆′′ = ∆′, a′#Y1, . . . , a

′#Ym.
By meta-level equivariance (Theorem 5.1) Π′(a′ a) is a derivation of Φ `

∆,a′#X1,...,a′#Xn
Ψ,

and by ZFA equivariance (Appendix A) we retain the inductive hypothesis for this
derivation. We can easily verify that ∆′′ ` (∆, a′#X1, . . . , a

′#Xn)σ, so by the
inductive hypothesis Π′(a′ a)(σ,∆′′) is a valid derivation of Φσ `

∆′′ Ψσ.
We proceed by case distinction on m:
• Suppose m ≥ 1. Since a′ 6∈ Φσ,Ψσ,∆′ we may extend Π′(a′ a)(σ,∆′′) with

(Fr) to obtain our required derivation Π(σ,∆′) of Φσ `
∆′ Ψσ.

• Suppose m = 0. By definition Π(σ,∆′) is Π′(a′ a)(σ,∆′′). Since ∆′′ = ∆′,
it is a derivation of Φσ `

∆′ Ψσ, as required.
�

A useful corollary of Theorem 5.3 is the following:

Corollary 5.4. If Φ `∅ Ψ is derivable for closed Φ and Ψ, then there is a derivation
of Φ `∅ Ψ that does not mention unknowns.

Proof. Suppose Π is a derivation of Φ `∅ Ψ, which possibly mentions unknowns.
Let σ be the substitution that maps all unknowns in the derivation to closed terms
as follows:

• each unknown P of sort F is mapped to ⊥;
• each unknown T of sort T is mapped to a′, where a′ is an atom that does

not occur anywhere in the derivation.
By meta-level substitution (Theorem 5.3), Π(σ, ∅) is a valid derivation of Φ `∅ Ψ.
This derivation does not mention unknowns, as can be verified by an easy induction
on the structure of the definition of meta-level substitution. �

5.2. Cut-elimination. Call the depth of a derivation the greatest number of
derivation steps not counting rules (Fr), (StructL) and (StructR) between its
conclusion and its leaves, over all paths. We do not count nominal algebra deriva-
tions of freshnesses and equalities that occur as side-conditions. For example, the
last two derivations of Figure 3 both have depth 4.

The following results are not normally problematic but we have internalised both
α-equivalence and being fresh — so renaming and freshening must be represented
in the derivation.

Lemma 5.5. If Φ `∆ Ψ and ∆ ⊆ ∆′ then Φ `
∆′ Ψ. The derivation has the same

depth as the original one, and no more instances of cut.
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Call this property freshness weakening.

Proof. By straightforward induction on the structure of the derivation. The cases
(∀R), (StructL), (StructR) and (Cut) use Corollary 4.8 to weaken the freshness
context of the side-conditions. The case of (Fr) uses ZFA equivariance. �

It is also easy to see that Ππ, π ·Π and Π(σ,∆′) preserve the depth and number
of instances of Π.

Write U(Stuff ) for the unknowns X,Y, Z, . . . mentioned in the Stuff .

Lemma 5.6. If a 6∈ u and a#U(u) ⊆ ∆ then ∆ ` a#u.

Lemma 5.7. If Φ `∆ Ψ and Φ ⊆ Φ′ and Ψ ⊆ Ψ′ then Φ′ `∆ Ψ′. The new deriva-
tion has the same depth as the original one, and no more instances of cut.

Call this property formula weakening.

Proof. We work by strong induction on the pair of the depth of the derivation and
its structure, lexicographically ordered. The conditions on preserving depth and
number of cuts can easily be verified from the structure of the reasoning which
follows, and we do not mention them further.

(1) The case of (StructL): Suppose φ,Φ `∆ Ψ is derived using (StructL),
and assume the inductive hypothesis on all strictly lesser derivations. So
φ′,Φ `∆ Ψ and ∆ `

SUB
φ′ = φ are derivable for some φ′. This derivation

has the same depth as, and a lesser structure than that of φ,Φ `∆ Ψ, so we
may use the inductive hypothesis to derive φ′,Φ′ `∆ Ψ′. By (StructL) we
obtain φ,Φ′ `∆ Ψ′ as required.

(2) The case of (∀R): Suppose Φ `∆ Ψ, ∀[a]ψ is derived using (∀R) and sup-
pose the inductive hypothesis of all strictly lesser derivations.

By assumption Φ `∆ Ψ, ψ has a derivation of strictly lesser depth, and
also ∆ ` a#Φ,Ψ holds.

Choose a′ fresh (i.e. a′ 6∈ a, ψ,Φ′,Ψ′,∆) and ∆′ = ∆, a′#U(Φ′,Ψ′,∆, ψ).
Then ∆′ ` a#Φ,Ψ by Corollary 4.8, and Φ `

∆′ Ψ, ψ by freshness weaken-
ing (Lemma 5.5).4 Then by object-level equivariance (Theorem 5.2) also
(a′ a) · Φ `

∆′ (a′ a) ·Ψ, (a′ a) · ψ. Using (perm), by means of (StructL)
and (StructR), we obtain Φ `

∆′ Ψ, (a′ a) · ψ. By inductive hypothesis
(the derivation still has strictly lesser depth) there exists a derivation Π
of Φ′ `

∆′ Ψ′, (a′ a) · ψ. By Lemma 5.6 also ∆′ ` a′#Φ′,Ψ′, and by simple
calculations we observe ∆′ `

SUB
∀[a′](a′ a) · ψ = ∀[a]ψ (we use (perm), and

the freshness information we have assumed of a′).
Now we can conclude Φ′ `∆ Ψ′, ∀[a]ψ as follows:

··· Π
Φ′ `

∆′ Ψ′, (a′ a) · ψ
(∀R)

Φ′ `
∆′ Ψ′, ∀[a′](a′ a) · ψ

(StructR)
Φ′ `

∆′ Ψ′, ∀[a]ψ
(Fr)

Φ′ `∆ Ψ′, ∀[a]ψ

4It appears convenient to prove freshness weakening first separately; we do not want to weaken
Φ and Ψ to Φ′ and Ψ′ until we have renamed a to a′, in a moment.
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Φ `∆ Ψ, φ
(¬L)

¬φ, Φ `∆ Ψ
(>R)

Φ `∆ Ψ,>

ψ, Φ `∆ Ψ
(¬R)

Φ `∆ Ψ, ¬ψ

φ, φ′, Φ `∆ Ψ
(∧L)

φ ∧ φ′, Φ `∆ Ψ

Φ `∆ Ψ, ψ Φ `∆ Ψ, ψ′

(∧R)
Φ `∆ Ψ, ψ ∧ ψ′

φ, Φ `∆ Ψ φ′, Φ `∆ Ψ
(∨L)

φ ∨ φ′, Φ `∆ Ψ

Φ `∆ Ψ, ψ, ψ′

(∨R)
Φ `∆ Ψ, ψ ∨ ψ′

Φ ` Ψ, φ, φ′ φ, φ′, Φ `∆ Ψ
(⇔L)

φ⇔ φ′, Φ `∆ Ψ

ψ, Φ `∆ Ψ, ψ′ ψ′, Φ `∆ Ψ, ψ
(⇔R)

Φ ` Ψ, ψ ⇔ ψ′

φ, Φ `∆ Ψ
(∃L) (∆ ` a#Φ,Ψ)

∃[a]φ, Φ `∆ Ψ

Φ `∆ Ψ, φ[a 7→ t]
(∃R)

Φ `∆ Ψ, ∃[a]φ

Figure 7. Admissible sequent rules for one-and-a-halfth-order logic

(3) The case of (Fr): Suppose Φ `∆,a#X1,...,a#Xn
Ψ where a 6∈ Φ,Ψ,∆. We

use ZFA equivariance (Appendix A) to rename a to some a′ 6∈ Φ′,Ψ′,∆ in
the whole derivation to obtain one of Φ `

∆,a′#X1,...,a′#Xn
Ψ. We can now

apply the inductive hypothesis (which, as discussed above, by equivariance
is preserved by the permutative renaming) to weaken to Φ′ and Ψ′, and
finish off with (Fr).

The other cases are easy or similar. �

Recall the sugar from Subsection 2.1.

Corollary 5.8. The rules of Figure 7 are all admissible.

Proof. We consider just the case of (¬R). Suppose we have derived ψ, Φ `∆ Ψ.
Then by Lemma 5.7 there also exists a derivation of ψ, Φ `∆ Ψ, ⊥. Extending
that derivation with (⊃R) we obtain a derivation of Φ `∆ Ψ, ¬ψ as required.

The cases (∧R), (∨L), (⇔L), (⇔R) and (∃L), are similar. Remaining cases are
by directly extending derivations. In the case of (∃R), we use (StructL) to replace
the (¬φ)[a 7→ t] by ¬(φ[a 7→ t]). �

Some of the above admissible rules will turn out useful later (Subsection 6.3).
Write Φ[b 7→ u] for the elementwise application of the substitution to the elements

of formula context Φ.

Lemma 5.9. If Φ `∆ Ψ then Φ[b 7→ u] `∆ Ψ[b 7→ u]. The depth of the derivation
does not increase, and neither does the number of cuts it contains.

Call this property object-level substitution.

Proof. Analogous to the proof of Lemma 5.7. �

Lemma 5.10. (Fr) may be commuted down through all other rules. The transfor-
mations involved do not increase the depth of a derivation or its number of cuts.

Proof. We consider the various possibilities in turn:
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• Suppose (Fr) is followed by (⊃L) as follows:
··· Π1

Φ `
∆,a#X1,...,a#Xn

Ψ, φ
(Fr)

Φ `∆ Ψ, φ

··· Π2

ψ, Φ `∆ Ψ
(⊃L)

φ ⊃ ψ, Φ `∆ Ψ

Here a 6∈ Φ,∆,Ψ, φ.
Suppose we are unlucky and a is mentioned in ψ. Choose a fresh atom

a′ (i.e. a′ 6∈ Φ,∆, a,Ψ, φ, ψ). By meta-level equivariance (Theorem 5.1),
Π(a′ a)

1 is a valid derivation of Φ `
∆,a′#X1,...,a′#Xn

Ψ, φ. Also, by freshness
weakening (Lemma 5.5), there is a derivation Π′

2 of ψ, Φ `
∆,a′#X1,...,a′#Xn

Ψ.
We can now put our derivation together:

··· Π
(a′ a)
1

Φ `
∆,a′#X1,...,a′#Xn

Ψ, φ

··· Π
′
2

ψ, Φ `
∆,a′#X1,...,a′#Xn

Ψ
(⊃L)

φ ⊃ ψ, Φ `
∆,a′#X1,...,a′#Xn

Ψ
(Fr)

φ ⊃ ψ, Φ `
∆

Ψ

The new derivation preserves the depth and number of cuts of the original
derivation, since Π(a′ a)

1 does so by definition and Π′
2 does so by Lemma 5.5.

• All other cases are similar or simpler. For example if (Fr) is followed by
(≈L) it is not immediate that we may swap the derivation rules round,
since perhaps t in (≈L) mentions a and t′ does not. As in the previous case
we may rename atoms in the derivation and then commute.

�

Theorem 5.11 (Cut-elimination). If Φ `∆ Ψ is derivable in the sequent calculus
for one-and-a-halfth-order logic, then there exists a derivation of Φ `∆ Ψ which does
not mention (Cut).

Proof. The commutation cases and essential cases are standard [23, 39]; we use
Lemma 5.7 for the essential case for ⊃; the non-standard case of (Fr) is handled
by Lemma 5.10. The essential case for ∀ is handled by Lemma 5.9. �

Corollary 5.12. The sequent calculus of one-and-a-halfth-order logic is consis-
tent, i.e. `∆ can never be derived.

Proof. By contradiction. Suppose `∆ is derivable, then by Theorem 5.11 a cut-free
derivation exists. Let Π be the shortest derivation of `∆ for all possible ∆. We
check through all possible derivation rules and see by their syntax-directed nature
that the derivation must conclude in (Fr). But then we have a shorter derivation
of some `

∆′ , which is a contradiction. �

6. An equational axiomatisation of one-and-a-halfth-order logic

6.1. Theory FOL. We now give an axiomatic presentation of one-and-a-halfth-
order logic in nominal algebra from Section 4.

Definition 6.1. Let theory FOL be given by the axioms of theory SUB (Figure 5)
plus the axioms of Figure 8.
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(MP) > ⊃ P = P
(M) ((((P ⊃ Q) ⊃ (¬R ⊃ ¬S)) ⊃ R) ⊃ T )

⊃ ((T ⊃ P ) ⊃ (S ⊃ P )) = >
(Q1) ∀[a]P ⊃ P [a 7→ T ] = >
(Q2) ∀[a](P ∧Q) ⇔ ∀[a]P ∧ ∀[a]Q = >
(Q3) a#P ` ∀[a](P ⊃ Q) ⇔ P ⊃ ∀[a]Q = >

(E1) U ≈ T ∧ P [a 7→ T ] ⊃ P [a 7→ U ] = >
(E2) T ≈ T = >

Figure 8. Axioms of FOL

We now discuss the axioms in Figure 8:

• We read (MP) as ‘Modus Ponens’ and it expresses the principle ‘if P is
true and P implies Q is true, then Q is true’. In the literature this principle
is also called detachment.

In (M) recall that ¬φ is sugar for φ ⊃ ⊥. This axiom from [32], along
with Modus Ponens, is sufficient to derive all rules of classical propositional
logic — otherwise known as boolean logic [7].

(M) stands for Meredith, the author of this axiom for classical predicate
logic, which he discovered in the 1940s. Machine-checked verification of
this fact is online [33]. Succinct axioms for propositional logic continue to
provide innocent fun in some circles [31]; a good survey is here [22].

• Axioms (Q1) − (Q3) add quantifiers, we call them quantifier axioms;
(Q3) exploits freshness conditions.

These axioms appear in the literature [12, page 5 (2)]. What is new
here is that our axioms are not axiom-schemes; they are individual axioms
(three, to be precise). We do this using the unknowns of nominal terms,
and abstractions and freshness conditions to express capture-avoidance con-
ditions which usually must be expressed — at the meta-level — for every
instance. Note how these axioms are faithful to the usual syntactic form of
the axiom-schemes found in the literature.

• Axioms (E1) and (E2) add object-level equality, we call them equational
axioms.

Again, we are able to represent by two axioms what might otherwise be
two infinite axiom-schemes.

We now make the connection between the axioms in Figure 8 in the context of
nominal algebra, and the sequent rules in Figure 2.

6.2. Sequent derivability implies FOL derivability. Let classical proposi-
tional logic be the entailment relation obtained by considering rules (Ax), (⊥L),
(⊃L), and (⊃R) from Figure 2 and removing ∆.

Theorem 6.2. If φ⇔ ψ is derivable in classical propositional logic, then ∆ `
FOL

φ = ψ
in the nominal algebra theory FOL.

Proof. By machine-checked proofs online [33], (MP) and (M) suffice to derive all
the logical identities of classical propositional logic. �
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Corollary 6.3. The following equalities are all derivable in FOL:
∆ `FOL φ ∨ (ψ ∨ ξ) = (φ ∨ ψ) ∨ ξ ∆ `FOL φ ∧ (ψ ∧ ξ) = (φ ∧ ψ) ∧ ξ
∆ `FOL φ ∨ ψ = ψ ∨ φ ∆ `FOL φ ∧ ψ = ψ ∧ φ
∆ `FOL φ ∨ (ψ ∧ φ) = φ ∆ `FOL φ ∧ (ψ ∨ φ) = φ
∆ `FOL φ ∨ (ψ ∧ ξ) = (φ ∨ ψ) ∧ (φ ∨ ξ) ∆ `FOL φ ∧ (ψ ∨ ξ) = (φ ∧ ψ) ∨ (φ ∧ ξ)
∆ `FOL φ ∨ ¬φ = > ∆ `FOL φ ∧ ¬φ = ⊥

Proof. The reader will recognise these as the equalities of boolean algebra. It is
known that equality in boolean algebra characterises precisely logical equivalence
in classical propositional logic [7]. By Theorem 6.2 the equality of FOL includes
equalities between all formulae that are provably logically equivalent in classical
propositional logic (it suffices to use (MP) and (M)). The result follows. �

We shall say we work by elementary calculations (in propositional logic)
when we use Corollary 6.3 to transform formulae according to standard identities
in classical propositional logic.

Lemma 6.4. `
FOL

∀[a]⊥ = ⊥ is derivable.

Proof. We derive ¬∀[a]⊥ = > as follows:

(#f)
a#⊥

(ax#7→)
⊥[a 7→ a] = ⊥

(symm)
⊥ = ⊥[a 7→ a]

(congf)
(∀[a]⊥) ⊃ ⊥ = (∀[a]⊥) ⊃ ⊥[a 7→ a]

(axQ1)
(∀[a]⊥) ⊃ ⊥[a 7→ a] = >

(tran)
(∀[a]⊥) ⊃ ⊥ = >

It follows that `
FOL

¬¬∀[a]⊥ = ¬> and so by elementary calculations in proposi-
tional logic the result follows. �

An informal reading of Lemma 6.4 is that any semantics for T in FOL should be
non-empty, for if T were empty then (intuitively) ∀[a]⊥ = >, so ∀[a]⊥ = ⊥ should
not be derivable.

T is non-empty because it is populated by atoms (in the derivation above, we
use the fact that it is populated by a). Thanks to the substitution action, atoms
behave like ‘object-level variable symbols’. Normally sorts of terms are populated
by variable symbols, but this feature of the syntax does not show in the seman-
tics, and that affects the notion of derivability: (∀x.⊥) ⇔ > may be derivable.
We see that in one-and-a-halfth-order logic terms are populated by unknowns and
atoms. Although atoms represent variable symbols, the derivation above suggests
that any semantics for one-and-a-halfth-order logic must differ from a ‘standard’
semantics, and give atoms denotational reality. One such semantics is given by a
standard semantics for nominal algebra [18] in nominal sets [21]; developing other
denotations-containing-variables is very much of current research interest.

We need some meta-level properties.

Lemma 6.5. For any formulae φ, ψ:
(1) ∆ `

FOL
φ ∧ ψ = > if and only if ∆ `

FOL
φ = > and ∆ `

FOL
ψ = >.

(2) ∆ `
FOL

φ⇔ ψ = > if and only if ∆ `
FOL

φ = ψ.

Proof. By elementary calculations in propositional logic. �
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We also need some scope extrusion properties.

Lemma 6.6. The following are derivable:
(1) a#P `

FOL
∀[a](P ⊃ Q) = P ⊃ ∀[a]Q.

(2) a#P `
FOL

∀[a](¬P ) = ¬P .
(3) a#P `

FOL
∀[a]P = P .

(4) a#P `
FOL

∀[a](P ∨Q) = P ∨ ∀[a]Q.
(5) a#P `

FOL
∀[a](P ∧Q) = P ∧ ∀[a]Q.

Proof. By part 2 of Lemma 6.5, the first part is an instance or axiom (Q3). Since
¬P ≡ P ⊃ ⊥, the second part follows by part 1 of this lemma and Lemma 6.4.
The third and fourth part are corollaries of the first two parts, since `

FOL
P = ¬¬P

and P ∨Q ≡ ¬P ⊃ Q. The last part is a corollary of axiom (Q2) and part 3 of
this lemma. �

We are now in a position to derive the following ‘sequent-like’ properties of our
Hilbert-style FOL:

Lemma 6.7. For all formulae φ, φ′, ψ, ψ′, θ, ε, atoms a, terms t, t′ : T, and un-
knowns X1, . . . , Xn:

(1) ∆ `
FOL

φ ∧ θ ⊃ ε ∨ φ = >
(2) ∆ `

FOL
⊥ ∧ θ ⊃ ε = >

(3) if ∆ `
FOL

θ ⊃ ε ∨ φ = > and ∆ `
FOL

ψ ∧ θ ⊃ ε = >
then ∆ `

FOL
(φ ⊃ ψ) ∧ θ ⊃ ε = >

(4) if ∆ `
FOL

φ ∧ θ ⊃ ε ∨ ψ = >
then ∆ `

FOL
θ ⊃ ε ∨ (φ ⊃ ψ) = >

(5) if ∆ `
FOL

φ[a 7→ t] ∧ θ ⊃ ε = >
then ∆ `

FOL
∀[a]φ ∧ θ ⊃ ε = >

(6) if ∆ `
FOL

θ ⊃ ε ∨ ψ = > and ∆ ` a#θ, ε
then ∆ `

FOL
θ ⊃ ε ∨ ∀[a]ψ = >

(7) if ∆ `
FOL

φ[a 7→ t′] ∧ θ ⊃ ε = >
then ∆ `

FOL
(t′ ≈ t) ∧ φ[a 7→ t] ∧ θ ⊃ ε = >

(8) ∆ `
FOL

θ ⊃ ε ∨ (t ≈ t) = >
(9) if ∆ `

FOL
φ′ ∧ θ ⊃ ε = > and ∆ `

SUB
φ′ = φ

then ∆ `
FOL

φ ∧ θ ⊃ ε = >
(10) if ∆ `

FOL
θ ⊃ ε ∨ ψ′ = > and ∆ `

SUB
ψ′ = ψ

then ∆ `
FOL

θ ⊃ ε ∨ ψ = >
(11) if ∆, a#X1, . . . , a#Xn `FOL

θ ⊃ ε = > and a 6∈ θ, ε,∆
then ∆ `

FOL
θ ⊃ ε = >

(12) if ∆ `
FOL

θ ⊃ ε ∨ φ = >, ∆ `
FOL

φ′ ∧ θ ⊃ ε = >
and ∆ `

SUB
φ = φ′ then ∆ `

FOL
θ ⊃ ε = >

Proof. The first four parts follow by elementary calculations in propositional logic.
For part 5, suppose that ∆ `

FOL
φ[a 7→ t] ∧ θ ⊃ ε = >. By axiom (Q1) we know

∆ `
FOL

∀[a]φ ⊃ φ[a 7→ t] = >. By Lemma 6.5 we obtain

∆ `
FOL

(∀[a]φ ⊃ φ[a 7→ t]) ∧ (φ[a 7→ t] ∧ θ ⊃ ε) = >.
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Using further elementary calculations we conclude ∆ `
FOL

∀[a]φ ∧ θ ⊃ ε = > as
required.

For part 6, suppose that ∆ ` a#θ, ε and ∆ `
FOL

θ ⊃ ε ∨ ψ = >. Using (cong[])
and (congf) we obtain ∆ `

FOL
∀[a](θ ⊃ ε ∨ ψ) = ∀[a]>. We use Lemma 6.6 and

(tran) to conclude ∆ `
FOL

θ ⊃ ε ∨ ∀[a]ψ = >.
Parts 7 and 8 use axioms (E1) and (E2), respectively. Parts 9 and 10 follow by

(tran) and (congf), since ∆ `
SUB

φ′ = φ implies ∆ `
FOL

φ′ = φ. Part 11 is immedi-
ate using (fr).

Part 12: Since ∆ `
SUB

φ = φ′ implies ∆ `
FOL

φ = φ′, we may suppose

∆ `
FOL

θ ⊃ ε ∨ φ = > and ∆ `
FOL

φ ∧ θ ⊃ ε = >.

By Lemma 6.5 we obtain ∆ `
FOL

(θ ⊃ ε ∨ φ) ∧ (φ ∧ θ ⊃ ε) = >. By elementary
calculations in propositional logic ∆ `

FOL
φ ∧ θ ⊃ ε = θ ⊃ ε ∨ ¬φ, so we conclude

∆ `
FOL

(θ ⊃ ε ∨ φ) ∧ (θ ⊃ ε ∨ ¬φ) = >. By further calculations we reduce this to
∆ `

FOL
θ ⊃ ε = >. �

For any one-and-a-halfth-order logic context Φ = {φ1, . . . , φn}, define its con-
junctive form Φ∧ to be

• > when n = 0, and
• φ1 ∧ · · · ∧ φn when n > 0.

Analogously define the disjunctive form Φ∨ to be
• ⊥ when n = 0, and
• φ1 ∨ · · · ∨ φn when n > 0.

The order of the φi is irrelevant; we promise never to do anything such that it
matters.

Theorem 6.8. If Φ `∆ Ψ is derivable in one-and-a-halfth-order logic then ∆ `
FOL

Φ∧ ⊃ Ψ∨ = >
in the nominal algebra theory FOL.

Proof. We inductively transform a one-and-a-halfth-order logic derivation of Φ `∆ Ψ
into a nominal algebra derivation of Φ∧ ⊃ Ψ∨ = > from ∆ in theory FOL.

For every rule (R), the derivation has the following format:

Π1 · · · Πk
(R) (cond)

Φ `∆ Ψ

Here k ∈ {0, 1, 2}, Πi are derivations of Φi `∆i
Ψi, 1 ≤ i ≤ k, and cond is a

(possibly trivial) side-condition (the non-trivial cases are (Fr), (Cut), (StructL),
(StructR), and (∀R)).

So Φi `∆i
Ψi are derivable, then by inductive hypothesis ∆i `FOL

Φi∧ ⊃ Ψi
∨ = >

holds. We use this together with cond to prove ∆ `
FOL

Φ∧ ⊃ Ψ∨ = >. For each
inference rule (R), this is an instance of a part of Lemma 6.7.

For example, if (R) is (Cut) then ∆ `
FOL

Φ∧ ⊃ Ψ∨ = > should follow from

∆ `
FOL

Φ∧ ⊃ Ψ∨ ∨ φ = >, ∆ `
FOL

φ′ ∧ Φ∧ ⊃ Ψ∨ = >, and ∆ `
SUB

φ = φ′.

This is an instance of part 12 of Lemma 6.7, using θ ≡ Φ∧ and ε ≡ Ψ∨.
And if (R) is (∀R) then ∆ `

FOL
Φ∧ ⊃ Ψ∨ ∨ ∀[a]ψ = > should follow from

∆ `
FOL

Φ∧ ⊃ Ψ∨ ∨ ψ = > and ∆ ` a#Φ∧,Ψ∨.

This is an instance of part 6, again using θ ≡ Φ∧ and ε ≡ Ψ∨. �
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6.3. FOL derivability implies sequent derivability. We now show that the se-
quent presentation of one-and-a-halfth-order logic (Figure 2) can mimic the axioms
of nominal algebra theory FOL (Figures 4 and 8). In the proofs in this subsec-
tion we will use the admissible sequent rules from Corollary 5.8 (Figure 7) without
comment.

Lemma 6.9. For all formulae φ, ψ, ρ, θ, ε, terms t, u : T and atoms a, the following
are derivable in one-and-a-halfth-order logic:

(1) ` (> ⊃ φ) ⇔ φ
(2) ` ((((φ ⊃ ψ) ⊃ (¬ρ ⊃ ¬θ)) ⊃ ρ) ⊃ ε) ⊃ ((ε ⊃ φ) ⊃ (θ ⊃ φ))
(3) ` ∀[a]φ ⊃ φ[a 7→ t]
(4) ` ∀[a](φ ∧ ψ) ⇔ ∀[a]φ ∧ ∀[a]ψ
(5) if ∆ ` a#φ then `∆ ∀[a](φ ⊃ ψ) ⇔ φ ⊃ ∀[a]ψ
(6) ` u ≈ t ∧ φ[a 7→ t] ⊃ φ[a 7→ u]
(7) ` t ≈ t

Proof. We give details of parts 5 and 6. The derivation of part 6 is completely
syntax directed:

(Axiom)
φ[a 7→ u] ` φ[a 7→ u]

(≈L)
u ≈ t, φ[a 7→ t] ` φ[a 7→ u]

(∧L)
u ≈ t ∧ φ[a 7→ t] ` φ[a 7→ u]

(⊃R)
` u ≈ t ∧ φ[a 7→ t] ⊃ φ[a 7→ u]

For part 5, we assume ∆ ` a#φ. By (⇔R), it suffices to derive
(a) φ,∀[a](φ ⊃ ψ) `∆ ∀[a]ψ, and
(b) φ ⊃ ∀[a]ψ `∆ ∀[a](φ ⊃ ψ).

We show that (a) is derivable, showing derivability of (b) follows similar lines:

(Axiom)
φ `∆ ψ, φ

(Axiom)
φ, ψ `∆ ψ

(⊃L)
φ, φ ⊃ ψ `∆ ψ

(StructL) (∆ `
SUB

(φ ⊃ ψ)[a 7→ a] = φ ⊃ ψ)
φ, (φ ⊃ ψ)[a 7→ a] `∆ ψ

(∀L)
φ,∀[a](φ ⊃ ψ) `∆ ψ

(∀R) (∆ ` a#φ, ∀[a](φ ⊃ ψ)).
φ,∀[a](φ ⊃ ψ) `∆ ∀[a]ψ

The side-condition on (StructL) is an instance of Lemma 4.10. The freshness
side-conditions are straightforward from the definition of freshness derivability. �

Lemma 6.10. In the sequent calculus of one-and-a-halfth-order logic:
• bi-implication ⇔ is an equivalence relation (a reflexive symmetric transitive

relation), i.e. the following rules are admissible:

Φ `∆ Ψ, φ⇔ φ

Φ `∆ Ψ, φ⇔ ψ

Φ `∆ Ψ, ψ ⇔ φ

Φ `∆ Ψ, φ⇔ ψ Φ `∆ Ψ, ψ ⇔ ξ

Φ `∆ Ψ, φ⇔ ξ

• bi-implication is a congruence:
Φ `∆ Ψ, φ⇔ ψ

Φ `∆ Ψ, ξ[φ/P ] ⇔ ξ[ψ/P ]
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• > is the left and right identity of bi-implication:
Φ `∆ Ψ, φ

Φ `∆ Ψ,> ⇔ φ

Φ `∆ Ψ,> ⇔ φ

Φ `∆ Ψ, φ

Φ `∆ Ψ, φ

Φ `∆ Ψ, φ⇔ >

Φ `∆ Ψ, φ⇔ >

Φ `∆ Ψ, φ

Proof. By easy calculations using the derivation rules in Figure 2 (and the admis-
sible rules in Figure 7). In the congruence case we use induction on the structure
of ξ. �

Lemma 6.11. For all sorts τ , terms t, u : τ , unknowns X : τ , formulae φ, and
freshness contexts ∆:

if ∆ `
FOL

t = u then `∆ φ[t/X] ⇔ φ[u/X]

Proof. By induction on the structure of FOL derivations of t = u from ∆.
(refl): `∆ φ[t/X] ⇔ φ[t/X] follows by reflexivity of ⇔.
(symm): `∆ φ[u/X] ⇔ φ[t/X] follows from `∆ φ[t/X] ⇔ φ[u/X] by symmetry of
⇔. By inductive hypothesis this follows from the assumption.
(tran): `∆ φ[t/X] ⇔ φ[v/X] follows from `∆ φ[t/X] ⇔ φ[u/X] and `∆ φ[u/X] ⇔ φ[v/X]
by transitivity of ⇔. By the inductive hypothesis these follow from the assump-
tions.
(cong[]): By the inductive hypothesis `∆ ψ[t/Y ] ⇔ ψ[u/Y ] for any Y and ψ. We
must show `∆ φ[[a]t/X] ⇔ φ[[a]u/X], which is syntactically equivalent to

`∆ φ[[a]Z/X][t/Z] ⇔ φ[[a]Z/X][u/Z],

where Z is an unknown (of appropriate sort) that does not occur in φ. This follows
directly from the inductive hypothesis, taking ψ ≡ φ[[a]Z/X] and Y ≡ Z.
(congf): Analogous to the previous case.
(perm): we show `∆ φ[(a b) · t/X] ⇔ φ[t/X] as follows:

(Ax)
`∆ φ[(a b) · t/X] ⇔ φ[(a b) · t/X]

(StructR)
`∆ φ[(a b) · t/X] ⇔ φ[t/X]

where ∆ `
SUB

φ[(a b) · t/X] ⇔ φ[(a b) · t/X] = φ[(a b) · t/X] ⇔ φ[t/X] is the side-
condition of (StructR). By (congf) and congruence Lemma 4.6, this follows from
the assumption ∆ `

SUB
(a b) · t = t.

(fr): so ∆ `
FOL

t = u is derived from ∆, a#X1, . . . , a#Xn `FOL
t = u, where a 6∈ t, u,∆.

We must show `∆ φ[t/X] ⇔ φ[u/X]. We cannot apply (Fr) directly, since φ might
mention a. Using ZFA equivariance we rename a to a′ 6∈ t, u, φ,∆ while preserving
the inductive hypothesis, to obtain `

∆,a′#X1,...,a′#Xn
φ[t/X] ⇔ φ[u/X]. We con-

clude `∆ φ[t/X] ⇔ φ[u/X] by (Fr), since a′ 6∈ φ[t/X] ⇔ φ[u/X],∆.
(axA): We work by cases:

• If A is an axiom of SUB (from Figure 5) then it is of the form ∆ `
SUB

t = u.
By congruence Lemma 4.6 we know ∆ `

SUB
φ[t/X] = φ[u/X]. We must

show `∆ φ[t/X] ⇔ φ[u/X]. By (⇔R), this follows from φ[t/X] `∆ φ[u/X]
and φ[u/X] `∆ φ[t/X]. The former can be derived:

(Axiom)
φ[t/X] `∆ φ[t/X]

(StructR) (∆ `
SUB

φ[t/X] = φ[u/X])
φ[t/X] `∆ φ[u/X]

The latter derivation is analogous, using (StructL).
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• If A is an axiom from Figure 8 then the derivation is of the form
Π

(ax∆′`φ=ψ)
φπσ = ψπσ

where Π is a derivation of ∆′πσ. We must show `∆ ξ[φπσ/P ] ⇔ ξ[ψπσ/P ].
By congruence of ⇔ (Lemma 6.10) this follows from `∆ φπσ ⇔ ψπσ. In
case ψ ≡ >, this follows from `∆ φπσ by right identity of ⇔. For each
axiom the remaining proof obligation is an instance of part of Lemma 6.9,
using the assumption ∆ ` ∆′πσ.

�

Lemma 6.12. If `∆ Φ∧ ⊃ Ψ∨ then Φ `∆ Ψ.

Proof. By (Cut) Φ `∆ Ψ follows from Φ `∆ Ψ, Φ∧ ⊃ Ψ∨ and Φ∧ ⊃ Ψ∨, Φ `∆ Ψ.
The former follows from the assumption using weakening (Lemma 5.7). The latter
follows by (⊃L) and a simple induction on the size of Φ and Ψ. �

Sequent derivability is equivalent to FOL derivability:

Theorem 6.13. Φ `∆ Ψ if and only if ∆ `
FOL

Φ∧ ⊃ Ψ∨ = >.

Proof. The left-to-right part is Theorem 6.8.
For the right-to-left part, assume ∆ `

FOL
Φ∧ ⊃ Ψ∨ = >. Then by Lemma 6.11

`∆ Φ∧ ⊃ Ψ∨ ⇔ > is derivable. By right identity of ⇔, also `∆ Φ∧ ⊃ Ψ∨. By
Lemma 6.12 we obtain Φ `∆ Ψ, as required. �

This theorem has some nice corollaries.

Corollary 6.14. For any ∆, φ, ψ:

∆ `
FOL

φ = ψ if and only if φ `∆ ψ and ψ `∆ φ.

Proof. By Theorem 6.13 φ `∆ ψ and ψ `∆ φ are equivalent to ∆ `
FOL

φ ⊃ ψ = >
and ∆ `

FOL
ψ ⊃ φ = >. They are equivalent to ∆ `

FOL
φ⇔ ψ = >, by part 1 of

Lemma 6.5. Finally, by part 2 of that lemma, this is equivalent to ∆ `
FOL

φ = ψ. �

Corollary 6.15. FOL is consistent, i.e. ∆ `
FOL

> = ⊥ does not hold for any ∆.

Proof. By contradiction. Suppose ∆ `
FOL

> = ⊥. Using elementary calculations in
propositional logic, also ∆ `

FOL
> ⊃ ⊥ = >. Note that > ≡ ∅∧ and ⊥ ≡ ∅∨, so by

Theorem 6.13 `∆ is derivable, which contradicts consistency of one-and-a-halfth-
order logic (Corollary 5.12). �

7. First-order logic with equality

In this section we show how first-order logic can be considered as the fragment
of one-and-a-halfth-order logic without unknowns or explicit substitutions.

7.1. Ground terms. Call a nominal term ground if it does not mention unknowns
(it is closed) and it does not mention sub (the substitution term-former). Ground
terms of sort T and F are inductively characterised by

t ::= a | fi1(t1, . . . , tn1) | . . .
φ ::= ⊥ | φ ⊃ φ | ∀[a]φ | t ≈ t | fj1(t1, . . . , tn1) | . . . .

Here i1, i2, . . . are the indexes of the object-level term-formers and j1, j2, . . . are
the indexes of the predicate term-formers other than ⊥, ⊃, ∀, and ≈, as mentioned
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in Subsection 2.1. We will not mention these term-formers again; they merely give
rise to a few more cases in proofs.

For example, a and ∀[a](a ≈ b) are ground; ∀[a]P and a[a 7→ a] are not.
We may write the term ∀[a]φ where φ is ground just as ∀a.φ (consistent with

standard notation). Recall that a in ∀[a]P may not be renamed in general, e.g. to
∀[b]P . Intuitively P represents an unknown formula which might mention a (if we
know b#P we can at least rename to ∀[b](b a).P ). To emphasise this we retained
the notation [a] until now. In ∀a.φ where φ is ground, we know all atoms in φ and
this issue does not arise.

Write fn(t) and fn(φ) for the free names of ground terms t : T and φ : F re-
spectively, inductively defined by:

fn(a) = {a}

fn(⊥) = ∅ fn(φ ⊃ ψ) = fn(φ) ∪ fn(ψ)

fn(∀a.φ) = fn(φ) \ {a} fn(t1 ≈ t2) = fn(t1) ∪ fn(t2)

Lemma 7.1. For ground terms t : T and φ : F:

(1) ` a#t if and only if a 6∈ fn(t).
(2) ` a#φ if and only if a 6∈ fn(φ).

Proof. By simple induction on freshness derivations of on the one hand, and by
induction on the definition of fn on the other. �

Define α-equivalence =α as the least congruence on formulae such that

(a b)·φ =α ψ
(b 6∈ fn(φ))

∀a.φ =α ∀b.ψ
.

The reader might have expected the clause for ∀ to read something like

φc =α ψc

∀a.φa =α ∀b.ψb

where here φc is informal notation for φ with every a replaced throughout by
a freshly chosen c, and similarly for ψc. The two notions of α-equivalence are
identical [13]. The definition we adopt gives a closer match to how equality is
defined in nominal algebra (specifically to (perm)).

CORE is a theory of α-equivalence:

Theorem 7.2. For ground terms t, u : T and φ, ψ : F:

(1) `
CORE

t = u if and only if t =α u.
(2) `

CORE
φ = ψ if and only if φ =α ψ.

Proof. By known arguments of nominal results [18, 21]. �



30 MURDOCH J. GABBAY AND AAD MATHIJSSEN

For ground terms t, u : T and φ : F, write uJa 7→ tK and φJa 7→ tK for u and φ
with a replaced by t, inductively defined by:

aJa 7→ tK ≡ t bJa 7→ tK ≡ b

⊥Ja 7→ tK ≡ ⊥ (φ ⊃ ψ)Ja 7→ tK ≡ φJa 7→ tK ⊃ ψJa 7→ tK
(∀a.φ)Ja 7→ tK ≡ ∀a.φ

(∀b.φ)Ja 7→ tK ≡ ∀b′.φJb 7→ b′KJa 7→ tK (b′ fresh)

(t1 ≈ t2)Ja 7→ tK ≡ t1Ja 7→ tK ≈ t2Ja 7→ tK

Here we make some arbitrary choice of b′ for each φ, b, and b′, and fix it for the
rest of this paper.

On closed terms we can interpret all occurrences of term-former sub by capture-
avoiding substitution.

Definition 7.3. Define the translation
7→

of closed terms to ground terms induc-
tively on closed terms by:

a

7→

≡ a ([a]t)

7→

≡ [a](t
7→

) (t[a 7→ u])

7→

≡ t

7→

Ja 7→ u

7→

K.

f(t1, . . . , tn)
7→

≡ f(t

7→

1, . . . , t

7→

n) (f 6= sub)

The following nontrivial results are proved elsewhere [16] (the tools are also
provided in [17]).

Lemma 7.4. For closed terms t, u, if ` a#t then a 6∈ fn(t

7→

).

Lemma 7.5. For closed terms t, `
SUB

t = t

7→

.

Theorem 7.6. For closed terms t, u, `
SUB

t = u if and only if t

7→

=α u

7→

.

7.2. Derivability in First-Order Logic.

Definition 7.7. A Gentzen sequent is a pair Φ ` Ψ of finite sets of ground
formulae Φ and Ψ. The valid judgements of Gentzen’s sequent calculus for first-
order logic are the Gentzen sequents inductively specified by the rules in Figure 9.

Here fn(Φ,Ψ) stands for the union of all fn(φ), φ ∈ Φ,Ψ. Furthermore, we take
formulae up to α-equivalence, e.g. if p : (T)F is a predicate term-former (such as
issocrates) then ∀a.p(a) ` ∀b.p(b) follows directly by (Ax) since ∀a.p(a) =α ∀b.p(b).

Lemma 7.8. If Φ ` Ψ is derivable in Gentzen’s sequent calculus then Φ `∅ Ψ is
derivable in the sequent calculus for one-and-a-halfth-order logic.

Proof. The statement of this lemma is a little bit vague, since we take formulae
up to α-equivalence when we define Gentzen style derivability, but we do not take
formulae up to α-equivalence in one-and-a-halfth-order logic (but we have structural
rules (StructL) and (StructR) instead). We ignore this issue, and suppose that
some arbitrary choice of representative closed nominal terms is made for us.

Suppose Φ ` Ψ is derivable in Genzten’s sequent calculus. By induction on
derivations of Φ ` Ψ we construct a derivation of Φ `∅ Ψ. Each rule translates to
its one-and-a-halfth-order counterpart, where we note the following:

• If at the meta-level in the Gentzen system we used α-conversion, or just if we
wish to change representatives, then we can ‘patch’ the derivation in one-
and-a-halfth-order logic with structural rules (StructL) and (StructR).
The side-conditions follow by Theorem 7.2.
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(Ax)
φ, Φ ` Ψ, φ

(⊥L)
⊥, Φ ` Ψ

Φ ` Ψ, φ ψ, Φ ` Ψ
(⊃L)

φ ⊃ ψ, Φ ` Ψ

φ, Φ ` Ψ, ψ
(⊃R)

Φ ` Ψ, φ ⊃ ψ

φJa 7→ tK, Φ ` Ψ
(∀L)

∀a.φ, Φ ` Ψ

Φ ` Ψ, φ
(∀R)

Φ ` Ψ, ∀a.φ
(a 6∈ fn(Φ,Ψ))

φJa 7→ t′K, Φ ` Ψ
(≈L)

t′ ≈ t, φJa 7→ tK, Φ ` Ψ
(≈R)

Φ ` Ψ, t ≈ t

Figure 9. Gentzen’s sequent calculus for first-order logic

• For the case of (∀L) we need an extra use of (StructL) to manage the sub-
stitution. The side-condition `

SUB
φ[a 7→ t] = φJa 7→ tK follows by Lemma 7.5.

The case of (≈L) is similar.
• For the case of (∀R) the side-conditions ` a#Φ,Ψ follow from the assump-

tion a 6∈ fn(Φ,Ψ) by Lemma 7.1.
�

If Φ is a closed formula context, write Φ

7→

for the ground context {φ

7→

| φ ∈ Φ}.
Theorem 7.9. For closed Φ,Ψ, Φ `∅ Ψ is derivable in one-and-a-halfth-order
logic, if and only if Φ

7→

` Ψ

7→

is derivable in Gentzen’s sequent calculus.

Proof. For the right-to-left direction, suppose Φ

7→

` Ψ

7→

is derivable in Gentzen’s se-
quent calculus. By Lemma 7.8, Φ

7→

`∅ Ψ

7→

is derivable in one-and-a-halfth-order logic.
We also know that `

SUB
φ

7→

= φ for each φ ∈ Φ,Ψ, by Lemma 7.5 and equational
rule (symm). We use this to extend the derivation of Φ

7→

`∅ Ψ

7→

with applications of
(StructL) or (StructR) for each φ

7→

∈ Φ

7→

,Ψ

7→

to obtain one of Φ `∅ Ψ, as required.
The left-to-right direction is by induction on derivations of Φ `∅ Ψ. By Corol-

lary 5.4 we assume that these derivations do not mention unknowns, and by The-
orem 5.11 we assume that they do not mention (Cut).

We consider the rules in turn:
• (StructL) and (StructR) are facts, by Theorem 7.6.
• (Fr) is impossible since the derivation does not mention unknowns.
• The other rules translate directly to their first-order counterparts. For the

case of (∀R) we use Lemma 7.4.
�

Corollary 7.10. For ground Φ,Ψ, Φ `∅ Ψ is derivable in one-and-a-halfth-order
logic, if and only if Φ ` Ψ is derivable in Gentzen’s sequent calculus.

Proof. This is a direct instance of Theorem 7.9, since Φ

7→

≡ Φ and Ψ

7→

≡ Ψ when Φ
and Ψ are ground. �

Corollary 7.11. For ground φ, ψ, `
FOL

φ = ψ in nominal algebra if and only if
φ ` ψ and ψ ` φ are derivable in Gentzen’s sequent calculus.

Proof. By Corollaries 6.14 and 7.10. �
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8. Conclusions

Explicitly representing meta-variables has a long pedigree.
Monadic second-order logic [6] enriches first-order logic with variables ranging

over predicates of arity one representing unknown unary predicates, or if we prefer
‘unknown sets’; the stronger second-order and higher-order logics [44, 40] repre-
sent unknowns as variables of function type. Representing unknowns as function
variables has some distinctive features inherited from their intended functional se-
mantics.

First, you have to choose the arity of your unknown in advance, e.g. function

variable f :

n︷ ︸︸ ︷
T → · · · → T → F can be interpreted as an unknown n-ary predicate —

but which n? Thus these logics distribute ‘unknown predicates’ across many types.
Second and perhaps more importantly, instantiation of these variables avoids

capture. This has a side-effect that it is not possible to represent an unknown
predicate uniformly across contexts. For example to represent the unknown φ in
the context we can intuitively express as ∀a.φ, it suffices to write ∀λa.fa where
f : T → F; but to represent the unknown φ in the context ∀a.∀b.φ we must write
∀λa.∀λb.fa b — f must take a higher type. Since for any given f we must choose
a type for it, it is not possible to directly represent the context we might write as
Qsφ, where Qs represents an unknown context (of quantifiers).

Instantation of unknowns in nominal algebra does not avoid capture so that ∀[a]P
accurately reflects our intention when we write ∀a.φ where φ may be instantiated
in a capturing manner. Furthermore P still represents φ in ∀[a]∀[b]P .

This suggests an application to the problem of incomplete proofs. Incomplete
proofs arise naturally in proof-search in a human-assisted theorem-prover such as
Isabelle [36] or COQ [28]. Here the theorem-prover acts as a program to manipulate
proofs which are incomplete both in the sense of having holes, and in the sense of
occurring in an unknown context, and the human assistant guides the system to
fill in these holes until a complete proof emerges. A quantifier introduction rule
binds the quantified variable in the derivation above it (this is usually expressed
by a freshness condition). In the presence of incomplete proofs it is necessary to
somehow represent this binding over an as yet unknown derivation. We believe
that nominal terms with their unknowns and abstractions are a good match for
the incomplete proofs and quantifiers binding in it. As the incomplete proof is
‘filled in’ by the human assistant and the system, a capturing substitution should
be made for the unknown. An exciting application of our technology would be an
investigation of how well (if at all) a system related to one-and-a-halfth-order logic
but with proof-terms can represent this process. A step in this direction would be
to investigate a Curry-Howard correspondence [43] for one-and-a-halfth-order logic.

For this it might be convenient to use an intuitionistic flavour of one-and-a-
halfth-order logic. Note that there is no technical barrier to this. An intuitionistic
one-and-a-halfth-order logic can be defined in the usual way by restricting the
sequents in Figure 2 to have a single conclusion.

Unknowns also lend a very distinctive style to our nominal algebra theory FOL
(see Figures 5 and 8), and to the sequent rules of one-and-a-halfth-order logic (see
Figure 2). These rules accurately reflect common practice in the handling of meta-
variables, see [12, 27] and the examples of the Introduction, and as a result we
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have been able to import first-order proof theory quite directly into our augmented
setting.

It is not possible to make a direct comparison between one-and-a-halfth-order
logic and second-order logic. The second-order theorem ∀P.((∀P.P ) ⊃ P ) cannot
be expressed in one-and-a-halfth-order logic, because one-and-a-halfth-order logic
has no quantification over predicates; this gives it a first-order flavour. On the other
hand the one-and-a-halfth-order logic theorem ∀[a]P `

a#P
P cannot be expressed in

second-order logic, because that logic cannot directly express freshness conditions.
To the authors’ knowledge no-one has been able to give a truly satisfactory account
of the precise relation of nominal-style unknowns, and higher-order variables.

Our work is one (more) element in a very long line of investigations into algebraic
logic [1]; for example cylindric [26], polyadic [25], and quantifier [38] algebra. There
too, unknowns are syntax representing unknown elements quantified universally at
top level, and abstraction [a]- (our notation) is clearly visible, e.g. as the ci of
cylindric algebra. However, these systems do not have as a goal to reflect the proof-
theory of first-order logic. One-and-a-halfth-order logic does this. The connection
with the algebraic method is then via Nominal Algebra and our axiomatisation of
derivability in one-and-a-halfth-order logic.

It is possible to represent the syntax of first-order logic in a so-called framework
logical system, at ‘object-level’, i.e. as an inductive datatype — the so-called deep
embedding. Then meta-variables are easily representable as meta-variables of the
framework. This path is taken by Higher-Order Abstract Syntax [37], Fraenkel-
Mostowski syntax [21], the Theory of Contexts [34] and much other research. This
enterprise is quite different from that undertaken in this paper; one-and-a-halfth-
order logic is about extending the syntax of the logic itself so it contains something
which behaves very much like a meta-variable ranging over unknown formulae,
without losing logical properties such as cut-elimination.

It is also possible to represent the semantics of first-order logic as theory in a
framework, for example as a pair of types T and F along with functions between
them like ⊃: (F× F) → F or ∀ : (T → F) → F. This is called a shallow embedding.

In [36] the case is made for Isabelle and for its higher-order logic framework
as an efficient basis for shallow embeddings, and for conducting mathematics in
these embeddings. For example, a shallow embedding of first-order logic called
Isabelle/FOL exists in Isabelle’s higher-order logic framework Isabelle/Pure. A
shallow embedding requires only a logic with a sufficiently powerful judgement
form. Our axiomatisation of one-and-a-halfth-order logic in nominal algebra, is a
shallow embedding.

The technical content of this paper is therefore in two halves with equal status:
a case study of a shallow embedding of first-order logic using nominal algebra as a
logical framework, and a study of logic proof-theory in the presence of nominal-style
unknowns.

Logic proof-theory with nominal-style unknowns is new, and seems to work quite
well; the rules of Figure 2 are clean and close to informal practice. We can now try
to extend this system with abstraction over meta-variables; we come back to this
idea in a moment.

What of nominal algebra as a logical framework; how does it size up for example
compared to higher-order approaches? Time and further research will decide just
where nominal algebra fits in but we can make some preliminary observations.
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Nominal algebra is not higher-order — this means that it is not based on terms
up to αβ-equivalence; it is based on nominal terms. Unification on nominal terms
is decidable [42] and this is not the case of unification up to αβ-equivalence. Thus,
using nominal algebra avoids some of the complexity of higher-order unification.
This paper and others [17, 10] show how nominal terms can express fully-functional
logics, and in a very direct manner ‘ε away from informal practice’.

The authors see no difficulties in principle with axiomatising substructural logics
such as linear logic [24], bunched implications [35], relevance logics [9], and so
on; if the logic is susceptible to a (nominal) algebraic treatment then it can be
axiomatised in nominal algebra. This is not always the case of a shallow embedding
in a higher-order logical framework, because the structural rules of the connectives
and quantifiers of that logic may ‘infect’ those of the object-logic.

There is also a more subtle foundational issue. Formal proofs of basic theoreti-
cal properties such as Church-Rosser in systems such as Isabelle are important and
technically informative, however there is some legitimate concern about their foun-
dational status, seeing as the correctness of the basic framework is a higher-order
logic and so depends amongst other things on. . . Church-Rosser. Nominal algebra
is not higher-order and the correctness of meta-level properties does not appear to
depend directly on Church-Rosser and other properties of λ-calculus syntax.

The technical tools used in this paper were developed based on work on Nominal
Unification by the first author with Urban and Pitts [42], which introduced the
theory of nominal terms up to CORE (our terminology). This was extended with
Fernández [10] to Nominal Rewriting, a theory of rewriting on nominal terms,
again up to CORE, and recently investigated with the second author, as a general
framework of nominal algebra [18, 17].

For future work we are particularly interested in the following topics:
We can return to theory and be inspired by higher-order logic to ask whether

we could permit abstraction over meta-variables, introducing an infinite hierarchy
of stronger meta-variables such that at each level a meta-variable of higher level
behaves to the lower level as an unknown X behaves to an atom a. This idea is
explored in the arena of operational semantics by a λ-calculus called NEW calculus
of contexts [14], and a rewriting framework called hierarchical nominal rewriting
[15]. This might recover some or all of the power which one-and-a-halfth-order logic
lacks compared to higher-order logic, but in a different way. In short, we envisage
two- three- four- and ω-and-a-halfth-order logic. This would involve interesting
extensions to the ‘nominal theme’. Another direction is to allow unknowns ranging
over derivations of sequents, which may have interesting interactions with (∀R),
which would abstract in such an unknown.

The semantics of one-and-a-halfth-order logic are interesting and raise the ques-
tions ‘what is an appropriate semantics for X’, and ‘what is an appropriate seman-
tics for a’? Note that it is not possible to directly evaluate X to an element of a
set underlying domain, because intuitively X ‘can mention a’. Thus we can use
domains in which atoms can appear (à la Fraenkel-Mostowski sets [18, 21] or other
approaches [4, 11]). The simplest solution, and perhaps the best one, is to evaluate
X to terms (a ‘substitutional semantics’ [30, Section 2] faithful to its intuition as an
‘unknown term’) and then evaluate atoms a to elements of a set underlying domain.
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Appendix A. Equivariance

We use atoms in this paper — we introduce them when we write ‘Fix a countably
infinite collection of atoms a, b, c’ in Section 2.

We can represent atoms as, say, numbers 0, 1, 2, 3, . . ., or as sets ∅, {∅}, {∅, {∅}}, . . ..
In principle we might ‘accidentally’ use some property of atoms specific to their im-
plementation, such as a ≤ b or a ∈ b. However, we know we do not do this, because
we consider atoms to be . . . atomic.

By explicitly bearing this in mind, we can rename atoms. This is equivariance,
proved below, which we use freely in this paper to give structural inductive proofs
(renaming atoms in inductive hypotheses where convenient) while remaining fully
formal.

Without equivariance, to be fully formal proofs by induction on measures such
as term length or derivation depth would be necessary. These are longer, harder to
read, and are rarely given in full detail outside of a theorem-prover.

To give a precise statement and formal proof of equivariance and how it can be
used to rename atoms in proofs by structural induction on the syntax of terms and
derivation-trees, it is well-worth a brief look at foundations so that we can prove a
few simple theorems about a foundation in which atoms really are atomic.
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ZFA stands for ‘Zermelo-Fraenkel set theory with atoms’. ZFA is a set theory,
and set theories are just axioms in first-order logic with equality (similar to the
one we defined in Section 7). Equivariance was introduced in [20]. It is a meta-
mathematical property, meaning that it refers to the assertions proved in this paper.

We do not mean that equivariance refers to the terms of sort F, nor the formulae
of first-order logic, nor sequents of one-and-a-halfth-order logic. We mean that it
refers to the assertions written in english in this paper — about one-and-a-halfth-
order logic, nominal algebra, and so on.

ZFA features a set A of atoms a, b, c, . . .. The original motivation of atoms was
to address the question ‘what set is equal to Plato?’. Obviously Plato is not any of
the ‘normal’ sets of set theory, such as the empty set ∅ or the set containing just
the empty set {∅}, and so on. The answer was to accommodate ‘the real world’ by
introducing it en masse into the set model, as atoms.

As far as the set theory is concerned atoms are atomic objects with no internal
(set-)structure, so it is quite natural to use these to model variable symbols. This
idea appears already in [2]. As discussed, the advantage of this over an atom-less
foundation such as ZF, is that equivariance is guaranteed, as we shall see.

For the language of ZFA set theory, in addition to the basic language of first-order
logic with equality, we assume:

• A binary predicate symbol ∈ called set inclusion.
• A constant term-former A called the set of atoms.

We use standard sugar of classical logic (similar to the sugar mentioned in Subsec-
tion 2.1).

Definition A.1. ZFA set theory has the axioms in Figure 10.
Here, φ ranges over all predicates, φ[y/x] denotes the predicate obtained by

capture-avoiding substitution of x by y, and F (y) represents a function on the
sets universe (strictly speaking, this is itself sugar, which is briefly described in
Corollary A.4). Furthermore, we use the following sugar:

x = {z | z ∈ x} is sugar for ∀y.(∀z.(z ∈ x⇔ z ∈ y) ⊃ x = y)
y = {z ∈ x | φ} is sugar for ∀z.(z ∈ y ⇔ (z ∈ x ∧ φ))
z = {F (y) | y ∈ x} is sugar for ∀u.(u ∈ z ⇔ ∃y.(F (y) = u ∧ y ∈ x))
z = {x, y} is sugar for ∀u.(u ∈ z ⇔ (u = x ∨ u = y))
z = {y | ∃y′.(y ∈ y′ ∧ y′ ∈ x)} is sugar for ∀y.(y ∈ z ⇔ ∃y′.(y ∈ y′ ∧ y′ ∈ x))
z = {y | y ⊆ x} is sugar for ∀y.(y ∈ z ⇔ ∀y′.(y′ ∈ y ⊃ y′ ∈ x))
∅ ∈ x is sugar for ∃z.(z ∈ x ∧ ∀z′.z′ 6∈ z)
y ∪ {z} ∈ x is sugar for ∃u.(u ∈ x ∧ ∀u′.(u′ ∈ u⇔ u ∈ y ∨ u = z))

The syntactic sugar used in set theory is very rich; further details can be found
elsewhere [29].

Note that atoms are extensionally equal to the empty set. This means that
the same elements are related to them by ∈: a ∈ A ⊃ ∀x.x 6∈ a, but a 6= ∅ (and ∅
is not an atom). ∅ is not an atom, and is distinguished from atoms in that it is the
unique empty set which is not in the set of atoms.

We can define a permutation action on ZFA sets by:

(a b)a = b (a b)b = a (a b)c = c (c 6= a, b)

(a b)X = {(a b)x | x ∈ X} (X 6∈ A)

This definition is by ε-induction. Definition by ε-induction is a standard method
in set theory [29]; if it is true that a property holds of y ∈ A, and if it holds of all
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(Sets) ∀x.((∃y.y ∈ x) ⊃ x 6∈ A)

(Extensionality) ∀x.(x 6∈ A ⊃ x = {z | z ∈ x})
(Collection) ∀x.∃y.(y 6∈ A ∧ y = {z ∈ x | φ}) (y not free in φ)

(∈-Induction) ∀x.(∀y.(y ∈ x ⊃ φ[y/x]) ⊃ φ) ⊃ ∀x.φ
(Replacement) ∀x.∃z.(z 6∈ A ∧ z = {F (y) | y ∈ x})
(Pairset) ∀x.∀y.∃z.(z = {x, y})
(Union) ∀x.∃z.(z 6∈ A ∧ z = {y | ∃y′.(y ∈ y′ ∧ y′ ∈ x)})
(Powerset) ∀x.∃z.(z = {y | y ⊆ x})
(Infinity) ∃x.(∅ ∈ x ∧ ∀y.(y ∈ x ⊃ y ∪ {y} ∈ x))

Figure 10. Axioms of ZFA set theory

x ∈ y then it holds of all y, then that property holds of all y. Written informally:
sets are well-founded trees with daughter-of given by set inclusion ∈.

We read (a b)X = {(a b)x | x ∈ X} as
(a b) acting on a set is equal to the set of (a b) acting on the
elements of that set

or even more succinctly
The permutation action is pointwise.

Write ◦ for functional composition. So π ◦ π′ maps a to π(π′(a)).

Lemma A.2. π(π′z) = (π ◦ π′)z.

Proof. The proof is by ε-induction.
• By definition if a ∈ A then π(π′a) = (π ◦ π′)a.
• Suppose Z 6∈ A. Then by definition of the permutation action and by the

inductive hypothesis

π(π′Z) = {π(π′u) | u ∈ Z} = {(π ◦ π′)u | u ∈ Z}
= (π ◦ π′){u | u ∈ Z} = (π ◦ π′)Z.

�

Recall that φ ranges over predicates of ZFA. Write φ(x1, . . . , xn) to range over
predicates which mention at most x1, . . . , xn as free variable symbols.

Theorem A.3. If φ(x1, . . . , xn) is a predicate of ZFA set theory then

φ(x1, . . . , xn) ⇔ φ(πx1, . . . , πxn)

is always provable.
As a corollary, φ(x1, . . . , xn) and φ(πx1, . . . , πxn) are interchangeable in proof

and in validity on models.

Proof. We work by induction on the syntax of φ.
• x ∈ y implies πx ∈ πy follows directly from the fact that πy = {πy′ | y′ ∈ y}

by definition. The reverse implication is easy using π-1, the inverse of π.
• Similarly, x = y if and only if πx = πy.
• If φ(x1, . . . , xn) is of the form φ1 ⊃ φ2 then we may easily use the inductive

hypothesis.
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• Likewise if φ(x1, . . . , xn) is ⊥, or is of the form ∀z.φ′, we may easily use the
inductive hypothesis.

• πA = A is provable, so x ∈ A if and only if πx ∈ A, and A ∈ y if and only
if A ∈ πy, and similarly x = A if and only if πx = A and A = y if and only
if A = πy.

The result follows. �

As a corollary we have:

Corollary A.4. If F (x1, . . . , xn) is function (not a function-set) from the set uni-
verse to itself then

π(F (x1, . . . , xn)) = F (πx1, . . . , πxn)
is always provable.

Proof. In set theory, we specify F using a predicate φ(x1, . . . , xn, z) such that
∀x1, . . . , xn.(∃z.φ(x1, . . . , xn, z) ∧ ∀z, z′.(φ(x1, . . . , xn, z) ∧ φ(x1, . . . , xn, z

′) ⊃ z = z′)).
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