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Abstract
Permissive-Nominal Logic (PNL) is an extension of first-
order logic where term-formers can bind names in their ar-
guments.

This allows for direct axiomatisations with binders, such
as the ∀-quantifier of first-order logic itself and the λ-binder
of the lambda-calculus. This also allows us to finitely axioma-
tise arithmetic.

Like first- and higher-order logic and unlike other nomi-
nal logics, equality reasoning is not necessary to α-rename.

All this gives PNL much of the expressive power of
higher-order logic, but terms, derivations and models of PNL
are first-order in character, and the logic seems to strike a
good balance between expressivity and simplicity.

Categories and Subject Descriptors F.4.1 [Mathematical Logic]:
Proof theory—Nominal techniques

General Terms Theory

Keywords First-order logic, permissive-nominal terms, mech-
anized mathematics.

1. Introduction
Binding is ubiquitous in logical specifications in mathematics
— it features in function definitions as λ-abstraction, and
binders are also used to define sets in comprehension, and
to define finite and infinite sums, integrals, derivations, and
so on.

This suggests we consider logics that support term-formers
that can bind variables, to conveniently specify systems with
binding. This turns out to be not so easy.

First-order logic is computationally tractable (unification
of first-order terms is decidable, and proof-search is simple
and well-understood) and expressive (it can be used for ex-
ample to specify groups, rings, and combinators).

However, first-order logic does not admit term-formers
that can bind. Thus it is difficult in first-order logic to give di-
rect, finite, axiomatisations of set theory, arithmetic, higher-
order logic, or the λ-calculus.

This is one reason that e.g. higher-order logic is often used
as a specification language in theory (see [9] for an excellent
exposition) and implementations (like Isabelle [27]). Higher-
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order logic has a convenient and powerful binder (λ) built in
to terms. However, it is also stronger than first-order logic,
less computationally tractable, and models tend to be more
complex. The jump from first- to higher-order is quite large.

This motivates the study of direct extensions of first-order
logic with term-formers that can bind. The topic of this pa-
per is the construction of one such extension, which we call
permissive-nominal logic (PNL). PNL has a clear first-order
flavour, and it admits term-formers that bind.

An overview of the content of this paper is as follows:

• We introduce the syntax and derivations of permissive-
nominal logic (Section 2).
• We axiomatise equality, substitution, first-order logic,

‘nominal’ inductive datatypes, the N-quantifier, seman-
tic freshness — and arithmetic (Sections 3 and 7).
• We prove soundness (Theorems 5.15) for a suitable se-

mantics of permissive-nominal sets (Section 4).
• We prove the axiomatisation of arithmetic correct (Theo-

rem 6.20).

It is a fact that Cut can be eliminated and PNL is complete for
the semantics in this paper. Proofs will be in a longer paper.

Unification of permissive-nominal terms is decidable [7],
and models of PNL are like those of first-order logic. Com-
plexities common in higher-order syntax and semantics do
not arise.

The axiomatisation of arithmetic is finite; the induction
schema is represented by a single axiom with a universal
quantification over a nominal unknown. This axiomatisation
goes strictly further than previous axiomatisations in nomi-
nal algebra, making specific use of the first-order structure of
PNL. It is also very close to the informal specification often
given for first-order arithmetic.

To use a phrase that has become something of a slogan
in nominal techniques, our axiomatisation of arithmetic, and
we would argue more generally the natural use of PNL, is
indeed ‘ε away’ from informal practice.

For the reader’s convenience we now cut a tranche through
existing nominal work, briefly sketching how the nominal
ideas in this paper relate to what has come before. An ex-
tended discussion of related work is in the Conclusions.

Nominal techniques were introduced in [22], where the
properties of Fraenkel-Mostowski set theory (FM) were stud-
ied.

Nominal logic (NL) [28] was another set of axioms in first-
order logic; to use a bit of nominal jargon, it restricted to
equivariant FM sets and removed the cumulative hierarchy.
Both FM and NL were and remain important but note that
the language used in both is just first-order terms and propo-
sitions.

A multi-level language (with atoms a and unknowns X)
was introduced as nominal terms in [31]. The problem we
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a ∈ Aν
a : ν

r1 : α1 . . . rn : αn

(r1, . . . , rn) : (α1, . . . , αn)

r : α (ar(f) = (α)τ)

f(r) : τ

r : α (a ∈ Aν)

[a]r : [ν]α

(s(X) = α)

π·X : α

⊥ prop.

φ prop. ψ prop.

φ⇒ ψ prop.

r : α (ar(P) = α)

P(r) prop.

φ prop.

∀X.φ prop.

Figure 1: Terms and propositions

see with this is that nominal terms have freshness contexts
and cannot be conveniently quotiented by α-equivalence. We
find this inconvenient for several reasons, one of which is
difficulty introducing binders like ∀X and λX .

We introduced permissive-nominal terms in [7]; these can
be quotiented by α-equivalence and can be extended with
binders for X . To a first approximation, this paper studies
syntax, semantics, derivability, and expressivity of ∀X in
a permissive-nominal terms context. In another paper we
make a similar study of λX .

2. Permissive-nominal Logic
2.1 Syntax

Definition 2.1. A sort-signature is a pair (A,B) of name and
base sorts. ν will range over name sorts; τ will range over
base sorts. A sort language is then inductively defined by

α ::= ν | τ | (α, . . . , α) | [ν]α.

Remark 2.2. Examples of base sorts are: ‘λ-terms’, ‘formulae’,
‘π-calculus processes’, and ‘program environments’, ‘func-
tions’, ‘truth-values’, ‘behaviours’, and ‘valuations’.

Examples of name sorts are ‘variable symbols’, ‘channel
names’, or ‘memory locations’.

Definition 2.3. A term-signature over a sort-signature (A,B)
is a tuple (F ,P, ar) where:

• F and P are disjoint sets of term- and proposition-
formers.
• ar assigns to each f ∈ F a term-former arity (α)τ 1 and to

each P ∈ P a proposition-former arity α, where α and τ
are in the sort-language determined by (A,B).

A signature S is then a tuple (A,B,F ,P, ar).
We write f : (α)τ for ar(f) = (α)τ and similarly we write

P : α for ar(P) = α.

Definition 2.4. For each τ fix two disjoint countably infinite
set of atoms A<τ and A>τ . Write Aτ = A<τ ] A>τ (] denotes
disjoint set union), and write:

A< =
⋃

A<τ A> =
⋃

A>τ A =
⋃

Aτ

a, b, c, . . . will range over distinct atoms (we call this the per-
mutative convention).

A permission set has the form (A< ∪ A) \ B where A ⊆
A> and B ⊆ A< are finite. S, T , and U will range over
permissions sets.

The use of A< and A> ensures that permission sets are in-
finite and also co-infinite (their complement is also infinite).

Definition 2.5. A (level 1) permutation is a bijection π on
atoms such that a ∈ Aτ implies π(a) ∈ Aτ always, and

nontriv(π) = {a∈A | π(a) 6=a}

1 We will write ((α1, . . . , αn))τ just as (α1, . . . , αn)τ .

is finite. π will range over permutations.

Definition 2.6. For each signature S = (A,B,F ,P, ar) and
each sort α over (A,B) and permission set S fix a countably
infinite set of unknowns of that sort and permission set.
X,Y, Z will range over distinct unknowns. Write s(X) for
the sort and p(X) for the permission set of X .

Permission sets correspond to the freshness contexts of [31].
Unlike freshness contexts they are fixed, and being co-infinite
they guarantee infinitely many ‘fresh names’. This gives
a ‘permissive’ treatment of α-equivalence, as will become
clear.

Definition 2.7. For each signature S, define terms and propo-
sitions (over S) inductively by the rules in Figure 1.

Remark 2.8. Our version of PNL has connectives ⊥,⇒, and
∀. We could easily add other connectives like >, ∧, ∨, and
∃. Instead we treat them as a definable extension using the
standard ‘de Morgan’ encoding.

We may write id ·X just as X .

Example 2.9. Consider lam([b]app(X, var(b))) where b 6∈
p(X); this represents the λ-term schema λy.(ty) where y 6∈
fv(t).

app and lam are term-formers of arities (ι, ι)ι and ([ν]ι)ι.
The sorts of b andX are ν (names) and ι (individuals) respec-
tively.

2.2 Permissive-nominal logic syntax is finitary

Terms and propositions are finite trees. Permission sets differ
finitely from A< and so trivially admit a finite represenation.

In fact, permissive-nominal term α-equality can be de-
cided in linear time. A permissive-nominal unification algo-
rithm [7] has been implemented [25].
α-equivalence is defined in this paper in Definition 2.16.

2.3 Permutation actions

Nominal techniques suggest handling α-renaming using
permutations. To a first approximation, if wherever the
reader sees ‘permutation action’ they substitute ‘α-renaming’,
then they will not go too far wrong.

Definition 2.10. Write π ◦ π′ for functional composition (so
(π ◦ π′)(a) = π(π′(a))), id for the identity permutation (so
id(a) = a always) and π-1 for inverse (so π ◦ π-1 = id ).

Define a (level 1) permutation action by:

π·a ≡ π(a) π·(r1, . . . , rn) ≡ (π·r1, . . . , π·rn)
π·[a]r ≡ [π(a)]π·r π·(π′·X) ≡ (π◦π′)·X
π·f(r) ≡ f(π·r)
π·⊥ ≡ ⊥ π·(φ⇒ ψ) ≡ (π·φ)⇒ (π·ψ)

π·P(r) ≡ P(π·r) π·(∀X.φ) ≡ ∀X.π·φ

Definition 2.11. Let Π range over sort- and permission-set-
preserving bijections on unknowns (so s(Π(X))=s(X) and
p(Π(X))=p(X)) such that {X | Π(X) 6= X} is finite.



Write Π◦Π′ for functional composition, Id for the identity
permutation, and Π-1 for inverse, much as in Definition 2.10.

Define a (level 2) permutation action by:

Π·a ≡ a Π·(r1, . . . , rn) ≡ (Π·r1, . . . ,Π·rn)
Π·[a]r ≡ [a]Π·r Π·(π·X) ≡ π·(Π(X))
Π·f(r) ≡ f(Π·r)

Π·⊥ ≡ ⊥ Π·(φ⇒ ψ) ≡ (Π·φ)⇒ (Π·ψ)
Π·P(r) ≡ P(Π·r) Π·(∀X.φ) ≡ ∀Π(X).Π·φ

2.4 Free level 1 and level 2 variables

Definition 2.12. Suppose A is a set of atoms and π is a level
1 permutation. Suppose U is a set of unknowns and Π is a
level 2 permutation. Define π·A and Π·U by

π·A = {π(a) | a ∈ A} and Π·U = {Π(X) | X ∈ U}.
This is the standard pointwise permutation action on sets.

Definition 2.13. Define free atoms fa(r) by:

fa(π·X) = π·p(X) fa([a]r) = fa(r) \ {a}
fa(f(r)) = fa(r) fa((r1, . . . , rn)) =

⋃
fa(ri)

fa(a) = {a}

Define free unknowns fV (r) and fV (φ) by:

fV (a) = ∅ fV (π·X) = {X}
fV ([a]r) = fV (r) fV ((r1, . . . , rn)) =

⋃
fV (ri)

fV (f(r)) = fV (r)
fV (⊥) = ∅ fV (φ⇒ ψ) = fV (φ) ∪ fV (ψ)

fV (P(r)) = fV (r) fV (∀X.φ) = fV (φ) \ {X}

Lemma 2.14. fa(π·r) = π·fa(r) and fa(π·φ) = π·fa(φ).
Also, fV (Π·r) = Π·fV (r) and fV (Π·φ) = Π·fV (φ).

Proof. By routine inductions on r.

2.5 α-equivalence

Definition 2.15. Call a relation R on terms and on propo-
sitions a congruence when it is closed under the following
rules:

ri R si 1 ≤ i ≤ n
(r1, . . . , rn) R (s1, . . . , sn)

r R s (f : (α)τ, r, s : α)

f(r) R f(s)

r R s

[a]r R [a]s

φ R φ′ ψ R ψ′

φ⇒ ψ R φ′ ⇒ ψ′

r R s (P : α, r, s : α)

P(r) R P(s)

φ R φ′

∀X.φ R ∀X.φ′

Definition 2.16. Write (a b) for the (level 1) swapping per-
mutation which maps a to b, b to a, and all other c to them-
selves. Similarly write (X Y ) for the (level 2) swapping.

Define α-equivalence on terms and propositions to be the
least congruence =α such that:

(b a)·r =α s (b 6∈ fa(r))

[a]r =α [b]s

(π(a) = π′(a) all a ∈ p(X))

π·X =α π
′·X

(Y X)·φ =α ψ (Y 6∈ fV (φ))

∀X.φ =α ∀Y.ψ
Example 2.17. We α-convert X and a in ∀X.P([a]X).

Let s(Y ) = s(X) and p(Y ) = p(X) = A<. Suppose b 6∈ A<.
Using (a b) and (X Y ) we deduce:

∀X.P([a]X)
(a b)
=α ∀X.P([b](b a)·X)

(X Y )
=α ∀Y.P([b](b a)·Y ).

It is routine to convert this sketch into a full derivation-tree.

Remark 2.18. Note that α-equivalence is:

• Highly symmetric between levels 1 and 2.
• Based on permutations instead of substitutions (in keep-

ing with the ‘nominal’ ideas in [22]).
• Does not require equality reasoning in the logic.

We emphasise this last point. We say that in PNL we can ‘just
α-convert’. We take this for granted in first- and higher-order
logic. In this respect, PNL is close to informal practice.

In [4, 12, 14, 22, 28] it is not in general possible to ‘just α-
convert’ a level 1 abstraction. We appeal instead to equality
reasoning describing atoms-abstraction in nominal sets. But
this is harder; derivable equality is more complex than syn-
tactic equivalence.

Lemma 2.19. For every π, Π, r, s, φ, and ψ, the following hold:
r =α s if and only if π·r =α π·s and similarly φ =α ψ if and
only if π·φ =α π·ψ. Also, r =α s if and only if Π·r =α Π·s, and
similarly for φ =α ψ.
Lemma 2.20. If r =α s then fa(r) = fa(s).
Proposition 2.21. =α is an equivalence relation on terms and
propositions.

Proof. By a standard argument as in [10], using Lemmas 2.14,
2.20, and 2.19.

Lemma 2.22. If π(a) = a for every a ∈ fa(r) then π·r =α r.
PNL retains the ‘nominal’ power to reason on names and

binding in nominal abstract syntax. See the example theories
of freshness and inductive datatypes in Section 7.

2.6 Substitution

Definition 2.23. A (level 2) substitution θ is a function from
unknowns to terms such that

• θ(X) : s(X) always,
• fa(θ(X)) ⊆ p(X) always,
• and θ(X) ≡ id ·X for all but finitely many X .

θ will range over substitutions. Define nontriv(θ) by:

nontriv(θ) ≡ {X | θ(X) 6≡id ·X or X∈fV (θ(Y )) for some Y }

nontriv(θ) is unknowns that can be produced or con-
sumed by θ, other than in the trivial manner that θ(X) ≡
id ·X .

Definition 2.24. Define a substitution action by:

aθ ≡ a (r1, . . . , rn)θ ≡ (r1θ, . . . , rnθ)
([a]r)θ ≡ [a](rθ) (π·X)θ ≡ π·θ(X)
f(r)θ ≡ f(rθ)
⊥θ ≡ ⊥ (φ⇒ ψ)θ ≡ (φθ)⇒ ψθ

(P(r))θ ≡ P(rθ) (∀X.φ)θ ≡ ∀Y.(((Y X)·φ)θ)

In the clause for ∀X we rename X to be fresh for nontriv(θ),
if necessary, using a fixed but arbitrary choice of fresh Y for
each X,φ, θ.

Remark 2.25. Level 2 substitution rθ is capturing for level 1
abstraction [a]-. For example if θ(X) = a then ([a]X)θ ≡ [a]a.
This is the behaviour displayed by the informal meta-level
when we write “take t to be x in λx.t”.

Remark 2.26. Unknowns are variables; they have a substitu-
tion action. Atoms are not variables. Atoms are data; they are
‘bindable constant symbols’.



(Ax)
Φ, φ ` φ, Ψ

(⊥L)
Φ, ⊥ ` Ψ

Φ ` φ, Ψ Φ, ψ ` Ψ
(⇒L)

Φ, φ⇒ ψ ` Ψ

Φ, φ ` ψ, Ψ
(⇒R)

Φ ` φ⇒ ψ, Ψ

Φ, φ ` Ψ
( N)

Φ, π·φ ` Ψ

Φ, φ[X::=r] ` Ψ
(fa(r)⊆p(X), r:s(X))

(∀L)
Φ, ∀X.φ ` Ψ

Φ ` φ, Ψ (X 6∈ fV (Φ,Ψ))
(∀R)

Φ ` ∀X.φ, Ψ

Φ, φ ` Ψ (φ =α ψ)
(αL)

Φ, ψ ` Ψ

Φ ` φ, Ψ (φ =α ψ)
(αR)

Φ ` ψ, Ψ

Figure 2: Sequent derivation rules of Permissive-nominal Logic

The reader should not expect atoms to populate every
sort, like variables do. Atoms populate their own special
sorts, name-sorts, which are sorts for ‘bindable data’.

We can make atoms populate a base sort (e.g. variable
symbols with sort ‘λ-terms’ or ‘functions’) with a function-
symbol (Definition 2.3), e.g. var in Sections 3 and 7.

We can make atoms behave like variables using axioms,
like those of SUB in Figure 4. In PNL, a substitution action
for atoms is a matter of writing suitable axioms. Fortunately,
nominal techniques make this fairly easy to do.

2.7 Sequents and derivability

Definition 2.27. Φ and Ψ will range over sets of propositions.
We may write φ,Φ and Φ, φ as shorthand for {φ} ∪ Φ.

A sequent is a pair Φ ` Ψ. Write

fV (Φ,Ψ) =
⋃
{fV (φ) | φ ∈ Φ} ∪

⋃
{fV (ψ) | ψ ∈ Ψ}.

The derivable sequents are inductively defined in Figure 2.
We may write Φ ` Ψ as shorthand for ‘Φ ` Ψ is a

derivable sequent’. We may write Φ 6` Ψ as shorthand for
‘Φ ` Ψ is not a derivable sequent’.

Remark 2.28. Figure 2 includes rules for ⊥, ⇒, and ∀. We
could add rules for other connectives like >, ∧, ∨, and ∃. Be-
cause the PNL in this paper is classical, we can treat deriva-
tion rules for them as a definable extension of what we al-
ready have.

We see no inherent difficulty with constructing an intu-
itionistic version of PNL.

Example 2.29. The condition fa(r) ⊆ p(X) in (∀L) might
suggest that ∀X.φ means “φ[X::=r] for every r such that
fa(r) ⊆ p(X)”. Indeed this is so, but this restriction is not
quite what it seems.

Suppose a name sort Atm and suppose X : Atm and P :
Atm. By (∀L), ∀X.P(X) ` P(b) for some b ∈ p(X). But then
by considering the swapping (a b) and ( N), ∀X.P(X) ` P(a)
for all a, even if a 6∈ p(X).

In spite of this ∀X.φ does not mean “φ[X::=r] for every
r”. This is because permutations are bijective. For example,
suppose X : Atm, a 6∈ p(X), and P : (Atm,Atm). Then
∀X.P(a,X) ` P (a, r) for all r such that a 6∈ fa(r), and also
∀X.P(a,X) ` P (b, r) for all r and all b such that b 6∈ fa(r).

In spite of this, ∀X.P(a,X) 6` P (a, a).

3. Arithmetic as a PNL theory
Definition 3.1. We start by defining the sorts, term-formers,
and proposition-symbols of a signature L̇ which is suitable
for finitely specifying arithmetic in PNL.

We assume one atomic sort ν and two base sorts ι and o.
We assume term-formers

0 : ι succ : (ι)ι + : (ι, ι)ι ∗ : (ι, ι)ι

⊥̇ : o ⇒̇ : (o, o)o ∀̇ : ([ν]o)o ≈̇ : (ι, ι)o
var : (ν)ι subι : ([ν]ι, ι)ι subo : ([ν]o, ι)o

and proposition-formers

≈ι: (ι, ι) ≈o: (o, o) ε : (o).

We introduce the following syntactic sugar: we may write
subo([a]r, t) as r[a7→t]; we may write subι([a]r, t) as r[a7→t];
and we may write both ≈ι and ≈o just as ≈.

Example 3.2. Here are some example terms:

• ∀̇[a]X . This represents the first-order logic schema ∀x.φ.
If a ∈ p(X) then this corresponds to x ∈ fv(φ) being
permitted; otherwise it is not. ∀̇ is a function-symbol, of
arity ([ι]o)o, and the sorts of a and X are ν (names) and o
(truth-values) respectively.
• ∀̇[b](b a)·X where b 6∈ p(X). This also represents the first-

order logic schema ∀x.φ, but we have α-converted a to
some fresh b. We might write this ‘∀y.φ[y/x] where y is
fresh’.

We now build up theories in PNL, bit by bit. Higher-order
logic (e.g. in Isabelle/Pure) can be used in much the same
way [26], but starting from a higher-order logical foundation.
In a PNL implementation we would probably need just a few
bells and whistles, e.g. polymorphism in the sorts.

Remark 3.3. Informally, we might call ≈̇ ‘object-level’ equal-
ity, and ≈ ‘meta-level’ equality. Similarly ⊥̇ is ‘object-level’
and ⊥ is ‘meta-level’. ε converts ‘object-level’ truth to ‘meta-
level’ truth. This is the same distinction as between = and
==, between ∀ and

∧
, and the same as the function from o to

Prop, in Isabelle/FOL.
Perhaps level 1 and level 2 are a better terminology than

‘object-level’ and ‘meta-level’, since the above is all object-
level in the sense that it is written formally in PNL and not
informally in English.

Formally, ∀̇[a]⊥̇ is a term of type o, and ∀X.⊥ is a propo-
sition. ε mediates between terms of type o and propositions.

Axioms for . . . equality Axioms EQU for ≈: (ι, ι) and ≈:
(o, o) are in Figure 3.

. . . substitution Axioms SUB for subι and subo are in Fig-
ure 4.

We arguably abuse notation in Figure 4 when we use
variables of sort ι and o as appropriate not necessarily giving
them distinct names (e.g. in (sub∗) X has sort ι, whereas in
(sub⇒̇) we use another variable also written X with sort o.

Remark 3.4. Note there are no axioms (sub0) and (sub⊥̇).
These are subsumed by (sub#). Note also that (sub#) really



is necessary, for completeness; there might be models not all
of whose elements are referenced by closed terms.

. . . first-order logic Axioms FOL for ⊥̇, ⇒̇, and ∀̇ are in
Figure 5.

. . . and arithmetic Given EQU, SUB, and FOL, it is not hard
to write axioms for arithmetic in PNL. This is in Figure 6.

Remark 3.5. SUB is from [16], which includes a formal proof
of soundness and completeness. In [17] first-order logic is
equationally axiomatised using nominal algebra (so the ax-
ioms involve only equality). The axioms of FOL are not based
on those of [17]. PNL has ⊥,⇒, and ∀, whereas nominal al-
gebra does not; we use this extra structure to capture the be-
haviour of ⊥̇, ⇒̇, and ∀̇.

Remark 3.6. Instead of EQU we could extend Figure 2 with
derivation rules as follows:
Φ, r≈s, φ[X::=r], φ[X::=s] ` Ψ

(fa(r)∪fa(s) ⊆ p(X))
(≈S)

Φ, r≈s, φ[X::=r] ` Ψ

Φ, r≈r ` Ψ
(≈R)

Φ ` Ψ

Remark 3.7. Every unknown has a sort, and a permission
set. Different choices of permission set may yield logically
equivalent results. For example, in (sublam) it is not vital
that p(Z) is exactly (b a)·A<. The important point is that
a 6∈ p(Z). Similarly, in (subapp) it is not vital that p(X ′′) =
p(X ′); when we use the axiom we can instantiate X ′′ andX ′

to r′′ and r′ such that fa(r′′) 6= fa(r′), and conversely if we
take p(X ′′) 6= p(X ′) then we can still instantiate X ′′ and X ′

to r′′ and r′ such that fa(r′′) = fa(r′) ⊆ p(X ′′)∩p(X ′). More
on this in Section 9.

As discussed in Example 2.29, these axioms apply to all
instantiating terms.

Remark 3.8. These axioms conservatively extend the usual
first-order logic axiomatisation of arithmetic in a sense we
make formal and prove in Section 6. First, we must introduce
a suitable notion of model.

4. Permissive-nominal sets
Nominal sets were introduced in [22]. (They were called
‘equivariant FM sets’, and given their modern name later in
[28].) Nominal sets have a finite support property, that every
element has a supporting finite set. Permissive-nominal sets
have a similar property that every element has a support-
ing permission set (Definition 4.2). This need not be finite but
most of the good properties of nominal sets are preserved.

Definition 4.1. A set with a permutation action X is a pair
(|X|, ·) of

• a carrier set |X| and
• a group action on the carrier set (Permutations × |X|) →
|X|, written infix as π·x. (Here, we write Permutations for
the set of all finite permutations defined in Definition 2.5.)
So, id ·x = x and π·(π′·x) = (π ◦ π′)·x for every π and π′

and every x ∈ |X|.
Definition 4.2. Say A ⊆ A supports x ∈ |X| when for all
permutations π, if π(a) = a for all a ∈ A then π·x = x.

A permissive-nominal set is a set with a permutation
action such that every element has supporting permission
set. X, Y will range over permissive-nominal sets.

Theorem 4.3. Every x ∈ |X| has a unique least supporting set
supp(x) ⊆ A.

As a corollary, if π(a) = a for all a ∈ supp(x) then π·x = x.

Proof. The corollary is immediate given the definition of sup-
port (Definition 4.2).

Define S =
⋂
{A | A permission set, supports x}. Also,

choose some permission set A that supports x.
Suppose π(a) = a for all a ∈ S. Write a1, . . . , an for the

atoms in nontriv(π) ∩ A, in some order. Let b1, . . . , bn be
some choice of fresh atoms (so bi 6∈ A ∪ nontriv(π) ∪ S for
1 ≤ i ≤ n). Write τ = (b1 a1) ◦ . . . ◦ (bn an). It is routine
to check that (τ ◦ π ◦ τ)(a) = a for every a ∈ A. Thus
τ ·(π·(τ ·x)) = x. Now τ ·x = x, and it follows by a routine
manipulation that π·x = x as required.

Lemma 4.4. If x ∈ |X| then supp(π·x) = π·supp(x) (Def. 2.12).

Proof. By routine calculations using the group action.

Corollary 4.5. Suppose x ∈ |X| and b 6∈ supp(x). Then (b a)·x =
x implies a 6∈ supp(x).

Proof. Suppose b 6∈ supp(x). We prove the contrapositive.
Suppose a ∈ supp(x). By Lemma 4.4 supp((b a)·x) =
(b a)·supp(x). By our suppositions, (b a)·supp(x) 6= supp(x).
It follows that (b a)·x 6= x.

4.1 Examples of permissive-nominal sets: atoms;
atoms-abstraction; cartesian product

Definition 4.6. A the set of atoms can be considered a nomi-
nal set with a natural permutation action π·a = π(a).

In the case of A only, we will be lax about the distinction
between the set of atoms, and the permissive-nominal set of
atoms with its natural permutation action.

Definition 4.7. Suppose x ∈ |X| and a ∈ Aτ . Define:

[a]x = {(a, x)} ∪ {(b, (b a)·x | b ∈ Aτ\supp(x)}
|[Aτ ]X| = [Aτ ]X = {[a]x | a ∈ Aτ , x ∈ |X|}

Give [Aτ ]X the permutation action π·[a]x = [π(a)]π·x.

Lemma 4.8. • [Aτ ]X is a permissive-nominal set.
• [a]x=[a]x′ if and only if x=x′, for a∈Aτ and x∈|X|.
• [a]x=[a′]x′ if and only if a′ 6∈supp(x) and (a′ a)·x=x′, for
a, a′∈Aτ and x, x′∈|X|.

Definition 4.9. If Xi are nominal sets for 1 ≤ i ≤ n then
define X1 × . . .× Xn by:

|X1 × . . .× Xn| = |X1| × . . .× |Xn|
π·(x1, . . . , xn) = (π·x1, . . . , π·xn)

Lemma 4.10. • supp(a) = {a}.
• supp([a]x) = supp(x) \ {a}.
• supp((x1, . . . , xn)) =

⋃
{supp(xi) | 1 ≤ i ≤ n}.

Proof. Proofs are as in [22].

Definition 4.11. Suppose X and Y are sets with a permutation
action. Call a function f from |X| to |Y| finite equivariant
when π·(f(x)) = f(π·x) for all x ∈ |X|.

Call a subset U ⊆ |X| finite equivariant when x ∈ U if
and only if π·x ∈ U for all x ∈ |X| and all π (so π·U = U
always, extending the permutation action pointwise to sets).

Remark 4.12. We write ‘finite’ equivariant, because it is pos-
sible to be equivariant up to finite permutations but not up
to infinite permutations. The distinction was first observed
as ‘fuzzy support’ in [13]. More on this in a later paper.



∀X ′, X, Y ′, Y.(X ′ ≈ X ∧ Y ′ ≈ Y )⇒X ′ op Y ′ ≈ X op Y op ∈ {+, ∗, ⇒̇, ≈̇}
∀X ′, X. X ′ ≈ X ⇒ succ(X ′) ≈ succ(X)

op ≈ op op ∈ {0, ⊥̇}
∀Z′, Z. Z′ ≈ Z ⇒ ∀̇([a]Z′) ≈ ∀̇([a]Z)

∀X ′, X, Y ′, Y.(X ′ ≈ X ∧ Y ′ ≈ Y )⇒ op([a]X ′, Y ′) ≈ op([a]X,Y ) op ∈ {subι, subo}
∀Z′, Z. Z′ ≈ Z ⇒ (ε(Z′)⇔ ε(Z))

We fill in sorts as appropriate. Thus, ⊥̇ ≈o ⊥̇whereas 0 ≈ι 0, and so on.

Figure 3: EQU: axioms for equality as a PNL theory

(subvar) ∀X. var(a)[a7→X] ≈X
(sub#) ∀X,Z. Z[a7→X] ≈ Z (p(Z) = (b a)·A<)
(subsucc) ∀X ′, X. succ(X ′)[a7→X] ≈ succ(X ′[a7→X])
(subop) ∀X ′′, X ′, X. (X ′′ op X ′)[a7→X] ≈ (X ′′[a7→X] op X ′[a7→X]) (op ∈ {+, ∗, ⇒̇, ≈̇})
(sub∀̇) ∀X,Z. (∀̇([b]Z))[a7→X] ≈ ∀̇([b](Z[a7→X])) (p(Z) = (b a)·A<)
(subid) ∀X. X[a7→var(a)] ≈X

a ∈ A< and b 6∈ A<. The permission set of X ′′, X ′, and X is equal to A<. The permission set of Z is equal to (b a)·A<.

Figure 4: SUB: axioms for substitution as a PNL theory

(⇒̇) ∀Z′, Z. ε(Z′ ⇒̇ Z) ⇔ (ε(Z′)⇒ ε(Z))

(∀̇) ∀Z.
(
ε(∀̇([a]Z))⇔ ∀X.ε(Z[a7→X])

)
(⊥̇) ε(⊥̇) ⇒⊥
(≈̇) ∀X ′, X. X ′ ≈ X ⇒ ε(X ′ ≈̇ X)

Here Z′ and Z have sort o and permission set A<; X ′ and X have sort ι and permission set A<; and a ∈ A<.

Figure 5: FOL: axioms for first-order logic as a PNL theory

(PS0) ∀X. succ(X) ≈ 0⇒ ⊥
(PSS) ∀X ′, X. succ(X ′) ≈ succ(X)⇒ X ′ ≈ X
(P+0) ∀X. X + 0 ≈ X
(P+succ) ∀X ′, X. X ′ + succ(X) ≈ succ(X ′) +X

(P∗0) ∀X. X ∗ 0 ≈ 0
(P∗succ) ∀X ′, X. X ′ ∗ succ(X) ≈ (X ′ ∗X) +X
(PInd) ∀Z. (ε(Z[a7→0])⇒(

∀X.(ε(Z[a7→X])⇒ ε(Z[a7→succ(X)]))
)
⇒

∀X.ε(Z[a7→X]))

All variables have permission set A<, and a ∈ A<.

Figure 6: ARITH: axioms for arithmetic as a PNL theory

5. Semantics
We now interpret PNL in a notion of permissive-nominal set.
We sketch a proof of soundness (Theorem 5.15). PNL is also
complete for the same semantics; more on that in a journal
version of this paper.

Definition 5.1. Suppose (A,B) is a sort-signature (Def. 2.1).
An interpretation I for (A,B) consists of an assignment

of a permissive-nominal set τ I to each τ ∈ B.
We extend I to sorts by:

JτKI = τ I J(α1, . . . , αn)KI = Jα1KI × . . .× JαnKI
JνKI = Aν J[ν]αKI = [Aν ]JαKI

Definition 5.2. Suppose S = (A,B,F ,P, ar) is a signature
(Definition 2.3).

An interpretation I for S consists of the following data:

• An interpretation for the sort-signature (A,B) (Def. 5.1).
• For every f ∈ F with ar(f) = (α)τ a finite equivariant

function f I from (α)I to (τ)I (Definition 4.11).
• For every P ∈ P with ar(P) = α a finite equivariant

function PI from (α)I to {0, 1}.

Definition 5.3. Suppose I is an interpretation for S. A valu-
ation ς to I is a map on unknowns such that for each X ,

• ς(X) ∈ Js(X)KI , and
• supp(ς(X)) ⊆ p(X).

ς will range over valuations.

Definition 5.4. Suppose I is an interpretation of a signature
S. Suppose ς is a valuation to I.

Define an interpretation JrKIς in S inductively by:

JaKIς = a J[a]rKIς = [a]JrKIς
Jf(r)KIς = f I(JrKIς) Jπ·XKIς = π·ς(X)

J(r1, . . . , rn)KIς = (Jr1KIς , . . . , JrnKIς)

Lemma 5.5. If r : α then JrKIς ∈ JαKI .
Lemma 5.6. π·JrKIς = Jπ·rKIς .

Proof. By a routine induction on r. We consider one case:

• The case π′·X . By Definition 5.4 Jπ′·XKIς = π′·ς(X).
Therefore π·Jπ′·XKIς = π·(π′·ς(X)). It is a fact of the
group action (Definition 4.1) that π·(π′·ς(X)) = (π ◦



π′)·ς(X), and of the permutation action (Definition 2.10)
that π·(π′·X) ≡ (π ◦ π′)·X . The result follows.

Lemma 5.7. supp(JrKIς) ⊆ fa(r).

Proof. Routine induction using Lemmas 4.4 and 4.10.

Lemma 5.8. If r =α s then for all ς , JrKIς = JsKIς .

Proof. The non-trivial part is to check that if a 6∈ fa(r) and
b 6∈ fa(r) then J(a b)·rKIς = JrKIς . Suppose a 6∈ fa(r) and b 6∈
fa(r). By Lemma 5.7 a 6∈ supp(JrKIς) and b 6∈ supp(JrKIς). By
the definition of support in Definition 4.2, (a b)·JrKIς = JrKIς .
We use Lemma 5.6.

Definition 5.9. Suppose ς is a valuation to an interpretation
I. Suppose X is an unknown and x ∈ (s(X))I is such that
supp(x) ⊆ p(X). Define a function ς[X::=x] by

(ς[X::=x])(Y ) = ς(Y ) and (ς[X::=x])(X) = x.

It is easy to verify that ς[X::=x] is also a valuation to I.

Definition 5.10. If Q is a set of numbers write min Q for the
least and max Q for the greatest elements inQ, as is standard.

Definition 5.11. Suppose that I is an interpretation. Define
an interpretation of propositions inductively by:

JP(r)KIς = PI(JrKIς)
J⊥KIς = 0

Jφ⇒ ψKIς = max{1−JφKIς , JψKIς}
J∀X.φKIς = min{JφKIς[X::=x] | x∈Js(X)KI, supp(x)⊆p(X)}

Lemma 5.12. JφKIς = Jπ·φKIς always.

Proof. By induction on φ. We consider two cases:
• The case ∀X.φ. Suppose J∀X.φKIς = 1. This means that
JφKIς[X::=x] = 1 for all x ∈ JαKI such that supp(x) ⊆ p(X). By
inductive hypothesis Jπ·φKIς[X::=x] = 1 for all x ∈ JαKI such
that supp(x) ⊆ p(X). Therefore J∀X.π·φKIς = 1. The result
follows, since π·(∀X.φ) ≡ ∀X.π·φ.

• The case P(r). Suppose JP(r)KIς = 1, so PI(JrKIς) = 1.
By assumption PI is an equivariant function, and it follows
that PI(π·JrKIς) = 1. By Lemma 5.6 π·JrKIς = Jπ·rKIς . Thus
PI(Jπ·rKIς) = 1, and so Jπ·P(r)KIς = 1.

Lemma 5.13. If φ =α ψ then JφKIς = JψKIς .

Proof. By routine calculations using Lemma 5.8 forα-equality
of terms in propositions.

Definition 5.14 (Validity). Call the proposition φ valid in I
when JφKIς = 1 for all ς . Call the sequent φ1, ..., φn ` ψ1, ..., ψp
valid in I when (φ1 ∧ ... ∧ φn)⇒ (ψ1 ∨ ... ∨ ψp) is valid.

Theorem 5.15 (Soundness). If Φ ` Ψ is derivable then it is valid
in all interpretations.

Proof. By induction on the derivation of Φ ` Ψ (Figure 2).
The case of ( N) uses Lemma 5.12. The cases of (αL) and
(αR) use Lemma 5.13. Other rules are routine by unpacking
definitions.

6. Arithmetic
6.1 A language L for first-order logic

For this section, a, b, c, . . . range over distinct atoms in Aν ,
where Aν is the set of atoms used in L̇ in Section 3 (this is not
necessary, but it is convenient).

Definition 6.1. Define terms and sentences of L by:

t ::= a | 0 | succ(t) | t+ t | t ∗ t
ξ ::= t ≈ t | ⊥ | ξ ⇒ ξ | ∀a.ξ

Substitution t′[a::=t] and ξ[a::=t] is as usual for first-order
logic. We write sequents Ξ ` χ where Ξ and χ are sets of
sentences. Derivability is as usual for first-order logic.

Definition 6.2. Define a mapping (-). from terms and sen-
tences of L to terms of L̇ inductively as follows:

(a). = a (0). = 0
(succ(t)). = succ((t).) (t′ + t). = (t′). + (t).

(t′ ∗ t). = (t′). ∗ (t).

(t′ ≈ t). = (t′).≈̇(t). (⊥). = ⊥̇
(ξ′ ⇒ ξ). = (ξ′). ⇒̇ (ξ). (∀a.ξ). = ∀̇[a](ξ).

Definition 6.3. Extend (-). to first-order logic sequents Ξ ` χ
as follows:

(Ξ ` χ). = ε(∀̇[a1] . . . ∀̇[an]((ξ1 ∧ . . .∧ ξk)⇒ (χ1 ∨ . . .∨χl)).)
Here, Ξ = {ξ1, . . . , ξk}, χ = {χ1, . . . , χl}, and the free
variables of Ξ and χ are {a1, . . . , an} (in some order).

Notation 6.4. Write S for EQU ∪ SUB ∪ FOL.

Lemma 6.5. S ` (t′[a::=t]). ≈ (t′).[a7→(t).] and
S ` (ξ[a::=t]). ≈ (ξ).[a7→(t).].

Proof. By routine inductions on t and ξ.

Theorem 6.6 (Correctness). If Ξ ` χ is derivable in first-order
logic then S ` (Ξ ` χ). is derivable in PNL.

Proof. By a long but routine inspection we can check that
EQU, SUB, and FOL allow us to model the behaviour of ‘real’
first-order logic. We use Lemma 6.5.

6.2 Interpretation of first-order logic

We recall the usual definition of interpretations in first-order
logic:

Definition 6.7. A (first-order logic) interpretationM is

• a carrier set M , and
• elements 0M ∈ M , succM ∈ M → M , +M ∈ (M ×M) →
M , and ∗M ∈ (M ×M)→M .

It is convenient to fix some M from here until Theo-
rem 6.20.

Definition 6.8. Define ValuAν (M) by:

ValuAν (M) = {ε ∈ Aν →M | ∃A ⊆ Aν .A finite ∧
∀a, b 6∈ A.ε(a) = ε(b)} (1)

Call elements of ValuAν (M) Aν -valuations (to M ).
ε will range over Aν -valuations.
If x ∈ M write ε[a::=x] for the valuation mapping b to

ε(b) and mapping a to x.
Give ε a permutation action defined by (π·ε)(a) = ε(π-1(a)).

Give subsetsX of ValuAν (M) the pointwise permutation ac-
tion defined by π·X = {π·ε | ε ∈ X}.



(ps0) ∀a. succ(a) ≈ 0⇒ ⊥
(pss) ∀a′, a. succ(a) ≈ succ(a′)⇒ a ≈ a′
(p+0) ∀a. a+ 0 ≈ a
(p+succ) ∀a′, a. a′ + succ(a) ≈ succ(a′) + a

(p∗0) ∀a. a ∗ 0 ≈ 0
(p∗succ) ∀a′, a. a′ ∗ succ(a) ≈ (a′ ∗ a) + a
(pind) ξ[a::=0]⇒

∀a.(ξ ⇒ ξ[a::=succ(a)])⇒
∀a.ξ (every ξ, every a)

Figure 7: arithmetic: axioms for arithmetic in first-order logic

U, V will range over finitely-supported subsets of ValuAν (M)
— so there exists some finite A ⊆ Aν such that for all π, if
π(a) = a for all a ∈ A then π·U = U .

Remark 6.9. ValuAν (M) would normally just be called ‘the
set of valuations’. We are more specific because we already
have a notion of valuation on unknowns X (Definition 5.3).

PNL atoms are serving as variable symbols of L. To con-
veniently apply nominal techniques, it is useful to restrict to
valuations that are finite in the sense given in (1). In any case,
any term or sentence will only contain finitely many atoms.

Definition 6.10. We extend the interpretation to first-order
logic syntax as follows:

JaKMε = ε(a)
J0KMε = 0M

Jsucc(t)KMε = succM(JtKMε )
Jt′ + tKMε = +M(Jt′KMε , JtKMε )
Jt′ ∗ tKMε = ∗M(Jt′KMε , JtKMε )

J⊥KMε = 0
Jξ′ ⇒ ξKMε = max{1−Jξ′KMε , JξKMε }

J∀a.ξKMε = min{JξKMε[a::=x] | x ∈M}
Jt′ ≈ tKMε = 1 if Jt′KMε = JtKMε and 0 otherwise

Definition 6.11. Call the sentence ξ valid inM when JξKMε =
1 for all ε.

Call ξ1, . . . , ξk ` χ1, . . . , χl valid in M when (ξ1 ∧ . . . ∧
ξk)⇒ (χ1 ∨ . . . ∨ χl) is valid.

6.3 Axioms and models

Definition 6.12. Define a first-order theory of arithmetic by
the axioms in Figure 7.

An interpretation is a model of arithmetic when JξKM = 1
for ξ each of (ps0), (pss), (p+0), (p+succ), (p∗0), (p∗succ),
and every instance of (pind).

Remark 6.13. (pind), the induction axiom-scheme, is of
course of particular interest. We therefore unpack what its
validity

Jξ[a::=0]⇒ ∀a.(ξ ⇒ ξ[a::=succ(a)])⇒ ∀a.ξKM = 1

(every ξ, every a)

means, in a little more detail. For every a and ξ:
• If Jξ[a::=0]KMε = 1, and
• if for every x ∈ M , JξKMε[a::=x] = 1 implies that

Jξ[a::=succ(a)]KMε[a::=x] = 1
• then for every x ∈M , JξKMε[a::=x] = 1.

In (pind) we take ‘every a’, and in (PInd) we do not. This
is because in (PInd), a is α-convertible,

6.4 Building an interpretation for L̇ out of one for L
Recall the PNL signature L̇ from Section 3. SupposeM is a
model of L. We use it to build an interpretationN of L̇.

Definition 6.14. Extend L to L+M where we add elements
of M as constants, and extend the interpretation to interpret

these constants as themselves in M . (So if x ∈ M then x is a
constant symbol in L+M and JxKMε = x.)

Define an Aν -valuation ε0 ∈ ValuAν (M) by

ε0(a) = 0M always.

If t is a term, we write JtKM for the function λε.JtKMε . If ξ is
a sentence, we write JξKM for the function λε.JξKMε .

We now define an interpretationN for L̇. We give a deno-
tation to the base sorts ι and o of L̇, as follows:

ιN = {JtKM | t a term of L+M}
oN = {JξKM | ξ a sentence of L+M}

We give a denotation to the term-formers and proposition-
formers of L̇, as follows:

varN a ε= ε(a)
0N ε= 0M

succN u ε= succM(uε)
+N (u, v) ε= +M(uε, vε)
∗N (u, v) ε= ∗M(uε, vε)

subNι ([a]u, v) ε=u(ε[a::=vε])

⊥̇N ε= 0
subNo ([a]u, v) ε=U(ε[a::=vε])
⇒̇N (U, V ) ε=max{1−U(ε), V (ε)}
∀̇N [a]U ε=min{U(ε[a::=x]) | x ∈M}
≈̇N (u, v) ε=≈M(uε, vε)
≈Nι (u, v) = 1 if u=v and 0 otherwise
≈No (U, V ) = 1 if U=V and 0 otherwise

εN U =U(ε0)

Here, u and v range over ιN and U and V range over oN .

Lemma 6.15. 1. Jt′[a::=t]KMε = Jt′KMε[a::=JtKMε ].
2. Jξ[a::=t]KMε = 1 if only if JξKMε[a::=JtKMε ] = 1.

Lemma 6.16. The following equalities all hold:

varN (a) = JaKM
0N = J0KM

succN (JtKM) = Jsucc(t)KM
+N (Jt′KM, JtKM) = Jt′ + tKM
∗N (Jt′KM, JtKM) = Jt′ ∗ tKM

subNι ([a]Jt′KM, JtKM) = Jt′[a::=t]KM
subNo([a]JξKM, JsKM) = Jξ[a::=s]KM

⊥̇N = J⊥KM
⇒̇N (Jξ′KM, JξKM) = Jξ′ ⇒ ξKM

∀̇N ([a]JξKM) = J∀a.ξKM
≈̇N (JrKM, JsKM) = Jr ≈ sKM

Proof. We compare Definitions 6.14 and 6.10. Most cases are
immediate; we consider only the slightly less trivial ones:

varN (a) = (λa.λε.ε(a))a Definition 6.14
= (λa.JaKM)a Definition 6.10
= JaKM fact

subNι ([a]Jt′KM, JtKM) = λε.Jt′KM(ε[a::=JtKMε]) Definition 6.14
= λε.Jt′[a::=t]KM Lemma 6.15



Other cases are no harder.

Lemma 6.17.N (Definition 6.14) is a PNL interpretation.

Proof. We must check that:
ιN and oN are permissive-nominal sets.
By routine calculations. (In fact, ιN and oN are nominal sets;

that is, their elements all have finite support.)
The functions defined in Definition 6.14 map elements of ιN , oN ,

[A]ιN , and [A]oN correctly to the appropriate sets.
By Lemma 6.16.
εN is equivariant from oN to {0, 1}.
By routine calculations using the fact that (a b)·ε0 = ε0.

Lemma 6.18. If (Ξ ` χ). is valid in N , then Ξ ` χ is valid in
M.

Proof. We calculate that if (Ξ ` χ). is valid inN , then

J(ξ1 ∧ . . . ∧ ξk)⇒ (χ1 ∨ . . . ∨ χl)KMε0 = 1

But the proposition written out above is closed, so for all
valuations ε, J(ξ1 ∧ . . . ∧ ξk)⇒ (χ1 ∨ . . . ∨ χl)KMε = 1.

Proposition 6.19.N is a model of S ∪ ARITH.

Proof. By a routine verification. We consider the axiom (∀̇)
from Figure 5. We unpack definitions and see that we must
prove that for every ξ in L+M , ∀x ∈ M.ε0[a::=x] ∈ (ξ). if
and only if ε0[a::=(t).] ∈ (ξ). for every t a term of L+M .
This follows, because L+M has a constant symbol for every
x ∈M . Validity of the other axioms is no harder.

Theorem 6.20. arithmetic,Ξ ` χ in first-order logic if and only if
S ∪ ARITH ` (Ξ ` χ). in PNL.

Proof. We prove two implications. The top-to-bottom impli-
cation follows using Theorem 6.6.

For the bottom-to-top implication, we reason as follows:
Suppose S ∪ ARITH ` (Ξ ` χ). in PNL. Choose an arbi-
trary interpretationM of first-order logic that is a model of
arithmetic, with carrier set M . By Soundness (Theorem 5.15)
and Proposition 6.19, �N (Ξ ` χ).. By Lemma 6.18 Ξ ` χ
is valid inM.M was arbitrary, so by completeness of first-
order logic [29, §4.2] it follows that Ξ ` χ is derivable.

7. Other theories in PNL
We briefly sketch three other smaller, but relevant and inter-
esting, PNL theories.

7.1 Inductive types

Permissive-nominal logic can express the principles of nom-
inal abstract syntax developed in [22].

Suppose a base sort ι, a name sort ν, and term-formers
var : ν → ι, app : (ι, ι) → ι and lam : [ν]ι → ι. Fix an
unknown U : ι and for brevity write φ[U ::=r] as φ(r) for
every φ. Suppose an axiom-scheme, for every φ:

φ(var(a))⇒
∀X.(φ(X)⇒ φ(lam([a]X)))⇒
∀X,Y.(φ(X)⇒ φ(Y )⇒ app(X,Y ))⇒

∀X.(φ(X))

Here X and Y have sort ι and we make a fixed but arbitrary
choice of atom a ∈ p(X).

We can also express this finitely, if we axiomatise a sort for
propositions (as we did for arithmetic). Here is the axiom-
scheme above made finite by using the theories EQU, SUB,
and FOL from Section 3:
∀Z.ε(Z[a7→var(a)])⇒
∀X.(ε(Z[a7→X])⇒ ε(Z[a7→lam([a]X)))⇒
∀X,Y.(ε(Z[a7→X])⇒ ε(Z[a7→Y ])⇒ ε(Z[a7→app(X,Y )]))⇒

∀X.ε(Z[a7→X])

7.2 Freshness: from a 6∈ fa(r) to a 6∈ supp(x)

PNL has a notion of ‘free atoms of’ a ∈ fa(φ). Nominal sets
have rather similar-looking notion of support a ∈ supp(x).

Support, or rather its negation freshness, is definable using
equality, intuitively as

“a is fresh for x when (b a)·x = x for some/any fresh
b.”

See e.g. equation 13 in [22].
To capture a freshness predicate for a name sort ν on a sort

α in PNL, we assume EQU (or extend PNL with an equality
primitive) and assume a predicate # of arity (ν, α) with an
axiom

∀X.(a#X ⇔ (b a)·X ≈ X).

HereX has sort α and a and b have sort ν, and a ∈ p(X) and
b 6∈ p(X).

A detailed discussion of support as a definitional exten-
sion of equational reasoning is in Sections 5.2 and 6.1.1 of
[18].

The reader should distinguish the notion ‘free atoms’
from the nominal sets notion ‘support’. These are two dis-
tinct concepts and they are not the same.

7.3 The rule ( N), and the Nquantifier

Nominal sets support the N-quantifier [22]. PNL does too,
but in an unexpected and perhaps rather elegant manner.

Nhas some distinctive properties which are reflected in
nominal logic (NL) and the logic of FM sets (FM):

∀x.(P(x)⇒ Na.Q(a, x))
==================
∀x. Na.(P(x)⇒ Q(a, x))

∀x. Na. Nb.(b a)·x≈x
=============================
Na. Nb.∀x.(a#x⇒ b#x⇒ (b a)·x≈x)

Here and below we write a double horizontal line for ‘is
provably equivalent to’. In PNL Nis ‘hiding’ in the per-
mission sets. Corresponding propositions are, where a, b 6∈
p(X):

∀X.(P(X)⇒ Q(a,X))
=================
∀X.(P(X)⇒ Q(a,X))

∀X.(b a)·X ≈ X
=============
∀X.(b a)·X ≈ X

Two things are happening: freshness conditions are hard-
coded into the syntax by permission sets — and so is N.

It is interesting to consider another example. In NL/FM:

Na.P(a) ∧ Na.Q(b)
================
Na. Nb.(P(a) ∧ Q(b))

Na.P(a) ∧ Na.Q(b)
==============

Na.(P(a) ∧ Q(a))

Correspondingly in PNL:

P(a) ∧ Q(b)
=========
P(a) ∧ Q(b)

P(a) ∧ Q(b)
=========
P(a) ∧ Q(a)

It is easy to use the rule ( N) from Figure 2 to construct a
derivation proving that P(a) ∧ Q(b) and P(a) ∧ Q(a) are
indeed logically equivalent in PNL.

( N) expresses that truth is preserved by permutative re-
naming, or in symbols: ` φ ⇔ π·φ always. We call this rule



( N) because of another way of looking at matters: every atom
in φ is abstracted by a generalised N-abstraction. Permission
sets, or perhaps rather their complements, are a freshness
quantifier.

8. Related work
Nominal terms Nominal terms were introduced in [31]
where a decidable and efficient unification algorithm was
demonstrated (see [3] for the state of the art). Nominal terms
were then used in specification languages; in rewriting [10],
and in universal algebra (the logic of equality) [18].

Nominal terms require a finite freshness context a#X .
These are explicit assertions corresponding to a 6∈ p(X).

Contrast a prototype of permissive-nominal term unifica-
tion [25] with the Haskell Nominal Toolkit (HNT) [2]. Core
functions in the PNL implementation (e.g. unification and
alpha-equivalence checks) are pure. The types of their HNT
counterparts are monadic because of explicit freshness con-
texts. The freshness context becomes a notion of state, which
must be passed around in a monad.

Compare the types (1) of the alpha-equivalence check
function from the HNT and (2) of the implementation of
permissive-nominal terms:2

(1) alpha′check :: (Show t, Eq t, Ord a, Ord v)⇒ FrsCtxt v a→
Term a t v → Term a t v →
CS r (ExtB l e (ErrorT [Char]))m ()

(2) aeq :: (Eq a, Permissive b)⇒ Term a b→ Term a b → Bool

The type associated with the ‘permissive’ version is shorter.
To be fair, HNT does a lot more and this is also responsible
for some complexity. Nevertheless, we have seen a similar
phenomenon, which has been truly inconvenient, in our own
work [10, 11, 15, 17, 20].

Relative to nominal terms, PNL does without freshness
contexts and adds quantification over unknowns.

Permissive-nominal terms Permissive-nominal terms were
developed to address the concerns above [6, 7]. They simplify
α-equality and freshness and separate them from equational
reasoning. There is no ‘freshness monad’.

Permissive-nominal terms correspond to the term-language
of PNL. Their unification algorithm, which is decidable and
closer to the first-order case than that of nominal terms, ex-
tends easily to the syntax of PNL.

Relative to [7], we add first-order logic and in particular
universal quantification ∀X over unknowns.

Nominal logic The two best-known ‘nominal’ logics are
probably the nominal logic of [28] and FM set theory. Both are
Hilbert-style theories — sets of axioms — in first-order logic.

FM set theory contains axioms whose intended model is
the cumulative hierarchy of hereditarily finitely supported
sets. Nominal logic contains axioms whose intended model
is sets with a finitely-supported permutation action.

Natural deduction rules for Nwere proposed e.g. in [22,
Proposition 4.10], but these are not closed under substitution.
The second author created a proof-theory for N[12] with
a good notion of proof-normalisation and a completeness
proof, followed by an alternative treatment with Cheney [14].
These did not give Na direct operational behaviour as ‘pick a

2 See the documentation for module Nominal.Matching
at http://www.dcs.kcl.ac.uk/pg/calves/hnt/doc/
Nominal-Matching.html and module Terms.Terms in the
permissive-nominal terms implementation source code, available at
http://www.macs.hw.ac.uk/˜dpm8/permissive/

globally fresh name’; this was captured by Cheney in a later
paper [4].

Cheney’s logic involves 12 infinite axiom-schemes (see
Figures 3 and 4 of [4]). These describe atoms-abstraction as
an equality theory.

PNL handles α-equivalence, and the N-quantifier, with-
out recourse to axioms, and indeed, without requiring an
equality or a N-quantifier. We can ‘just α-rename’; freshness
and renaming are separated from equality reasoning in the
logic.

Nominal logic from [28] is not complete for its seman-
tics in nominal sets, for reasons discussed and addressed by
Cheney in [5]. In fact, PNL is complete for the semantics in
this paper; permissive-nominal sets with their infinite sup-
port are clearly related to Cheney’s support ideals.

The PNL proof system is ‘ε away’ from that of first-order
logic. Arguably, it is more immediate to first-order logic than
any other previous reasoning system based on nominal sets.

One-and-a-halfth order logic from [17] This logic is de-
signed to represent schematic first-order reasoning (first-
order derivations in the presence of ‘unknown predicates’).
It corresponds roughly to the axiomatisation of first-order
logic in Section 3.

Semantic nominal terms In [19] we show how to inter-
pret level 2 variables (unknowns) as infinite lists of distinct
level 1 variables (atoms). This allows us to build permissive-
nominal term syntax as nominal abstract syntax-style induc-
tive datatypes as proposed in [22]. The aim of this paper is to
discuss the logic; not to analyse how its syntax could best be
built.

[19] does a few other things, and one of them is relevant to
the logic of PNL: it defines a capturing and capture-avoiding
substitution, which we plan to import into PNL in a later
journal version of this work.

First- and higher-order logic As discussed in the Introduc-
tion, we see PNL as sitting between these two logics. It is
better than first-order logic, in that term-formers can bind. It
is better than higher-order logic in that its models are smaller
and simpler, and its syntax supports a decidable unification
algorithm.

PNL syntax and derivations can be translated to higher-
order logic as nominal algebra can [21], though syntax may
undergo a quadratic increase in size in the translation. We
map to a pattern fragment of full higher-order syntax.

The issue is how naturally the structure of our intended
axioms fits the structure of the logic — and also how nat-
urally the semantics reflects any intuitions we have about
those axioms. We feel that PNL does a very nice job of be-
ing first order and making binding convenient to work with
in syntax and semantics.

Logics based on the ∇-quantifier A family of logics based
on the ∇-quantifier [23, 24, 30] has been developed specif-
ically for reasoning on inductive datatypes with binding.
Permissive-nominal logic can do this too, and because of its
‘nominal’ ancestry it does so in the style of nominal tech-
niques.

Logics based on ∇ use raising to obtain the effect of cap-
turing substitution and variable dependencies, whereas we
use a two-level term syntax.
∇ commutes with ∀-quantification and the N-quantifier

does not; PNL does away with the N-quantifier altogether.
An interesting similarity is that some recent work in this

field has also moved to using a syntax with name-constants

http://www.dcs.kcl.ac.uk/pg/calves/hnt/doc/Nominal-Matching.html
http://www.dcs.kcl.ac.uk/pg/calves/hnt/doc/Nominal-Matching.html
http://www.macs.hw.ac.uk/~dpm8/permissive/


and equivariance, reminiscent of the atoms and rule ( N) [30].
We would like to give these logics models in nominal sets,
which would give us a better view of where they stand in
relation to our own work.

Contextual modal type theory (CMTT) Logics based on
CMTT are consistent and have a well-studied proof-theory,
so models can be constructed using normal forms. We do not
know of what general class of possibly non-syntactic struc-
tures these syntactic models are instances. Developing such
models would be interesting future work.

CMTT is a two-level system (contexts split into two
halves; ∆ and Φ) but the two levels do a different job from
the two levels used in (permissive-)nominal terms. Variables
u : A[Φ] ∈ ∆ range over representations of code; x : A ∈ Φ
range over denotation.

To the extent that this could be represented in PNL at all,
it would be represented in the sorts — one sort for code,
another for denotation (values).

Further logics Coming from other threads of research in
computer science, there have been logics designed to enrich
first-order logic directly with binders. We note binding logic
[8] and λ-logic [1].

Binding logic enriched first-order terms with binders but
forbade capture and turned out to be a little too weak.
λ-logic takes a direct approach of enriching first-order

terms with λ-abstraction. The approach to binding taken by
PNL is somewhat more general and is certainly different, in
that it allows us to treat names as ‘bindable data’. That is,
we can compare names for inequality as names, while at the
same time we can give them the behaviour of variables by
axiomatising e.g. substitution for them, if we wish.

9. Further remarks, further work
Unknowns of name sort, and atoms Should every inhabi-
tant of the semantics of a name sort ν be referenced by an
atom? Should every inhabitant of the semantics of name sorts
be referenced by a closed term? In PNL as it stands, neither
is necessarily the case.

This is only as much of an issue as we choose to make of it.
It is not unusual for there to be more elements in a type than
there are closed terms. It is a fact that PNL is complete for
the semantics of this paper, so extra elements in name sorts
cannot ‘make anything false’.

We can view ‘non-standard atoms’ like as like ‘non-
standard numbers’ in first-order arithmetic; a price we pay
for the first-order aspect of the language.

It is still reasonable to ask whether we can exclude these
‘non-standard atoms’. In fact, we believe that this is possible.
The idea is in the proof-theory for Nfrom ‘Fresh Logic’ [12];
see (ExhaustA) in Figure 3, and Subsection 5.5. This is a
topic for future research.

Extending sorts It would be a good idea to introduce sort-
formers and polymorphism into the sorting system, so that
e.g. we can conveniently axiomatise a substitution action on
an infinite class of sorts. We see no difficulty in doing this —
it is a definitional extension of what we already have.

We might also assume, for every sort α, an associated
name sort να. In particular, this would allow us to conve-
niently talk about ‘atoms (level 1 variables) associated with
α’ in the same way that we can talk about ‘level 2 variables
of sort α’.

Size of permission sets There is design freedom in the
choice of permission sets. For example, we can take A un-

countable and permission sets all countably infinite sets, or
we can take permission sets {π(a) | a ∈ A<\A, A⊆A finite, all π}.
We do not currently see a ‘right’ choice. The choice in Defini-
tion 2.4 is simple.

Note the following: Suppose a base sort τ , a name sort
ν and a : ν, a proposition-former P : τ , and a function-
symbol f : (τ, ν)τ . In spite of this, ∀X.P(X) 6` P(f(X, a))
where a 6∈ p(X), since no finite permutation maps p(X) to
fa(f(X, a)) = p(X) ∪ {a}.

On closed terms (with no unknowns), this is a non-issue
because the syntax is finite and mentions finitely many
atoms. Closed terms will be sufficient for many purposes; for
example closed terms contains the image of the translation
of first-order arithmetic in this paper; any sensible choices of
permission set will thus allow us to write axioms as we have
done in this paper.

In [19] we generalise the substitution action [X::=r] to the
case that fa(r) ⊆ p(X) is not necessarily true. Developing
this is future work.

Summary Permissive-nominal logic comes out of research
into inductive definitions with names and binding in mecha-
nised mathematics. It can also be applied to these problems.

But PNL provides a logical environment which, we feel,
does a very good job of modelling the ‘informal meta-level’,
complete with names, binding, and first-order reasoning.

Arguably its most exciting potential application is as a
logical foundation — as a meta-theory for mathematics —
intermediate in power between first- and higher-order logic.
The case studies in this paper suggest that this could be feasi-
ble. We believe that, perhaps with some fairly modest exten-
sions, it would make an expressive, ergonomic, and practical
alternative meta-language for mechanised mathematics.
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[8] Gilles Dowek, Thérèse Hardin, and Claude Kirchner. Binding
logic: Proofs and models. In Proceedings of the 9th International
Conference on Logic for Programming, Artificial Intelligence, and
Reasoning (LPAR 2002), pages 130–144. Springer, 2002.

[9] William M. Farmer. The seven virtues of simple type theory.
Journal of Applied Logic, 3(6):267–286, 2008.

[10] Maribel Fernández and Murdoch J. Gabbay. Nominal rewriting
(journal version). Information and Computation, 205(6):917–965,
2007.

http://www.gabbay.org.uk/papers/perntu.pdf
http://www.gabbay.org.uk/papers.html#perntu-jv
http://www.gabbay.org.uk/papers.html#perntu-jv
http://www.gabbay.org.uk/papers.html#nomr-jv
http://www.gabbay.org.uk/papers.html#nomr-jv


[11] Murdoch J. Gabbay. A NEW calculus of contexts. In Proceedings
of the 7th ACM SIGPLAN symposium on Principles and Practice of
Declarative Programming (PPDP 2005), pages 94–105. ACM, 2005.

[12] Murdoch J. Gabbay. Fresh Logic. Journal of Applied Logic,
5(2):356–387, June 2007.

[13] Murdoch J. Gabbay. A General Mathematics of Names. Infor-
mation and Computation, 205(7):982–1011, July 2007.

[14] Murdoch J. Gabbay and James Cheney. A Sequent Calculus
for Nominal Logic. In Proceedings of the 19th IEEE Symposium
on Logic in Computer Science (LICS 2004), pages 139–148. IEEE
Computer Society, 2004.

[15] Murdoch J. Gabbay and Stéphane Lengrand. The lambda-
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