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Abstract
The practice of first-order logic is replete with meta-level concepts.

Most notably there are the meta-variables themselves (ranging over, X
otpeyvary overFOL syntax. Also we refer to properties of syntax

predicates, variables, and terms), assumptions about freshness

variables with respect to these meta-variables, alpha-equivalenc
and capture-avoiding substitution. We present one-and-a-halfth-
order logic, in which these concepts are made explicit. We exhibit
both algebraic and sequent specifications of one-and-a-halfth-orde
logic derivability, show them equivalent, show that the derivations

satisfy cut-elimination, and prove correctness of an interpretation
of first-order logic within it.

We discuss the technicalities in a wider context as a case-study

for nominal algebra, as a logic in its own right, as an algebraisation
of logic, as an example of how other systems might be treated, and
also as a theoretical foundation for future implementation.

Categories and Subject Descriptord.4.1 Mathematical Logic
and Formal LanguaggsMathematical Logic—Proof theory

General Terms Theory

Keywords First-order logica-conversion, meta-variables, nomi-
nal terms, Fraenkel-Mostowski techniques, higher-order logic.

1. Introduction

Consider the following valid assertions about first-order predicate
logic with equality (FOL) [2, 4], written in standard notation also
explained later in this document:

* 9D (¥ D9),

o if a & fn(9) theng > (8[a > ),

if a & fn(¢) theng D Va.¢,

if a,b & fn(¢) then(Va.¢) D Vb.¢,

if a & fn(¢) thenVa.(¢ D ¥) D (¢ D Va.rh),
if a & fn(¢) theny D (¢ D Va.d),

® Vb.Va.¢ D Va.¢[b — a], are derivable.
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These assertions cannot be proved in FOL, since FOL derivations
involve FOL syntax, while the syntax of the assertions just given
contains meta-variables 1, a, b andt. These ar@ot FOL syntax,
when we write & € fn(¢)’ and ‘¢[a — ¢]’, but FOL syntax can-
not represent these explicitly.

Of course to us humans this is all obvious. One reason is that
he derivations fall into a limited number of schema. For example
the ‘derivation’ below on the left:

i

— (Ax) — (Ax)
PV, P I
—— (OR) —— (DR)
oY Do 11D L
—— (OR) —— (OR)
FoD (Do) FLD(LDD)

is not a derivation, but it obviously represents a schema of deriva-
tions of which the (real) derivation on the right is an instance setting
¢ andy to L. But is there a logic in which the beast on the leftis a
derivation too?

Note that it has been pointed out before that meta-variables
varying over syntax are not themselves syntax, and that schematic
derivations are not real derivations [20, page 7] (Hodges calls them
‘argument schema’). Many authors do leave meta-variables at the
meta-level. Some suggest that this is where they belong!

We feel that as mathematical computer scientists it is reason-
able, nay ourduty, to pursue formalisation whenever possible.
Logic teaches us that reasoning can and should be formalised, not
only its conclusions. So if we use meta-variables in reasoning, we
can and should ask ‘what is the mathematics of this reasoning’?

This paper presentne-and-a-halfth-order logic a generali-
sation of first-order logic in which meta-variables and properties of
syntax are made explicit.

We briefly mention the main technical barriers involved:

® Ya.¢ andVb.¢ need not bex-convertible if¢p mentionsa andb
free, so any syntactic representation which represents the meta-
variable¢ must sacrificex-equivalence or some part of it. What
is a suitable representation of meta-variables and how does it
interact with binding?

In the presence of meta-variables substitution becomes nontriv-
ial, since thev-left intro rule (see Subsection 8.2) demands we
reason aboub[a — t] wherea — t] means ‘replace by

t'. What is a suitable and correct representation of substitution,
and what are its properties?

e Once these problems are solved, what derivation rules manage
the extra complexity involved so that derivations remain faithful
to ‘first-order logic style’, and cut-elimination is (fairly) easily
provable?



Without further ado we give derivation rules of one-and-a- In casen = 0, we writef instead off ().

halfth-order logic in Figure 1. Also, Figure 2 includes one-and- m IS a permutation on atoms, we discusn the next subsec-
a-halfth-order logic derivations of the assertions above (in the last tion. We callr - X a moderated unknown syntactically this is
three examples, we left out the use(ofR ) on the top-level impli- just a pair of a permutation and an unknown, but intuitively this
cations). represents the permutatianacting on an ‘unknown term’. This

Explanations and technical machinery follow in the rest of this intuition is made concrete in the definition of substitution on mod-
paper. In Sections 2 to 4 we introduce the syntax and an equationalerated unknowns, below.
axiomatisation of one-and-a-halfth-order logic in terms of nominal We may writet : 7 as shorthand fort'of sort7’. We may call
algebra. In Sections 5 to 7 we develop the sequent calculus ofterms¢ : P predicates(not to be confused witatomicpredicates
Figure 1 and establish properties including cut-elimination and like greek(var(a))).
equivalence with the axiomatisation. In Section 8 we show that a  We sugar the term-formers fixed earlier, and give their intuitive
subset of one-and-a-halfth-order logic is equivalent to first-order meaning. For any atoms b, termst, v : T and predicates, :

logic. We discuss related and future work in the Conclusions. .
e | represents falsity.

2. Nominal algebra o ¢ D 1 is D(¢, ). Intuitively, this is an implication.

We need a syntax in whicta.¢, a & fn(¢), and¢a — t] may be ® V[a]¢ is V([a]¢). Intuitively, this is universal quantification
explicitly represented. For this we use Nominal Terms [29], which (which takes ambstractionof a formula and yields a formula).
offer built-in support for meta-variables, abstraction, and freshness.  Accordingly we call the syntax-fragmefit]_ anabstractor. It
In this section, we describe nominal terms and the framework of ~ has no functional semanticki]¢ is intuitively merelyt with a

Nominal Algebra [15], which is a theory of equational equality for bound. The fact that takes an abstraction of a term and gives
nominal terms. aterm is imposed by its soffA]P)P.
21 Sorts and terms e t = u is ~(t,u). Intuitively, this is equality in the object-
. . language.
Fix two base sortsP of predicates and T of terms; we may ) = )
indicate these witld. Fix a sort ofatoms A. Definesorts 7 ® a is var(a). Intuitively, this term-former connects an atam
which has sortd, and an object-level variable symbadr(a),
Tu=0|A|[AlT which has sorf.
The intuition of[A]7 is ‘elements ofr with an atom abstracted’. e vfa — {] is sub([a]v, t) for any termv of sortT, [A]T, P or

This has no intuitive functional denotation, e[g/]7 is not a valid

sort. (A]7 behaves more like the set efequivalence classes of

elements of- with a distinguished bound atom.) We use standard classical logic sugar:
Fix countably infinite disjoint collections adtomsa, b, ¢, and : :

unknowns X, Y,yZ. : ~pisgo L Tis~l
Atoms represent object-level variable symbols, for examples see PAPis—(p D)  PVipis—p DY

a, b in the Introduction. They will have soft. Unknowns represent ¢ Pis(p DY) A (Y D @) a]@ is —V[a] ¢

meta-level variables, for examples sge), ¢ in the Introduction.

Unknowns may have any sort and we assume that they are inher-  TO Save on (unnecessary) parentheses, fake _[- — ], =,

ently sorted (and that there are infinitely many of each sort). We {—,V,3}, {A,V}, D, < as the descending order of precedence.

[A]P. Intuitively, this is substitution.

may write X :  as shorthand forX, which has sort’. We tend Also letA, v, D and< associate to the right.

to give unknowns of soif namesP, @, R and unknowns of soff We writea € ¢ (or X € ) for “a (or X)) occurs in (the syntax

namesT, U. of) ¢’. Occurrence s literal, e.@. € [a]Ja anda € 7- X if w(a) # a.
A term-former is a syntactic tokefi with an associatedrity We omit inductive definitions. Similarly we may write ¢ ¢ and

p=(71,...,7)7, Wheren > 0. We may writef : p as shorthand X ¢ t for ‘does not occur in the syntax ot _

for ‘f, which has arityy’. Fix the following term-formers: Call t closedwhen¢ mentions no unknowns — may still

N mention atoms, e.g. the termis closed.
L:0P D:(EPP Vi (APP =~ (T,T)P Write syntactic identity of termst, v ast = u. This emphasises
var : (A)T sub: ([Al7,T)r (7 € {T,[A]T, P, [A]P}) the difference from provable equality= v, which is a logical

We discuss the intuitive meanings of these term-formers after we assertion, and object-level equalitys u, which is a term.

have defined terms.

We call term-formers with aritiegT,...,T)T object-level
term-formers; one example could be : (T, T)T. We call term- A permutation 7 of atoms is a total bijectiod. — A with finite
formers with arities(T, . .., T)P atomic predicate-formers one support, meaning that for some finite set of atoms (which may be
example isw, others ar@ocrates : (T)P andgreek : (T)P. These empty)m(a) # a, butfor all atoms not in that set;(a) = a. This
too can be added and cause no difficulties for the results which is a mathematical notion of ‘mosti(a) = a for mosta.

2.2 Permutations and substitutions

follow. As usual, we writdd for theidentity permutation;z™ for the
We generally lef vary overall term-formers and (later in the  inverse of 7, and 7 o =’ for the composition of = and 7/, i.e.

paper) we lebf vary over object-level term-formers, aog@ vary (mo7')(a) = n(n'(a)). Id is also the identity of composition, i.e.

over atomic predicate-formerso(‘for ‘object-level’). Id o m = mand7 o Id = 7. We may abbreviatéd - X to X.
Terms ¢, u, v are inductively defined by: We writer - ¢ for theaction of a permutation on a term, defined

" inductively on syntax by:
tou=ap | (7 Xo)r | ([aaltr)mgr | Frymnyr (Brys oo B8))n

= . / . = ! .
Here subscripts indicate sorting rules. We repeat the definition mra=ma) wo(r-X)=(rom) X
without them, just for clarity: m-lat = [r(a)](m-t) 7, te) =f(m-te,... T tn)

t u=alm-X|[at]f(t1,... tn) LEMMA 2.1. (ron')-t=x- (7' -t)andld - t = ¢.



dH, W, LD, U LD, U,
- @ X) - (J_L) A ¢ 1/] A DL) ‘:b A 1;0 DR)
N N P Lok, pOY, B, T D, W, pDY
dla—t], &, ¥ AN T Pla—t], ®F, -
7% wL) —— (VR) (Al a#d,0) , 2 (~L) m(NR)
Vialp, @+, ¥ P, 0, Va]y ' ~t, pla—t], P, ¥ INNIR
¢, P, W , DF, W, ,
—— (StructL) (Ablg, ¢ =09) ——— (StructR) (Al ¢ =)
¢, P, T dH, U,
P anxyanx, ¥ P,V ¢ ¢, PH, W
ST (Fr) (a9, 0, A) = 2 (Cut) (Abgyd=¢)
dH, U dH, U

Figure 1. Sequent calculus for one-and-a-halfth-order logic

(Ax) (Ax)
Q.Pr, P Pro,p P
—— (DR) ———— (StructR) (a#P g,z P = Pla—T))
PF,QDP P)—Q#PP[U,HT]
——  (OR) (OR)
F, PD(QDP) FQ#PPD(P[aHTD
(Ax) (Ax)
Pt yp P V[a] P Faspbup V[a] P
——(VR) (a#PF a#P) : (StructR) (a#P,b#P bg g Via]P = V[b]P)
Plt,up V[a]P V[a]P Fagpbup v[b] P
——  (OR) . (OR)
Fogp P D ValP Foypoyr (ValP) D V[P
Prosar ) Grr e
# # (:)L)

PPDOQF, ,pQ
P, (P> Q)la— a] Fa#P Q
PV[a)(PDQ)F,,.p Q

PV[a](PDQ)F,up V[a]Q

(StructL) (a#PrFge PO Q= (P DQ)ar— al)

(VL)

(VR) (a#P & a#P, V[a](P D Q))

(Ax)

P,QF P

a#P,b#P,Q
(ab)-P

(StructR) (a#P,b#P,Q g,z P = (ab)-P)
(VR) (a#P,b#P Q& b#P,Q)
(StructR) (a#P,b#P,Q Fq g V[b](ab) - P =V[a]P)

P’ Q '_a#P,b#P,Q

v[b(ab) - P

PQ FG#P,b#P,Q

PQ '_a#P,b#P,Q V[a]P

V]a] P

(Fr) (b & P, Q,V[a]P, afP)
PQF

a#P

(Ax)

(VL)
StructL) (c#P bgyp Via](P[b— c]) = (V][a]P)[b+— c])

Plb—dla F ,p Plbr dla

V[a](P[b+ c]) F P[b— c]la — (]

cH#P

(Va]P)[b = ¢] Fyp Plb— a]la— ]

VL)

VR) (c#P F c#V[b]V[a]P)

V[b]V[a] P Fesp V[c](P[b — c]la +— ¢])

(
(
V[bIV[a]P . p Plb— clla— ] (
(

StructR) (c#P kg V[](P[b — c]la — c]) = V[a](P[b — a]))

V[BV[a]P -, ,» V]a](P[b — a])

c#P
V[b]V[a]P t-, V[a](P[b+ a])

(Fr) (c g V[b}v[a]P, V[a](P[b — a]))

Figure 2. Example derivations in one-and-a-halfth-order logic



In this section we omit proofs of lemmas; they are all quite
routine. Full proofs are available elsewhere [7, 29].

A substitution ¢ is a finitely supported sort-respecting function
from unknowns to terms. Heréinitely supported means that for
some finite set of unknowns(X) # Id - X, but for all other
unknownso(X) = Id - X. Sort-respectingmeans that for each
X the termo(X) should have the same sort &s

Write [t1/X1,...,tn/Xy] for the substitutiono such that
o(X;)=t;ando(Y)=1d Y, forall Y £ X;,1 <i < n.Write
[] for theempty substitution, which maps eachitoId - X.

Write a € o if there exists anX such thate € o(X), and
similarly write a ¢ X if there is no suchX.

A substitutiono has a naturaéction on termst, inductively
defined by:

ao =a

([a]t)o = [a](to)

(- X)o=7-0(X)

f(t1, .. .,tn)O' = f(tla,. .. ,tna)

Give substitution and permutation actions higher precedence
than abstraction and any of the sugared term-formers, and putare valid takingm

substitution before permutation.

Note how substitution interacts with permutation in the case of
an unknown, for exampl&a b) - X)[b/X] = (a b) - b = a. Sow
in X is ‘waiting for a substitution to arrive’, as also made formal in
the following property:

LEMMA 2.2. 7 - to = (7 - t)o.

Another permutation action will be useful. Writ¢" for the
meta-level actionof 7 ont, which is defined by:

(=" - X" (77'#) - X
f(tl,...,tn)ﬂ' Ef(tlw,.“

a”™ = 7(a)

([a]t)” = [r(a)](t")

wheren’™ = 7 o 7’ o ! (this is theconjugation action [9]).

1tn”)

LEMMA 2.3. Fix t and, and letc mapX € ttor - X, ando’
mapX € tton! - X. Thenr - t = t"o andt™ = (r - t)o’.

So the two permutation actions are interdefinable in the pres-
ence of substitution; however, sometimes one is more natural than
the other, we shall point out how, later.

2.3 Assertions, axioms and derivations
Nominal algebra has two forms aksertions

1. Afreshness (assertionis a paira#t of an atom and a term. If
t = X we call the assertioprimitive .

2. Anequality (assertion)is a pairt = v wheret andu are terms
of the same sort, we discuss them below.

Write A for a (possibly infinite) set grimitive freshnesses and call
it a freshness contextWe may drop set brackets in freshnesses,
e.g. writinga#t, b#u for {a#tt, b#u}. Also, we may writev#t, u
for a#tt, a#u.
Extend the notions of occurrence, closedness, permutation ac

tions and substitution action pointwise to assertions and freshness

contexts. Note that for a freshness cont&tAoc need not be a
freshness context since each unknoWim A is replaced by (X),
which is a term and need not be an unknown.

Call a pairA — t = u of afinite freshness context and an
equality assertiom = u anaxiom. If A = @, we may write the
axiom justt = wu.

Nominal algebra NA) [15] is the logic of equality between
nominal terms. We define the derivation rules of NA by the rules
in Figure 3.

In this figuref ranges over term-formefs;, u, v andt, . . ., tn
range over termsX ranges over unknowns, over permutations,
o over substitutionsA over freshness contexts, andandb per-
mutativelyrange over atoms, i.e.andb represent any twdistinct
atoms. We use similar conventions hencefo@fi] is a context, it
is introduced later.

Write A F a#t when a derivation of a freshness assertight
exists using the elements & as assumptions, according to the
rules above. Say that entails a#t or a#t is derivable from A.

Call a (possibly infinite) set of axiom$ a theory. We write
A F; t = u when a derivation of = u exists using the rules
above, such that every assumption used is a freshnesses¥rom
and for every use dfaxa ) A is an axiom ofT. Say thatA entails
t = u ort = uis derivable from A.

For example, takingd = a = bandB = [a]|X = [b]Y as
axioms, the derivations

(axa) — (axn)

[b]b = [a]a
(a b ¢) and anyo, and (a b) and
o =[b/X, a/Y], respectively. Note that it is not possible to derive
a = a using(axa).
TakingC = a#X — [a]X = [b] X, of the derivations

— (#ab) a#a

a—#b ax — (axc)
[alb = [b]b( 2 [ala = [bla

the left one is valid, but the right one i®t, becausei#a is not
derivable.

So now we appear to haveo derivation systems; the sequent
calculus for one-and-a-halfth-order logic from Figure 1 and nomi-
nal algebra from Figure 3, both using nominal terms! We shall soon
show that a particular nominal algebra theory gives rise to one-and-
a-halfth-order logic.

For the rest of this subsection we discuss the derivation rules of
Figure 3.

b=c

Contexts C'[] is the usual notion of context as being a ‘term with
a hole’. Note that this notion may be represendégctly in our
syntaxtaking a termC' with a distinguished unknowX — call it
‘the hole — which occurs inC only asId - X (so not under a
moderation, e.g. not & b) - X or somesuch). We can then define
C[t] = C[t/X]. The restriction on the moderation is to ensure that
t really doesoccur inC/[t] and not some renamed version of it.
Note thatC may contain abstractors, e.g. = [a][b]X, and
that the substitutioft/ X | can capture under these abstractors, e.g.
Cla] = [a][b]a. See [7] for a fuller treatment of this observation.
For example(a b)- X andg(X, X) (X is a shorthand fafd- X)
are notcontexts.X andh(X) are contexts. Herg andh are term-
formers with arities of the fornir, 7)7’ and(r)7’, respectively.

The rule (fr) In (fr) square brackets denotkschargein the
sense of natural deduction (as in implication introduction [20]);
denotes the other assumptions of the derivation-efu.

The rule generates ‘fresh atoms’. Cleadly ¢, u, A manifests
this intuition, but also we must account for unknowns which (intu-
itively) represent unknown terms. Thus to generate an atom that is
really fresh, also for the unknown terms we use, we insist on this
explicitly with freshness conditions.

The axiom rule (axa) Where the axiomA is understood or
irrelevant we may write justax) (and(ax’), see below).

In (ax) atoms arepermutedand unknowns arénstantiated
Thus atoms stand f@nyatoms but in a way which preserves their
distinctness, whereas unknowns standsgfioyterm at all.

1 More preciselyf is ameta-variableranging over term-formers.



(4ab) Ha)#X 40 agtt aty -+ attn )
— (#a a
a#tb aFm- X #X) a#lalt aFt[b]t aF#tf(tr, ... tn)
a t=u t=u u=wv t=u ( ) aftt b#t( )
t ——— (con,
t:t@e) u:t@wmm t=v (tran) C[t] = Cy] 8 @wyt:tpﬂm
[a# X1, ..., a#X5] A
Ao .
- (aXA) A= A—>t=u ¢ : u
to=uo (fr) (a&t,u,A)
t=u

Figure 3. Derivation rules of nominal algebra

Recall the discussion of - ¢t versust™ above. Another axiom

rule is possible:
L RWAN;

(ax’A) A A—>t:U

T-to =7 uo

however in this case, atoms in the substitutierare renamed
according to permutatiorr, which turns out to be rather mind-
bending. For example, from the axiofn]X = [b]X it is im-
mediate that- [b]la = [a]a is derivable using(ax) where we
chooser = (b a) ando = [a/X]. If we use(ax’) we must choose
7= (ba)ando = [b/X].

3. Theories

Recall that a theory is a (possibly infinite) set of axioms. Write
CORE for the theory which is the empty set. Other theories of
interest are listed in Figures 4 and 5.

syntactic form. The next step is to show that thego admit a
proof-theory.

There are interesting theories besid&3L (see the Conclu-
sions).

4. Sequent-like admissible rules

For our first technical results we show that the rules like those of
Figure 1, are valid in theorfyOL.

LEMMA 4.1. For all freshness contextA and predicates, v:
L AR, ¢y =T ifandonlyif A, ¢ =1,
2.AF  ¢Dy =T ifandonlyif Ay, ¢ =@ A

PROOF We only prove the first part; the second is similar. For the
right-to-left implication, we reduce the consequenpte> ¢ = T

We use a shorthand in each of those figures that the theory by congruence using = +; then the result follows easily.

includes the axioms listed in the figuaad the axioms of previous
theories:

CORE C SUB C FOL.

In the figures,f ranges over all term-formers of appropri-
ate sort,a, b are particular, but arbitrary, distinct atomB,Q, R
are unknowns of so®, andT,U are unknowns of sorf, and
X, X1,...,X, are unknowns of appropriate sorts.

The theories have the following intuitive meaning:

1. CORE is a theory ofx-equivalence.
2. SUB is a theory of capture-avoiding substitution.
3. FOL is first-order logic — with unknowns!

We will show how and why in the rest of this paper.

Theory SUB is discussed in detail in [14]. The rest of this
section discusses theofpL.

In Figure 5 we should think of a term of the formp ‘= T’
as meaning intuitively ¢ is true’. Thus, it expresses a Hilbert-
style axiom. The first block of rules are then standard axioms
[21] of classical propositional logic, we call thepmopositional
axioms The second block adds quantifiers, we call tligrantifier
axioms they exploit NA freshness conditions. The third block adds
object-level equality, we call theraquational axioms Together,
we call them thdogical axioms

Note that the quantifier axioms are not new! They appear in the

literature [10, page 5 (2)], just like the propositional ones. What
is new is that our axioms are not axiom-schemes ibdividual

For the left-to-right implication, suppoge< ¢ = T is deriv-
able usingA. Then

¢ =0¢NT = oA (9 Y) = ¢AY.
Similarly we can derive) = ¢ A ¢ whencep = v as required]

LEMMA 4.2. ., V[a]L = L is derivable.

FOL

ProOF It suffices to deriveV[a]l < L
Lemma 4.1. Or without sugar fae:

(V[a]L D> L) A (LD Va]l) = T.

By standard calculations using the propositional axioms, this fol-
lows fromV[a]|L D L = T andl D V[a]L = T.The latter fol-
lows directly from the last propositional axiom. The former is de-
rived as follows:

T, by part 1 of

— (ax)
Lla—T]=L
—— (symm)

V[a] LD L=V[a] LD L[a—T] (cong) V[a] LD L[a—T|=T

(ax)

(tran)
Via] LoLl=T

g
Note that by this result our intuition ¢fOL is that the denota-

tion of T is anon-emptyset; if T has (intuitively) an empty set as
axioms this, because we have meta-variables. Using nominal terms denotation therv[a] L

T would be possible for some models

we can also represent such axiom schemes faithful to their ‘usual’ andV[a] L = _L should not be derivable. This is due to an interac-



(var —) ala—T] =T

(# ) a#X - Xja—T] = X

(f—) f(X1,...,Xn)a—T] =f(Xi[la—T],...,Xn[a— T])
(abs —) b#T - (B1X)[a — T] = [l(X[ar T)
(ren —) b#X — X[ja— b = (ba) - X

Figure 4. Axioms of SUB

POQROP =T -——PDOP =T (POQR)D(@DR)D(PDR) =T 1Lo>P=T (Props)

V[a]P D Pla—T] = T V[a](PAQ) < V][a]P AV[a]Q = T a#P — Va](PD Q)< PDOValQ = T (Quants)

T~T=T UxTAPla—T]DPla—U]=T (Eq)
Figure 5. Axioms of FOL
tion of the first quantifier axiom with the rest of the theory, and is V([a]p A O
also present in most treatments of first-order logic 20]. = { Aty Vialp =Valp A pla—t] }

V[alp A pla— t] A O
{AF dla—tIANO=¢la—t]AONE}
V[alp A pla—t] AOAe
= { At Vo =V[doAdla—1]}
V[alp NO A e

LEMMA 4.3. For all predicatese, ¢’,,v’, 0, e, atomsa, terms
t,t' : T, and unknownsy, ..., X,:

LAF 6AO0DeVe =T
2 AF, LA De=T

3 ifAF 0 Deve = TandA b, v A0 De =T
thenAk, (¢ DY)ANO De =T

4. ifAF ¢NO D eV =T
thenAt, 6 DeVv(p DY) =T

The calculations for items 6 to 12 are in the same spirit, except for
item 11 which is trivially deduced usindr). O

5. ifAbp pla—t]Ad De=T 5. Sequent presentation
thenA ke V[alp A D e =T We are now ready to directly confront Figure 1.
6. if Al 0 DeVvey = TandA k- a#b, e Let (predicate) contexts®, ¥ be finite (possibly empty) sets of

thenA ., 0 D eVvVialy =T

CifA g dla— A0 D e =T
thenA b, (' =t)Apla—tind De =T

8 Al 0 Dev(itrt) =T
9. ifAb ¢’ A0 De =TandAbg, ¢ =9

10.

11.

12.

thenA b ¢NO D e =T

fAF 0 DeVey = TandA by, ¢ =1
thenA b, 0 Devy =T

thenA k., 06 De =T

FOL

andA k. 0=9¢ thenAk_, 0 De =T

SUB FOL

ifA, a#X1,...,a#Xn b 0 D e = Tanda g 0,6, A

ifAF 0 DevVe =T, Ak ¢'A0De =T

predicates. Asequentis a triple® -, ¥ whereA is a freshness
context andb and¥ are predicate contexts; when a context appears
to the right of- we may call it aco-context
We may write for {#}, ¢, ® for {¢}U®P, and®, &’ for DUD’,
and we may omit empty predicate contexts, e.g. writing for
OF, 0.
Extend the notions of occurrence, closedness, permutation ac-
tions and substitution action elementwise to predicate contexts.
Define thesequent calculugor one-and-a-halfth-order logic to
be the set of sequents inductively specified by the derivation rules
in Figure 1. We may also call this set entailment relation (that
of one-and-a-halfth-order logic, to be precise).
Call (StructL) and(StructR) structural rules. (Cut) can
emulate them, but we would lose cut-elimination. To see (i)
is useful, consider the last two examples in Figure 2.
Our rules resemble those of Gentzen’s sequent calculus for

PROOF The proofs of the first four items are standard and estab- classical first-order logic with equality [6, 17, 26], but with the
lish the equivalence of Hilbert- and sequent-style presentations of following distinctive features:

pr

thatA ., ¥V

opositional logic.

For item 5 we use item 2 of Lemma 4.1. Then we need to show
[a]p A O =V[a]¢p A6 A e follows from the assump-
tion A b, ¢la— t] A0 = ¢la— t] AO Ae. Also, by this item
and the first quantifier axiom) ., Vial¢ = Via]¢p A ¢la — ]

FOL

holds.

We reason algebraically, implicitly using associativity/of

e There is an explicit notion ainknown predicategiven by the
unknowns of sorf?, which models meta-variables in the sense
that, for exampley|[a] P with [(a = a)/P] isV[a](a =~ a) (and
notVia'l(a =~ a)).

e Freshnessy-equivalence and capture-avoiding substitution are

now explicit; they are represented tgrivability of freshnesses
and equality irSUB as side-conditions.

2In item (4) on page 48, Hodges states that “Most authors require it to have . . .

at least one member.”, where ‘it' denotes the domain in terms of a pure set. AS We used standard classical logic sugar fike for P > L,

Also see Remark 6 on page 110 for a discussion on the implications for SO we also ‘use’ the standard sequent rules for them (as sugar for
Hilbert-style proof calculi. ‘macros’ of sequent rules) without comment.



The sequent calculus is able to mimick the logical axioms from
Figure 5:

LEMMA 5.1. The following are derivable:
1L, 0D9%Do. 2.k, ¢ D ¢.
3.F,(¢2¢)D[WDp)D(¢Dp). 4 FiL1Do
5. k4 V[a]¢ D ¢la — t].
6. 4 V(al(¢ A ) & V]alé AValy.
7.1f AFa#¢ then +, V[a](¢ D ¢) < ¢ D V]a]y.
8. Ft=t 9. F, umtAgla—t] D dlar ul.

PROOF We consider just item 7. Bg=>R) and(DR) it suffices
to derive

(@) ¢, V]al(¢Dv) k4 Via]¢p.  (b) $DV[a]¢ b4 V[a](¢D).

We consider (a); showing (b) derivable follows similar lines:
(Ax) (Ax)
(3L)
(StructL)
(VL)
R)

N NEN RV N
G DY LY
¢, (pDY)aralb,
#,V[a](¢ DY) 5 ¥

¢, V[a](¢ D ¢) k4 Via]y

The uses of StructL) and(VR) are valid because the following
hold:

Abge (9D Y)laral=(¢ DY)
At a#e,Val(¢ O )

The corresponding calculations are interesting but have to do with
NA andSUB, notFOL. See elsewhere for details [14].

We conclude this section with two theorems describing how
derivations and their structure (for example the ones in Figure 2)
interact with atoms and unknowns. In brief: atoms can be permuted,
unknowns can be instantiated.

Extending notation for permutation action, we wiiié for the
result of applyingr to the terms in the syntax @i.

THEOREMS.2. If IT is a valid derivation ofp -, ¥ thenII”™ is a
valid derivation of®™ -, . U™,

Call this propertymeta-level equivariance
PROOF The statement

‘ITis a valid derivation ofb -, ¥’

has four free variables and so by FM equivariance [16] is invariant
under permuting atoms. The result follows.

Write TI(o, A”) for the substitution action on derivations. It is
inductively defined on the structure Hf

e If II concludes with a rul¢R) different from(Fr), it is of the
form
I, Iy
(R) (cond)
D, U
wherek € {0,1,2} andcond is A ¢, ¢ =1, A+ a#P or
empty.

wherecond’ is A’ Fyy 9o = Yo, A’ F a#d'c or empty,
respectively.

e Otherwise, the derivation concludes in
H/

(Fr) (a g, ¥, A)

o, T
wherell’ is a derivation of® -
ThenIl(c, A') is

H/(a’ a)(o_’ A”)
do I—A, Yo

v,

Da#X1,..a#Xn

(Fr) (a ¢ Po, Uo, A')

where a’ is chosen fresh (i.ea’ € a, ®, U, A, A/, o) and

A" =N d#Y1,...,d #Y,,, in which Yy,...,Y,, are all
unknowns mentioned ia(X;), for1 < i < n.

So o is consistently applied throughout the predicate contexts

occurring inIlI, A’ replacesA, and (Fr) may generate slightly
different freshness assumptions.

LEMMA 5.3. ForanyA’, A, o, if A’ - Ao then:
1. if A - a#tt thenA’ F aftto,
2. ifAF; t =uthenA’ -, to = uo.

THEOREM5.4. If A’ - Ao andIlis a valid derivation ofd -, ¥
thenII(o, A") is a valid derivation ofbo ,, Vo.

Call this propertymeta-level substitution

PrROOFE By induction onIl. We only treat the case&/R) and
(Fr). The other cases are similar to tf¥R) case or simpler.

1. The case of VR): Supposed -, ¥,V[a]y is derived us-
ing (VR). ThenA F a#®, ¥ holds andIl’ is a derivation of
&+, U, 9. ByLemma5.3A'  a#®Po, Uo, and by inductive
hypothesidI' (o, A') is a derivation ofbo -, Wo, 0. Then
we conclude tha®o -, Yo, V[a]yo is derivable, by extend-
ing IT' (o, A") with (VR), as required.

. The case ofFr): Supposed |, ¥ is derived using(Fr).
ThenlIl" is aderivationofb -, ., . ¥ where we as-
sumea ¢ ®, ¥, A. By meta-level equivariance (Theorem 5.2)
alsoIl’®" %) js a derivation ofp Fawroxy. arex, U Where
o’ is chosen fresh (i.e’ € a,®, ¥, A, A’ o).
By FM equivariance validity of the property

‘I’ has the inductive hypothesis’
is itself invariant under permuting atoms. So

‘II'®’ @) has the inductive hypothesis’

is also valid.

Take A" = A’ a'#Y1,...,d'#Y,,, whereYi,...,Y,, are
all the unknowns mentioned ia(X;), 1 <1i < n. It is easy
to deduceA” - (A, a’'#X1, ..., a'#X,)o. By inductive hy-
pothesisT’“ ) (¢, A”) is a derivation ofbo .. Yo. Since
a' & ®o, Vo, A’ we may deduceo +-,, ¥o using (Fr), as
required.

O

This use of FM equivariance is a powerful and general technique

which we do not expand on here. To our knowledge its first use to
obtain theorems in an actual paper (as opposed to being the object
of investigation itself [16, 11]) is in a paper on ‘Fresh Logic’ [12].
Here we shall use it repeatedly to rename atoms in the presence of
unknowns.

ThenIl(c, A') is
I (07 Al) Hk (07 A,)
Pot,, Yo

(R) (cond’)



6. Cut-elimination

This technical section establishes a cut-elimination result (Theo-
rem 6.8) and a consistency corollary (Corollary 6.9).

We need some notation and technical lemmas. Calbgph
of a derivation the greatest number of derivation steps not counting
rules (Fr), (StructL) and (StructR) between its conclusion
and its leaves, over all paths. We do not count NA derivations
of freshnesses and equalities that occur as side-conditions. For
example, the last two derivations of Figure 2 have depth 2 and 4,
respectively.

LEMMA 6.1. If A+ a#®, ¥ and A - b#d, U then
®, 3", ¥, ¥ ifand only if®, (ab) - ', ¥, (ab)- V'

The derivation has the same depth as the original one, and no more
instances of cut.

Call this propertyobject-level equivariance
PROOF By repeated use @StructL) and(StructR). O

The following results are not normally problematic but we have
internalised bothy-equivalenceand being fresh — so renaming
and freshening must be represented in the derivation. First, a tech-
nical lemma:

LEMMA 6.2.If A C A’ then:
1. if A - a#tt thenA' F aftt;
2. ifAF; t=uthenA’' - t =u.

LEMMA 6.3.If ® -, U andA C A’ then® ., V. The deriva-
tion has the same depth as the original one, and no more instances
of cut.

Call this propertymeta-level weakening

PrROOF We work by induction on the structure of the derivation.
The conditions on preserving depth and number of cuts can easily
be verified from the structure of the reasoning which follows, and
we do not mention them further.

We only treat the case/R) and (Fr). The other cases are
trivial or similar to the(VR)) case.

1. The case ofVR): Supposeb Fa W, V|[a]y is derived using
(VR). ThenA + a#®, ¥ and® +, ¥, are derivable. Then
A’ a#®, ¥ by Lemma 6.2, andb -, W, is derivable
by inductive hypothesis. Extending derivations of the latter
with (YR)) we conclude tha® F,, ¥,V[a]y is derivable, as
required.

. The case of(Fr): Suppose® b, .,  ..x, ¥ Where
a ¢ ®, ¥, A. Choosed’ fresh (i.e.a’ ¢ ®, U, A’ — note the
prime on theA'), then® Fae  Wis derivable by

meta-level equivariance .
By FM equivariance we retain the inductive hypothesis, so it
follows that @ I, WHX X ¥. Then we may deduce

® -, W using(Fr), as required.
(]

Write U (Stuff') for the unknowns mentioned in thguff.
LEMMA 6.4.1f a € v anda#U (u) C A thenA F a#u.

LEMMA 6.5.If ® -, T and® C & and¥ C ¥’ thend’ +, T’
The new derivation has the same depth as the original one, and no
more instances of cut.

a’ #£X

.....

31t may mention more structural rules but by an astounding coincidence we
have excluded them from our notion of depth.

Call this propertyobject-level weakening

PrROOF We work by strong induction on thgair of the depth

of the derivation and its structure, lexicographically ordered. We
consider only nontrivial cases.

1. The case ofvR): Supposeb -, W, V[a]y is derived using
(VR) and suppose the inductive hypothesis of all strictly lesser
derivations.

By assumption® +, W, 1 has a derivation of strictly lesser
depth, and alsd\ - a#®, ¥ holds.

Choose somea” fresh (i.e.a”’ & a,,®’, ¥’ A), and take
A" = A d"#UD T AL P).

By NA weakening (Lemma 6.2" F a#®, ¥ and by meta-
level weakening (Lemma 6.8)p F.» ¥, 9. Then by object-
level equivariance (Lemma 6.1) alsbt,, ¥, (a” a) -1,
and by inductive hypothesis (the derivation still has strictly
lesser depth) there exists a derivatidrof

',V (da)- .

By Lemma 6.4 alsaA” - o”'#®’, ¥’, and by simple calcu-
lations we observe\” t , V[a"](a” a) - ¢ = V]a]y (we use
(perm), and the freshness information we have assumed of

a//).

Nowwe can conclud®’ -, ¥’  V[a] as follows:

II
N ', V[a"](a" a) -9
' F ., U, Vay
— & (Fr
O, U, Va]y
The case of Fr): Suppose® t, .. .., ¥ Where
a & ®, U, A. Incases ¢ &, ¥’ then things are easy and we
use(Fr). If howevera € ®', ¥’ then we use FM equivariance
to renamea to somea’ € ®',¥’, A in the whole derivation
to ol_Jtaln one ofp '_A,a’_#xl,..»_,a#xn \I/._ We can now apply
the inductive hypothesis (which, as discussed above, is also

preserved by the permutative renaming) to weakef't@and
', and finish off with(Fr).

Al

(VR)
(StructR)

ol

Al

2.

|

Write ®[b — u] for the elementwise application of the explicit
substitution to the elements of predicate context

LEMMA 6.6.If ® -, W then®[b — u] -, ¥[b— u]. The depth
of the derivation does not increase, and neither does the number of
cuts it contains.

Call this propertyobject-level substitution

PrROOF By induction on the depth and structure of the derivation
of ® I, ¥, lexicographically ordered. Most cases are easy, we
consider only the case ¢YR).

Supposed -, ¥, V[a]y is derived usingVR), and suppose
the inductive hypothesis of all strictly lesser derivations.

By assumption® +, ¥, ¢ is derivable andA F a#®, ¥
holds.

Choose some’ fresh (i.e.a’ € a,b,u,,®, ¥, A) and let
A = Ajd#U(u, b, P, ¥, A). We use meta-level weakening,
object-level equivariance and the inductive hypothesis to conclude
that there exists a derivatidih of

O — ul -, Tl ul, (0" a) )b ul,

4|t appears convenient to prove meta-level weakening first separately; we
do not want to weake® and ¥ to ' and ¥’ until we have renamed to
a',in a moment.



which has the same depth and number of cuts.
By Lemma 6.4 alsoA’ - a'#((a’ a) - 9)[b+— u]. Further-
more, by simple calculations we observe

A" gy V[a']((a" a) - )b — u] = (V[a]y)[b — u].
We finish the derivation:
11

Db — u] FL Wb +— ul, V[a/}((a/ a) - )b — u]
O[b— u] k,, Wb u], (Va]Y)[b — u]
b — u] b5 Wb ul, (V[a]y)[b— 1]

SUB

(VR)
(StructR)

O

LEMMA 6.7. (Fr) may be commuted down through all other rules.

The transformations involved do not increase the depth of a deriva-

tion or its number of cuts.

PROOF We consider only one case. Supp¢be) is followed by
(=~L). It is not immediate that we may swap the derivation rules
round, since perhapsin (~L) mentionsa andt’ does not (we

use notation from the rules in Figure 1). However, we may rename

atoms in the derivation up to the use(®f) changingz to somea’
which does not occur also tnand then proceed. That the inductive
hypothesis is preserved follows by FM equivariaride.

THEOREM 6.8 (Cut-elimination)If ® -, ¥ has a derivation in
the system above, then it has one which does notUse).

PrROOF The commutation cases and essential cases for the propo-
sitional part are standard [17, 26], we use Lemma 6.5 for the essen-

tial case forD. The essential case foris handled by Lemma 6.6.
Commutation cases are standard (except for the extra cégbe of
which is handled by Lemma 6.7)]

COROLLARY 6.9. The sequent calculus of one-and-a-halfth-order
logic is consistenti.e.F-,, can never be derived.

PROOF By contradiction. Suppose, is derivable, then by Theo-
rem 6.8 a cut-free derivation exists. Uéte the shortest derivation
of -, for all possibleA. We check through all possible deriva-

tion rules and see by their syntax-directed nature that the derlvatlonformer tollow:

must conclude inFr). But then we have a shorter derivation of
somet-,,, which is a contradictiori]

7. Equivalence of-, and ..,

This section shows how derivability in the sequent calculus of
one-and-a-halfth-order logic relates to derivability in theBQL
(Theorem 7.5).

We need some notation.

For a contex® = {¢1, ..., ¢»}, define itsconjunctive form
®”" to be T whenn =0, andg; A - -- A ¢, whenn > 0. Analo-
gously, define thelisjunctive form " to be | whenn = 0, and
¢1 V-V ¢, whenn > 0. The order of thep; is irrelevant; we
(promise) never (to) do anything where it matters.

Sequent derivability translatesE®L derivability in the follow-
ing way:

LEMMA 7.1.If ® -, WthenA+,, & D ¥Y = T.

PrROOF By induction on derivations ob -, W. For every rule
(R), the derivation has the following format:

I, 11,
(R)
P, W

FOL

(cond)

A

Herek € {O, 1,2}, II; are derivations ofb; -, W¥;, 1 <14 <k,
andcond is a (possibly empty) side- condltlon

So ®; . s, Ve are derivable, then by inductive hypothesis
Aj b, @ D U;Y =T holds. We use this together witlond
to prove A b, ®" D ¥Y =T. For each inference ruléRr),
this is an instance of an item of Lemma 4.3.

For example, in caséR) is (Cut) Ak, " D ¥Y =T
should follow from the assumptions -, ®* > ¥Vve¢ =T,
At ¢ APN D UY =T andA b, ¢ =¢'. Thisis an in-
stance of item 12 of Lemma 4.3, usifig= " ande = ¥V

In case(R) is (VR) A l—FOL ®" > WY VvVa]yp =T should
follow from Ak, ®" D ¥V vy =T and A - a#td”, ¥V,
This is an instance of item 6, again usifigs ®" ande = V.

For the reverse of the above, we need a number of technical
lemmas.

LEMMA 7.2. Bi-implication < is an equivalence relatioh Also,
F. T < ¢ifandonlyift-, ¢ifandonlyift-, ¢ < T.

LEMMA 7.3. For all sorts 7, termst, u : 7, freshness context&
and context€’[_] : P

if At t=u then +, C[t] & Clu]

PROOF By induction on the structure #TOL derivations oft =
from A.

(refl): -, C[t] & C[t] follows by reflexivity of <.

(symm): -, Clu] & C1]t] follows fromt, C[t] & Clu] by
symmetry of <. By inductive hypothesis this follows from the
assumption. The case (fran) is similar.

(cong): F, C[DI[t]] & C[D[v]] follows by inductive hypothesis
from the assumptlon taking[_] :== C[D[]].

(perm): we showt-, C[(a ) -t] & C[t] as follows:
(Ax)
(StructR)

F. Cl(ab)-t] < Cl(ab) -]
F. Cl(ab)-t] & Ct]

whereA F; Cl(ab) - t] & C[(ab)-t] = Cl(ab) - t] & C[t]

is the side-condition ofStructR). By (cong), this follows from
the assumptiod -, (ad) -t =t.

(fr): By (Fr) derivability of -, C[t] & Clu] follows from that

Of Fu wsx, . anx, Cltl & Clu] anda & Ct] < Clu], A. The
ws by inductive hypothesis, and the latter from the
assumptior ¢ C[t], C[u], A.

(axa): If Ais an axiom ofSUB (one from Figure 4), the proof is
analogous to théperm) case. IfA is a logical axiom (one from
Figure 5) then, looking at the structure of the axioms, the derivation
is of the form

II
"o =T

whereA is A’ — ¢ = T andIl is a derivation ofA’"o. We need
to showt-, C[¢" o] < C[T]. By congruence and right identity of
4, this follows fromt, ¢™o. For each logical axiom, this is an
instance of an item of Lemma 5.1, using the assumpiidn A" o.

O

(axa)

LEMMA 7.4.1f -, " D> ¥ then® -, V.

PROOF By (Cut) ® I, ¥ follows from & -, ¥, " > ¥V
and®” > ¥V, & I, W. The former follows from the assumption
using Lemma 6.5. The latter follows from +, ¥, " and
vY, @& -, W using (OL). We prove the former, the latter is
analogous. We knowb = {¢1,...,¢,}, wheren > 0. If n =0

5 & is a reflexive symmetric transitive congruence.



then ®" = T and we derive-, ¥, T using (OR) and (Ax).
If n > 0then®" =¢; A...A¢n, and it suffices to derive
® F, U,¢; forall i < nusing(AR) (n — 1 times). For each
1, this follows by(Ax), since¢; € ¢.O

Sequent derivability is equivalent &L derivability:
THEOREM7.5. ® I, Wifand only ifA -, " D ¥Y = T.

PROOF The left-to-right part is handled by Lemma 7.1.

For the right-to-left part, we assunde ., ®" > ¥ = T.
Then by Lemma 7.3-, " D> ¥Y & T is derivable. By the
right identity of <, also, ®" > ¥V. By Lemma 7.4 we obtain
the consequer® -, v.0O

FOL

This theorem has some nice corollaries.

COROLLARY 7.6. Forany A, ¢, :
Ab o= ifandonlyife -, ¢ andy -, .

PROOF By Theorem 7.5, ¢ and -, ¢ are equivalent to
At D¢y =TandA b, ¥ D¢ =T. These can easily be
shown equivalent t\ -, ¢ = ¢ using item 2 of Lemma 4.1
COROLLARY 7.7. FOL is consistent, i.eA _,, T = L does not
hold for anyA.

FOL

PROOF By contradiction. Supposé k., T = L. Using the
propositional axioms and some simple equational reasoning,
A T DL =T.Note thatT = 0" and L = 0, so by Theo-
rem 7.5k, is derivable, which contradicts Corollary 6[9.

8. First-order logic

Call a termground if it does not mention unknowns (it is closed)
and it does not mention explicit substitutions.

In this section we show formally how a syntax for a first-
order logic ‘lives inside’ one-and-a-halfth-order logic, given by the
ground terms of sof® (the predicateg taken up ton-equivalence
of V-abstracted atoms, and the ground terms of '8ofthe term-

languag@. The precise term-language depends on the set of object-

level term-formers and atomic predicate-formers with which we
built our one-and-a-halfth-order logic in Section 2. As mentioned
before, we letof andop vary over object-level term-formers and
atomic predicate-formers.

8.1 Properties of ground terms

We may write the tern¥[a]¢ where ¢ is ground just asva.¢
(consistent with standard notation). Recall that V[a] P maynot
be renamed in general, e.g. )] P. Intuitively P represents an
unknown formula whichmight mentiona (if we know b#P we
can at least rename t4b] (b a).P). To emphasise this we retained
the notatior{a]- until now. InVa.¢ whereg¢ is ground, we know all
atoms in¢g and this issue does not arise.

Write fn(t) andfn(¢) for thefree namesof ground terms : T
and¢ : P respectively, inductively defined by:

fn(a) ={a} fn(of(tr,... t)) = U fn(ts)
1<i<k
m(L)=0  fo(¢ DY) =fn(g)Ufn(y)

fa(Va.¢) = fa(@)\{a}  fa(op(tr,....t)) = |J fn(t:)

1<i<k
LEMMA 8.1.F a#¢ ifand only ifa & fn(¢), for all ground pred-
icatesg.

PROOF By simple induction on derivations @f#¢ on the one
hand, and by induction on the definition of on the other]

Definea-equivalence=,, as syntactic identity plus
b fn(d) (ab)¢=av
Va.p =a VYbab
The rer;tsder might have expected the clausé/ftr read something
like

where hereb. is informal notation fokp with

Va.pq =a Vb.
everya(breplacedwtbhroughout by a freshly choserand similarly
for ¢).. The two notions of-equivalence are identical [11]. The
definition we adopt gives a closer match to how equality is defined
in NA (specifically to(perm)).

LEMMA 8.2. F e ¢ = ¢ if and only if ¢ =, 1, for all ground
predicatesy, 1.

PROOF By known arguments of nominal results [15, 16].

For each finite set of atoms make an arbitrary but canonical
choice of a fresh (that is, not in the set) atom. In a given context of
some finite collection of terms and predicates, which being finite
mentions finitely many atoms, write fresh’ for the canonical but
arbitrarily chosern which is fresh for the atoms in that collection.

In the following definition we elide the context, which is the
terms and formulae mentioned to the leftof

For ground termg, v : T and¢ : P, write uJa — t] and

also¢[[a — t] for v and ¢ with a replaced by, inductively defined

ala—t] =t bla—t] = b
of(t1,...,tx)a—t] = of(triar—t],...,tx[a — t])
Lot =1 (@o0)a—t] = élar— 1] > plor 1]

(Va.¢)[a—t] = Ya.¢
(Vb.9)[ar t] = Vb .¢[b b ][ar—t] (b fresh

op(ti,...,te)[a—t] = op(tia —t],...,txla— t])
LEmMMA 8.3. For all ground termst, u, v : T and ¢, ¢ : P
Fog ula—tl =ula—t] and kg, dla— t] = ¢fa — t]
PROOF By induction on the depths of and ¢. For the case
u = f(t1,...,tn), We must prove

Fous f(t1,- .- tn)[a—t] =f(ti]a — 1], ..., tu]a — t]),

for which we use axiontf —) of SUB and the inductive hypothe-
sis.

The only difficult case i$p = Vb.¢’ because there is no directly
corresponding axiom dfUB. By calculation of(vb.¢")[a — ],
we obtainvy’.¢'[b — b'][a — t], whered’ is fresh. By the induc-
tive hypothesis we have

Fovg @10 — 8] =¢'[b— ]
b ¢'[0 = V'][a — 1] = ¢'[b— b]a — 1].
We need to prove
Fove (70.0))a > t] =W .¢'[b — b']a — ],
which follows by easy calculations using the above assumptions.

LEMMA 8.4. For all ground termgt, u, v : T andg, ¢ : P
1. bgus ula — t] = vifand only ifufa — t] = v;°
2. by Ola — t] =y ifand only ifp[a — t] =a .

61f we had binders in terms of soff then the= would become an-
equivalence.



PROOF Bylemmas 8.2 and 8.3, using the fact tB&tB is conser-
vative overCORE (see [14]) 0

8.2 Derivability in First-Order Logic

A first-order context is a finite and possibly empty set of ground
predicatesd or W. A first-order sequentis a pair® - ¥. The
valid judgements of Gentzen's sequent calculus for first-order
logic are inductively derived by:

(Ax) (LL)

1L, e+
b, D, 1P
T NEY.
R )
F U, Ya.g

b, PFEV, ¢
PET, ¢ Y, PET
oL

R
DY, PHY (R)

ola—t], ¥
— (VL
Ya.p, @+ ¥
¢la—t], P
(~L
t' =t ¢plart], ®+ T

Here we take predicates up teequivalence, e.g. ip : (T)P is
an atomic predicate term-former then.p(a) - Vb.p(b) follows
directly by (Ax) sinceVa.p(a) = Vb.p(b).

(VR) (a & fn(®, ¥))

)y ———— (=R
OHT, tat

THEOREM8.5. ® + ¥ is derivable in the system above, if and
only if ® -, W is derivable in the sequent calculus for one-and-a-
halfth-order logic.

PrROOF By induction on the structure of derivations, using cut-
elimination (Theorem 6.8) and the results from Subsection 8.1
(Lemmas 8.1 and 8.4)J

COROLLARY 8.6., ¢ = ifandonlyif¢ -+ andy F ¢ are
derivable in system above.

PROOF By Corollary 7.6 and Theorem 8.5

9. Conclusions

Explicitly representing meta-variables has a long pedigree.
Monadic second-order logic [5] enriches first-order logic ex-
plicitly with n-ary relation variables, representing ‘unknown

logic cannot, e.gv[a]P +_,, P is derivable. It is not presently
clear what the intersection of these two logics is.

Our ambient nominal algebra framewotkn expresscertain
strong ‘second-order’ principles, for instance an inductive principle
on natural numbers may be expressed as a single axiom (assuming
suitable term-former8 and succ)

Pla — 0] AV[a](P D Pla+ succ(a)]) DV[a]P = T
rendered in second-order logic as
VP.(P(0) AVa.(P(a) D P(succ(a))) D Va.P).

Our work is one (more) element in a very long line of investiga-
tions into algebraic logic [1]; for example cylindric [19], polyadic
[18], and quantifier [25] algebra. There too, unknowns are syn-
tax representing unknown elements quantified universally at top
level, and abstractiofu]- (our notation) is clearly visible, e.g. as
thec; of cylindric algebra. Our treatment of substitution is perhaps
cleaner; cylindric and quantifier algebras axiomatise logic whose
terms are in a suitable sense restricted to being atoms (our terminol-
ogy), whereas we could easily extend our logic to talk about, say,
A-calculus terms just by postulating term-formars ([A]T)T and
app : (T, T)T plus a few nominal equalities [15, 7] (here, interest-
ing work by Beeson is also relevant [3]). Arguably our treatment of
substitution is also more systematic than polyadic algebras, at least
in the sense that we define it in terms of more primitive constructs
and can so study substitution in its own right [14].

Probably more important is our use éshness contexind
permutationsby means of which we can express properties such
asb#P ., V[a]P = V[b](ba) - P, and of course the examples
of the Introduction, directly. These assertions are valid in, say,
cylindric algebra, but only by recourse to quantification over closed
terms, thus, they cannot be stateithin that framework. The extra
expressivity we enjoy thanks to a slightly richer term-language and
judgement-form is significant, because we can exploit it to extract
a sequent presentation of derivability, namely the sequent system
of Figure 1. In other words, ourominalmanagement of binding
permits us to construct an account of first-order logic which in a
suitable sense simultaneouslalgebraicand sequent-style.

It is possible to represent the syntax of a logic in a ‘frame-
work’ logical system, at ‘object-level’, i.e. as an inductive datatype.
Then meta-variables are easily representable as meta-variables of
the framework. This path is taken by Higher-Order Abstract Syn-

ary predicates’. The stronger second-order and higher-order logicstax [24], Fraenkel-Mostowski syntax [16], and other systems ([23]

[30, 27] represent unknowns as function variables.

is just one of very many). That is a separate enterprise from that un-

These approaches share two characteristic features inheritecdertaken in this paper; one-and-a-halfth-order logic is about extend-
from their intended functional semantics. First, you have to choose ing the syntax of the logic itself so it contains something which be-
n

the arity of your unknown in advance,ef): T — --- - T — P
can be interpreted as an unknowary predicate — butvhichn?

haves very much like a meta-variable ranging over unknown formu-
lae, without losing logical properties such as cut-elimination. Per-
haps one day one-and-a-halfth-order logic too will be formalised in

— thus these logics distribute ‘unknown predicates’ across many a framework!

types. Second, and perhaps more importantly, instantiation of these

The technical tools used in this paper were developed based

variables avoids capture. Instantation of our unknowns does not,on work on Nominal Unification by the first author with Urban

which accurately reflects our intention when we wkite ¢, where

and Pitts [29], which introduced the theory of nominal terms up to

¢ may be instantiated in a capturing manner. This lends a distinctive CORE (our terminology). This was extended with Femlez [7] to

style to our nominal algebra theoROL (see Figure 5), and to

the sequent rules of one-and-a-halfth-order logic (see Figure 1),

which accurately reflects informal practice (see [10, 20] and the

examples of the Introduction) and as we have seen has allowed us

to import elements of first-order proof theory quite directly into an
augmented setting.
Note that second-order logic far more expressive. One-and-

Nominal Rewriting, a theory of rewriting on nominal terms, again
up toCORE, and recently investigated with the second author, as a
general framework of nominal algebra [15, 14].
For future work we are particularly interested in the following
topics:

We can return to theory and be inspired by higher-order logic
to ask whether we could permit abstraction over meta-variables,

a-halfth-order logic by design expresses universal quantification at introducing an infinite hierarchy of stronger meta-variables such
top level only. For example, the following second-order theorem that at each level a meta-variable of higher level behaves to the
cannot be expressedP.(VP.P) O P.On the other hand one-and-  lower level asX behaves ta (see the NEW calculus of contexts
a-halfth-order logic can express some things which second-order[13]). This might recover some or all of the power which one-and-



a-halfth-order logic lacks compared to higher-order logic, but in
a different way. In short, we envisage two- three- four- and

and-a-halfth-order logic. This would involve interesting extensions
to the ‘nominal theme’. Another direction is to allow unknowns

ranging over derivations of sequents, which may have interesting

interactions with(VR'), which would abstract in such an unknown.

The semantics of one-and-a-halfth-order logic are interesting

and raise the questions ‘what is an appropriate semantic for
and ‘what is an appropriate semantics P Note that it is not
possible to directly evaluat& to an element of a set underlying
domain, because intuitivelX ‘can mentiona’. Thus we can use
domains in which atomsanappear & la Fraenkel-Mostowski sets
[15, 16] or other approaches [3, 8]). The simplest solution, and
perhaps the best one, is to evaluafeto terms (a ‘substitutional
semantics’ [22, Section 2] faithful to its intuition as an ‘unknown
term’) and theru to elements of a set underlying domain.
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