
Permissive nominal terms and their unification

Gilles Doweka, Murdoch J. Gabbayb, Dominic P. Mulliganc

ahttp://www.lix.polytechnique.fr/~dowek
bhttp://www.gabbay.org.uk

chttp://www.macs.hw.ac.uk/~dpm8

Abstract

We introduce permissive nominal terms, and their unification.
Nominal terms are one way to extend first-order terms with binding. However, they

lack some useful properties of first- and higher-order terms: Terms must be reasoned
about in a context of ‘freshness assumptions’; it is not always possible to ‘choose a fresh
variable symbol’ for a nominal term; and it is not always possible to ‘α-convert a bound
variable symbol’.

Permissive nominal terms closely resemble nominal terms, but they recover these use-
ful ‘always fresh’ and ‘always alpha-rename’ properties, familiar from first- and higher-
order syntax. In the permissive world, freshness contexts are elided, and the notion of
unifier is based on substitution alone, rather than on nominal terms’ notion of substitu-
tion plus freshness conditions.

We prove that expressivity is not lost moving to the permissive case. We provide
a translation from nominal terms into permissive nominal terms and we prove that a
nominal unification problem is solvable if and only if its translation into permissive
nominal terms is.

Finally, we investigate the precise relation between nominal unification and Miller’s
higher-order pattern unification. We translate nominal terms into the λ-calculus and
show that the translation may also be applied to unification problems; the result is
pattern unification. This cements an existing intuition that higher-order patterns are
what is needed to unify encodings of nominal terms. This builds on a translation by
Levy and Villaret, and refines it; both translations are parameterised by sets of atoms,
but we identify a smaller parameter set and prove that it is as small as possible. We also
translate solutions of nominal unification problems to solutions of higher-order pattern
unification problems. We exhibit a general class of higher-order pattern solutions and
show that every pattern solution in that class is the translation of a nominal unification
solution up to a permutative renaming.

Key words: Nominal unification, higher-order pattern unification, nominal techniques

February 25, 2009

http://www.lix.polytechnique.fr/~dowek
http://www.gabbay.org.uk
http://www.macs.hw.ac.uk/~dpm8
http://www.lix.polytechnique.fr/~dowek
http://www.gabbay.org.uk
http://www.macs.hw.ac.uk/~dpm8

Contents

1 Introduction 3

2 Permissive nominal terms 4

3 Substitutions 10

4 Relation to nominal terms 12

5 Support inclusion problems 17
5.1 Simplification reduction and normal forms 17
5.2 Building solutions . 19

6 Permissive nominal unification problems 21
6.1 Problems, solutions, the unification algorithm 21
6.2 Simplification rewrites calculate principal solutions 24

7 The λ-calculus 27

8 Translating nominal terms into the λ-calculus 32
8.1 The translation J-KD, and its soundness 32
8.2 Capturable atoms; injectivity and minimality 34

9 Translating substitutions; relating solutions of nominal and pattern
unification problems 37
9.1 Translating substitutions . 37
9.2 Reducing permissive nominal unification to pattern unification; sound-

ness, weak completeness . 40
9.3 Strong Completeness . 42

10 Conclusions 45

2

1. Introduction

Many formal languages feature variable binding : examples include quantification,
λ-abstraction, sets comprehension {x | φ(x)}, and process-calculi name-hiding. Binding
is ubiquitous, because variables are there to be bound or substituted.

In contrast, variables cannot be bound in first-order terms: In first-order logic, vari-
ables are bound in propositions by quantifiers and not at all in terms; first-order rewriting
does not allow binding as it is based on first-order terms; and, many programming lan-
guages and proof systems allow datatypes of terms, but only of first-order terms. This
motivates logics where variables can be bound by any function or predicate symbol [8],
extensions of rewriting on terms with binders [18, 20, 9], and programming languages
and proof systems allowing datatypes with binders [25, 21, 26, 17, 24] and more gen-
erally, definitions of a notion of term where variables may be bound: nominal terms
[27].

Introducing binding opens new possibilities: when a variable occurs in the scope of
a binder, for instance in the term f([a]X) we may decide that the substitution of some
term for X may capture the bound variable a or not. In the original formulation of
nominal terms, we could decide to exclude this capture by imposing a condition a#X,
forbidding a to appear in X. This example explains some of the features of nominal
terms: two levels of variable (atoms, such as a, and unknowns, such as X), freshness
conditions, such as a#X, and atom permutations.

Nominal terms preserved much of the flavour of first-order terms, while extending
them, so that we could represent informal statements like “If y 6∈ fv(t) then λx.t is
α-equivalent with λy.[y/x]t” and “How can we choose t and u to make λx.λy.(y t) equal
to λx.λx.(x u)?”. For instance, the first statement above may be rendered as a nominal
term as the equality judgement b#X ` [a]X = [b](b a) ·X where a and b denote atoms,
which represent the ‘x’ and ‘y’; X denotes an unknown, it represents the ‘t’; b#X is
a freshness side-condition, it represents the ‘y 6∈ fv(t)’; (b a) is a permutation meaning
‘map a to b and b to a’, it represents the ‘[y/x]’ (we assumed y 6∈ fv(t), so this is
possible). Yet original nominal terms possess some less attractive properties too:
• Freshness contexts are not fixed so we must often prove properties of terms-in-

freshness context. This is harder than reasoning just about terms.
• We expect that we can always pick a fresh variable symbol and α-rename a bound

variable. Not so in nominal terms; for X in the empty freshness context, there is
— by definition of the empty freshness context — no a such that we know a#X;
further, we cannot α-rename abstracted a to a ‘fresh b’ to obtain [b](b a)·X, because
there is no fresh b (this is useful e.g. for moving syntax under a binder).

‘Freshness contexts’ sound like ‘typing contexts’ for the λ-calculus, but freshness con-
texts’ effects are more complex and harder to control. Extending a typing context may
make more terms typable, but will not typically make more terms equal ; α-equivalence is
independent of typing, but it depends on freshness. This then complicates, for example,
normal forms and theories of reduction (lack of α-convertibility may block a reduction;
adding a fresh atom may change the normal form of a term) as is explicit in [13], and
implicit e.g. in [12, 11].

In this paper, we propose an alternative way to handle these conditions by associating
a freshness context once and for all to each unknown. This leads to a new definition of
nominal terms: permissive nominal terms. An unknown takes the form XS where S is a
single fixed permission sort (Definition 3); thus, we can reason about terms, rather than
about terms-in-freshness-context. In a further departure from the usual nominal style,
permission sorts are sets of atoms that are both infinite and co-infinite (see Definition 2).

3

Thus, we can always choose a fresh atom for a term, always α-convert, and α-equivalence
is inherent rather than depending on a freshness context (Definition 11, Theorem 13,
and Corollary 14).

Permissive nominal terms allow to simplify several results and algorithms of the
theory of nominal terms, in particular their unification. The solutions of a problem,
such as (a b) · XS = XS , is the set of all substitutions mapping the variable X to a
term containing no occurrences of a and b. The unifier of such a problem is simply the
substitution XS := Y T where T = S \ {a, b}.

Thus, after laying down definitions and basic properties of permissive nominal terms
(Sections 2 and 3) and studying their relation to original nominal terms (Section 4), we
focus on the unification of permissive nominal terms (Sections 5 and 6).

The rest of the paper considers translations of permissive nominal terms. It is known
that languages containing binders can be encoded as datatypes in some programming
languages and proof systems using λ-binding and higher-order abstract syntax [25]. We
investigate this idea in the general form of a translation of permissive nominal terms to
λ-calculus (Section 8). Finally, building up on a recent result of Levy and Villaret, we
show (Section 9) that this translation can be applied to unification problems and yields
pattern unification problems, as identified by Miller [22, 21], crystallizing the intuition
that pattern unification is exactly what is needed to unify encodings of nominal terms.

Levy and Villaret’s main result is that a nominal unification problem is solvable if
and only if its translation into higher-order patterns, is solvable [19, Corollary 1 and
Theorem 2]. We take this further as follows:
• We investigate how the solutions of a problem, and the solutions of its translation,

correspond. We translate terms and substitutions from the ‘nominal’ to the ‘higher-
order pattern’ world (Definitions 117 and 129) and show that the translation of a
solution is a solution of the translation (Theorem 141).

• We exhibit a general class of higher-order pattern solutions (Definition 149), a no-
tion of permutative renaming of pattern substitutions (Lemma 147), and show that
every pattern substitution in that class is the translation of a nominal unification
solution, up to permutative renaming (Theorem 155).

• We refine Levy and Villaret’s translation of terms. Their translation is parame-
terised by a vector of atoms; Levy and Villaret consider a vector containing all the
atoms of the problem [19, Definition 2], whereas we identify a smaller vector con-
taining only the capturable atoms (Definition 121). We prove that this is minimal,
in the sense that if we use any smaller vector, then injectivity is lost (Theorem 128).

This technical report is formed from two conference papers [6, 5], and a journal paper [7];
the technical report includes all material, with full proofs.

2. Permissive nominal terms

Definition 1. Fix a countably infinite set A of atoms. a, b, c, . . . will range over distinct
atoms (we call this the permutative convention). Fix a set of term-formers. f, g, h
will range over distinct term-formers.

Definition 2. Call S ⊆ A co-infinite when A \ S is infinite. Fix an infinite, co-infinite
set comb ⊆ A.1 A permissions set has the form (comb∪A1)\A2 for finite sets A1⊆A

1The second author helped develop nominal sets [14], which famously disallow sets like comb (comb

4

and A2⊆A.
S, S′, T will range over permissions sets, whereas Permit is the set of all permissions

sets.

S, T ∈ Permit implies S ∪ T, S ∩ T ∈ Permit , and S and A \ S are infinite.

Definition 3. For each permission sort S fix a disjoint countably infinite set of un-
knowns of sort S. XS , Y S , ZS , will range over distinct unknowns of sort S. If S 6= S′

then there is no particular connection between XS and XS′ . V will range over finite
sets of unknowns (we use this from Section 5 onwards).

Definition 4. Define the domain of a function from atoms to atoms by:

dom(f) = {a | f(a) 6= a}

Definition 5. A permutation is a bijection on atoms such that dom(π) is finite. π
and π′ will range over permutations (not necessarily distinct).

Write id for the identity permutation such that id(a) = a always. Write (a b) · r
for the swapping permutation that swaps a and b in the term r.

Definition 6. Define (permissive nominal) terms by:

r, s, t, . . . ::= a | f(r, . . . , r) | [a]r | π ·XS

We write ≡ for syntactic identity; r ≡ s when r and s denote identical terms.

Atoms represent variable symbols; term-formers functions; unknowns meta-variables;
abstraction [a]r binding ; and π ·XS a meta-variable with a suspended substitution, like
‘t[y/x]’. For example, suppose term-formers app and lam:
− app(a, b) can represent ‘xy’ (x applied to y).
− app(lam([a]a), b) can represent ‘(λx.x)y’ (identity applied to y).
− lam([a]Xcomb) can represent ‘λx.t’ if a ∈ comb, and ‘λx.t, where x 6∈ fv(t)’ if a 6∈
comb.

See Section 4 for comparison with ‘ordinary’ nominal terms [27].

Definition 7. Define a permutation action by:

π·a≡π(a) π·(f(r1, . . .))≡f(π·r1, . . .) π·[a]r≡[π(a)](π·r) π·(π′·XS)≡(π◦π′)·XS

Definition 8. If S ⊆ A, define the pointwise action by: π · S = {π(a) | a ∈ S}

Definition 9. Define free atoms fa(r) by:

fa(a) = {a} fa(f(r1, . . . , rn)) =
⋃

1≤i≤n

fa(ri) fa([a]r) = fa(r)\{a} fa(π·XS) = π·S

Definition 10. Define fV (r) by:

fV (a) = ∅ fV (f(r1, . . . , rn)) =
⋃

1≤i≤n

fV (ri) fV ([a]r) = fV (r) fV (π·XS) = {XS}

lacks finite support) [14]. Here, we are working at the meta-level, where we can talk about any subset
or function that we wish.

5

Definition 11. Define α-equivalence =α inductively by:

(=αaa)
a =α a

r1 =α s1 · · · rn =α sn
(=αf)

f(r1, . . . , rn) =α f(s1, . . . , sn)

r =α s
(=α[a])

[a]r =α [a]s

(b a) · r =α s (b 6∈ fa(r))
(=α[b])

[a]r =α [b]s

(π|S = π′|S)
(=αX)

π ·XS =α π
′ ·XS

Here, π|S denotes the partial function ‘π restricted to S’; similarly for π′.

Remark 12. r =α s is either true or false. Compare with the corresponding notion for
nominal terms, which is subject to a freshness context (Definition 37).

Theorem 13 and Corollary 14 are properties that ‘ordinary syntax’ has, that nominal
terms do not have, and that permissive nominal terms recover; we can always choose a
fresh variable, and we can always α-rename with it.

Theorem 13. For any r, there exist infinitely many b such that b 6∈ fa(r).

Proof. By induction on r.
• The case a. There are infinitely many atoms not equal to a, as required.
• The case f(r1, . . . , rn). Suppose S, S′, S′′, . . . are the distinct permissions sorts of

fV (ri) for 1 ≤ i ≤ n. By Definition 2, each permission sort differs finitely from,
comb. Therefore, we have for every π and S, that π · S differs finitely from combs,
too. There exists infinitely many b 6∈ π ·S∪π′ ·S′, for every π, S and S′. The result
follows from the inductive hypotheses.

• The case [a]r. By inductive hypothesis, infinitely many b 6∈ fa(r) exist. There
exists infinitely many b 6∈ fa(r) \ {a}. The result follows.

• The case π ·XS . By Definition 9, fa(π ·XS) = π · S. Infinitely many b 6∈ S exist,
by the co-infinite nature of S, therefore infinitely many b 6∈ π · S exist. The result
follows.

Corollary 14. For any r and a there exists infinitely many fresh b (so b 6∈ fa(r)) such
that for some s, [a]r =α [b]s.

Proof. Immediate, by Theorem 13 and (=α[b]).

Our changes do not affect basic results about nominal terms [27]:

Lemma 15. 1. id · r ≡ r
2. π′ · (π · r) ≡ (π′◦π) · r

Proof. By induction on r.
• The cases a and f(r1, . . . , rn). These are straightforward.
• The case [a]r. We have:

id · [a]r ≡ [a](id · r) Definition 7
≡ [a]r Inductive hypothesis

π · (π′ · [a]r) ≡ [a](π · (π′ · r)) Definition 7
≡ [a]((π◦π′) · r) Indictive hypothesis
≡ (π◦π′) · [a]r Definition 7

6

• The case π′′ ·XS . As id ◦π′′ = π′′, we have id · π′′ ·XS ≡ π′′ ·XS . Further:

π · (π′ · (π′′ ·XS)) ≡ π · ((π′◦π′′) ·XS) Definition 7
≡ (π◦(π′◦π′′)) ·XS Definition 7
≡ ((π◦π′)◦π′′) ·XS Fact
≡ (π◦π′) · (π′′ ·XS) Definition 7

Lemma 16. π · fa(r) = fa(π · r).

Proof. By induction on r.
• The case a and f(r1, . . . , rn). These are easy.
• The case [a]r. We have:

π · fa([a]r) = π · (fa(r) \ {a}) Definition 9
= π · fa(r) \ {π(a)} Fact
= fa(π · r) \ {π(a)} Inductive hypothesis
= fa([π(a)](π · r)) Definition 9
= fa(π · [a]r) Definition 7

• The case π′ ·XS . We have:

π · fa(π′ ·XS) = π · (π′ · S) Definition 9
= (π◦π′) · S Fact
= fa((π◦π′) ·XS) Definition 9
= fa(π · (π′ ·XS)) Definition 7

Lemma 17. fV (π · r) = fV (r)

Proof. By induction on r.
• The case a. Since fV (a) = ∅ = fV (π(a)), the result follows.
• The case f(r1, . . . , rn). We have:

fV (f(r1, . . . , rn)) =
⋃

1≤i≤n fV (ri) Definition 10
=

⋃
1≤i≤n fV (π · ri) Inductive hypotheses

= fV (f(π · r1, . . . , π · rn)) Definition 10
= fV (π · f(r1, . . . , rn)) Definition 7

The result follows.
• The case [a]r. We have:

fV ([a]r) = fV (r) Definition 10
= fV (π · r) Inductive hypothesis
= fV ([π(a)](π · r)) Definition 10
= fV (π · [a]r) Definition 7

The result follows.
• The case π′ ·XS . By Definition 7, π · (π′ ·XS) ≡ (π◦π′) ·XS . Then fV (π′ ·XS) =
{XS} = fV ((π◦π′) ·XS), and the result follows.

7

Lemma 18. If r =α s then π · r =α π · s.

Proof. By induction on r =α s.
• The case (=αa). Using (=αa), π(a) =α π(a) always.
• The case (=αf). By hypothesis, π ·ri =α π ·si for 1 ≤ i ≤ n. Extending with (=αf),

we have f(π · r1, . . . , π · rn) =α f(π · s1, . . . , π · sn). This implies π · f(r1, . . . , rn) =α

π · f(s1, . . . , sn). The result follows.
• The case (=α[a]). By hypothesis, π · r =α π · s. We use (=α[a]) to conclude

[π(a)](π · r) =α [π(a)](π · s). The result follows.
• The case (=α[b]). Suppose (b a) · r =α s with b 6∈ fa(r). By Lemma 15 and

inductive hypothesis, (π◦(b a)) · r =α s. By Lemma 16, π(b) 6∈ fa(π · r). Further,
(π◦(b a)) = (π(b) π(a))◦π. Using (=αb), [π(b)](π · r) =α [π(a)](π · s). The result
follows.

• The case (=αX). Suppose π′|S = π′′|S so that π′ ·XS =α π
′′ ·XS . Then (π◦π′)|S =

(π◦π′′)|S . By (=αX), (π◦π′) ·XS =α (π◦π′′) ·XS . The result follows.

Lemma 19. If r =α s then fa(r) = fa(s).

Proof. By induction on r =α s.
• The cases (=αa), (=αf) and (=α[a]). Easy.
• The case (=α[b]). Suppose [a]r =α [b]s by (=α[b]), so b 6∈ fa(r). We aim to

show fa([a]r) = fa([b]s), or fa(r) \ {a} = fa(s) \ {b}. As b 6∈ fa(r), fa(r) \ {a} =
(b a) · fa(r)\{b}. By Lemma 16, (b a) · fa(r)\{b} = fa((b a) ·r)\{b}. By hypothesis,
fa((b a) · r) = fa(s). The result follows.

• The case (=αX). We have fa(π·XS) = π·S and fa(π′·XS) = π′·S. By assumption,
π|S = π′|S , therefore π · S = π′ · S. The result follows.

Lemma 20. If π|fa(r) = π′|fa(r) then π · r =α π
′ · r.

Proof. By induction on r.
• The case a. As fa(a) = {a}, the result follows by (=αaa).
• The case f(r1, . . . , rn). Suppose π|fa(f(r1,...,rn)) = π′|fa(f(r1,...,rn)). By Definition 9,
π|fa(ri) = π′|fa(ri) for 1 ≤ i ≤ n. By hypothesis, π · ri =α π

′ · ri for 1 ≤ i ≤ n. Using
(=αf), the result follows.

• The case [a]r. Suppose π|fa(r) = π′|fa(r) so that π · r =α π
′ · r. Then π|fa(r)\{a} =

π′|fa(r)\{a}. By Definition 9, π|fa([a]r) = π′|fa([a]r). The result follows.
• The case π′′ ·XS . The result follows from (=αX).

To prove Theorem 24, we introduce the following notion:

Definition 21. Define the size of a term r by:

size(a) = 0 size(f(r1, . . . , rn)) =
∑

1≤i≤n

size(ri) size([a]r) = 1+size(r) size(π·XS) = 0

Lemma 22. size(r) = size(π · r)

Proof. By induction on r.
• The case a. Since size(π(a)) = 0 = size(a).

8

• The case f(r1, . . . , rn). We have:

size(f(r1, . . . , rn)) =
∑

1≤i≤n size(ri) Definition 21
=

∑
1≤i≤n size(π · ri) Inductive hypotheses

= size(f(π · r1, . . . , π · rn)) Definition 21
= size(π · f(r1, . . . , rn)) Definition 7

• The case [a]r. We have:

size([a]r) = 1 + size(r) Definition 21
= 1 + size(π · r) Inductive hypothesis
= size([π(a)](π · r)) Definition 21
= size(π · [a]r) Definition 7

• The case π′ ·XS . By Definition 7, π ·(π′ ·XS) ≡ (π◦π′) ·XS . Then, size(π′ ·XS) =
1 = size((π◦π′) ·XS). The result follows.

Lemma 23. For every term r, the set {size(s) | s is a subterm of r} is well-ordered.

Proof. As {size(s) | s is a subterm of r} is a subset of the natural numbers.

Theorem 24. =α is transitive, reflexive, and symmetric.

Proof. We handle the three claims separately:
• The reflexivity case. We prove r =α r by induction on r.

• The case a. Straightforward, using (=αa).
• The cases f(r1, . . . , rn) and [a]r. These are easy consequences of the inductive

hypotheses.
• The case π ·XS . Note, π|S = π|S . Using (=αX), π ·XS =α π ·XS .

• The symmetry case. We prove s =α r by induction on r =α s.
• The cases (=αa) and (=αf). Easy.
• The case (=α[a]). Suppose r =α s so s =α r by hypothesis. Using (=α[a]),

[a]s =α [a]r. The result follows.
• The case (=α[b]). Suppose (b a) · r =α s with b 6∈ fa(r). By Lemma 16,
a 6∈ fa((a b) · r). By Lemma 15, and as π = π-1, r =α (a b) · s. By Lemma 19,
a 6∈ fa(s), and by hypothesis, (a b) · s =α r. Using (=α[b]), [b]s =α [a]r. The
result follows.

• The case (=αX). Since equality on partial functions is symmetric.
• The transitivity case. By Lemma 23, we may perform induction on the size of a

term. We prove, given r =α s and s =α t, that r =α t by induction on size(r).
• The cases a and f(r1, . . . , rn). Easy.
• The case [a]r. We examine only the most complex case, where all abstracted

variables are distinct. Suppose (b a) · r =α s and (c b) · s =α t with b 6∈ fa(r)
and c 6∈ fa(s). By Lemma 18, (c b) · ((b a) · r) =α (c b) · s. By Lemma 22,
(c b) · ((b a) · r) =α t, equivalent to (c a) · r =α t. By Lemma 19, c 6∈ fa((b a) · r).
By Lemma 16, c 6∈ (b a) · fa(r). By Lemma 15, c 6∈ fa(r). Using (=α[b]),
[a]r =α [c]t. The result follows.

• The case π ·XS . Since equality on partial functions is transitive.

9

3. Substitutions

Definition 25. A substitution θ is a function from unknowns to terms such that
fa(θ(XS)) ⊆ S always. θ, θ′, θ1, θ2, will range over substitutions.

Write id for the identity substitution mapping XS to id ·XS always. It will always
be clear whether id means the identity substitution or permutation.

Suppose fa(t) ⊆ S. Write [XS :=t] for the substitution such that [XS :=t](XS) ≡ t
and [XS :=t](Y T) ≡ id · Y T for all other Y T .2

Definition 26. Define a substitution action on terms by:

aθ≡a f(r1, . . . , rn)θ≡f(r1θ, . . . , rnθ) ([a]r)θ≡[a](rθ) (π·XS)θ≡π·θ(XS)

Theorem 27. fa(rθ) ⊆ fa(r).

Proof. By induction on r.
• The case a. Since aθ ≡ a.
• The case f(r1, . . . , rn). We have:

fa(f(r1, . . . , rn)θ) ≡ fa(f(r1θ, . . . , rnθ)) Definition 26
= fa(r1θ) ∪ . . . ∪ fa(rnθ) Definition 9
⊆ fa(r1) ∪ . . . ∪ fa(rn) Inductive hypotheses
= fa(r1, . . . , rn) Definition 9

The result follows.
• The case [a]r. We have:

fa(([a]r)θ) ≡ fa([a]rθ) Definition 26
= fa(rθ) \ {a} Definition 9
⊆ fa(r) \ {a} Inductive hypothesis
= fa([a]r) Definition 9

The result follows.
• The case π ·XS . By Definition 9, fa(π ·XS) = π ·S. By Definition 25, fa(θ(XS)) ⊆
S. Using Lemma 16, fa(π · θ(XS)) ⊆ π · S. The result follows.

Lemma 28. π · (rθ) ≡ (π · r)θ.

Proof. By induction on r.
• The case a. We have:

π · (aθ) ≡ π · a Definition 26
≡ π(a) Definition 7
≡ π(a)θ Definition 26
≡ (π · a)θ Definition 7

The result follows.
• The case f(r1, . . . , rn) and [a]r. These are straightforward.

2‘fa(θ(XS)) ⊆ S’ looks absent in nominal terms theory ([27, Definition 2.13], [9, Definition 4]), yet
it is there: see the conditions ‘∇′ ` θ(∇)’ in Lemma 2.14, and ‘∇ ` a#θ(t)’ in Definition 3.1 of [27].
More on this in Section 4.

10

• The case π ·XS .

π · ((π′ ·XS)θ) ≡ π · (π′ · θ(XS)) Definition 26
≡ (π◦π′) · θ(XS) Lemma 15
≡ ((π◦π′) ·XS)θ Definition 26
≡ (π · (π′ ·XS))θ Lemma 15

The result follows.

Lemma 29. fV (r[XS :=s]) ⊆ fV (r) ∪ fV (s).

Proof. By induction on r.
• The case a. Since a[XS :=s] ≡ a.
• The case f(r1, . . . , rn). We have:

fV (f(r1, . . . , rn)[XS :=s]) = fV (f(r1[XS :=s], . . . , rn[XS :=s])) Definition 25
=

⋃
1≤i≤n fV (ri[XS :=s]) Definition 10

⊆
⋃

1≤i≤n fV (ri) ∪ fV (s) Inductive hypothesis
= fV (f(r1, . . . , rn)) ∪ fV (s) Definition 10

The result follows.
• The case [a]r. We have:

fV (([a]r)[XS :=s]) = fV ([a](r[XS :=s])) Definition 25
= fV (r[XS :=s]) Definition 10
⊆ fV (r) ∪ fV (s) Inductive hypothesis
= fV ([a]r) ∪ fV (s) Definition 10

The result follows.
• The case π · Y T . By Definition 26, (π · Y T)[XS :=s] ≡ π · Y T . The result follows.
• The case π · XS . By Definition 26, (π · XS)[XS :=s] ≡ π · s. By Lemma 17,

fV (s) = fV (π · s). The result follows.

Theorem 30. If XSθ1 =α X
Sθ2 for all XS ∈ fV (r), then rθ1 =α rθ2.

Proof. By induction on r.
• The case a. As fV (a) = ∅.
• The case f(r1, . . . , rn). Suppose for every XS ∈ fV (ri) for 1 ≤ i ≤ n we have
XSθ1 =α X

Sθ2 and riθ1 =α riθ2 by hypothesis. Using (=αf), f(r1θ1, . . . , rnθ1) =α

f(r1θ2, . . . , rnθ2). By Definition 26, f(r1, . . . , rn)θ1 =α f(r1, . . . , rn)θ2. The result
follows.

• The case [a]r. Suppose, for every XS ∈ fa(r), we have XSθ1 =α XSθ2. By
hypothesis, rθ1 =α rθ2. Using (=α[a]), [a](rθ1) =α [a](rθ2). The result follows.

• The case π ·XS . By assumption, XSθ1 =α X
Sθ2. By Lemma 18, π · (XSθ1) =α

π · (XSθ2). By Lemma 28, (π ·XS)θ1 =α (π ·XS)θ2. The result follows.

Lemma 31. If r =α s then rθ =α sθ.

Proof. By induction on the derivation of r =α s.
• The case (=αaa). As aθ ≡ a.

11

• The cases (=αf) and (=α[a]). These are immediate consequences of the inductive
hypotheses.

• The case (=α[b]). Suppose (b a) · r =α s with b 6∈ fa(r). Then ((b a) · r)θ =α sθ
by assumption. By Lemma 28, (b a) · rθ =α sθ. By Theorem 27, b 6∈ fa(rθ). Using
(=α[b]), [a](rθ) =α [b](sθ). By Definition 25, [a](rθ) ≡ ([a]r)θ. The result follows.

• The case (=αX). Suppose π ·XS =α π
′ ·XS using (=αX). Then π|S = π′|S and

as fa(θ(XS)) ⊆ S by assumption. The result follows.

Definition 32. Define composition θ1◦θ2 by (θ1◦θ2)(XS) ≡ (θ1(XS))θ2.

Theorem 33. (rθ)θ′ ≡ r(θ◦θ′).

Proof. By induction on r.
• The cases a, f(r1, . . . , rn) and [a]r. Straightforward.
• The case [a]r. We have:

(([a]r)θ)θ′ ≡ [a]((rθ)θ′) Definition 26
≡ [a](r(θ◦θ′)) Inductive hypothesis
≡ ([a]r)(θ◦θ′) Definition 26

The result follows.
• The case π ·XS

(π ·XS)(θ◦θ′) ≡ π · (θ◦θ′)(XS) Definition 26
≡ π · (θ(XS)θ′) Definition 32
≡ (π · θ(XS))θ′ Lemma 28
≡ ((π ·XS)θ)θ′ Lemma 28

The result follows.

4. Relation to nominal terms

Nominal terms are described fully elsewhere [27]. We inject ‘nominal’ into ‘permis-
sive’. Main results are Theorems 41, 42, and 49.

Fix a countably infinite set of nominal atoms, Ȧ. ȧ, ḃ, ċ, . . . will range over distinct
nominal atoms. Fix a bijection ι between Ȧ and comb (Definition 2). Fix a countably
infinite set of nominal unknowns. Ẋ, Ẏ , Ż, . . . will range over distinct nominal un-
knowns. A nominal permutation is a bijection π̇ on Ȧ such that dom(π̇) is finite.
π̇, π̇′, π̇′′, . . . will range over permutations.

Write π̇-1 for the inverse of π̇, ˙id for the identity permutation, and π̇◦π̇′ for function
composition, as is standard. For example, (π̇◦π̇′)(ȧ) = π̇(π̇′(ȧ))

Definition 34. Define nominal terms with the following grammar:

ṙ, ṡ, ṫ ::= ȧ | π̇ · Ẋ | [ȧ]ṙ | f(ṙ1, . . . , ṙn)

Definition 35. Define a permutation action on nominal terms with the following
rules:

π̇ · ȧ ≡ π̇(ȧ) π̇ · f(ṙ1, . . . , rn) ≡ f(π̇ · ṙ1, . . . , π̇ · rn) π̇ · [ȧ]ṙ ≡ [π̇(ȧ)](π̇ · ṙ)
π̇ · (π̇′ · Ẋ) ≡ (π̇◦π̇′) · Ẋ

12

(#ḃ)
∆ ` ȧ#ḃ

∆ ` ȧ#ṙi (1 ≤ i ≤ n)
(#f)

∆ ` ȧ#f(ṙ1, . . . , ṙn)
(#[ȧ])

∆ ` ȧ#[ȧ]ṙ

∆ ` ȧ#ṙ
(#[ḃ])

∆ ` ȧ#[ḃ]ṙ

(π̇-1(ȧ)#Ẋ ∈ ∆)
(#Ẋ)

∆ ` ȧ#Ẋ

Figure 1: Derivable freshness on nominal terms

(=ȧ)
∆ ` ȧ = ȧ

∆ ` ṙi = ṡi (1 ≤ i ≤ n)
(=f)

∆ ` f(ṙ1, . . . , ṙn) = f(ṡ1, . . . , ṡn)

∆ ` ṙ = ṡ
(=[ȧ])

∆ ` [ȧ]ṙ = [ȧ]ṡ

∆ ` (ḃ ȧ) · ṙ = ṡ ∆ ` ḃ#ṙ
(=[ḃ])

∆ ` [ȧ]ṙ = [ḃ]ṡ

(ȧ#Ẋ ∈ ∆ for every π̇(ȧ) 6= π̇′(ȧ))
(=Ẋ)

∆ ` π̇ · Ẋ = π̇′ · Ẋ

Figure 2: Derivable equality on nominal terms

Write ≡ for syntactic identity. f ranges over term-formers (Definition 1).

Definition 36. A freshness is a pair ȧ#ṙ. A freshness context is a finite set of
freshnesses of the form ȧ#Ẋ. Define derivable freshness on nominal terms by the
rules in Figure 1.

Definition 37. A equality is a pair ṙ = ṡ. Define derivable equality on nominal
terms by the rules in Figure 2.

Definition 38. Define a mapping Jπ̇K from nominal permutations to permissive nominal
permutations by Jπ̇Kι(ȧ) = ι(π(ȧ)) and Jπ̇K(c) = c for all other c. Define an interpre-
tation JṙK∆ by:

JȧK∆ ≡ ι(ȧ) Jf(ṙ1, . . . , ṙn)K∆ ≡ f(Jṙ1K∆, . . . , JṙnK∆) J[ȧ]ṙK∆ ≡ [ι(ȧ)]JṙK∆

Jπ̇ · ẊK∆ ≡ Jπ̇K ·XS where S = comb \ {ι(ȧ) | ȧ#Ẋ ∈ ∆}

Here, we make a fixed but arbitrary choice of XS for each Ẋ, injectively so that JẊK∆

and JẎ K∆ are always distinct.

JṙK∆ commutes with permutation and it preserves and reflects freshness:

Lemma 39. Jπ̇K · JṙK∆ ≡ Jπ̇ · ṙK∆

Proof. By induction on ṙ.
• The case ȧ. Suppose π̇ · ȧ = ḃ and Jπ̇K(ι(ȧ)) = ι(ḃ). Then ι(π̇ · ȧ) = ι(ḃ) = Jπ̇K(ι(ȧ))

and Jπ̇K(ι(ȧ)) = Jπ̇K · JȧK∆. The result follows.
• The case π̇′ · Ẋ.

Jπ̇ · π̇′ · ẊK∆ ≡ J(π̇◦π̇′) · ẊK∆ Definition 35
≡ Jπ̇◦π̇′K ·XS Definition 38, S = comb \ {ι(ȧ) | ȧ#Ẋ ∈ ∆}
≡ Jπ̇K · (Jπ̇′K ·XS) Definition 35
≡ Jπ̇K · (Jπ̇′ · ẊK∆) Lemma 15, Definition 38

13

• The case [ȧ]ṙ. We have:

Jπ̇ · [ȧ]ṙK∆ ≡ J[π̇(ȧ)]π̇ · ṙK∆ Definition 35
≡ [ι(π̇ · ȧ)]Jπ̇ · ṙK∆ Definition 38
≡ [ι(π̇ · ȧ)](Jπ̇K · JṙK∆) Inductive hypothesis
≡ [Jπ̇K · ι(ȧ)](Jπ̇K · JṙK∆) Definition 38
≡ Jπ̇K · J[ȧ]ṙK∆ Definition 7

The result follows.
• The case f(ṙ1, . . . , ṙn). This is routine.

Lemma 40. ι(ȧ) 6∈ fa(JṙK∆) if and only if ∆ ` ȧ#ṙ.

Proof. We handle the two implications separately.
• The case ι(ȧ) 6∈ fa(JṙK∆) implies ∆ ` ȧ#ṙ. We proceed by induction on ṙ.
• The cases ḃ and f(ṙ1, . . . , ṙn). Straightforward.
• The case [ȧ]ṙ. There are two cases to consider:

• The case [ȧ]ṙ. Using (#[ȧ]), ∆ ` ȧ#[ȧ]ṙ always.
• The case [ḃ]ṙ. Suppose ι(ȧ) 6∈ fa(J[ι(ḃ)]ṙK∆) and ι(ȧ) 6∈ fa(JṙK∆) \ {ι(ḃ)}.

Then ι(ȧ) 6∈ fa(JṙK∆), therefore ∆ ` ȧ#ṙ by hypothesis. Using (#[ḃ]),
∆ ` ȧ#[ḃ]ṙ. The result follows.

• The case π̇ · Ẋ. Suppose ι(ȧ) 6∈ fa(Jπ̇ · ẊK∆). Then ι(ȧ) 6∈ Jπ̇K · S, where
S = comb \ {ι(ȧ) | ȧ#Ẋ ∈ ∆}. But Jπ̇K · comb \ {ι(ȧ) | ȧ#Ẋ ∈ ∆} equivalent
to Jπ̇K · comb \ Jπ̇K · {ι(ȧ) | ȧ#Ẋ ∈ ∆}. Then Jπ̇K · {ι(ȧ) | ȧ#Ẋ ∈ ∆} =
{Jπ̇K · ι(ȧ) | ȧ#Ẋ ∈ ∆}. By Definition 38, and the fact permutations are
bijective, {Jπ̇K · ι(ȧ) | a#X ∈ ∆} = {ι(π̇-1 · ȧ) | π̇-1 · ȧ#X ∈ ∆}. Using (#Ẋ),
∆ ` ȧ#Ẋ. The result follows.

• The case ∆ ` ȧ#ṙ implies ι(ȧ) 6∈ fa(JṙK∆). We proceed by induction on the
derivation of ∆ ` ȧ#ṙ.
• The cases (#ḃ) and (#f). Routine.
• The case (#[ȧ]). Suppose ∆ ` ȧ#[ȧ]ṙ using (#[ȧ]). Then J[ȧ]ṙK∆ ≡ [ι(ȧ)]JṙK∆.

Further, ι(ȧ) 6∈ fa(JṙK∆) \ {ι(ȧ)}. The result follows.
• The case (#[ḃ]). Suppose ∆ ` ȧ#ṙ and ι(ȧ) 6∈ fa(ṙ) by assumption. Using

(#[ḃ]), ∆ ` ȧ#[ḃ]ṙ. Then, fa(J[ḃ]ṙK∆) = fa(JṙK∆) \ {ι(ḃ)}. The result follows.
• The case (#Ẋ). Suppose π̇-1(ȧ)#Ẋ ∈ ∆, and ∆ ` ȧ#π̇ · Ẋ using (#Ẋ).

Then Jπ̇ · ẊK∆ = Jπ̇K · XS where S = comb \ {ι(ȧ) | ȧ#Ẋ ∈ ∆}. Further,
fa(Jπ̇K ·XS) = Jπ̇K · S. The result follows by Definition 38.

Theorem 41. JṙK∆ =α JṡK∆ implies ∆ ` ṙ = ṡ.

Proof. By induction on the derivation of JṙK∆ =α JṡK∆.
• The case ȧ. We have JȧK∆ = ι(ȧ). Using (=αaa), s ≡ ȧ and JȧK∆ =α JȧK∆. Using

(=ȧ), ∆ ` ȧ = ȧ. The result follows.
• The case f(ṙ1, . . . , ṙn). Suppose Jf(ṙ1, . . . , ṙn)K∆ =α Jf(ṡ1, . . . , ṡn)K∆. Then JṙiK∆ =α

JṡiK∆ for 1 ≤ i ≤ n. By hypothesis, ∆ ` ṙi = ṡi for 1 ≤ i ≤ n. Using
(=αf), f(Jṙ1K∆, . . . , JṙnK∆) =α f(Jṡ1K∆, . . . , JṡnK∆). Then f(Jṙ1K∆, . . . , JṙnK∆) =
Jf(ṙ1, . . . , ṙn)K∆. The result follows.

• The case (=α[a]). Suppose JṙK∆ =α JṡK∆ and ∆ ` ṙ = ṡ. Using (=α[a]), [ι(ȧ)]JṙK∆ =α

[ι(ȧ)]JṡK∆. Using (=[ȧ]), ∆ ` [ȧ]ṙ = [ȧ]ṡ. Then [ι(ȧ)]JṙK∆ = J[ȧ]ṙK∆. The result
follows.

14

• The case (=α[b]). Suppose (ι(ḃ) ι(ȧ)) · JṙK∆ =α JṡK∆ and ι(ḃ) 6∈ fa(JṙK∆). By
Lemmas 39 and 40, J(ḃ ȧ) · ṙK∆ =α JṡK∆ and ∆ ` ḃ#ṙ. By hypothesis, ∆ `
(ḃ ȧ) · ṙ = ṡ. Using (=[ḃ]), [ȧ]ṙ = [ḃ]ṡ. The result follows.

• The case (=αX). Suppose Jπ̇K|S = Jπ̇′K|S where S = comb\{ι(ȧ) | ȧ#Ẋ∈∆}. ι is
injective, so a#Ẋ ∈ ∆ for all ȧ such that π̇(ȧ) 6= π̇′(ȧ). The result follows.

Theorem 42. If ∆ ` ṙ = ṡ then JṙK∆ =α JṡK∆.

Proof. By induction on the derivation of ∆ ` ṙ = ṡ.
• The case (=ȧ). Straightforward.
• The case (=f). Routine, by the inductive hypotheses.
• The case (=[ȧ]). Suppose ∆ ` ṙ = ṡ and JṙK∆ =α JṡK∆. Using (=[ȧ]), ∆ `

[ȧ]ṙ = [ȧ]ṡ. Then, J[ȧ]ṙK∆ = [ι(ȧ)]JṙK∆ and J[ȧ]ṡK∆ = [ι(ȧ)]JṡK∆. Using (=α[a]),
[ι(ȧ)]JṙK∆ =α [ι(ȧ)]JṡK∆ whenever JṙK∆ =α JṡK∆. The result follows.

• The case (=[ḃ]). Suppose ∆ ` (ḃ ȧ) · ṙ = ṡ and ∆ ` ḃ#ṙ. By hypothesis and
Lemma 39, (ḃ ȧ) · JṙK∆ =α JṡK∆. By Lemma 40, ι(ḃ) 6∈ fa(JṙK∆). The result follows
by (=α[b]).

• The case (=Ẋ). Recall that Jπ̇ · ẊK∆ = Jπ̇K ·XS and Jπ̇′ · ẊK∆ = Jπ̇′K ·XS where
S = comb \ {ι(ȧ) | ȧ#Ẋ ∈ ∆}. Suppose π̇(ȧ) 6= π̇′(ȧ) implies ∆ ` ȧ#Ẋ. By
Lemma 40, Jπ̇K(ι(ȧ)) 6= Jπ̇′K(ι(ȧ)) implies ι(ȧ) 6∈ S. The result follows by (=αX).

Definition 43. A substitution θ̇ is a function from nominal unknowns to nominal
terms such that {Ẋ | θ̇(Ẋ) 6≡ ˙id · Ẋ} is finite. θ̇, θ̇′, θ̇′′, . . . will range over nominal
substitutions. Write ˙id for the identity, mapping Ẋ to ˙id · Ẋ.

Definition 44. Define a substitution action on nominal terms by the following rules:

ȧθ̇ ≡ ȧ f(ṙ1, . . . , ṙn)θ̇ ≡ f(ṙ1θ̇, . . . , ṙnθ̇) ([ȧ]ṙ)θ̇ ≡ [ȧ](ṙθ̇) (π̇·Ẋ)θ̇ ≡ π̇·θ̇(Ẋ)

Definition 45. A unification problem Ṗ r is a finite multiset of freshnesses and
equalities. A solution to Ṗ r is a pair (∆, θ̇) such that ∆ ` ȧ#ṙθ̇ for every ȧ#ṙ ∈ Ṗ r,
and ∆ ` ṙθ = ṡθ for every ṙ = ṡ ∈ Ṗ r. This follows [27, Definition 3.1]. We extend our
interpretation to solutions by:

J(∆, θ̇)K(XS) ≡ Jθ̇(X)K∆ if id ·XS≡JXK∆ J(∆, θ̇)K(Y T) ≡ id ·Y T otherwise

Lemma 46. JṙK∆J(∆, θ̇)K ≡ Jṙθ̇K∆.

Proof. By induction on ṙ.
• The cases ȧ and f(ṙ1, . . . , ṙn). Routine.
• The case [ȧ]ṙ. We have:

J([ȧ]ṙ)θ̇K∆ ≡ J[ȧ]ṙθ̇K∆ Definition 44
≡ [ι(ȧ)]Jṙθ̇K∆ Definition 38
≡ [ι(ȧ)]JṙK∆J(∆, θ̇)K Inductive hypothesis
≡ ([ι(ȧ)]JṙK∆)J(∆, θ̇)K Fact
≡ J[ȧ]ṙK∆J(∆, θ̇)K Definition 38

The result follows.

15

• The case π̇ · Ẋ. We have:

J(π̇ · Ẋ)θ̇K∆ ≡ Jπ̇ · θ̇(Ẋ)K∆ Definition 44
≡ Jπ̇K · Jθ̇(Ẋ)K∆ Definition 38
≡ Jπ̇K · Jθ̇K(JẊK∆)

The result follows.

Definition 47. Define JṖ rK∆ by mapping ṙ = ṡ to JṙK∆ ?=? JṡK∆ and mapping ȧ#ṙ
to (b ι(ȧ)) · JṙK∆ ?=? JṙK∆, for some choice of fresh b (so b 6∈ fa(JṙK∆); in fact, it suffices
to choose some b 6∈ comb).

Lemma 48. Suppose b 6∈ fa(r). Then a 6∈ fa(r) if and only if (b a) · r =α r.

Proof. We handle the two implications separately.
• The case a 6∈ fa(r) implies (b a) · r =α r. We proceed by induction on r.

• The case c. Straightforward.
• The case f(r1, . . . , rn). Easy, by the inductive hypotheses.
• The cases [a]r and [b]r. We handle only the [a]r case, as the other is similar.

We show (b a) · [a]r =α [a]r where b 6∈ fa([a]r), hence b 6∈ fa(r) and a 6∈ fa(r).
By Definition 7, (b a) · [a]r =α [b](b a) · r. By the rules in Definition 11, we
must show (a b) · ((b a) · r) =α r where a 6∈ fa((b a) · r). By Lemma 16,
this is equivalent to b 6∈ fa(r), which we have by assumption. By Lemma 15,
(a b) · ((b a) · r) =α ((a b)◦(b a)) · r, and as π = π-1, we have r =α r. The result
follows from Theorem 24.

• The case [c]r. Suppose b 6∈ fa([c]r), a 6∈ fa([c]r) and a, b 6∈ fa(r). We show
(b a) · [c]r =α [c]r. By Definition 7, (b a) · [c]r ≡ [c](b a) · r. Using (=α[a]) and
the inductive hypothesis, (b a) · r =α r.

• The case π ·XS . Suppose b 6∈ fa(π ·XS), a 6∈ fa(π ·XS) and a, b 6∈ π · S. By
Definition 7, (b a) · (π ·XS) ≡ ((b a)◦π) ·XS . Using (=αX), ((b a)◦π) ·XS =α

π ·XS whenever ((b a)◦π)|S = π|S . As a, b 6∈ π · S, ((b a)◦π)|S = π|S , and the
result follows.

• The case (b a) · r =α r implies a 6∈ fa(r). We proceed by induction on r.
• The case a, b, c and f(r1, . . . , rn). These are routine.
• The case f(r1, . . . , rn). By hypotheses, (b a)·r1 =α r1 . . . (b a)·rn =α rn implies
a 6∈ fa(r1) . . . a 6∈ fa(rn). As fa(f(r1, . . . , rn)) = fa(r1) ∪ . . . ∪ fa(rn), the result
follows.

• The cases [a]r and [b]r. We handle only the [a]r case, as the other is similar.
Suppose (b a) · [a]r =α [a]r. By Definition 7, (b a) · [a]r ≡ [b](b a) · r. By the
rules in Definition 11, [b](b a) · r =α [a]r whenever (a b) · ((b a) · r) =α r with
a 6∈ fa((b a) · r). By Definition 7, and as π = π-1, (a b) · ((b a) · r) ≡ r. By
assumption, b 6∈ fa(r). By Lemma 16, a 6∈ fa((b a) · r). The result follows.

• The case [c]r. By hypothesis, (b a)·r =α r implies a 6∈ fa(r). Then [c](b a)·r ≡
(b a) · [c]r. The result follows.

• The case π·XS . Suppose (b a)·π·XS =α π·XS . By Definition 7, (b a)·π·XS ≡
((b a)◦π)·XS . Using (=αX), ((b a)◦π)·XS =α π·XS whenever (b a)◦π|S = π|S .
However, (b a)◦π|S = π|S only when b, a 6∈ π · S. The result follows.

No solutions go missing, moving from the nominal to the permissive world:

16

Theorem 49. (∆, θ̇) solves Ṗ r if and only if J(∆, θ̇)K solves JṖ rK∆.

Proof. We handle the two implications separately:
• The case (∆, θ̇) solves Ṗ r implies J(∆, θ̇)K solves JṖ rK∆. Suppose ∆ ` ṙθ̇ = ṡθ̇.

By Lemma 46 and Theorem 42, JṙK∆J(∆, θ̇)K =α JṡK∆J(∆, θ̇)K.
Suppose ∆ ` a#ṙθ̇. By Lemma 40, ι(ȧ) 6∈ fa(Jṙθ̇K∆). By Lemma 46, ι(ȧ) 6∈
fa(JṙK∆J(∆, θ̇)K). By Lemma 48, (b ι(ȧ)) · JṙK∆J(∆, θ̇)K =α JṙK∆J(∆, θ̇)K, where b is
fresh (see Definition 47). By Lemma 28, ((b ι(ȧ)) · JṙK∆)J(∆, θ̇)K =α JṙK∆J(∆, θ̇)K.
The result follows.

• The case J(∆, θ̇)K solves JṖ rK∆ implies (∆, θ̇) solves Ṗ r. Suppose JṙK∆J(∆, θ̇)K =α

JṡK∆J(∆, θ̇)K. By Theorem 41, ∆ ` rθ = sθ.
Suppose ((b ι(ȧ))·JṙK∆)J(∆, θ̇)K =α JṙK∆J(∆, θ̇)K. By Lemma 28, (b ι(ȧ))·JṙK∆J(∆, θ̇)K =α

JṙK∆J(∆, θ̇)K. By Lemma 48, ι(ȧ) 6∈ fa(JṙK∆J(∆, θ̇)K). By Lemma 46, ι(ȧ) 6∈
fa(Jṙθ̇K∆). By Lemma 40, ∆ ` a#ṙθ̇. The result follows.

5. Support inclusion problems

Nominal unification has ‘freshness problems’; the algorithm of [27] solves these con-
currently with equality problems. We prefer to factor the algorithm differently, so that
problems to do with free atoms are solved separately from problems to do with equali-
ties. The linkage is isolated in rule (I3) (Definition 75). Permissions sets differ finitely
from comb or ∅, so although we are manipulating infinite sets, we may represent them
as finite data structures in any implementation.

5.1. Simplification reduction and normal forms
Definition 50. A support inclusion is a pair r v T of a term and a permissions
set. A support inclusion problem is a finite multiset of support inclusions; Inc will
range over support inclusion problems. Call θ a solution to Inc when fa(rθ) ⊆ T for
every r v T ∈ Inc. Write Sol(Inc) for the solutions of Inc. Call Inc solvable when
Sol(Inc) 6= ∅.

Definition 51. Define a simplification rewrite relation by:

(va) a v T, Inc =⇒ Inc (a ∈ T)
(vf) f(r1, . . . , rn) v T, Inc =⇒ r1 v T, . . . , rn v T, Inc
(v[]) [a]r v T, Inc =⇒ r v T ∪ {a}, Inc
(vX) π ·XS v T, Inc =⇒ XS v π-1 · T, Inc (S 6⊆ π-1 · T, π 6= id)
(vX′) π ·XS v T, Inc =⇒ Inc (S ⊆ π-1 · T)

Theorem 52. If Inc =⇒ Inc′ then Sol(Inc) = Sol(Inc′).

Proof. First, we make the following claims:
Claim 1: If a ∈ T then fa(aθ) ⊆ T always. As fa(aθ) = fa(a) = {a}.
Claim 2: fa(f(r1, . . . , rn)θ) ⊆ T if and only if fa(riθ) ⊆ T for 1 ≤ i ≤ n. As fa(f(r1, . . . , rn)) =⋃

1≤i≤n fa(ri), and f(r1, . . . , rn)θ ≡ f(r1θ, . . . , rnθ).
Claim 3: fa(([a]s)θ) ⊆ T if and only if fa(sθ) ⊆ T ∪ {a}. Suppose fa(([a]s)θ) ⊆ T ,

therefore fa([a]sθ) ⊆ T . Then fa(sθ) \ {a} ⊆ T , therefore fa(sθ) ⊆ T ∪ {a}. The
result follows. The reverse direction is similar.

17

Claim 4: fa((π ·XS)θ) ⊆ T if and only if fa(XSθ) ⊆ π-1 · T . We consider only one case.
Suppose θ = [XS :=t] and fa(t) ⊆ S, therefore fa((π ·XS)[XS :=t]) = fa(π · t) hence
fa(π · t) ⊆ T by assumption. By Lemma 16, π · fa(t) ⊆ T . By Lemmas 15 and 16,
(π-1◦π) · fa(t) ⊆ π-1 · T . As π-1◦π = id , we have fa(XS [XS :=t]) ⊆ π-1 · T . The
result follows.
Alternatively, suppose fa(t) 6⊆ S. Then fa((π · XS)[XS :=t]) = fa(π · XS). By
Lemma 16, π · fa(XS) ⊆ T . By Lemmas 15 and 16, fa(XS [XS :=t]) ⊆ π-1 · T . The
result follows. The reverse direction is similar.

Claim 5: If S ⊆ π-1 ·T then fa(π ·XSθ) ⊆ T always. Note, S ⊆ π-1 ·T if and only if π ·S ⊆
T and fa(π ·XS) = π ·S. By Lemmas 28 and 16, fa(π ·XSθ) = π · fa(θ(XS)) ⊆ π ·S.
Then, fa(π ·XSθ) ⊆ T . The result follows.

We proceed by case analysis on Inc =⇒ Inc′ (Definition 51):
• The case (va). Suppose a ∈ T . If θ ∈ Sol(a v T, Inc′) then θ ∈ Sol(Inc′) and the

result follows. Otherwise, suppose θ ∈ Sol(Inc′). Using Claim 1, fa(aθ) ⊆ T . The
result follows.

• The case (vf). From Claim 2.
• The case (v[]). If θ ∈ Sol(r v T ∪ {a}, Inc′) then fa(rθ) ⊆ T ∪ {a}. By Claim 3,

fa([a](rθ)) ⊆ T . As fa([a](rθ)) = fa(([a]r)θ) and θ ∈ Sol(Inc′). The result follows.
The reverse direction is similar.

• The case (vX). Suppose S 6⊆ π-1 · T , π 6= id and θ ∈ Sol(π · XS v T, Inc), so
fa((π ·XS)θ) ⊆ T . By Claim 4, fa(XSθ) ⊆ π-1 ·T , and as θ ∈ Sol(Inc′). The result
follows. The reverse direction is similar.

• The case (vX′). Suppose S ⊆ π-1·T . If θ ∈ Sol(π·XS , Inc′) then θ ∈ Sol(Inc′) and
the result follows. Otherwise, suppose θ ∈ Sol(Inc′). By Claim 5, fa(π ·XSθ) ⊆ T .
By Lemma 28, fa((π ·XS)θ) ⊆ T . The result follows.

Definition 53. Define the size of a support inclusion problem size(Inc) to be a tuple
(T,A, P, S), where:
• T is the number of term formers appearing within terms in Inc,
• A is the number of abstractions appearing within terms in Inc,
• P is the number of permutations, distinct from the identity permutation, appearing

within terms in Inc, and
• S is the number of support inclusions within Inc.

Order tuples lexicographically.

Theorem 54. Support inclusion problem simplication is strongly normalizing.

Proof. By case analysis on r v T, Inc′, showing that each rule reduces the measure
(Definition 53).
• The case a v T, Inc′. Suppose a ∈ T , size(a v T, Inc′) = (T,A, P, S), and a v
T, Inc′ =⇒ Inc′ using (va). Then size(Inc′) = (T,A, P, S − 1).

• The case f(r1, . . . , rn) v T, Inc′. Suppose size(f(r1, . . . , rn) v T, Inc′) = (T,A, P, S)
and f(r1, . . . , rn) v T, Inc′ =⇒ r1 v T, . . . , rn v T, Inc′ by (vf). Then size(r1 v
T, . . . , rn v T, Inc′) = (T −1, A, P, S+n−1). The result follows from the ordering.

• The case [a]r v T, Inc′. Suppose size([a]r v T, Inc′) = (T,A, P, S) and [a]r v
T, Inc′ =⇒ r v T ∪ {a}, Inc′ using (v[]). Then size(r v T ∪ {a}, Inc′) = (T,A −
1, P, S) and the result follows.

• The case π · XS v T, Inc′. Suppose size(π · XS v T, Inc′) = (T,A, P, S). Then,
if S ⊆ π-1 · T , we have π · XS v T, Inc′ =⇒ Inc′ using (vX′), with measure

18

(T,A, P, S − 1). Otherwise, if we have S 6⊆ π-1 · T and π 6= id , we have π ·XS v
T, Inc′ =⇒ XS v π-1 · T, Inc′ with measure (T,A, P − 1, S).

Theorem 55. Support inclusion problem simplification is strongly confluent.
As an immediate corollary, support inclusion simplification is confluent.

Proof. We prove the result by induction on the cardinality of Inc.
• The case Inc = ∅. As no rewrites are applicable.
• The case Inc = r v T, Inc′. Note for each r v T only one simplification rule may

be applied. The result then follows from the inductive hypothesis.
The corollary follows, as all strongly confluent rewrite relations are confluent (see [1] for
details).

We conclude with a few useful observations:

Definition 56. Write nf (Inc) for the unique =⇒-normal form of Inc, guaranteed to
exist by Theorems 54 and 55.

Definition 57. Call Inc consistent when a v T 6∈ nf (Inc) for all atoms a and per-
missions sets T .

Lemma 58. If Inc is consistent then all inc ∈ nf (Inc) have the form XS v T where
S 6⊆ T .

Proof. By inspection.

5.2. Building solutions
Our main results are Theorems 62 and 70.

Definition 59. Define fV (Inc) by fV (Inc) =
⋃
{fV (r) | ∃T.r v T ∈ Inc}. (fV (Inc) is

‘the unknowns appearing in terms appearing in Inc’.)

Recall from Definition 3 that V ranges over finite sets of unknowns.

Definition 60. Suppose Inc is consistent. For every XS ∈ V make a fixed but arbitrary
choice of X ′S

′
such that X ′S

′
6∈ V and S′ =

⋂
{T | XS v T ∈ nf (Inc)}.

We make our choice injectively; for distinct XS ∈ fV (Inc) and Y T ∈ fV (Inc), we
choose X ′S

′
and Y ′

T ′ distinct. It will be convenient to write V ′VInc for the set of our
choices {X ′S

′
| XS ∈ V}. Define a substitution ρVInc by:

ρVInc(X
S) ≡ id ·X ′S

′

if XS ∈ V ρVInc(Y
T) ≡ id · Y T otherwise.

It is easy to verify that fa(ρVInc(X
S)) ⊆ S always.

Lemma 61. If Inc is consistent then ρVInc ∈ Sol(Inc). (‘ρVInc solves Inc’.)

Proof. Suppose Inc is a =⇒-normal form. If XS v T ∈ Inc then ρVInc(X) = id ·X ′S
′

for
an S′ which satisfies S′ ⊆ T . The result follows.

More generally, if Inc is not a =⇒-normal form, by Theorem 52 Sol(Inc) = Sol(nf (Inc)),
and we use the previous paragraph.

Theorem 62. Inc is consistent (Definition 57) if and only if Inc is solvable (Defini-
tion 50).

19

Proof. By Theorem 52 Sol(Inc) = Sol(nf (Inc)), so it suffices to show the result for the
case when Inc is a =⇒-normal form.

Suppose Inc is inconsistent, so nf (Inc) contains a support inclusions of the form
a v T where a 6∈ T . Then aθ ≡ a always, so there is no substitution θ such that aθ ⊆ T .
Conversely, if Inc is consistent, the result follows by Lemma 61.

Definition 63. Suppose that Inc is consistent, fV (Inc) ⊆ V, and θ ∈ Sol(Inc). Define
a substitution θ−ρVInc by:
• (θ−ρVInc)(X

′S′) ≡ θ(XS) if XS ∈ V and ρVInc(X
S) ≡ id ·X ′S

′
.

• (θ−ρVInc)(X
S) ≡ θ(XS) if XS 6∈ V.

We check that Definition 63 is well-defined:

Lemma 64. If θ − ρVInc exists then it is well-defined.

Proof. Suppose θ − ρVInc exists. Then:
• SupposeXS 6= Y T , XS 6∈ V and Y T 6∈ V. By Definition 63, (θ−ρVInc)(X

S) ≡ θ(XS)
and (θ − ρVInc)(Y

T) ≡ θ(Y T). The result follows, as substitutions are well-defined.
• Suppose X ′S

′ 6= Y ′T
′
, ρVInc(X

S) ≡ id ·X ′S′ , ρVInc(Y
T) ≡ id · Y ′T ′ and XS , Y T 6∈ V.

Then (θ − ρVInc)(X
′S′) ≡ θ(XS) and (θ − ρVInc)(Y

′T ′) ≡ θ(Y T). Since XS 6= Y T , the
result follows as substitutions are well-defined.

• Suppose X ′S
′ 6= Y T , ρVInc(X

S) ≡ id · X ′S′ , XS 6∈ V and Y T ∈ V. Then (θ −
ρVInc)(Y

T) ≡ θ(Y T) and (θ − ρVInc)(X
′S′) ≡ θ(XS). By Definition 60, ρVInc(X

S) 6≡
id · Y T as Y T ∈ V. The result follows as substitutions are well-defined.

The case Y ′T
′ 6= XS , ρVInc(Y

T) ≡ id · Y ′T ′ , Y T 6∈ V and XS ∈ V is similar to the case
for X ′S

′ 6= Y T , ρVInc(X
S) ≡ id ·X ′S′ , XS 6∈ V and Y T ∈ V.

Lemma 65. If θ ∈ Sol(Inc) then ρVInc exists.

Proof. By assumption, Inc is solvable. By Theorem 62, Inc is consistent. Using Defini-
tion 60, ρVInc exists.

Lemma 66. If ρVInc exists, then it is well-defined.

Proof. Suppose ρVInc exists and XS 6= Y T . Then:
• XS ∈ V and Y T ∈ V. Then ρVInc(X

S) = id · X ′S
′

and ρVInc(Y
T) = id · Y ′T

′
. By

Definition 60, X ′S
′

and Y ′
T ′ are chosen so X ′S

′
6= Y ′

T ′ . The result follows.
• XS 6∈ V and Y T 6∈ V. Then ρVInc(X

S) = id ·XS and ρVInc(Y
T) = id ·Y T . The result

follows.
• XS ∈ V and Y T 6∈ V. Then ρVInc(Y

T) = id · Y T and ρVInc(X
S) = id · X ′S

′
with

X ′
S′ 6∈ V. The result follows.

• The case XS 6∈ V and Y T ∈ V is similar to the case for XS ∈ V and Y T 6∈ V.

Lemma 67. If Inc =⇒ Inc′ then fV (Inc′) ⊆ fV (Inc).

Proof. By case analysis on the rules defining =⇒ (Definition 51).
• The case (va). Suppose a ∈ T and a v T, Inc′ =⇒ Inc′ using (va). By Defini-

tion 59, fV (a v T, Inc′) = fV (Inc′). The result follows.
• The case (vf). Suppose f(r1, . . . , rn) v T, Inc′ =⇒ r1 v T, . . . , rn v T, Inc′ using

(vf). By Definition 59, fV (f(r1, . . . , rn) v T, Inc′) = fV (r1 v T, . . . , rn v T, Inc′).
The result follows.

20

• The case (v[]). Suppose [a]r v T, Inc′ =⇒ r v T ∪ {a}, Inc′ using (v[]). By
Definition 59, fV ([a]r) = fV (r). By Definition 10, fV ([a]r v T, Inc′) = fV (r v
T ∪ {a}, Inc′). The result follows.

• The case (vX). Suppose S 6⊆ π-1 · T , π 6= id and π · XS v T, Inc′ =⇒ XS v
π-1 · T, Inc′ using (vX). By Definition 10, fV (π · XS) = XS = fV (XS). By
Definition 59, fV (π ·XS v T, Inc′) = fV (XS v π-1 · T, Inc′). The result follows.

• The case (vX′). Suppose S ⊆ π-1 · T and π ·XS , Inc′ =⇒ Inc′ using (vX′). By
Definition 59, fV (Inc′) ⊆ fV (π ·XS , Inc′). The result follows.

Corollary 68. fV (nf (Inc)) ⊆ fV (Inc)

Proof. By Lemma 67.

Lemma 69. If θ ∈ Sol(Inc) and fV (Inc) ⊆ V then θ−ρVInc is a substitution.

Proof. By Lemma 65, ρVInc exists. We show fa((θ−ρVInc)(X
′S′)) ⊆ S by cases:

• The case id ·X ′S
′
≡ ρ(XS) for XS ∈ V.

By Corollary 68, fV (nf (Inc)) ⊆ fV (Inc). Then fV (nf (Inc)) ⊆ V, as fV (Inc) ⊆ V
by assumpyion. There are two sub-cases:
• The case XS 6∈ fV (nf (Inc)). Then S = S′ and (θ−ρVInc)(X

′S) = θ(XS) by
Definition 63. By assumption, fa(θ(XS)) ⊆ S. The result follows.

• The caseXS ∈ fV (nf (Inc)). By assumption, θ ∈ Sol(Inc) so θ ∈ Sol(nf (Inc))
by Theorem 52. by Definition 50, fa(θ(XS)) ⊆ T for every T such that
XS v T ∈ nf (Inc). By Definition 63, S′ =

⋂
{T | XS v T ∈ nf (Inc)}.

The result follows.
• Otherwise, (θ−ρVInc)(X

S) ≡ θ(XS) and fa(θ(XS)) ⊆ S by assumption.

Theorem 70. If θ ∈ Sol(Inc) and fV (Inc) ⊆ V then θ(XS) ≡ (ρVInc ◦(θ−ρVInc))(X
S) for

every XS ∈ V.

Proof. For some fresh X ′
S 6∈ V, ρ(XS) ≡ id · X ′S , and (θ−ρVInc)(X

′S) ≡ θ(XS). The
result follows by Lemma 15.

6. Permissive nominal unification problems

6.1. Problems, solutions, the unification algorithm
Definition 71. An equality is a pair r ?=? s. A problem Pr is a finite multiset of
equalities. Define Prθ by:

Prθ = {rθ ?=? sθ | r ?=? s ∈ Pr}

Definition 72. θ solves Pr when r ?=? s ∈ Pr implies rθ =α sθ. Write Sol(Pr) for
the set of solutions to Pr. Call Pr solvable when Sol(Pr) is non-empty.

A solution to Pr ‘makes the equalities valid’, as for first- and higher-order unifica-
tion. This simplifies the nominal unification notion of solution (Definition 45 or [27,
Definition 3.1]) based on ‘a substitution + a freshness context’. We can do this, because
in permissive nominal terms, freshness information is fixed. Lemma 73 will be useful:

Lemma 73. θ◦θ′ ∈ Sol(Pr) if and only if θ′ ∈ Sol(Prθ).

21

(?=?a) V; a ?=? a, Pr =⇒ V;Pr
(?=?f) V; f(r1, . . .) ?=? f(s1, . . .), P r =⇒ V; r1 ?=? s1, . . . , P r
(?=?[a]) V; [a]r ?=? [a]s, Pr =⇒ V; r ?=? s, Pr
(?=?[b]) V; [a]r ?=? [b]s, Pr =⇒ V; (b a) · r ?=? s, Pr

(b 6∈ fa(r))
(?=?X) V;π ·XS

?=? π ·XS , P r =⇒ V;Pr

(I1) V;π ·XS
?=? s, Pr

[XS :=π-1·s]
=⇒ V;Pr[XS :=π-1 · s]

(XS 6∈ fV (s), fa(s) ⊆ π · S)

(I2) V; r ?=? π ·XS , P r
[XS :=π-1·r]

=⇒ V;Pr[XS :=π-1 · r]
(XS 6∈ fV (r), fa(r) ⊆ π · S)

(I3) V;Pr
ρVPrv=⇒ V ∪ V ′VPrv;Pr(ρ

V
Prv

)
(Prv consistent and non-trivial)

Figure 3: Simplification rules for problems

Proof. Suppose θ◦θ′ ∈ Sol(Pr) and r ?=? s ∈ Pr. We have:

(rθ)θ′ ≡ r(θ◦θ′) Theorem 33
=α s(θ◦θ′) Assumption
≡ (sθ)θ′ Theorem 33

By Definition 72, θ′ ∈ Sol(Prθ).
For the reverse implication, suppose θ′ ∈ Sol(Prθ) and rθ ?=? sθ ∈ Sol(Prθ). Then:

r(θ◦θ′) ≡ (rθ)θ′ Theorem 33
=α (sθ)θ′ Assumption
≡ s(θ◦θ′) Theorem 33

By Definition 72, θ◦θ′ ∈ Sol(Pr). The result follows.

Definition 74. If Pr is a problem, define a support inclusion problem Prv by:

Prv = {r v fa(s), s v fa(r) | r ?=? s ∈ Pr}

Call a support inclusion problem Inc non-trivial when nf (Inc) 6= ∅.

Definition 75. Define a simplification rewrite relation V;Pr =⇒ V ′;Pr′ on unifica-
tion problems by the rules in Figure 3.3 Call (?=?a), (?=?f), (?=?[a]), (?=?[b]), and
(?=?X) non-instantiating rules.

Call (I1), (I2), and (I3) instantiating rules. Write =⇒∗ for the transitive and
reflexive closure of =⇒.

In (I3) we insist that Prv is non-trivial to avoid indefinite rewrites. We insist Prv
is consistent so that ρVPrv exists. ρVPrv and V ′VPrv are defined in Definition 60.

Lemma 76. If V;Pr =⇒ V;Pr′ by a non-instantiating rule then Sol(Pr) = Sol(Pr′).

3Note to referees: an error in a previous version of this paper, which made the algorithm incomplete,
has been corrected.

22

Proof. As the empty set cannot be simplified, it must be the case that Pr = r ?=? s, Pr
′.

It suffices to perform case analysis on the simplification of r ?=? s. We assume, without
loss of generality, that Pr′ has been simplified by non-instantiating rules as much as
possible.
• The cases (?=?a), (?=?f) and (?=?X). Straightforward.
• The case (?=?[a]). Suppose Pr = [a]r ?=? [a]s, Pr′ and [a]r ?=? [a]s, Pr′ =⇒
r ?=? s, Pr

′ using (?=?[a]). Then:
• Suppose ([a]r)θ =α ([a]s)θ. By Definition 26, [a](rθ) =α [a](sθ). By the rules

in Definition 11, rθ =α sθ. The result follows.
• Suppose rθ =α sθ. By the rules in Definition 26, [a](rθ) =α [a](sθ). By

Definition 26, ([a]r)θ =α ([a]s)θ. The result follows.
• The case (?=?[b]). Suppose Pr = [a]r ?=? [b]s, Pr′, b 6∈ fa(r) and Pr =⇒ (b a) ·
r ?=? s, Pr

′ using (?=?[b]). Then:
• Suppose ([a]r)θ =α ([b]s)θ. By Definition 26, [a](rθ) =α [b](sθ). By the rules in

Definition 11, (b a)·(rθ) =α sθ. By Lemma 28 and Theorem 24, ((b a)·r)θ =α sθ.
The result follows.

• Suppose ((b a) · r)θ =α sθ. By Lemma 28 and Theorem 24, (b a) · (rθ) =α sθ.
By Theorem 27, b 6∈ fa(rθ). Using (=α[b]), [a](rθ) =α [b](sθ). By Definition 26
[a](rθ) =α [b](sθ). The result follows.

Definition 77. Define fV (Pr) =
⋃
{fV (r) ∪ fV (s) | r ?=? s ∈ Pr}.

Definition 78. Suppose V is a set of unknowns. Define θ|V by:4

θ|V(X) ≡ θ(X) if X ∈ V θ|V(X) ≡ id ·X otherwise

Definition 79. If Pr is a problem, define a unification algorithm by:

1. Rewrite fV (Pr);Pr using the rules of Definition 75 as much as possible.
2. If we reduce to V ′; ∅, we succeed and return θ|V where θ is the functional compo-

sition of all the substitutions labelling rewrites (we take θ = id if there are none).
Otherwise, we fail.

Lemma 80. Suppose θ(XS) =α θ
′(XS) for all XS ∈ fV (Pr). Then θ ∈ Sol(Pr) if and

only if θ′ ∈ Sol(Pr).

Proof. By Definition 72 it suffices to show rθ =α sθ if and only if rθ′ =α sθ
′, for every

r ?=? s ∈ Pr. This is easy using Theorem 30 and the fact by construction (Definition 77)
that fV (r) ⊆ fV (Pr) and fV (s) ⊆ fV (Pr).

Definition 81. Write θ−XS for the substitution such that:

(θ−XS)(XS) ≡ id ·XS and (θ−XS)(Y T) ≡ θ(Y T) for all other Y T .

Theorem 82. Suppose XSθ =α sθ and XS 6∈ fV (s). Then

XSθ =α X
S([XS :=s]◦(θ−XS)) and Y T θ =α Y

T ([XS :=s]◦(θ−XS))

4We overload |, for technical convenience: π|S is partial and θ|V is total.

23

Proof. We reason as follows:

XS([XS :=s]◦(θ−XS)) ≡ s(θ−XS) Definition 26
≡ sθ XS 6∈ fV (s), Theorem 30
=α XSθ Assumption

Y T ([XS :=s]◦(θ−XS)) ≡ Y T (θ−XS) Definition 32
≡ Y T θ Definition 81

6.2. Simplification rewrites calculate principal solutions
Definition 83. Write θ1 ≤ θ2 when there exists some θ′ such that XSθ1 =α X

S(θ2 ◦ θ′)
always. Call ≤ the instantiation ordering.

Definition 84. A principal (or most general) solution to a problem Pr is a solution
θ ∈ Sol(Pr) such that θ ≤ θ′ for all other θ′ ∈ Sol(Pr).

Our main results are Theorems 88 — the unification algorithm from Definition 79
calculates a solution — and 93 — the solution it calculates, is principal.

Lemma 85. If fV (Pr) ⊆ V and V;Pr =⇒ V ′;Pr′ using a non-instantiating rule, then
fV (Pr′) ⊆ V.

Proof. As the empty set cannot be simplified, it must be that Pr = r ?=? s, Pr′.
Therefore, we perform case analysis on the simplification of r ?=? s.
• The cases (?=?a), (?=?f) and (=αX). Routine.
• The case (?=?[a]). Suppose V; [a]r ?=? [a]s, Pr′ and fV ([a]r ?=? [a]s, Pr′) ⊆ V,

then V; [a]r ?=? [a]s, Pr′ =⇒ V; r ?=? s, Pr′ using (?=?[a]). By Definitions 10
and 77, fV (r ?=? s, Pr

′) ⊆ V. The result follows.
• The case (?=?[b]). Suppose V; [a]r ?=? [b]s, Pr′, b 6∈ fa(r) with fV ([a]r ?=?

[b]s, Pr′) ⊆ V, then V; [a]r ?=? [b]s, Pr′ =⇒ V; (b a) · r ?=? s, Pr
′ using (?=?[a]).

By Definitions 10 and 77 and Lemma 17, fV ((b a) · r) ⊆ V. The result follows.

Lemma 86. If fV (Pr) ⊆ V and V;Pr θ=⇒ V ′;Pr′θ using an instantiating rule, then
fV (Pr′θ) ⊆ V.

Proof. There are two cases to consider:
• The cases (I1) and (I2). We handle the first case, the second is similar. Suppose

fV (π ·XS
?=? s, Pr

′) ⊆ V and V;π ·XS
?=? s, Pr

′ [XS :=π-1·s]
=⇒ V ′;Pr′[XS :=π-1 · s]

using (I1). By Definition 77 and Lemma 29, fV (Pr′[XS :=π-1 · s]) ⊆ fV (Pr′) ∪
fV (π-1 · s). The result follows.

• The case (I3). By Lemma 67.

Lemma 87. If XS ∈ V then ([XS :=s]◦θ)|V = [XS :=s]◦(θ|V)

Proof. There are multiple cases to consider:
• The case XS with XS ∈ V. We have:

([XS :=s]◦θ)|V(XS) ≡ ([XS :=s]◦θ)(XS) Definition 78, XS ∈ V
≡ sθ Definition 32
≡ sθ|V Definition 78

24

• The case Y T with Y T ∈ V. We have:

([XS :=s]◦θ)|V(Y T) ≡ ([XS :=s]◦θ)(Y T) Definition 78, Y T ∈ V
≡ θ(Y T) Definition 32
≡ θ|V(Y T) Definition 78

• The case Y T with Y T 6∈ V. Since ([XS :=s]◦θ)|V(Y T) ≡ id ·Y T and θ|V ≡ id ·Y T .

Recall that θ|V is defined in Definition 78:

Theorem 88. If fV (Pr) ⊆ V then V;Pr
θ

=⇒∗ V ′; ∅ implies θ|V ∈ Sol(Pr).

Proof. By induction on the length of the path in
θ

=⇒∗ .
• Length 0. Then Pr = ∅ and θ ≡ id . The result follows.
• Length k + 1. There are three cases:

• The non-instantiating case. Suppose V;Pr =⇒ V;Pr′′
θ

=⇒∗ V ′; ∅. By Lemma 85,
fV (Pr′′) ⊆ V. By inductive hypothesis, θ ∈ Sol(Pr′′). By Lemma 76,
θ ∈ Sol(Pr). The result follows.

• The case of (I1) or (I2). Suppose V;Pr
χ

=⇒ V;Prχ
θ′

=⇒∗ V ′; ∅. By Lemma 86,
fV (Prχ) ⊆ V. By inductive hypothesis, θ′|V ∈ Sol(Prχ). By Lemma 87,
(χ◦θ′)|V = χ◦(θ′|V). By Lemma 73, (χ◦θ′)|V ∈ Sol(Pr). The result follows.

• The case of (I3). Suppose V;Pr
ρ

=⇒ V ′;Prρ
θ′

=⇒∗ V ′′; ∅. By Lemma 86,
fV (Prρ) ⊆ V ′. By inductive hypothesis, θ′|V′ ∈ Sol(Prρ). By Lemma 73,
ρ◦(θ′|V′) ∈ Sol(Pr). By Lemma 87, ρ◦(θ′|V′) = (ρ◦θ′)|V′ . By Lemma 80,
(ρ◦θ′)|V ∈ Sol(Pr). The result follows.

We need some lemmas for Theorem 93:

Lemma 89. If θ1 ≤ θ2 then θ◦θ1 ≤ θ◦θ2.

Proof. By Definition 83, θ′ exists such that XSθ1 =α X
S(θ2◦θ′) always. Then:

XS(θ◦θ1) ≡ (XSθ)θ1 Theorem 33
=α (XSθ)(θ2◦θ′) Theorem 30
≡ XS((θ◦θ2)◦θ′) Theorem 33

The result follows.

Lemma 90. Suppose XSθ2 =α X
Sθ′2 always. Then θ1 ≤ θ2 implies θ1 ≤ θ′2.

Proof. By a routine calculation using Definition 83 and using Theorem 24.

Lemma 91. If θ ∈ Sol(Pr) (Definition 72) then θ ∈ Sol(Prv) (Definition 50).

Proof. By a routine calculation, using Definitions 72 and 74, and Lemma 19.

Lemma 92. If XS ∈ V then (θ|V −XS) = (θ −XS)|V .

Proof. There are multiple cases to consider:
• The case XS . Then (θ|V − XS)(XS) = id · XS and (θ − XS)|V(XS) = id · XS .

The result follows.

25

• The case Y T with Y T 6∈ V. Then (θ|V−XS)(Y T) = id ·Y T and (θ−XS)|V(Y T) =
id · Y T . The result follows.

• The case Y T with Y T ∈ V. Then (θ|V−XS)(Y T) = θ|V(Y T) and (θ−XS)|V(Y T) =
θ(Y T). As θ|V(Y T) = θ(Y T) when Y T ∈ V. The result follows.

Theorem 93. Suppose fV (Pr) ⊆ V. If V;Pr
θ

=⇒∗ V ′; ∅ then θ|V is a principal solution
to Pr (Definition 84).

Proof. By Theorem 88, θ|V ∈ Sol(Pr). We prove θ|V is principal by induction on the

path length of V;Pr
θ

=⇒∗ V ′; ∅.
• Length 0. So Pr = ∅ and θ = id |V . By Definition 83, id |V ≤ θ′|V .
• Length k + 1. We consider the rules in Definition 75.

• The non-instantiating case. Suppose

V;Pr =⇒ V;Pr′
θ

=⇒∗ V ′; ∅

where V;Pr =⇒ V;Pr′ is a non-instantiating simplification rewrite. By in-
ductive hypothesis, θ|V is a principal solution of Pr′. By Lemma 76, θ|V is a
principal solution of Pr. The result follows.

• The case (I1). Suppose fa(s) ⊆ π·S and XS 6∈ fV (s). Write χ = [XS :=π-1·s].
Suppose Pr = π ·XS

?=? s, Pr
′′ so that

V;π ·XS
?=? s, Pr

′′ χ
=⇒ V;Pr′′χ

θ′′

=⇒∗ V ′; ∅.

Further, suppose that θ′|V ∈ Sol(Pr).
By Theorem 88, θ′′|V ∈ Sol(Pr′′χ). By Lemma 86, fV (Pr′′χ) ⊆ V. By
Theorem 82 and Lemma 80, χ◦(θ′|V −XS) ∈ Sol(Pr). By Lemma 92, (θ|V −
XS) = (θ −XS)|V . By Lemma 73, (θ −XS)|V ∈ Sol(Pr′′χ).
By inductive hypothesis, θ′′|V ≤ (θ′−XS)|V . By Lemma 89, χ◦(θ′′|V) ≤
χ◦(θ′−XS)|V . By Lemma 87, χ◦(θ′′|V) = (χ◦θ′′)|V . By Lemma 92, (θ′−XS)|V =
θ′|V−XS . By Theorem 82 and Lemma 90, (χ◦θ′′)|V ≤ θ′|V as required.

• The case (I2) is similar to the case of (I1).
• The case (I3). Suppose Prv is consistent and non-trivial. Write ρ = ρVPrv, so

that

V;Pr
ρ

=⇒ V ′′;Prρ
θ′′

=⇒∗ V ′; ∅,

and suppose that θ′|V ∈ Sol(Pr).
By Theorem 88, θ′′|V′′ ∈ Sol(Prρ). It is a fact that V ′′ = V ∪ V ′VPrv, so
fV (Prρ) ⊆ V ′′. By Lemma 91, θ′|V ∈ Sol(Prv). By Theorem 70 and Lemma 80,
ρ◦(θ′|V−ρ) ∈ Sol(Pr). By Lemma 73, θ′|V−ρ ∈ Sol(Prρ).
By inductive hypothesis, θ′′|V ≤ θ′|V−ρ. By Lemma 89, ρ◦θ′′|V ≤ ρ◦(θ′|V−ρ).
It is a fact that ρ◦(θ′′|V) = (ρ◦θ′′)|V . By Theorem 70 and Lemma 90,
(ρ◦θ′′)|V ≤ θ′|V as required.

Theorem 94. Given a problem Pr, if the algorithm of Definition 79 succeeds then it
returns a principal solution; if it fails then there is no solution.

26

Proof. If the algorithm succeeds we use Theorem 93. Otherwise, the algorithm generates
an element of the form f(r1, . . . , rn) ?=? f(r′1, . . . , r

′
n′) where n 6= n′, f(. . .) ?=? g(. . .),

f(. . .) ?=? [a]s, f(. . .) ?=? a, [a]r =α a, [a]r =α b, a ?=? b, a Pr such that Prv is
inconsistent, or π · XS

?=? r or r ?=? π · XS where XS ∈ fV (r). It is clear that no
solution to Pr exists.

7. The λ-calculus

Definition 95. Let X,Y, Z, . . . range over distinct unknowns.
Define λ-terms by:

g, h, . . . ::= a | X | f | λa.g | g′g

Here f ranges over term-formers, and a ranges over atoms (see Definition 1). g, h, k will
range over λ-terms.

Definition 96. Define a permutation action by:

π·a ≡ π(a) π·X ≡ X π·f ≡ f π·(λa.g) ≡ λπ(a).(π·g) π·(g′g) ≡ (π·g′)(π·g)

Write π◦π′ for the composition of permutations π and π′, and id for the identity
permutation on λ-terms.

Definition 97. Define free atoms by:

fa(a) = {a} fa(X) = ∅ fa(f) = ∅ fa(λa.g) = fa(g)\{a} fa(g′g) = fa(g′)∪fa(g)

Definition 98. Let α-equivalence =α be the least relation on λ-terms such that:

(λ=αa)
a =α a

g =α h
(λ=αλaa)

λa.g =α λa.h

(b a) · g =α h b 6∈ fa(g)
(λ=αλab)

λa.g =α λb.h

(λ=αf)
f =α f

(λ=αX)
X =α X

g =α g
′ h =α h

′

(λ=αp)
gh =α g

′h′

It is not hard to prove that Definition 98 does indeed specify the usual α-equivalence
relation on λ-terms. Our definition is designed to match the definition of α-equivalence
on nominal terms (Definition 11). This makes later results easier to prove (for example
Theorem 126).

Lemma 99 to Theorem 107 mirror similar results for permissive nominal terms.

Lemma 99. If π|fa(g) = π′|fa(g) then π · g =α π
′ · g.

Proof. By induction on g.
• The cases a, f and X. Routine.
• The case λa.g. We wish to show λπ(a).π · g =α λπ

′(a).π′ · g. There are two cases
to consider:
• The case π(a) = π′(a). By inductive hypothesis.
• The case π(a) 6= π′(a). We wish to show λπ(a).g =α λπ

′(a).h. Using (λ=αλa),
this is equivalent to showing (π′(a) π(a)) · g =α h with π′(a) 6∈ fa(g). If
π′(a) 6∈ fa(g) then π(a) 6∈ fa(g), which holds by assumption. Therefore there
is nothing to prove.

• The case g′g. Routine.

27

Lemma 100. π · (π′ · g) ≡ (π◦π′) · g

Proof. By induction on g.
• The case a. We have:

π · (π′ · a) ≡ π · π′(a) Definition 96
≡ π(π′(a)) Definition 96
≡ (π◦π′) · a Definition 96

• The cases X, f and g′g. These are routine.
• The case λa.g. We have:

π · (π′ · λa.g) ≡ π · λπ′(a).(π′ · g) Definition 96
≡ λπ(π′(a)).(π · (π′ · g)) Definition 96
≡ λπ(π′(a)).((π◦π′) · g) Inductive hypothesis
≡ (π◦π′) · λa.g Definition 96

The result follows.

Lemma 101. fa(π · g) = π · fa(g).

Proof. By induction on g.
• The case a. We have:

π · fa(a) = π · {a} Definition 97
= {π(a)} Definition 8
= fa(π(a)) Definition 97
= fa(π · a) Definition 96

• The case X and f. These are straightforward.
• The case g′g. We have:

π · fa(g′g) = π · (fa(g′) ∪ fa(g)) Definition 97
= π · fa(g′) ∪ π · fa(g) Fact
= fa(π · g′) ∪ fa(π · g) Inductive hypothesis
= fa((π · g′)(π · g)) Definition 97
= fa(π · g′g) Definition 96

The result follows.
• The case λa.g. We have:

π · fa(λa.g) = π · (fa(g) \ {a}) Definition 97
= π · fa(g) \ π · {a} Fact
= fa(π · g) \ {π(a)} Inductive hypothesis, Definition 8
= fa(λπ(a).(π · g)) Definition 97
= fa(π · λa.g) Definition 97

The result follows.

Lemma 102. g =α h implies π · g =α π · h.

28

Proof. By induction on the derivation of g =α h.
• The case (λ=αa). Using (λ=αa), π(a) =α π(a).
• The case (λ=αX) and (λ=αf). Routine.
• The case (λ=αp). By inductive hypothesis, π · g =α π · g′ and π ·h =α π ·h′. Using

(λ=αp), (π · g)(π · h) =α (π · g′)(π · h′). By Definition 96, (π · g)(π · h) ≡ π · gh. The
result follows.

• The case (λ=αλaa). By inductive hypothesis, π · g =α π · h. Using (λ=αλaa),
λπ(a).(π · g) =α λπ(a).(π · h). By Definition 96, λπ(a).π · g ≡ π · λa.g. The result
follows.

• The case (λ=αλab). By inductive hypothesis, π ·((b a)·g) =α π ·h. By Lemma 100,
π·((b a)·g) ≡ (π◦(b a))·g. It is a fact that π◦(b a) = (π(b) π(a))◦π. By Lemma 100,
(π(b) π(a)) · (π · g) =α π · h. By Lemma 101, π(b) 6∈ fa(π · g). Using (λ=αλab),
λπ(a).(π · g) =α λπ(b).(π · h). The result follows by Definition 96.

Lemma 103. If g =α h then fa(g) = fa(h).

Proof. By induction on the derivation of g =α h.
• The cases (λ=αa), (λ=αX) and (λ=αf). Straightforward.
• The case (λ=αp). By inductive hypothesis, fa(g′) = fa(g) and fa(h′) = fa(h). As

fa(g′g) = fa(g′) ∪ fa(g), the result follows.
• The case (λ=αλaa). By inductive hypothesis, fa(g) = fa(h), hence fa(g) \ {a} =

fa(h) \ {a}. The result follows.
• The case (λ=αλab). Suppose λa.g =α λb.h using (λ=αλab), with b 6∈ fa(g). We

aim to show fa(λa.g) = fa(λb.h), that is, fa(g) \ {a} = fa(h) \ {b}. As b 6∈ fa(g),
fa(g)\{a} = (b a) · fa(g)\{b}. By Lemma 101, (b a) · fa(g)\{b} = fa((b a) ·g)\{b}.
By inductive hypothesis, fa((b a) · g) = fa(s). The result follows.

Definition 104. Define a notion of size on λ-terms by:

size(a) = 0 size(X) = 0 size(f) = 0 size(g′g) = size(g′)+size(g)
size(λa.g) = 1+size(g)

Lemma 105. For every lambda-term g, the set {size(h) | h is a subterm of g} is well-
ordered.

Proof. Since the set {size(h) | h is a subterm of g} forms a subset of the natural num-
bers.

Lemma 106. size(g) = size(π · g)

Proof. By induction on g.
• The cases a, X and f. Straightforward.
• The case g′g. We have:

size(g′g) = size(g′) + size(g) Definition 104
= size(π · g′) + size(π · g) Inductive hypothesis
= size((π · g′)(π · g)) Definition 104
= size(π · g′g) Definition 96

The result follows.

29

• The case λa.g. We have:

size(λa.g) = 1 + size(g) Definition 104
= 1 + size(π · g) Inductive hypothesis
= size(λπ(a).(π · g)) Definition 104
= size(π · λa.g) Definition 96

The result follows.

Theorem 107. =α is transitive, reflexive, and symmetric.

Proof. We handle the three cases separately.
• The reflexivity case, g =α g. We proceed by induction on g.

• The case a, X and f. Routine.
• The case g′g. By hypothesis, g′ =α g

′ and g =α g. Using (λ=αp), g′g =α g
′g.

The result follows.
• The case λa.g. By hypothesis, g =α g. Using (λ=αλaa), λa.g =α λa.g. The

result follows.
• The symmetry case, g =α h implies h =α g. We proceed by induction on the

derivation of g =α h.
• The cases (λ=αa), (λ=αX) and (λ=αf). Routine.
• The case (λ=αp). By inductive hypotheses, g′ =α g and h′ =α h. Using

(λ=αp), g′h′ =α gh. The result follows.
• The case (λ=αλaa). By inductive hypothesis, h =α g. Using (λ=αλaa),
λa.h =α λa.g. The result follows.

• The case (λ=αλab). Suppose (b a) · g =α h with b 6∈ fa(g). By inductive
hypothesis, h =α (b a)·h. By Lemma 103, b 6∈ fa(h). By Lemma 102, (b a)·h =α

(b a)·((b a)·g). By Lemma 100, (b a)·h =α ((b a)◦(b a))·g, therefore (b a)·h =α g.
By Lemma 101, a 6∈ fa((b a) · h). Using (λ=αλ[b]), λb.h =α λa.g. The result
follows.

• The transitivity case, g =α h and h =α i imply g =α i. Following Lemma 105, we
proceed by induction on size(g).
• The cases a, X and f. Straightforward.
• The case g′g. By the inductive hypotheses.
• The case λa.g. There are multiple cases to consider. We consider the most

difficult, the case where all abstractions are named apart.
Suppose λa.g =α λb.h and λb.h =α λc.k. We aim to show λa.g =α λc.k.
Suppose (b a) · g =α h and (c b) · h =α k with b 6∈ fa(g) and c 6∈ fa(h). By
Lemma 100, (c b) · ((b a) · g) =α (c b) · h. By Lemma 106, (c b) · ((b a) · g) =α k,
equivalent to (c a) · g =α k. By Lemma 103, c 6∈ fa((b a) · g). By Lemma 102,
c 6∈ fa(g). Using (λ=αλab), the result follows.

Definition 108. Let β-equivalence =
αβ

be the least relation such that (λa.g)h =
αβ
g[h/a]

and closed under the rules of Definition 98.

Definition 109. Call a function σ from unknowns to λ-terms a (λ-calculus) substitu-
tion. σ will range over substitutions (and later so will ρ; Definition 142).

30

Definition 110. Define the capture-avoiding substitution action gσ on λ-terms by:

aσ≡a Xσ≡σ(X) fσ≡f (g′g)σ≡(g′σ)(gσ) (λa.g)σ≡λa.(gσ) (a 6∈ fa(gσ))
(λa.g)σ ≡ λb.((b a) · gσ) (a ∈ fa(gσ), b fresh)

In the final clause, ‘b fresh’ denotes a fixed but arbitrary choice of b such that b 6∈
fa(gσ) ∪ fa(g).

Lemma 111. π · (gσ) =α (π · g)σ

Proof. By induction on size(g).
• The cases a, f and X. Straightforward.
• The case g′g. We have:

(π · g′g)σ ≡ ((π · g′)(π · g))σ Definition 96
≡ ((π · g′)σ)((π · g)σ) Definition 110
≡ (π · g′σ)(π · (gσ)) Inductive hypothesis
≡ π · (g′σ)(gσ) Definition 96
≡ π · ((g′g)σ) Definition 110

The result follows.
• The case λa.g with a, π(a) 6∈ fa(rng(σ)). We have:

(π · λa.g)σ ≡ (λπ(a).(π · g))σ Definition 96
≡ λπ(a).((π · g)σ) Definition 110
≡ λπ(a).(π · (gσ)) Inductive hypothesis
≡ π · λa.(gσ) Definition 96
≡ π · ((λa.g)σ) Definition 110

The result follows.
• The case λa.g with a ∈ fa(rng(σ)) or π(a) ∈ fa(rng(σ)). We have:

(π · λa.g)σ =α (π · λb.((b a) · g))σ b fresh
≡ (λπ(b).(π · ((b a) · g)))σ Definition 96
≡ (λπ(b).((π◦(b a)) · g))σ Lemma 100
≡ λπ(b).((π◦(b a)) · g)σ) Definition 110
=α λπ(b).((π◦(b a)) · gσ) Lemma 106, Inductive hypothesis
≡ λπ(b).(π · ((b a) · (gσ))) Lemma 100
≡ π · λb.((b a) · (gσ)) Definition 96
≡ π · λb.(((b a) · g)σ) Lemma 106, Inductive hypothesis
≡ π · ((λb.(b a) · g)σ) Definition 110
=α π · (λa.g)σ b fresh

The result follows.

Definition 112 is an analogue of the substitution action on permissive nominal terms
from Definition 32:

Definition 112. Define composition σ◦σ′ by: (σ◦σ′)(X) ≡ (σ(X))σ′.

Lemma 113. gσσ′ =α g(σ◦σ′)

31

Proof. By induction on size(g).
• The case a. Since aσ ≡ a.
• The case X. By Definition 112.
• The case f. Since π · f ≡ f and fσ ≡ f.
• The case g′g. We have:

(g′g)σσ′ ≡ (g′σσ′)(gσσ′) Definition 110
≡ (g′(σ◦σ′))(g(σ◦σ′)) Inductive hypothesis
≡ (g′g)(σ◦σ′) Definition 110

The result follows.
• The case λa.g with a 6∈ fa(rng(σ)) ∪ fa(rng(σ′)). We have:

(λa.g)σσ′ =α (λb.(b a) · g)σσ′ b fresh
≡ λb.((b a) · g)σσ′ Definition 110
=α λb.((b a) · g)(σ◦σ′) Lemma 106, Inductive hypothesis
≡ (λb.((b a) · g)(σ◦σ′) Definition 110
=α (λa.g)(σ◦σ′) b fresh

The result follows.

We define unification problems as usual and write ‘g ?=? h’ for an equality considered
as part of a unification problem. σ solves a problem when gσ =

αβ
hσ for every g ?=? h

in the problem, as usual.
We conclude with definions of pattern and pattern substitution [22, 21]. Recall that,

unlike [19], we work in an untyped λ-calculus.

Definition 114. Let φ map each unknown X to a natural number which we call its
arity. Define φ-patterns, a subset of λ-terms, by:

q, r, . . . ::= a | Xa1 . . . aφ(X) | fq1 . . . qn | λa.q

Call q a pattern when it is a φ-pattern for some φ. q, r, . . . will range over patterns.
Call σ a φ-pattern substitution when every σ(X) is a φ-pattern. Call σ a pattern

substitution when σ is a φ-pattern substitution for some φ.

So g is a pattern when every X in g occurs as Xa1 . . . aφ(X), for some φ(X).

8. Translating nominal terms into the λ-calculus

8.1. The translation J-KD, and its soundness
Definition 115. Call a finite list of distinct atoms a vector. C,D range over vectors.
Write [a1, . . . , an] for the vector containing a1, . . . , an in that order.

Definition 116. Suppose A ⊆ A. Write C ∩A for the vector of atoms in C that occur
in A, in order; thus [a1, a2, a3] ∩ {a1, a3, a5} = [a1, a3]. Write C ⊆ A when every atom
in C is in A. Write A ⊆ C when every atom in A is in C.

Definition 117. Translate a nominal term r to a λ-term JrKD by:

JaKD ≡ a Jπ ·XSKD ≡ XSπ(d1) . . . π(dn) ([d1, . . . , dn] = D ∩ S)

J[a]rKD ≡ λa.JrKD Jf(r1, . . . , rn)KD ≡ fJr1KD . . . JrnKD

32

Lemma 118. Jπ · rKD ≡ π · JrKD

Proof. By induction on r.
• The case a. We have:

Jπ · aKD ≡ Jπ(a)KD Definition 7
≡ π · a Definition 117
≡ π · JaKD Definition 96

The result follows.
• The case f(r1, . . . , rn). We have:

Jπ · f(r1, . . . , rn)KD ≡ Jf(π · r1, . . . , π · rn)KD Definition 7
≡ fJπ · r1KD . . . Jπ · rnKD Definition 117
≡ fπ · Jr1KD . . . π · JrnKD Inductive hypothesis
≡ π · fJr1KD . . . JrnKD Definition 96
≡ π · Jf(r1, . . . , rn)KD Definition 117

The result follows.
• The case [a]r. We have:

π · J[a]rKD ≡ π · λa.JrKD Definition 117
≡ λπ(a).(π · JrKD) Definition 96
≡ J[π(a)](π · r)KD Definition 117
≡ Jπ · [a]rKD Definition 7

The result follows.
• The case π′ ·XS .

Jπ · (π′ ·XS)KD ≡ J(π◦π′) ·XSKD Definition 7
≡ XS(π◦π′)(c1) . . . (π◦π′)(cn) Definition 117
≡ π · (XSπ′(c1) . . . π′(cn)) Fact
≡ π · Jπ′ ·XSKD Definition 117

The result follows.

Lemma 119 is useful for the proof of Theorem 120:

Lemma 119. fa(JrKD) ⊆ fa(r).

Proof. By induction on r.
• The cases a and f(r1, . . . , rn). Routine.
• The case f(r1, . . . , rn). We have:

fa(Jf(r1, . . . , rn)KD) = fa(fJr1KD . . . JrnKD) Definition 117
= fa(Jr1KD) ∪ . . . ∪ fa(JrnKD) Definition 97
⊆ fa(r1) ∪ . . . ∪ fa(rn) Inductive hypothesis
= fa(f(r1, . . . , rn)) Definition 9

The result follows.

33

• The case [a]r. We have:

fa(J[a]rKD) = fa(λa.JrKD) Definition 117
= fa(JrKD) \ {a} Definition 97
⊆ fa(r) \ {a} Inductive hypothesis
= fa([a]r) Definition 9

The result follows.
• The case π ·XS . We have:

fa(Jπ ·XSKD) = fa(XSπ(d1) . . . π(dn)) Definition 117
= fa(π(d1)) ∪ . . . ∪ fa(π(dn)) Definition 97
= π · (fa(d1) ∪ . . . ∪ fa(dn)) Fact
⊆ π · fa(XS) Definition 9
= fa(π ·XS) Lemma 16

The result follows.

Theorem 120 (Soundness). If r =α s then JrKD =α JsKD.

Proof. By induction on the size of r. We reason by cases on the last rule in the derivation
of r =α s:
• The cases (=αa), (=αf) and (=α[]aa). Straightforward.
• The case (=αX). There are two cases to consider:
• The case D∩S = []. Then Jπ ·XSKD = Jπ′ ·XSKD = XS . Using (λ=αX), the

result follows.
• The case D ∩ S = [d1, . . . , dn] and n ≥ 1. By assumption, π|δ(X) = π′|δ(X).

Then π(di) = π′(di) for 1 ≤ i ≤ n and Jπ·XSKD ≡ Jπ′·XSKD ≡ XSπ(d1) . . . π(dn).
Using (λ=αp), (λ=αX), and (λ=αa), the result follows.

• The case (=α[]ab). By assumption, (b a) · r =α s and b 6∈ fa(r). Choose fresh c, so
c 6∈ fa(r)∪ fa(s). By Lemma 18, (c a) ·r =α (c b) ·s. By inductive hypothesis, J(c a) ·
rKD =α J(c b)·sKD. Using (λ=αλaa), λc.J(c a)·rKD =α λc.J(c a)·sKD. By Lemma 118,
λc.((c a) · JrKD) =α λc.((c b) · JsKD). By Lemma 119, c 6∈ fa(JrKD) ∪ fa(JsKD).
Using (λ=αλab), λc.((c a) · JrKD) =α λa.JrKD and λc.((c b) · JsKD) =α λb.JsKD. By
Theorem 107, λa.JrKD =α λb.JsKD. By Definition 117, J[a]rKD =α J[b]sKD. The
result follows.

8.2. Capturable atoms; injectivity and minimality
The main results of this subsection are Theorems 126 and 128, and also Defini-

tion 121.
JrKD (Definition 117) is parameterised by a vector D. Levy and Villaret introduced

a similar translation [19, Definition 2]; they used all the atoms in r. We now show that
the smaller set of capturable atoms in r (Definition 121) is consistent with injectivity of
the translation (Theorem 126), and that it is minimal (Theorem 128).

Definition 121. Define the capturable atoms of a term (with respect to a set of
atoms) captA(r) inductively by:

captA(a) = ∅ captA(π ·XS) = (dom(π) ∪A) ∩ S captA([a]r) = captA∪{a}(r)

captA(f(r1, . . . , rn)) =
⋃

1≤i≤n

captA(ri)

34

Write capt∅(r) as capt(r).

For instance, if S = (comb ∪ {a}) \ {b}, then capt([a][b]XS) = {a} and capt((b a) ·
XS) = {a}. We now prove that capt respects α-equivalence:

Lemma 122. If a 6∈ fa(r) then captA(r) = captA∪{a}(r).

Proof. By induction on r.
• The case b. Routine.
• The case f(r1, . . . , rn). If a 6∈ fa(f(r1, . . . , rn)), then by Definition 9, a 6∈ fa(ri) for

1 ≤ i ≤ n. We have:

captA(f(r1, . . . , rn)) =
⋃

1≤i≤n captA(ri) Definition 121
=

⋃
1≤i≤n captA∪{a}(ri) Inductive hypothesis

= captA∪{a}(f(r1, . . . , rn)) Definition 121

The result follows.
• The case [b]r. If a 6∈ fa([b]r), then by Definition 9, a 6∈ fa(r). We have:

captA([b]r) = captA∪{b}(r) Definition 121
= captA∪{b}∪{a}(r) Inductive hypothesis
= captA∪{a}([b]r) Definition 121

The result follows.
• The case π·XS . If a 6∈ fa(π·XS), then a 6∈ π·S. By Definition 121, captA(π·XS) =

(dom(π)∪A)∩S. Then, captA∪{a}(π ·XS) = (dom(π)∪A∪ {a})∩S. If π(a) = a,
then a 6∈ S. If π(a) 6= a, then a ∈ dom(π). The result follows.

Lemma 123. If dom(π) ⊆ A then captA(π · r) = captA(r).

Proof. By induction on r.
• The cases a and f(r1, . . . , rn). Straightforward.
• The case a. Since captA(π(a)) = ∅ = captA(a).
• The case f(r1, . . . , rn). We have:

captA(π · f(r1, . . . , rn)) = captA(f(π · r1, . . . , π · rn)) Definition 7
= captA(π · r1) ∪ . . . ∪ captA(π · rn) Definition 121
= captA(r1) ∪ . . . ∪ captA(rn) Inductive hypotheses
= captA(f(r1, . . . , rn)) Definition 121

The result follows.
• The case [a]r. We have:

captA(π · [a]r) = captA([π(a)](π · r)) Definition 7
= captA∪{π(a)}(π · r) Definition 121

There are two cases to consider:
• The case π(a) = a. Then:

captA∪{π(a)}(π · r) = captA∪{a}(π · r) Assumption
= captA∪{a}(r) Inductive hypothesis
= captA([a]r) Definition 121

The result follows.

35

• The case π(a) 6= a. Then:

captA∪{π(a)}(π · r) = captA(π · r) Assumption, π(a) 6= a

= captA(r) Inductive hypothesis
= captA([a]r) Definition 121

The result follows.
• The case π′ ·XS . We have:

capt(π · (π′ ·XS)) = captA((π◦π′) ·XS) Lemma 15
= (dom(π◦π′) ∪A) ∩ S Definition 121
= (dom(π) ∪ dom(π′) ∪A) ∩ S Fact
= (dom(π′) ∪A) ∩ S Assumption
= captA(π′ ·XS) Definition 121

The result follows.

Corollary 124. If a 6∈ fa(r) then captA([b]r) = captA([a](b a) · r).

Proof. We have:

captA([b]r) = captA∪{b}(r) Definition 121
= captA∪{a,b}(r) Lemma 122, a 6∈ fa(r)
= captA∪{a,b}((b a) · r) Lemma 123
= captA∪{a}((b a) · r) Lemmas 122 and 16
= captA([a](b a) · r) Definition 121

The result follows.

Lemma 125. If r =α s then captA(r) = captA(s).

Proof. By induction on the derivation of r =α s.
• The case (=αaa). Straightforward.
• The case (=αf). Suppose r1 =α s1 . . . rn =α sn. By hypothesis, captA(r1) =

captAs1 . . . captA(rn) = captAsn. Using (=αf), f(r1, . . . rn) =α f(s1, . . . , sn). Then,
captA(f(r1, . . . , rn)) = captA(r1) ∪ . . . ∪ captA(rn). The result follows.

• The case of (=α[a]). Suppose r =α s. By Definition 121, captA([a]r) = captA∪{a}(r),
similarly for s. By inductive hypothesis, captA∪{a}(r) = captA∪{a}(s). The result
follows.

• The case of (=α[b]). Suppose b 6∈ fa(r), (b a) · r =α s, and s ≡ [b](b a) · r. The
result follows by Corollary 124.

• The case of (=αX). Suppose π|S = π′|S . Then, dom(π) ∩ S = dom(π′) ∩ S. The
result follows.

Theorem 126 (Injectivity). Let D be a vector. Let r and s be nominal terms and let
A,B ⊆ A be finite. Suppose captA(r) ∪ captB(s) ⊆ D. Then

JrKD =α JsKD implies r =α s.

As a corollary, if capt(r)∪capt(s) ⊆ D and JrKD =α JsKD then r =α s and captA(r) =
captA(s) for all A.

36

Proof. For the first part, we work by induction on the size of r, reasoning by cases on
the last rule in the derivation of JrKD =α JsKD:
• The cases (λ=αa) and (λ=αλaa). Routine.
• The case (λ=αλab). Suppose (b a) · JrKD =α JsKD, b 6∈ fa(JrKD) and captA([a]r) ∪

captB([b]s) ⊆ D.
Choose fresh c, so c 6∈ fa(r) ∪ fa(s) and c 6∈ fa(JrKD) ∪ fa(JsKD). By Lemma 99,
(c a) · JrKD =α (c b) · JsKD. By Lemma 118, J(c a) · rKD =α J(c b) · sKD. By
Corollary 124 and Definition 121, captA∪{c}((c a) · r)∪ captB∪{c}((c b) · s) ⊆ D. By
hypothesis, (c a) · r =α (c b) · s. Using (=α[]ab), and by Theorem 107, [a]r =α [b]s.
The result follows.

• The case (λ=αapp). By Definition 117, there are two cases:
• The case fr1 . . . rn and fs1 . . . sn and JriKD =α JsiKD for 1 ≤ i ≤ n. By

hypothesis, ri =α si for 1 ≤ i ≤ n. Using (=αf), the result follows.
• The case XSπ(d1) . . . π(dn) and XSπ′(d1) . . . π′(dn) with [d1, . . . , dn] = D ∩ S

and π(di) =α π
′(di) for 1 ≤ i ≤ n.

Then π|D∩S = π′|D∩S follows immediately. By assumption, capt(π ·XS) ⊆ D.
By definition, π|S = π′|S . Using (=αX), the result follows.

• The case (λ=αX). From the form of the translation, r ≡ π ·XS and s ≡ π′ ·XS

and dom(π) ∩ S = ∅ = dom(π′) ∩ S. Using (=αX), the result follows.
The corollary follows from the first part and Lemma 125.

Lemma 127. a ∈ captA(r) implies XS ∈ fV (r) exists such that a ∈ S.

Proof. By induction on r.
• The cases a and b. Since captA(a) = ∅.
• The case f(r1, . . . , rn). Suppose a ∈ captA(f(r1, . . . , rn)), with a ∈ captA(ri)

for some i with 1 ≤ i ≤ n. By hypothesis, XS ∈ fV (ri) with a ∈ S. Then
fV (f(r1, . . . , rn)) = fV (r1) ∪ . . . ∪ fV (rn). The result follows.

• The cases [a]r and [b]s. We handle the first case, the second is similar.
Suppose a ∈ captA([a]r). Then a ∈ captA∪{a}(r). By hypothesis, XS ∈ fV (r)
exists with a ∈ S. As fV ([a]r) = fV (r), the result follows.

• The π ·XS . By Definition 121.

Theorem 128 (Minimality). If capt(r) 6⊆ D then there exists some s such that r 6=α s
and JrKD =α JsKD.

Proof. Suppose a ∈ capt(r) and a 6∈ D. By Lemma 127, XS ∈ fV (r) exists with
a ∈ S. Choose fresh c, so c 6∈ fa(r) ∪ D, and take s ≡ r[XS :=(c a) · XS]. It is a
fact that XS 6=α (c a) ·XS whilst JXSKD =α J(c a) ·XSKD. An easy calculation shows
r 6=α r[XS :=(c a) ·XS] and JrKD =α Jr[XS :=(c a) ·XS]KD.

9. Translating substitutions; relating solutions of nominal and pattern uni-
fication problems

9.1. Translating substitutions
The main result of this subsection is Theorem 131.
We extend the translation to substitutions, to then prove that if a substitution

solves a nominal unification problem, then its translation solves the translation of the
problem. This raises a difficulty: θ may solve Pr but in substituting it may introduce

37

new capturable atoms (consider θ = [XS :=[c]ZS] solving {XS
?=? X

S}, where c ∈ S).
This motivates introducing another vector E, to account for the capturable atoms ‘after’
the substitution. Accordingly, we will introduce another vector E that contains at least
the capturable atoms of θ.

Definition 129. Define JθKED by:

JθKED(XS) = λd1. . . . λdn.Jθ(XS)KE where [d1, . . . , dn] = D ∩ S.

Lemma 130 is useful in the proof of Theorem 131:

Lemma 130. dom(π) ⊆ {d1, . . . , dn} implies (λd1. . . . λdn.g)π(d1) . . . π(dn) =
αβ
π · g.

Proof. By induction on g.
• The case a. Suppose π(a) = a so a 6∈ {d1, . . . , dn}, therefore a[π(di)/di] ≡ a for

1 ≤ i ≤ n, as required. Otherwise, suppose π(a) 6= a, so a ∈ {d1, . . . , dn}. Then
a[π(di)/di] ≡ π(di) for some 1 ≤ i ≤ n. The result follows.

• The case X, f and g′g. Routine.
• The case λa.g. Suppose π(a) = a, so a 6∈ {d1, . . . , dn} therefore a 6∈ {π(d1), . . . , π(dn)}.

Write h for (λd1. . . . λdn.λa.g)π(d1) . . . π(dn). Then:

h =
αβ

(λa.g)[π(d1)/d1] . . . [π(dn)/dn] Definition 108
=

αβ
λa.(g[π(d1)/d1] . . . [π(dn)/dn]) a 6∈ {d1, . . . , dn}

=
αβ

λa.(π · g) Inductive hypothesis
≡ λπ(a).(π · g) π(a) = a
≡ π · λa.g Definition 96

The result follows.
Otherwise, suppose π(a) 6= a so a ∈ {d1, . . . , dn} and therefore π(a) ∈ {π(d1), . . . , π(dn)}.
Assume a = di for some di and write h as shorthand for (λd1. . . . λdn.λa.g)π(d1) . . . π(dn).
Then:

h =
αβ

(λa.g)[π(d1)/d1] . . . [π(dn)/dn] Definition 108
=

αβ
λb.((b a) · g[π(d1)/d1] . . . [π(dn)/dn]) b 6∈ fa(g), b 6∈ {d1, . . . , dn}

=
αβ

λb.((b a) · (π · g)) Inductive hypothesis
=α λπ(b).((b a) · (π · g)) π(b) = b
≡ π · λa.g Definitions 98 and 96

The result follows.

Theorem 131. If capt(r) ⊆ D then JrθKE =
αβ

JrKDJθKED.

Proof. By induction on r.
• The cases a. Routine.
• The case f(r1, . . . , rn). We have:

Jf(r1, . . . , rn)θKE ≡ Jf(r1θ, . . . , rnθ)KE Definition 43
≡ fJr1θKE . . . JrnθKE Definition 117

=
αβ

f(Jr1KDJθKED) . . . (JrnKDJθKED) Inductive hypothesis
≡ (fJr1KD . . . JrnKD)JθKED Properties of λ-calculus
≡ Jf(r1, . . . , rn)KDJθKED Definition 117

The result follows.

38

• The case π · XS . Let d1, . . . , dn be D ∩ S. By Definition 129, JθKED(XS) =
λd1. . . . λdn.Jθ(XS)KE . Then:

J(π ·XS)θKE ≡ Jπ · θ(XS)KE Definition 43
≡ π · Jθ(XS)KE Lemma 118

=
αβ

(λd1. . . . λdn.Jθ(XS)KE)π(d1) . . . π(dn) Lemma 130
≡ (XSπ(d1) . . . π(dn))JθKED Definition 129
≡ Jπ ·XSKDJθKED Definition 117

The use of Lemma 130 above is valid, as capt(π ·XS) ⊆ D, therefore dom(π)∩S ⊆
D ∩ S by Definition 121. The result follows.

• The case [a]r. Choose b fresh, so b 6∈ fa(Jθ(XS)KED) for every XS ∈ fV (r) and
b 6∈ fa(r). Then:

J([a]r)θKE =α J([b]((b a) · r))θKE Definition 11, Theorem 120, Lemma 31
≡ λb.(J((b a) · r)θ)KE Definitions 43 and 117

=
αβ

λb.(J(b a) · rKD)JθKED Inductive hypothesis
≡ (λb.J(b a) · rKD)JθKED b fresh
≡ J[b]((b a) · r)KDJθKED Definition 117
=α J[a]rKDJθKED Definition 11, Theorem 120, Lemma 31

The result follows.

Recall the instantiation ordering θ1 ≤ θ2 from Definition 83. Similarly:

Definition 132. Write σ1 ≤ σ2 when there exists some σ′ such that Xσ1 =
αβ
X(σ2◦σ′),

for any X. Call ≤ the instantiation ordering.

We can leverage Theorem 131 to prove a corollary, describing a sense in which the
instantiation ordering θ1 ≤ θ2 of Definition 83 translates to the instantiation ordering
of Definition 132:

Corollary 133. Suppose
⋃
XS capt(θ2(XS)) ⊆ E.

If θ1 ≤ θ2 then Jθ1KED ≤ Jθ2KED.

Proof. Suppose θ1 ≤ θ2. By Definition 83, there exists θ′ such that XSθ1 =α X
S(θ2◦θ′)

always. We reason as follows, for any unknown XS :

JXSKDJθ1KED =
αβ

JXSθ1KE Theorem 131
=α JXS(θ2 ◦ θ′)KE Theorem 120
≡ J(XSθ2)θ′)KE Theorem 33

=
αβ

JXSθ2KEJθ′KEE Theorem 131, capt(θ2(XS)) ⊆ E
=

αβ
(JXSKDJθ2KED)Jθ′KEE Theorem 131

≡ JXSKD(Jθ2KED ◦Jθ′KEE) Lemma 113

The result follows.

In Corollary 133, the precondition
⋃
XS capt(θ2(XS)) ⊆ E is necessary to prevent

θ2 from introducing infinitely many capturable atoms. The ‘complexity’ of θ1 is un-
constrained. In practice it is likely that we will care about a particular finite set of
unknowns V (for example, fV (Pr) for some Pr), and the precondition can be corre-
spondingly refined to consider just XS ∈ V.

39

9.2. Reducing permissive nominal unification to pattern unification; soundness, weak
completeness

The main result of this subsection is Theorem 141. It says that if D and E are ‘large
enough’, then θ solves Pr if and only if JθKED solves JPrKD.

Definition 134. An equation is a pair r ?=? s. A unification problem Pr is a finite
set of equations. A solution to Pr is a θ such that rθ=αsθ for all r?=?s ∈ Pr.

Definition 135. If D = [d1, . . . , dn] and Pr = {r1 ?=? s1, . . .} then define JPrKD by:

JPrKD =
{
λd1. . . . λdn.JrKD ?=? λd1. . . . λdn.JsKD | r ?=? s ∈ Pr

}
So if Pr = {XS

?=? f(Y S , a, ZS)} where S = comb ∪ {a, b}, then the translation
JPrK[a] = {λa.(XSa) ?=? λa.(f (Y Sa) a (ZSa))}.

Lemma 136. If A ⊆ B then captA(r) ⊆ captB(r).
As a corollary, captA(r) ⊆ captA([a]r).

Proof. By induction on r.
• The case a. As captA(a) = ∅.
• The case f(r1, . . . , rn). We have:

captA(f(r1, . . . , rn)) = captA(r1) ∪ . . . ∪ captA(rn) Definition 121
⊆ captB(r1) ∪ . . . ∪ captB(rn) Inductive hypotheses
= captB(f(r1, . . . , rn)) Definition 121

The result follows.
• The case [a]r. We have:

captA([a]r) = captA∪{a}(r) Definition 121
⊆ captB∪{a}(r) Inductive hypothesis
= captB([a]r) Definition 121

The result follows.
• The case π ·XS . We have:

captA(π ·XS) = (dom(π) ∪A) ∩ S Definition 121
⊆ (dom(π) ∪B) ∩ S Assumption
= captB(π ·XS) Definition 121

The result follows.
As captA([a]r) = captA∪{a}(r), the corollary follows.

We need Lemma 137 to prove Lemma 138:

Lemma 137. captA(π · r) ⊆ ((dom(π) ∪A) ∩ fa(r)) ∪ capt(r).

Proof. By induction on r.
• The cases a and f(r1, . . . , rn). Routine.
• The case [a]r. Suppose π(a) = a. Then:

captA(π · [a]r) = captA([a](π · r)) Definition 7, π(a) = a
= captA∪{a}(π · r) Definition 121
⊆ (dom(π) ∩ fa(r)) ∪ capt(r) Inductive hypothesis
⊆ (dom(π) ∩ fa(r)) ∪ capt([a]r) Lemma 136
= (dom(π) ∩ fa([a]r)) ∪ capt([a]r) a 6∈ dom(π)

40

Conversely, suppose π(a) 6= a. Choose fresh b, so b 6∈ dom(π) ∪ fa(r). Then, set
π′ = (b a)◦π◦(b a). By Lemma 20, π · [a]r =α π

′ · [a]r. By similar reasoning as
above,

captA(π′ · [a]r) ⊆ (dom(π′) ∪A) ∩ fa([a]r)) ∪ capt([a]r)

By Definition 9, a 6∈ fa([a]r), and the result follows by sets calculations.
• The case π′ ·XS . Then:

captA((π◦π′) ·XS) = (dom(π◦π′) ∪A) ∩ S
⊆ (dom(π) ∪ dom(π′) ∪A) ∩ S
= (((dom(π) ∪A) \ dom(π′)) ∪ dom(π′)) ∩ S
= (((dom(π) ∪A) \ dom(π′)) ∩ S) ∪ capt(π′ ·XS)
⊆ ((dom(π) ∪A) ∩ π′ · S) ∪ capt(π′ ·XS)
= ((dom(π) ∪A) ∩ fa(π′ ·XS)) ∪ capt(π′ ·XS)

The result follows.

Lemma 138. fa(t) ⊆ S implies captA(r[XS :=t]) ⊆ captA(r) ∪ capt(t). (We really do
mean ‘capt(t)’, and not ‘captA(t)’.)

capt(rθ) ⊆
⋃
XS∈fV (r) capt(θ(XS)) ∪ capt(r) always.

Proof. The first part is by induction on r.
• The cases a and f(r1, . . . , rn). Straightforward.
• The case [a]r. Then:

captA([a](r[XS :=t])) = captA∪{a}(r[XS :=t]) Definition 121
⊆ captA∪{a}(r) ∪ capt(t) Inductive hypothesis
= captA([a]r) ∪ capt(t) Definition 121

The result follows.
• The case π ·XS . As (π ·XS)[XS :=t] ≡ π · t, we reason as follows:

captA(π · t) ⊆ ((dom(π) ∪A) ∩ fa(t)) ∪ capt(t) Lemma 137
⊆ ((dom(π) ∪A) ∩ S) ∪ capt(t) fa(t) ⊆ S
= captA(π ·XS) ∪ capt(t) Definition 121

The result follows.
The second part follows from the first.

Remark 139. capt(rθ) ⊆
⋃

fV (r) capt(θ(XS)) is not true in general. For example
if a ∈ S and b ∈ S then capt([a]XS) = {a} and capt([XS :=[b]XS]) = {b}, and
capt(θ([a]XS)) = {a, b} 6⊆ {b}.

Lemma 140. Suppose capt(Pr) ⊆ D and capt(Prθ) ⊆ E. Then θ solves Pr if and
only if JθKED solves JPrKD.

Proof. Suppose r ?=? s ∈ Pr. By Definition 72, rθ =α sθ. By Theorems 120 and 126,
JrθKE =α JsθKE . By Theorem 131, JrKDJθKED =

αβ
JsKDJθKED. It is a fact of the λ-calculus

that this is equivalent to λd1. . . . λdn.JrKDJθKED =
αβ
λd1. . . . λdn.JsKDJθKED. As no atom

of D is free in JθKED, (λd1. . . . λdn.JrKD)JθKED =
αβ

(λd1. . . . λdn.JsKD)JθKED, as required.
The reverse implication uses the same results, in reverse order.

41

Theorem 141 (Soundness and weak completeness). Suppose capt(Pr) ⊆ D, and⋃
XS∈fV (Pr) capt(θ(XS)) ⊆ E, with D ⊆ E. Then θ solves Pr if and only if JθKED solves

JPrKD.

Proof. An immediate consequence of Lemmas 140 and 138.

Pr = {XS
?=? f(Y S , a, ZS)} where S = comb ∪ {a, b} translates to JPrK[a] =

{λa.(XS a) = λa.(f (Y S a) a (ZS a))}.
The solution [XS :=f(WS , a, b), Y S :=WS , ZS :=b] with S = comb ∪ {a, b} translates

to the solution JθK[a,b]
[a] = [XS :=λa.(f (WS a b) a b), Y S :=λa.(WS a b), ZS :=λa.b].

9.3. Strong Completeness
The main result of this subsection is Theorem 155. This strengthens the completeness

result of Theorem 141, in a certain sense, by expressing that a class of σ solving JPrKD
all originate from θ solving Pr, in a suitable formal sense.

Definition 142. Call a bijection on unknowns a renaming. ρ will range over re-
namings. Each X is also a λ-term (Definition 95), so each ρ is also a substitution
(Definition 109).

Lemma 143. fa(g) = fa(gρ)

Proof. By induction on g.
• The case a. Since aρ ≡ a.
• The case X. Since fa(X) = ∅ and ρ is a bijection on unknowns.
• The case f. Since fρ ≡ f.
• The case g′g. By hypothesis, fa(g′ρ) = fa(g′) and fa(gρ) = fa(g). As fa(g′g) =

fa(g′) ∪ fa(g) = fa(g′ρ) ∪ fa(gρ) = fa((g′ρ)gρ), and (g′ρ)gρ ≡ (g′g)ρ, the result
follows.

• The case λa.g. As fa((λa.g)ρ) = fa(λa.(gρ)) we have fa(λa.(gρ)) = fa(gρ) \ {a}.
By hypothesis, fa(gρ) = fa(g). The result follows.

Lemma 144. g =α h if and only if gρ =α hρ.

Proof. The left to right implication is by induction on the derivation of g =α h; right to
left is by induction on the derivation of gρ =α hρ.
• The cases (λ=αaa), (λ=αX) and (λ=αf). Routine.
• The cases (λ=αp) and (λ=αλaa). By the inductive hypotheses.
• The case (λ=αλab). For the left to right implication, by hypothesis, ((b a) ·g)ρ =α

hρ with b 6∈ fa(g). By Theorem 107 and Lemma 111, (b a) · gρ =α hρ. By
Lemma 143, b 6∈ fa(gρ). Using (λ=αλab), λa.(gρ) =α λb.(hρ). The result follows.
For the right to left implication, suppose ((b a) · g)ρ =α hρ with b 6∈ fa(gρ). By
Theorem 107 and Lemma 111, (b a) · gρ =α hρ. By Lemma 143, b 6∈ fa(g). Using
(λ=αλab), λa.g =α λb.h. The result follows.

Definition 145. Define the substitution π · σ by: (π · σ)(X) ≡ π · σ(X).

Note that π · σ is a substitution. g(π · σ) is not a shorthand for π · (gσ), and the two
are not equal in general.

42

Lemma 146. If dom(π) ∩ fa(g) = ∅ then g(π · σ) =α π · (gσ).

Proof. By induction on size(g).
• The case a. By assumption, π · a ≡ a and aσ ≡ a.
• The case X. Since X(π · σ) ≡ π · σ(X) by Definition 145.
• The case f. Since π · f ≡ f and fσ ≡ f.
• The case g′g. If dom(π) ∩ fa(g′g) = ∅, then dom(π) ∩ fa(g′) = ∅ and dom(π) ∩

fa(g) = ∅. Then:

(g′g)(π · σ) ≡ g′(π · σ)(g(π · σ)) Definition 110
=α (π · (g′σ))(π · (gσ)) Inductive hypotheses
≡ π · ((g′g)σ) Definition 96
≡ π · ((g′g)σ) Definition 110

• The case λa.g. There are multiple cases to consider:
• The case a 6∈ fa(gσ), a 6∈ fa(π · σ) and π(a) = a. Then:

(λa.g)(π · σ) ≡ λa.(g(π · σ)) Definition 110
=α λa.(π · (gσ)) Inductive hypothesis
≡ λπ(a).(π · (gσ)) Assumption
≡ π · λa.(gσ) Definition 96
≡ π · (λa.g)σ Definition 110

The result follows.
• The case a 6∈ fa(gσ), a 6∈ fa(π · σ) and π(a) 6= a. Pick fresh b, so b 6∈ fa(g),
b 6∈ fa(gσ), b 6∈ fa(π · σ) and π(b) 6= b. Every permutation has finite support,
so b is guaranteed to exist. Then:

(λa.g)(π · σ) =α (λb.((b a) · g))(π · σ) Definition 98
≡ λb.((b a) · g)(π · σ)) Definition 110
=α λb.(π · (((b a) · g)σ)) Inductive hypothesis
≡ λb.((π(b) π(a)) · ((π · g)σ)) Fact
≡ λπ(b).((π(b) π(a)) · ((π · g)σ)) Assumption
≡ λπ(a).(π · (gσ)) Definition 96
≡ ((π(b) π(a))◦π) · (λa.(gσ)) Definition 96, Lemma 15
≡ π · ((b a) · (λa.g)σ) Definition 110
≡ π · ((λb.((b a) · g))σ) Definition 96
=α π · (λa.g)σ Definition 98

The result follows.
All other cases are similar to the case for a 6∈ fa(gσ), a 6∈ fa(π · σ) and π(a) 6= a.
The result follows.

Lemma 147. σ solves JPrKD if and only if σ◦ρ does.
Suppose dom(π) ∩ (fa(r) ∪ fa(s)) = ∅ for every r ?=? s ∈ Pr. Then σ solves JPrKD

if and only if π · σ does.

Proof. For the first part, we have two cases:
• The case σ solves JPrKD implies σ◦ρ solves JPrKD. Suppose g ?=? h ∈ JPrKD and
σ solves JPrKD. Then gσ =α hσ. By Lemma 144, gσρ =α hσρ. By Lemma 113,
g(σ◦ρ) =α h(σ◦ρ). The result follows.

43

• The case σ◦ρ solves JPrKD implies σ solves JPrKD. Suppose g ?=? h ∈ JPrKD
and σ◦ρ solves JPrKD. Then g(σ◦ρ) =α h(σ◦ρ). By Lemma 113, gσρ =α hσρ. By
Lemma 144, gσ =α hσ. The result follows.

For the second part, suppose dom(π) ∩ (fa(r) ∪ fa(s)) = ∅ for every r ?=? s ∈ Pr and
D = [d1, . . . , dn]. Then JPrKD = {λd1. . . . λdn.JrKD ?=? λd1. . . . λdn.JsKD | r ?=? s ∈
Pr}. By Lemma 118, dom(π)∩(fa(JrKD)∪fa(JsKD)) = ∅. By Lemma 146, Theorem 107
and Lemma 102, the result follows.

Remark 148. Lemma 147 expresses an intuition that ‘names of atoms and unknowns on
the right in a solution, do not matter’, which also underlies the π and ρ in Theorem 155.
ρ is the price we pay for using the same unknowns in Definitions 95 and 6: This design
decision makes Definition 117 compact, but it causes technical problems in Lemma 154,
because σ(X) can introduce new unknowns over whose permission sorts (back in the
nominal world) we have no control. ρ lets us rename those new unknowns as convenient.
As for π, we discuss it below.

Another design decision is to work with an untyped λ-calculus. This simplifies our
presentation and makes our results slightly more powerful (because they apply to more
substitutions), but we cannot be too liberal: Suppose σ solves JPrKD. Examining Def-
inition 117, if X occurs in JPrKD then it is applied to a number of atoms equal to
the length of D ∩ S. So, we will only be interested in σ that respect this fragment of
typability (V will be fV (Pr)):

Definition 149. Let V be a finite set of unknowns. Call σ D-consistent on V when
for every X ∈ V, σ(X) =α λa1. . . . λak.q where k is the length of D∩S. (So σ(X) starts
with ‘at least’ length-D ∩ S-many λ-abstractions.)

Call σ strictly D-consistent when also, for every X ∈ V, fa(σ(X)) ∩D = [].

Remark 150. Strictness is motivated by the following examples: Take D = [a].
Take Pr = {XS

?=? f([a]Y S , Y S)} with S = comb. Then the problem JPrKD =
{λa.(XS a) ?=? λa.(f (λa.(Y Sa)) (Y Sa))} has the solution σ = [XS :=λc.(f (λc.a) a),
Y S :=λc.a]. (σ◦ρ)(Y S) =α JθKED(Y S) is impossible for any ρ, since λc.a =α λa.Jθ(Y S)KE
is impossible.

Take Pr = {XS
?=? f([a]Y T , Y T)} with S = comb and T = comb \ {a}. Then

JPrKD = {λa.(XS a) ?=? λa.(f (λa.Y T)Y T)} has the solution σ = [XS :=λc.(f (λc.a) a),
Y T :=a]. (σ◦ρ)(Y T) =α JθKED(Y T) is impossible, since a ∈ fa(a) whereas a 6∈ fa(Jθ(Y T)KE)
by Lemma 119.

The a in σ(Y T) for the two σ considered above, has nothing to do with the a in
D. We can regard this as an unfortunate ‘name-clash’ which Lemma 147 allows us to
eliminate with a permutation π.

More on this in Theorem 155. We continue with the proofs:

Definition 151. Define the arguments of unknowns in a pattern q by:

args(a) = ∅ args(X) = ∅ args(Xa1 . . . an) = {a1, . . . , an}

args(fq1 . . . qn) =
⋃

1≤i≤n

args(qi) args(λa.q) = args(q)

q =α r does not imply args(q) = args(r). This is by design.

Definition 152. Suppose q is a φ-pattern and args(q) ⊆ E. Define a nominal term q-E

by:

a-E≡a (Xb1 . . . bφ(X))-E≡π·XS (λa.q)-E≡[a]q-E (fq1 . . . qn)-E≡f(q1
-E , . . . , qn

-E)

44

Here π is a fixed but arbitrary choice of permutation of the atoms in E, mapping the
ith element of E ∩ S (Definition 116) to bi for 1 ≤ i ≤ φ(X).

Lemma 153. args(q) ⊆ E implies Jq-EKE ≡ q.

Proof. By induction on q.
• The cases a and fq1 . . . qn. Routine.
• The case λa.g. Suppose args(λa.q) ⊆ E so that args(q) ⊆ E. By hypothesis,

Jq-EKE ≡ q. The result now follows.
• The case Xb1 . . . bn. Then q-E = π · X and Jq-EKE ≡ Xπ(x1) . . . π(xn), where

[x1, . . . , xn] = E ∩ δ(X) and π(xi) = bi. The result follows.

Lemma 154. Suppose V is a finite set of unknowns and σ is a φ-pattern substitution,
strictly D-consistent on V.

Then there exist ρ, θ, and E, such that D ⊆ E,
⋃
X∈V capt(θ(X)) ⊆ E, and

(σ◦ρ)(X) =α JθKED(X) for every X ∈ V.

Proof. Take any E = [e1, ..., ep] which includes all atoms in D and in {σ(X) | X ∈ V}.
Define V ′ =

⋃
X∈V fV (σ(X)) (‘the unknowns in σ(X) for X ∈ V’). For each Y ∈ V ′

choose a fresh Y ′ such that the length of E ∩ fa(Y ′) is equal to φ(Y). We do this
injectively, so that for distinct Y, Z ∈ V ′, Y ′ and Z ′ are also distinct. Let ρ be any
renaming such that ρ(Y) ≡ Y ′ for all Y ∈ V ′.

By assumption σ(X) =α λa1. . . . λan.q for a φ-pattern q, where [a1, . . . , an] = D∩S.
Take θ(X) ≡ (qρ)-E .

We can verify that
⋃
X∈V capt(θ(X)) ⊆ E. We then reason as follows:

JθKED(X) ≡ λa1. . . . λan.J(qρ)-EKE Definition 129
≡ λa1. . . . λan.(qρ) Lemma 153
≡ (λa1. . . . λan.q)ρ Fact of λ-calculus
=α (σ◦ρ)(X) By construction

Theorem 155. Suppose capt(Pr) ⊆ D.
For σ strictly D-consistent on fV (Pr) solving JPrKD there are ρ, θ, and E, such

that (σ◦ρ)(X) =α JθKED(X) for all X ∈ fV (Pr) and θ solves Pr.
For σ D-consistent on fV (Pr) solving JPrKD there are π, ρ, θ, and E, such that

π·(σ◦ρ)(X) =α JθKED(X) for all X ∈ fV (Pr) and θ solves Pr.

Proof. By Lemma 154, there are ρ, θ, and E, such that (σ◦ρ)(X) =α JθKED(X) for all
X ∈ fV (Pr), D⊆E and

⋃
X∈fV (Pr) capt(θ(X)) ⊆ E. capt(Pr) ⊆ D and D ⊆ E, so

capt(Pr) ⊆ E. By Theorem 141, θ solves Pr.
For the second part, write D = [d1, . . . , dn], choose D′ = [d′1, . . . , d

′
n] fresh (so d′i is

not in D, Pr, or σ(X) for any X ∈ fV (Pr)), and take π = (d′1 d1) . . . (d′n dn). π · σ is
strictly D-consistent and the result follows from the first part and Lemma 147.

10. Conclusions

Nominal contrasted with permissive nominal terms. Permissive nominal terms come
closer to first- and higher-order terms than nominal terms do, but they are a special

45

case of neither. The idea of associating permissions sets to unknowns is mentioned al-
ready in [27, Remark 2.6]. What really makes that idea come alive, in this paper, is
the use of fixed permissions sets of co-infinite sets of atoms. This has beneficial tech-
nical repercussions which go well beyond ‘just tweaking nominal terms’. We recover
Theorem 13 and Corollary 14, α-equivalence is a property of terms (of course; there
are no longer freshness contexts) — and the notions of unification problem and solu-
tion are based on equality (rather than equality-and-freshness-context) with no loss of
expressivity.

Permissive nominal terms do not obsolete nominal terms; if we want to talk about
‘an arbitrary term’, then a nominal terms unknown Ẋ is more directly useful than a
permissive nominal terms unknown Xcomb (which means ‘an arbitrary term, mentioning
atoms in comb’).

In Section 4 we connected the ‘permissive’ and the ‘nominal’ worlds in some technical
detail. In nominal terms, if we need a fresh name then we can enrich the freshness context
(consider [12, Figure 2, axiom (fr)] and [13, e.g. Lemma 25 and Theorem 33]). One
nice way to view the interpretation of Section 4 is that comb plays the rôle of ‘the atoms
we had so far’ and A \ comb that of ‘the atoms we will generate fresh in the future’.

Related work on unification. Patterns emerged by studying Skolemisation of unification
problems [22]; they proved useful in the unification of higher-order abstract syntax terms
[21]. Cheney proposed a two-stage translation of higher-order to nominal unification [3],
first by exhibiting a translation of higher-order pattern unification to nominal pattern
unification (where nominal patterns are a variant of nominal terms, with a concretion
operator, where unknowns have empty support), followed by a translation between nom-
inal pattern unification and nominal unification. Levy and Villaret’s translation [19], of
nominal unification to higher-order patterns, crystallised an intuition that pattern uni-
fication is exactly what is needed to unify encodings of nominal terms. Their encoding
is not minimal and addresses unifiability rather than individual solutions. In Section 8
we refined their encoding, using capt(r) (Definition 121) to obtain one that is minimal,
and in Section 9 we established a precise sense in which solutions correspond across the
translations.

Hamana’s β0 unification of λ-terms with holes adds a capturing substitution [16].
Level 2 variables (which are instantiated) are annotated with level 1 variable symbols
that may appear in them; permissive nominal terms move in this direction in the sense
that permissions sorts also describe which level 1 variable symbols (we call them atoms in
this paper) may appear in them, though with our permissions sorts there are infinitely
many that may, and infinitely many that may not. Another significant difference is
that the treatment of α-equivalence in Hamana’s system is not nominal (not based on
permutations) and unlike our systems, Hamana’s does not have most general unifiers.
Similarly, Qu-Prolog [23] adds level 2 variables, but does not manage α-conversion in
nominal style, and, for better or for worse, the system is more ambitious in what it
expresses, and thus loses mathematical properties (unification is semi-decidable, most
general unifiers need not exist).

Future work. We noted, in Definition 2, that comb is incompatible with the finite-
support property of nominal sets [15, Definition 3.1]. This matters because permissive
nominal terms can be directly quotiented by α-equivalence, so it could be useful to apply
the Gabbay-Pitts model of abstract syntax up to α-equivalence [14]. We hypothesise
that this can be overcome by using generalisations of nominal sets by the second author

46

[10] or by Cheney ([2, Section 3], or [4]). We also hypothesise a theory of rewriting could
be developed similarly to [9].

Via the interpretation in Section 4 this extends to solutions of ‘ordinary’ nominal
unficiation problems. We have begun to apply permissive nominal terms to construct
novel logics and λ-calculi, taking advantage of their properties to simplify the theory
— we find it very useful to reason on terms (without a freshness context), to have an
inexhaustible supply of fresh names, and to be able to quotient by α-equivalence.

Nominal terms come with a denotation in nominal sets [14]. These are based on
the idea of giving names a denotational reality as urelemente [28] (the atoms in this
paper can be considered urelemente of a sets universe; this is a reason that nominal
terms retain a first-order flavour). Famously, nominal sets exclude sets like permission
sorts S, because they do not have finite support. This is fully consistent with our use
of permission sorts here; in this paper we are working at the meta-level where we can
talk about any sets of atoms that we like. However, generalisations of nominal sets
exist [10, 2] and we believe that permissive nominal terms can use them for denotation.
Checking this is future work.

47

References

[1] Franz Baader and Tobias Nipkow. Term rewriting and all that. Cambridge University
Press, Great Britain, 1998.

[2] James Cheney. Nominal Logic Programming. PhD thesis, Cornell University, August
2004.

[3] James Cheney. Relating nominal and higher-order pattern unification. In Proceedings
of the 19th International Workshop on Unification (UNIF 2005), pages 104–119, 2005.

[4] James Cheney. Completeness and Herbrand theorems for nominal logic. Journal of
Symbolic Logic, 71:299–320, 2006.

[5] Gilles Dowek and Murdoch J. Gabbay. Relating the solutions of nominal unifica-
tion and pattern unification. 2009. Available online at http://www.gabbay.org.uk/
papers/relsnp.pdf.

[6] Gilles Dowek, Murdoch J. Gabbay, and Dominic P. Mulligan. Permissive nominal
terms and their unification. 2009. Available online at http://www.gabbay.org.uk/
papers/perntu.pdf.

[7] Gilles Dowek, Murdoch J. Gabbay, and Dominic P. Mulligan. Permissive nominal
terms and their unification. 2009. Available online at http://www.gabbay.org.uk/
papers/perntu-jv.pdf.

[8] Gilles Dowek, Thérèse Hardin, and Claude Kirchner. Binding logic: Proofs and
models. In LPAR ’02: Proceedings of the 9th International Conference on Logic for
Programming, Artificial Intelligence, and Reasoning, pages 130–144, London, UK,
2002. Springer.

[9] Maribel Fernández and Murdoch J. Gabbay. Nominal rewriting (journal version).
Information and Computation, 205(6):917–965, 2007.

[10] Murdoch J. Gabbay. A General Mathematics of Names. Information and Computa-
tion, 205(7):982–1011, July 2007.

[11] Murdoch J. Gabbay and Stéphane Lengrand. The lambda-context calculus. Electronic
Notes in Theoretical Computer Science, 196:19–35, 2008.

[12] Murdoch J. Gabbay and Aad Mathijssen. A formal calculus for informal equality

with binding. In Proceedings of 14th Workshop on Logic, Language and Information
in Computation (WoLLIC 2007), volume 4576 of Lecture Notes in Computer Science,
pages 162–176, 2007.

[13] Murdoch J. Gabbay and Dominic P. Mulligan. Two-and-a-halfth Order Lambda-
calculus. Electronic Notes in Theoretical Computer Science, 2009. To appear.

[14] Murdoch J. Gabbay and A. M. Pitts. A New Approach to Abstract Syntax with
Variable Binding (journal version). Formal Aspects of Computing, 13(3–5):341–363,
2001.

[15] Murdoch J. Gabbay and Andrew M. Pitts. A New Approach to Abstract Syntax
Involving Binders. In 14th Annual Symposium on Logic in Computer Science, pages
214–224. IEEE Computer Society Press, 1999.

[16] Makoto Hamana. A logic programming language based on binding algebras. In
TACS’01, volume 2215 of Lecture Notes in Computer Science, pages 243–262.
Springer, 2001.

[17] Robert Harper, Furio Honsell, and Gordon Plotkin. A framework for defining logics.
In Proc. 2nd Annual IEEE Symposium on Logic in Computer Science, LICS’87, pages
194–204. IEEE Computer Society Press, 1987.

[18] J.-W. Klop, V. van Oostrom, and F. van Raamsdonk. Combinatory reduction sys-
tems. Theoretical Computer Science, 121:279–308, 1993.

[19] Jordi Levy and Mateu Villaret. Nominal unification from a higher-order perspec-
tive. In Proceedings of RTA’08, volume 5117 of Lecture Notes in Computer Science.
Springer, 2008.

[20] Richard Mayr and Tobias Nipkow. Higher-order rewrite systems and their confluence.
Theoretical Computer Science, 192:3–29, 1998.

48

http://www.gabbay.org.uk/papers/relsnp.pdf
http://www.gabbay.org.uk/papers/relsnp.pdf
http://www.gabbay.org.uk/papers/perntu.pdf
http://www.gabbay.org.uk/papers/perntu.pdf
http://www.gabbay.org.uk/papers/perntu-jv.pdf
http://www.gabbay.org.uk/papers/perntu-jv.pdf
http://www.gabbay.org.uk/papers.html#nomr-jv
http://www.gabbay.org.uk/papers.html#genmn
http://www.gabbay.org.uk/papers.html#lamcc
http://www.gabbay.org.uk/papers.html#forcie
http://www.gabbay.org.uk/papers.html#forcie
http://www.gabbay.org.uk/papers.html#twoaah
http://www.gabbay.org.uk/papers.html#twoaah
http://www.gabbay.org.uk/papers.html#newaas-jv
http://www.gabbay.org.uk/papers.html#newaas-jv
http://www.gabbay.org.uk/papers.html#newaas
http://www.gabbay.org.uk/papers.html#newaas

[21] Dale Miller. A logic programming language with lambda-abstraction, function vari-
ables, and simple unification. Journal of Logic and Computation, 1(4):497 – 536,
1991.

[22] Dale Miller. Unification under a mixed prefix. Journal of Symbolic Computation,
14(4):321–358, 1992.

[23] Peter Nickolas and Peter J. Robinson. The Qu-Prolog unification algorithm: formal-
isation and correctness. Theoretical Computer Science, 169(1):81–112, 1996.

[24] Lawrence C. Paulson. Isabelle: the next 700 theorem provers. In P. Odifreddi, editor,
Logic and Computer Science, pages 361–386. Academic Press, 1990.

[25] F. Pfenning and C. Elliot. Higher-order abstract syntax. In PLDI (Programming
Language design and Implementation), pages 199–208. ACM Press, 1988.

[26] M. R. Shinwell, A. M. Pitts, and Murdoch J. Gabbay. FreshML: Programming with
Binders Made Simple. In ICFP’03, volume 38, pages 263–274. ACM Press, 2003.

[27] Christian Urban, Andrew M. Pitts, and Murdoch J. Gabbay. Nominal Unification.
Theoretical Computer Science, 323(1–3):473–497, 2004.

[28] Ernst Zermelo. Untersuchungen über die Grundlagen der Mengenlehre. Mathemati-
sche Annalen, 65:261–281, 1908.

49

http://www.gabbay.org.uk/papers.html#frepbm
http://www.gabbay.org.uk/papers.html#frepbm
http://www.gabbay.org.uk/papers.html#nomu-jv

	Introduction
	Permissive nominal terms
	Substitutions
	Relation to nominal terms
	Support inclusion problems
	Simplification reduction and normal forms
	Building solutions

	Permissive nominal unification problems
	Problems, solutions, the unification algorithm
	Simplification rewrites calculate principal solutions

	The -calculus
	Translating nominal terms into the -calculus
	The translation "464A671 - "564B679 D, and its soundness
	Capturable atoms; injectivity and minimality

	Translating substitutions; relating solutions of nominal and pattern unification problems
	Translating substitutions
	Reducing permissive nominal unification to pattern unification; soundness, weak completeness
	Strong Completeness

	Conclusions

