
MURDOCH J. GABBAY∗

THE π-CALCULUS IN FM

ABSTRACT: FM (Fraenkel Mostowski) techniques are an approach to metaprogramming
on syntax in the presence of binding. We develop novel FM theory and with it develop
theory of π-calculus syntax and its operational semantics. Technicalities of name binding
and also of name generation in transitions are smoothly handled.

1 INTRODUCTION

Fraenkel-Mostowski (FM) techniques were introduced in [Gabbay, 2000;
Gabbay and Pitts, 2001]. They were developed to allow us to reason induc-
tively about syntax with binding. Consider a de Bruijn-style datatype of
λ-terms:

Λdb
def
= Var of N + App of Λdb × Λdb + Lam of Λdb. (1)

Here α-equivalence is equality and this is good but the inductive principle
is ‘twisted’:

(

∀i. φ(Var(i)) ∧

∀t1, t2. φ(t1) ∧ φ(t2) → φ(App(t1, t2)) ∧

∀t. φ(t) → φ(Lam(t))
)

→ ∀t. φ(t)

(2)

In the clause φ(t) → φ(Lam(t)) the subterm t of Lam(t) is not what we
would normally consider a subterm of the λ-term corresponding to Lam(t).

FM techniques allow α-equivalence to be logical equality, and simultane-
ously deliver natural induction schemes, as we shall see in this paper for the
theory of the π-calculus.

Process calculi abound and many of them involve term-formers for local-
ity, encryption, and so on. These might interact with name-generation and
scope extrusion in complicated ways and involve side-conditions on bound
and free names. It would be interesting and useful if we could show that
FM techniques could simplify these presentations, and perhaps also their
proofs.

This paper starts with a brief account of basic FM theory which expands
into quite a detailed account of some novel theory which we shall find useful:
some improved proofs and definitions of known constructions like abstrac-
tion types, and new material on what we call abstractive functions, which
turn out to be quite a powerful unifying tool in FM.

∗M.J.Gabbay, mjg1003@cl.cam.ac.uk, Computer Laboratory, Cambridge University,
UK

Fairouz Kamareddine (eds.),
Thirty Five Years of Automating Mathematics 1–24.
c© 2003, Kluwer Academic Publishers. Printed in the Netherlands.

2 MURDOCH J. GABBAY

We then take a simple π-calculus (without matching or replication) and
indicate how to specify its syntax, operational semantics, and some standard
operational and syntactic equivalence relations on it. We outline details of
the proofs and see that the entire development can be made very close to
normal informal practice, only that thanks to FM the treatment of names
and binding in syntax and name-generation in operational semantics, is
completely rigorous.

We conclude with a brief survey of other techniques, and outline possible
future research.

2 A-PERMUTATION

Hypothesise some set of atoms a, b, c, . . . ∈ A, which we shall use through-
out this document to represent object-level variable names. Also write
Pfin(A) for the set of finite subsets of A. Now consider a name-carrying
datatype of λ-terms:

Λ = Var of A + App of Λ × Λ + Lam of A × Λ (3)

Capture-avoiding name for name substitution might be defined as:

[b/a]Var(n) = Var([b/a](n))

[b/a]App(t1, t2) = App([b/a]t1, [b/a]t2)

[b/a]Lam(n, t) = Lam(n, [b/a]t) a, b 6= n

[b/a]Lam(a, t) = Lam(a, t)

[b/a]Lam(b, t) = Lam(n, [b/a][n/b]t)

n = gsym(FV (t) ∪ {a, b})

(4)

Here gsym(S) takes S ∈ Pfin(A) and returns some x 6∈ S. The notation
[b/a](n) denotes the function [b/a] : A → A acting on n, where [b/a]n = n
for n 6= a and [b/a](a) = b.

This is almost a function which distributes through the syntax of a term
and acts on the atoms inside it, only we must take account of the fact that
Lam(n, t) abstracts n in t.

Now write (a b):A → A for the function such that (a b)(a) = b, (a b)(b) =
a, and (a b)(n) = n for n 6= a, b, and call this a transposition. Using it
we can define a form of capture-avoiding name for name substitution more
simply:

(b a) · Var(n) = Var((b a)(n))

(b a) · App(t1, t2) = App((b a) · t1, (b a) · t2)

(b a) · Lam(n, t) = Lam((b a)(n), (b a) · t).

(5)

LEMMA 1. For t ∈ Λ and b, a : A, if b 6∈ FV (t) then [b/a]t =α (b a).t.

THE π-CALCULUS IN FM 3

Here we write α-equivalence as =α.

Proof. By induction on term size using the observation that for c, d 6∈
FV (t) (but possibly occurring bound in t), (c d) · t =α t. �

For example:

(c d) · Lam(d, Lam(c, Var(c))) = Lam(c, Lam(d, Var(d)))

and Lam(c, Lam(d, Var(d))) =α Lam(d, Lam(c, Var(c))) .

DEFINITION 2. Write π, κ ∈ AΠ for the subgroup of functions generated
by (a b). Write Id for the identity λa :A.a and ◦ for the group composition,
which is functional composition.

Let an FM set be a pair (X, ·) of a set X with an AΠ permutation action
· : AΠ × X → X (written infix) satisfying

∀x : X. ∃S ∈ Pfin(A). ∀a, b 6∈ S. (a b) · x = x. (6)

We shall tend to write just X for the FM set (X, ·). We call (6) the finite
support property, we shall see why below.

Write FM-Sets for the category of FM sets with objects FM sets X, Y
and arrows functions f : X → Y such that ∀a, b. f((a b) · x) = (a b) · f(x).

A permutation action is a function AΠ × X → X which we write infix
π · x, satisfying Id · x = x and π · π′ · x = π ◦ π′ · x.

DEFINITION 3. Say x ∈ X is equivariant when (a b) · x = x for all a, b.

Thus x is equivariant when we can take S = ∅ in (6) above.
A is an FM set with the natural action (a b) ·n = (a b)(n). Any ordinary

set, such as B = {>,⊥} boolean truth values, N the natural numbers, or R

the reals, can be made an FM set with the trivial action (a b) · x = x for all
x, thus such that every element is equivariant.

Given FM sets X and Y the permutation action naturally extends to
functions f : X → Y by conjugation, so

((a b) · f)(x) = (a b) ·
(

f((a b) · x)). (7)

It is not necessarily the case that such a function satisfies (6). For example
a choice function Pfin(A) → A cannot, and it is interesting to verify this
(see [Gabbay and Pitts, 2001, Remark 4.6] for a discussion). Note that
equivariant functions are precisely the arrows of FM-Sets.

2.1 Set-theoretic model of FM-Sets

We obtain a concrete model of FM-Sets as follows. We construct a set-
theoretic cumulative hierarchy starting with atoms a ∈ A as base elements:
in the standard notation V0 = A.

4 MURDOCH J. GABBAY

Given Vi we construct Vi+1 by collecting the subsets U ⊆ Vi that satisfy
(6). This is a model of ZF set theory with atoms (A in this case), along
with the extra axiom (6), see [Gabbay, 2000; Gabbay and Pitts, 2001] for a
full development.

The permutation action is given by the pointwise action on the elements:
formally π·a = π(a) and π·x =

{

π · y
∣

∣ y ∈ x
}

(this is clearly a permutation
action).

Functions f are implemented in sets as graphs {〈x, f(x)〉}. Applying a
permutation according to this action, (a b) · f = {〈(a b) · x, (a b) · f(x)〉},
and translating that back into functional notation this is precisely (7).

Recall that the action on a set is pointwise on its elements. Thus an
equivariant set X is one such that X =

{

(a b) · x
∣

∣ x ∈ X
}

. Equivariant
sets can be seen as objects in FM-Sets and arrows as equivariant function-
sets between them.

THEOREM 4. The construction above gives a model of FM-Sets.

COROLLARY 5. FM-Sets is a boolean topos.

We see why permutation is better-behaved than atom-for-atom substitu-
tion [b/a]. If we try giving that a similar inductive interpretation on the set-
universe, so [b/a]n = [b/a](x) for x ∈ A and [b/a]x =

{

[b/a]y
∣

∣ y ∈ x
}

for

x 6∈ A, things do not work out smoothly. For example f =
{

〈c, c〉
∣

∣ c ∈ A
}

denotes the identity λx : A.x and (b a) · f = f . However we see that
[b/a]f =

{

〈c, c〉
∣

∣ c ∈ A \ {a}
}

is not equal to f and is no longer even a
total function-set from A to A.

2.2 Support and apartness

DEFINITION 6. For S ∈ Pfin(A) write Fix(S) for the set of π fixing S
pointwise:

π ∈ Fix(S)
def
⇔ ∀n ∈ S. π(n) = n.

Say π fixes x :X when π ·x = x. Say S ⊆ A supports x :X when if π fixes
pointwise S then π · x = x:

(S supports x)
def
⇔ ∀π ∈ Fix(S). π · x = x.

Note that Fix(S) is a group; this will be useful later. (6) says in this
terminology that every x has a finite supporting set of atoms.

THEOREM 7. Any x : X has a unique minimal supporting set of atoms.
Write it S(x) and call it the support of x.

Proof. Construct S(x) as
⋂

{

S ∈ Pfin(A)
∣

∣ S supports x
}

. The lemma
below proves this supports x. �

THE π-CALCULUS IN FM 5

LEMMA 8. If S and S′ support x then so does S ∩ S ′.

Proof. Suppose κ fixes S ∩ S ′. We must show κ · x = x. Choose some
injection ι : S′ \ S ↪→ A \ (S ∪ S′) and make it into a bijection π by letting
π(ιa) = a for a in the image of S ′ \ S (note that π ◦ π = Id). Since
π ∈ Fix(S) we know π · x = x. Observe also that π ◦ κ ◦ π fixes S ′, so
π ◦ κ ◦ π · x = x. It follows by group algebra that κ · x = x. �

In other works S(x) is written ‘Supp(x)’. We prefer a more compact nota-
tion here for typographical reasons.

DEFINITION 9. For x : X and y : Y write

x#y
def
⇔ S(x) ∩ S(y) = ∅.

We read this as x is (A-)apart from y.

We can verify by calculation that S(a ∈ A) = {A}. Two useful results
follow: a#b if and only if a 6= b, and if a, b#x then (a b) · x = x.

S(S ∈ Pfin(A)) = S. Write L ∈ Pcofin(A) for the set of cofinite sets of
atoms. L is cofinite when A \L is finite. S(L) = A \L. If U ⊆ A is neither
finite nor cofinite then S(U) = A so in FM-Sets P(A) = Pfin(A)∪Pcofin(A).

If P is a predicate A → B we can write Na. P (a) for P ∈ Pcofin(A),
this is the FM N-quantifier (pronounced ‘New’), familiar from [Gabbay
and Pitts, 2001, p.8]. The observation on powersets becomes the some/any
property of FM atoms: ¬ Na. P (a) ⇔ Na. ¬P (a). We shall see Nas an
instance of a very general construction in the next subsection.

Recall that arrows in FM-Sets are equivariant functions f on underlying
sets, so f(π · x) = π · f(x). It is then easy to show that S(fx) ⊆ S(x).
Again, it is interesting to verify these facts. We shall use them often.

2.3 Abstractive functions and abstractions

DEFINITION 10. For a : A and y : Y define

[a]y
def
=

⋂

{

U ⊆ A × Y
∣

∣ 〈a, y〉 ∈ U ∧ S(U) ⊆ S(y) \ {a}
}

. (8)

At least one such U always exists since U = A × Y is equivariant. By
calculation S(a) = {a} so the last part of this formula could be read as
S(y)\S(a). (8) is an instance of a general construction [x]y whose definition
is identical except that we write S(y) \ S(x).

LEMMA 11. For a, y, and [a]y as above, [a]y is precisely the orbit E of

〈a, y〉 under permutations π ∈ F
def
= Fix(S(y) \ {a}).

6 MURDOCH J. GABBAY

Proof. Suppose π ∈ F . Then π · E =
{

〈π · a′, π · y′〉
∣

∣ 〈a′, y′〉 ∈ E
}

. But
〈a′, y′〉 ∈ E precisely when a′ = π′ · a and y′ = π′ · y for π′ ∈ F , and since
F is a group π · E = E. Therefore [a]y ⊆ E.

By construction 〈a, y〉 ∈ [a]y. Also π · [a]y = [a]y for all π ∈ F , so
〈π(a), π · y〉 ∈ [a]y for all these π. Therefore E ⊆ [a]y. �

As a corollary, S([a]y) = S(y) \ {a}.

DEFINITION 12. Define A-abstraction by

[A]Y
def
=

{

[a]y
∣

∣ a : A, y : Y
}

. (9)

See [Gabbay and Pitts, 2001, Section 5]. The canonical map abs:A×Y →
[A]Y ‘binds’ a (or more properly the support of a) in y. abs is otherwise
injective:

LEMMA 13. If [a]y = [a]y′ then y = y′.

Proof. By easy calculation. �

COROLLARY 14. abs :A×Y → [A]Y is universal amongst F :A×Y → Z
such that ∀a, y. a#F (a, y).

Thus [a]y ‘y with a bound’. Since a is bound—abs is not injective and for
any b#y, (a b) · [a]y = [a]y—we introduce a nameless notation ŷ for an
arbitrary element of [A]Y .

Abstraction types with their universal properties are an example of an
abstractive function.

2.4 Abstractive functions

Any f : X → Y induces an inverse map f∗ : Y → P(X)

f∗ : y : Y 7−→
{

x : X
∣

∣ f(x) = y
}

.

f∗(y) partitions into orbits under Fix(S(y)) (as well as any other subgroup
of AΠ). Write Of (y) for this particular set.

Each orbit O has a breadth |S(z ∈ O)| the cardinality of S(z) of a
representative z ∈ O. Write this |O|.

DEFINITION 15. Suppose f is such that for all y there is a unique orbit
M of greatest breadth:

∃M ∈ Of (y). ∀O ∈ Of (y). |O| ≥ |M | =⇒ O = M

Write Mf (y) for this orbit when it exists and say f has orbits of maximal
breadth.

The set
⋃

y Mf (y) is an FM set, write it just Mf .

THE π-CALCULUS IN FM 7

DEFINITION 16 (Abstractive function). Say f : X → Y is Barendregt
abstractive or just abstractive when it has orbits of maximal breadth.
When Of (y) is always a singleton set, so orbits are maximal because they
are unique, say f is purely abstractive.

An abstractive f :X → Y induces a purely abstractive restriction f :Mf →
Y . By construction, if f is surjective, so is its restriction to Mf .

1. For f = λx.∗ :A → 1 the set Of (∗) has just one orbit, A, with breadth
1. f is purely abstractive.

2. For f = λx.∗ : A2 → 1 the set Of (∗) has two orbits,
{

〈a, b〉
∣

∣ a 6= b
}

with breadth 2 and
{

〈a, a〉
∣

∣ a : A ∼= A
}

with breadth 1. f is Baren-
dregt abstractive.

3. For f = λx.∗ : Pfin(A) → 1 the set Of (∗) is isomorphic to N. There
is no orbit of maximal breadth and f is not abstractive.

4. For f = λx.A + A : 1 the set Of (∗) has two orbits of equal breadth. f
is not abstractive.

5. For f = abs : A × Y → [A]Y the set Of ([a]y) is the orbit E described
in Lemma 11. abs is purely abstractive.

6. For f = π2 : A × Y → Y (second projection) Of (y) has one orbit of
maximal breadth

{

〈a, y〉
∣

∣ a#y
}

. f is Barendregt abstractive.

7. Recall from (3) the datatype Λ. The quotient by α-equivalence, write
it α : t 7→ [t]=α

: Λ → Λ/=α, is Barendregt abstractive. Mf is the set
of Barendregt representative terms.

Abstractive functions give an abstract account of the Barendregt variable
convention (amongst other things), because the orbit of maximal breadth
consists of x representing y with the most possible different names for those
‘bound’ by the function. Abstractive functions are also related to FreshML
abstraction-patterns. The interpreter generates fresh names for atoms in
(possibly nested) abstraction-patterns.

If we read these example f :X → Y ‘backwards’ as ‘maps’ Y → Mf , they
do the following respectively: choose a canonical atom, choose a canonical
pair of distinct atoms, choose a canonical largest finite set of atoms (there
is none), choose a canonical atom in a disjoint sum (there is none), choose
a fresh atom for y, choose a Barendregt representative for t. Theorem 21
will make this intuition formal.

LEMMA 17. If f : X → Y and g : X ′ → Y ′ have orbits of maximal breadth
then so do f + g : X + X ′ → Y + Y ′ and f × g : X ×X ′ → Y × Y ′ (with the
obvious definitions).

8 MURDOCH J. GABBAY

If f : X → Y and g : Y → Z have orbits of maximal breadth so does
g ◦ f : X → Z.

Proof.(Sketch) The case of disjoint sum is very easy. For the case of
products, Mf×g〈y1, y2〉 is the Fix(S(〈y1, y2〉))-orbit of 〈z1, z2〉 ∈ Mf (y1) ×
Mg(y2) where z1 and z2 are chosen such that S(z1)\S(y1) and S(z2)\S(y2)
are disjoint (which makes the cardinality of S(z1) ∩ S(z2) minimal, details
omitted).

The case of functional composition is also easy. Mg◦f (z) is equal to Mg(u)
for a representative u ∈ Mf (z). �

COROLLARY 18. If f :X → Y and g:X ′ → Y ′ are (Barendregt) abstractive
then f +g :X+X ′ → Y +Y ′ is (Barendregt) abstractive and f×g :X×X ′ →
Y ×Y ′ is Barendregt abstractive. If f :X → Y and g:Y → Z are (Barendregt)
abstractive then so is g ◦ f : X → Z.

Proof. Using Lemma 17. �

DEFINITION 19. For f :X → Y abstractive and surjective and F :X → Z,
say F factors through f on orbits of maximal support when there is
some h : Y → Z such that for all x ∈ Mf , F (x) = hf(y).

x ∈ Mf

F- Fx = hy

..
..
..
..
..
..
..

h

�

y = fx.

f

?

(10)

DEFINITION 20. For f and F as in the previous definition, write F ≤ab f
when ∀x ∈ Mf . S(Fx) ⊆ S(fx).

THEOREM 21. For f and F as above, F ≤ab f if and only if F factors
through f on orbits of maximal support.

Proof. Suppose for all x ∈ Mf , Fx = h ◦ f(x). Then S(Fx) = S(hf(x)) ⊆
S(fx).

Conversely suppose F ≤ab f and x ∈ Mf . Write y = fx and let hy be Fx.
If Fx′ = y then x′ = π·x for some π ∈ Fix(S(y)) and Fx′ = Fπ·x = π·(Fx).
Now S(Fx) ⊆ S(y) by assumption so π · (Fx) = Fx. So h is well-defined.

�

As a corollary, purely abstractive surjective f : X → Y universal amongst
maps F : X → Z such that F ≤ab f . If f is Barendregt abstractive and
surjective, it is universal ‘on orbits of maximal breadth’.

THE π-CALCULUS IN FM 9

• For abs : A × X → [A]X the condition F ≤ab abs is S(F (a, x)) ⊆
S(x) \ S(a). We recover Corollary 14. Compare with [Gabbay and
Pitts, 2001, p.15, Lemma 6.3].

• For π2 : A × X → X the condition F ≤ab f is a#F (a, x). Write
Na. F (a, x) for the unique value of F (a, x) when a#x (for fixed x).

This is a functional version of the Nquantifier mentioned in the last
subsection.

When Z = B the condition a#F (a, x) is always satisfied since F (a, x) =
> or F (a, x) = ⊥, and we obtain the N-quantifier mentioned in §2.3.
(The X makes parameters explicit.)

Now suppose that F = P : A × X → B. The universality property
on orbits of maximal breadth then gives Na. P (a, x) if and only if
∀a. a#x ⇒ P (a, x), a known commutativity property between Nand
∀ which we shall find useful.

• Recall that for Λ defined in (3) the quotient α : Λ → Λ/=α is Baren-
dregt abstractive. Therefore F : Λ → Z respects α-equivalence on
Barendregt representative terms t precisely when for all such t and
a ∈ bn(t), a#F (t).

DEFINITION 22. When f : X → Y is abstractive and F ≤ab f , write the
h we construct above as NfF : Y → Z.

We write (NfF)(y) as Ny=f(x). Fx, this is the unique value of F at
x such that f(x) = y and x is a Barendregt representative in the sense
discussed above.

We call this the generalised Nquantifier.

3 THE π-CALCULUS

3.1 An inductive datatype of π-calculus terms up to binding

Define an inductive FM datatype of π-calculus terms up to =α:

Π
def
= 1 + Π + A

2 × Π + A × [A]Π + Π2 + [A]Π

P ::= 0 | xyP | xP̂ | (P | P) | νP̂
(11)

To construct a term of the form νP̂ it suffices to provide y : A, P : Π, and
apply ν to the abstraction [y]P . Recall from after Corollary 14 that we can
write such an abstraction namelessly as P̂ .

10 MURDOCH J. GABBAY

Π is inductively defined and has a primitive recursion scheme. For any
Z, given

f0 : Z fτ : Π → Z fo : A
2 × Π → Z fi : A × [A]Π → Z

fp : Π2 → Z fν : [A]Π → Z

there is a unique f : Π → Z such that all of the following hold:

f(0) = f0 f(τ.P) = fτP f(xy.P) = fo(x, y, P) f(xP̂) = fi(x, P̂)

f(P | Q) = fp(P, Q) f(νP̂) = fν(P̂). (12)

However abstraction abs : A × Π → [A]P has special properties formalised
in its being an abstractive function. We take advantage of this to write
primitive recursive definitions which look like standard ones.

Recall the notations for renamings [b/a] from §2.

DEFINITION 23. Analogously to AΠ write σ ∈ AΣ ⊆ AA for the monoid
generated by renamings [b/a], and write Id for the identity λx.x.

By (12) we can define name substitution on Π by primitive recursion
as follows:

0σ = 0 (τ.P)σ = τ.Pσ (xy.P)σ = xσyσ.Pσ

(xP̂)σ = N̂P=[n]P. xσ[n](Pσ)

(P1 | P2)σ = P1σ | P2σ (νP̂)σ = N̂P=[n]P. ν[n](Pσ).

(13)

We also show an induction principle derived from primitive recursion. For
a predicate φ on Π, if

For all x, P, Q, P̂

φ(0) φ(P) → φ(τ.P) φ(P) → φ(xy.P) φ(P) ∧ φ(Q) → φ(P | Q)

N̂P=[y]P. φ(P) → φ(x[y]P) N̂P=[y]P. φ(P) → φ(ν[y]P)

hold, then ∀P. φ(P). (14)

A more usual induction scheme would have clauses for input and restric-
tion as follows:

∀x, y, P. φ(P) → φ(x[y]P) ∀y, P. φ(P) → φ(ν[y]P)

These do not assume y fresh, and since this is the only case we care about
in practice it can be useful to, in effect, build it into the datatype.

If y#σ and y 6= x then

yσ = y (ν[y]P)σ = ν[y](Pσ), and (x[y]P)σ = xσ[y](Pσ). (15)

THE π-CALCULUS IN FM 11

We read the second two clauses ‘for free’ off the appropriate clauses of
(13) (input and restriction), because y#[y]P always holds. Concerning the
first clause, we say of many FM results in this paper that they follow ‘by
(easy) calculation’. The following useful result follows by slightly involved
calculation, for once we give it in full.

LEMMA 24. y#σ if and only if y is neither in the domain nor the image
of σ as a partial function on atoms.

Proof. Suppose y#σ. σ is finitely generated by renamings so cofinitely
many atoms z are not in the domain or image of σ, or formally ∀z ′. σz′ =
z ⇒ z = z′.

By (6) also cofinitely many z have z#σ, so choose one z such that both
hold. Then (y z)(σy) = ((y z) · σ)((y z) · y) = σz = z, so σy = y. Also
suppose that y = σy′ for some y′. Then z = (y z) · y = σ((y z) · y′). So
(y z) · y′ = z and therefore y′ = y.

Conversely, suppose y is neither in the domain nor image of σ. Take fresh
z not in the domain or image as before. Write τ = (z y) ·σ. We show τ = σ
by applying them to arbitrary z′.

τz′ = (z y) · (σ(z y) · z′) by definition. τz = (z y) · σy = z = σz.
τy = (z y) · σz = y = σy. Otherwise τz′ = (z y) · σz′. We know σz′ 6= z, y,
so this is just σz′. �

COROLLARY 25. If y#σ and y#x, then y#σx.

We shall use these results often in our proofs.
We return briefly to (13): (xP̂)σ = N̂P=[n]P. xσ[n](Pσ) the clause for

input can be equivalently expressed by

∀x. Nn. ∀P. (x[n]P)σ = xσ[n]Pσ. (16)

(We can treat the clause for restriction similarly.) This presentation style
is useful, we explore it in detail in the next subsection.

3.2 Operational semantics for Π

DEFINITION 26 (Actions). Define a datatype of actions by

Act
def
= 1 + A

2 + A
2 α, µ ::= τ | xy | xy. (17)

Write 〈P, [z]〈l, Q〉〉 an element of Π × [A](Act × Π) as P
z.l
→ Q.

DEFINITION 27. We define an early and late transition relations

→⊆ Π × [A](Act × Π)

inductively by the rules of Figure 1.

12 MURDOCH J. GABBAY

τ : ∀P. Nz. τ.P
z.τ
→ P

Out: ∀x, y, P. Nz. xy.P
z.xy
→ P

In: ∀x, n. Ny. ∀P. x[y]P
y.xn
→ P [n/y]

Par1: ∀P1, P2. Nz. ∀µ, Q1.
P1

z.µ
→ Q1

P1 | P2
z.µ
→ Q1 | P2

Close1: ∀P1, P2, x. Ny, z. ∀Q1, Q2.
P1

y.xy
→ Q1 P2

z.xy
→ Q2

P1 | P2
z.τ
→ ν[y](Q1 | Q2)

Com1: ∀P1, P2, x, y. Nz.
P1

z.xy
→ Q1 P2

z.xy
→ Q2

P1 | P2
z.τ
→ Q1 | Q2

Open: ∀x. Ny. ∀P, Q. Nz.
P

z.xy
→ Q

ν[y]P
y.xy
→ Q

Res: ∀µ, z. Ny. ∀P, Q.
P

z.µ
→ Q

ν[y]P
z.µ
→ ν[y]Q

(a) Early transitions

In: ∀x. Ny. ∀P. x[y]P
y.xy
→ P

Close1: ∀P1, P2, x. Ny. ∀Q1, Q2.
P1

y.xy
→ Q1 P2

y.xy
→ Q2

P1 | P2
y.τ
→ ν[y](Q1 | Q2)

Com1: ∀P1, P2, x, y, Q1. Nz. ∀Q2.
P1

z.xy
→ Q1 P2

z.xz
→ Q2

P1 | P2
z.τ
→ Q1 | Q2[z/y]

(b) Late transitions as early, except for rules shown

We elide symmetric versions (Par2), (Close2), and (Com2).

Figure 1. FM presentation of late and early π-calculus transitions.

THE π-CALCULUS IN FM 13

A transition in our sense is an element 〈P, [z]〈µ, Q〉〉. We model bound
output by literally outputting a bound name. For example the canonical

‘output of a bound channel name’ νy.xy
x(y)
→ 0 which may be well-known

to the reader [Milner et al., 1992], but also νy.xy
x(y′)
→ 0 and νy.xy

x(z)
→ 0,

are represented by the single element 〈νy.xy, [y]〈xy, 0〉〉 which we write as

νy.xy
[y]xy
→ 0. The restriction that y 6= x is built into the the order of the

quantifiers ∀x. Ny. ∀P, Q in (Open), which we now discuss.

By the discussion on quantifiers at the end of the previous section we can
expand the quantifiers ∀x. Ny. ∀P. body of the late (In) as ∀x, y, P. y#x ⇒
body. We can expand the quantifiers ∀x, n. Ny. ∀P. body of the early (In)
as ∀x, y, P. y#x, n ⇒ body.

For a more complex example, the quantifiers ∀x. Ny. ∀P, Q. Nz. body of
(Open) expand as ∀x, y, P, Q, z. y#x ∧ z#x, y, P, Q ⇒ body. Now recall
that y#x is equivalent to y 6= x and y#P equivalent to y 6∈ n(P). Here
n(P) is the free names of P , we write it just n because in the FM datatype
there are no bound names.

Thus we see how the mix of ∀ and Nencodes side-conditions on free and
bound names. The advantage of using Nz is that we can assume z fresh
also for other parts of our context, for example a substitution σ, or perhaps
a different process R. We now consider an example.

Recall the notation σ : AΣ and the renaming action, defined in and after
Definition 23. Recall from Lemma 24 that if y#σ then yσ = y. [Milner et
al., 1992, Lemma 3] in this framework and notation becomes:

LEMMA 28. For σ : AΣ

∀P. Nz. ∀α, Q. P
z.α
→ Q =⇒ Pσ

z.(ασ)
→ Qσ.

Here ασ denotes the evident inductive action of σ on actions α.

Proof. By induction on the transition using hypothesis

φ(t)
def
= ∀P. Nz. ∀α, Q. t = (P

z.α
→ Q) =⇒ P

z.α
→ Q ∧ Pσ

z.(ασ)
→ Qσ.

The case (Close1). Suppose P1, P2, x, y, Q1, Q2 are such that y#P1, P2, x,

and σ. Suppose also P1
y.xy
→ Q1 and P2

y.xy
→ Q2. By Lemma 24 y#P1σ, so

by induction hypothesis P1σ
y.xσy
→ Q1σ. Similarly for P2. y#P1σ, P2σ, xσ

so we apply (Close1) to these two new transitions.

The case (Open). Suppose we have x, y, P, Q, z and y#x and z#x, y, P, Q.

Suppose P
z.xy
→ Q. By induction hypothesis Pσ

z.xσy
→ Qσ. Also we know

that y#xσ and z#xσ, yσ, Pσ, Qσ, so we can apply (Open) to this new
transition. �

14 MURDOCH J. GABBAY

In the proof above we deconstruct a transition tr choosing suitably fresh
names for the bound variables, and reconstruct it with σ applied, verifying
that the appropriate freshness conditions hold. When we deconstruct we
took advantage of the FM framework to choose y fresh also for σ, so that
yσ = y (capture avoidance for free).

Continuing to read [Milner et al., 1992] we see that further results become
trivial or easy. Lemma 4 of [Milner et al., 1992] becomes equivariance of
→:

LEMMA 29. For π : AΠ, and for P, z, µ, and Q, with z#π, P ,

P
z.µ
→ Q =⇒ π.P

z.(π.µ)
→ π.Q.

Lemma 5 part (a) and the second half of (b) for bound output of [Milner
et al., 1992] disappear because Π is already up to α-equivalence and because
bound outputs really do bind the output name. The first half of Lemma 5
part (b) is subsumed in the FM version by Lemma 28.

We give appropriate definitions of bisimulation for the early and late
calculi respectively. Early bisimulation in the early transition relation is
the greatest symmetric relation closed under the rule

P ' Q =⇒ Nz. ∀α, P ′.
(

P
z.α
→ P ′ =⇒ ∃Q′. Q

z.α
→ Q′ ∧ P ′ ≤ Q′

)

(18)

Late bisimulation in the late transition system is the greatest symmetric
relations such that if P ' Q then

∀z, P ′. P
z.τ
→ P ′ =⇒ ∃Q′. Q

z.τ
→ Q′ ∧ P ′ ' Q′

Nz. ∀x, y, P ′. P
z.xy
→ P ′ =⇒ ∃Q′. Q

z.xy
→ Q′ ∧ P ′ ' Q′

Nz. ∀x, P ′. P
z.xz
→ P ′ =⇒ ∃Q′. ∀y. Q

z.xz
→ Q′ ∧ P ′[y/z] ' Q′[y/z]

(19)

We obtain an early version in the late transition system by swapping ∃ and
∀ in the last clause to ∀y. ∃Q′, in the way we would expect.

DEFINITION 30. For P, Q ∈ Π, we write
•

' for the symmetric relation
defined by

P
•

' Q ⇐⇒ ∀σ : AΣ. Pσ ' Qσ. (20)

LEMMA 31. ' is preserved by all term-formers except for input.
•

' is
preserved by all term-formers.

Proof. By inductions on →. We have checked the proofs in detail. They
are as systematic as the proof of Lemma 28 and by simple induction. �

THE π-CALCULUS IN FM 15

3.3 Structural congruence

We can use FM to specify freshness constraints also for structural congru-
ences. For example:

DEFINITION 32. Define a relation ≡ on Π inductively as the smallest
congruent equivalence relation closed additionally under the rules

∀P, Q, R. P | 0 ≡ P P | Q ≡ Q | P (P | Q) | R ≡ P | (Q | R)

Ny. νy.0 ≡ 0 ∀P. Ny. ∀Q. P | νy.Q ≡ νy.(P | Q)

Ny, y′. ∀P. νyνy′.P ≡ νy′νy.P

(21)

We call this structural congruence.

(These rules are modified from [Parrow, 2001, Table 2, p.10].)

THEOREM 33. Structural congruence implies early bisimilarity: P ≡ Q ⇒
P ' Q.

Proof.(Sketch) By standard FM-style induction. Let Φ' : P(Π × Π) →
P(Π×Π) be the monotone operator on relations implicit in (18). Thus a re-

lation R is a bisimulation when R ⊆ Φ'(R) and '
def
=

⋃
{

R
∣

∣ R ⊆ Φ'(R)
}

is the largest bisimulation.

Then

• R
def
= {〈νy.0, 0〉} satisfies Φ'(R) ⊆≡.

• R
def
=

{

〈νu.(P | Q), P | νu.Q〉
∣

∣ u#P
}

satisfies Φ'(R) ⊆≡.

• R
def
=

{

〈νyνy′.P, νy′νy.P 〉
∣

∣ y′#y
}

satisfies Φ'(R) ⊆≡.

• The relations

R0 = {〈P | 0 , P 〉}, R1 = {〈P | Q , Q | P 〉},

and R2 = {〈(P | Q) | R , P | (Q | R)〉}

satisfy Φ'(Ri) ⊆≡ for i = 0, 1, 2.

Proofs by induction.

It is easy to prove by induction that for all P, Q : Π and substitutions
σ, if P ≡ Q then Pσ ≡ Qσ; Navoids variable capture as in the proof of
Lemma 28.

Using all of these facts we can verify that ≡⊆ Φ'(≡) and hence ≡⊆'.
�

16 MURDOCH J. GABBAY

τ : τ.P
τ

→′ P

Out: xy.P
xy

→′ P

In: xy.P
xn

→′ P [n/y]

Par1:
P1

µ

→′ Q1

P1 | P2

µ

→′ Q1 | P2

bn(µ) ∩ fn(P2) = ∅

Close1: P1

x(y)

→′ Q1, P2

xy

→′ Q2

P1 | P2

τ

→′ νy.(Q1 | Q2)

y 6∈ fn(P2)

Com1:
P1

xy

→′ Q1, P2

xy

→′ Q2

P1 | P2

τ

→′ Q1 | Q2

Open:
P

xy

→′ Q

νy.P
x(y)

→′ Q

y 6= x

Res:
P

µ

→′ Q

νy.P
µ

→′ νy.Q
y 6∈ n(µ)

Symmetric versions (Par2), (Close2), and (Com2) are elided.

Figure 2. A conventional presentation of early π-calculus transitions.

4 EQUIVALENCE WITH CONVENTIONAL PRESENTATION

It remains to verify that the presentation of Π with its transition system →
in §3 corresponds to the π-calculus as we know it from elsewhere.

Define a datatype of terms of the π-calculus not up to binding

Π′ def
= 1 + Π′ + A

2 × Π′ + A
2 × Π′ + Π′2 + A × Π′

P ::= 0 | τ.P | xy.P | xy.P | (P | P) | νnP
(22)

Define a datatype of actions by

Act′
def
= 1 + A

2 + A
2 + A

2 α, µ ::= τ | xy | x(y) | xy (23)

DEFINITION 34 (Conventional early transition system for Π′). The tran-

sitions of Π′ are written P
µ

→′ Q and inductively defined in Figure 2.

THE π-CALCULUS IN FM 17

Abstraction inductively induces a map η : Π′ → Π:

η0 = 0 η(τ.P ′) = τ.ηP ′ η(xy.P ′) = xy.ηP ′ η(xn.P ′) = x[n]ηP ′

η(P ′

1 | P ′

2) = ηP ′

1 | ηP ′

2 η(νn.P ′) = νn.ηP ′.
(24)

LEMMA 35. For P ′ : Π′, y 6∈ fn(P ′) ⇐⇒ y#η(P ′).

Proof. By induction on syntax for fixed y using inductive hypothesis

φ(P ′)
def
⇔ y 6∈ fn(P ′) ↔ y#η(P ′).

We consider just the case of restriction. Suppose φ(P ′). We verify φ(νn.P ′).
If n 6= y then y 6∈ fn(P ′) precisely when y 6∈ fn(νn.P ′). Also, y#P ′

precisely when y#ν[n]η(P ′). Since ν[n]η(P ′) = η(νn.P ′) the result follows.
If n = y then y 6∈ fn(νy.P ′) and also y#ν[y]η(P ′). Since ν[n]η(P ′) =

η(νn.P ′) the result follows. �

LEMMA 36. η(−) is surjective. Its kernel is precisely α-equivalence on Π′.

Proof. By inductions on syntax. �

η is also Barendregt abstractive, by Corollary 18.
In the last section we mentioned that Π is an FM datatype and has no

names of bound atoms. η and Nare a formal sense in which we can give
them names.

η extends pointwise to a map P(Π′ × Π′) → P(Π × Π) and hence to
a map from a relation R on Π′ to a relation, write it ηR, on Π. It
also gives rise to a map η−1 from P(Π × Π) to P(Π′ × Π′), R maps to
{

〈P ′, Q′〉
∣

∣ ηP ′ R ηQ′
}

.

THEOREM 37. η' = ', where ' is early bisimilarity or late bisimilarily
on Π′ and Π respectively.

Proof. We show that η' is a bisimulation in the FM sense, and that η−1'
is a bisimulation in the traditional sense, for a notion of bisimulation as in
(18) and (19). �

THEOREM 38. The transition relations →⊆ Π × Π and →′⊆ Π′ × Π′ are
related as shown in Figure 3.

Note that (26) refers only to Barendregt representatives. This is techni-
cally convenient for the proof. Once we have it we can take advantage of
results on transitions for the standard name-carrying Π′, such as [Milner et
al., 1992, Lemma 5], to strengthen it to all P ′, Q′ : Π′.

The proof of Theorem 38 is in two parts corresponding to (25) and (26).

The first part is by induction on →′, the second by induction on →. To save
space we do not re-write out the induction hypotheses in complete formality.

18 MURDOCH J. GABBAY

For any P ′, Q′ : Π′, x, y : A, write P = ηP ′, Q = ηQ′. Then

P ′

τ

→′ Q′ =⇒ P
τ
→ Q ∧

P ′

xy

→′ Q′ =⇒ P
xy
→ Q ∧

P ′

xy

→′ Q′ =⇒ P
xy
→ Q ∧

P ′

x(y)

→′ Q′ =⇒ P
y.xy
→ Q.

(25)

For any P, Q : Π, x, y, :A, choosing fresh names for the bound atoms in P
and Q using N;

NP = ηP ′, Q = ηQ′.

P
τ
→ Q =⇒ P ′

τ

→′ Q′ ∧

P
xy
→ Q =⇒ P ′

xy

→′ Q′ ∧

P
xy
→ Q =⇒ P ′

xy

→′ Q′ ∧

P
y.xy
→ Q =⇒ P ′

x(y)

→′ Q′.

(26)

Figure 3. Equivalence of conventional and FM presentations.

THE π-CALCULUS IN FM 19

Proof.(Of Theorem 38, first part, (25))

The case (In) of →′. Suppose xy.P
xn

→′ P [n/y]. We would like to apply
(In) of → to x, n, y, η(P), and some z#x, n, y, η(P). However to do so we
must verify y#x, n, and this does not hold. We draw on the library of results

for the conventional π-calculus to deduce that for y′#x, n, xy′.P [y′/y]
xn

→′

P [y′/y][n/y′]. xy′.P [y′/y] is α-equivalent to xy.P so both map to x[y]η(P).
We can now proceed.

The case (Par1) of →′. We consider only the case µ = x(y). Suppose

P1

x(y)

→′ Q1. Suppose also y 6∈ fn(P2) for some P2. Then P1 | P2

x(y)

→′ Q1 | P2.

By the inductive hypothesis η(P1)
y.xy
→ η(Q1). It remains to apply (Par1)

to deduce η(P1) | η(P2)
y.xy
→ η(Q1) | η(P2). We must verify y#η(P1), η(P2).

We know y#η(P2) since y 6∈ fn(P2). We know y#η(P1) because y 6∈ fn(P1),
this is inductively guaranteed in the conventional theory by the assumption
that P1 can output y as a bound name.

The case (Open) of →′. Suppose P
xy

→′ Q and y 6= x. By inductive

hypothesis we have η(P)
z.xy
→ η(Q) for z#P, x, y, Q. We deduce νy.P

x(y)

→′ Q.

We wish to apply (Open) of → to x, y, η(P), η(Q), z to deduce ν[y]η(P)
y.xy
→

η(Q). The freshness condition y#x reduces to y 6= x, which is just the side-
condition. �

Proof.(Of Theorem 38, second part, (26))
The case (In) of →. Suppose x, n, y, P, z are such that y#x, n and

z#x, n, y, P . We apply (In) to deduce x[y]P
z.xn
→ P [n/y]. Now choose

distinct names fresh for x, n, y, P, z and for the bound atoms in P , to obtain
a Barendregt representative P ′ : Π′ of P , so η(P ′) = P . We wish to apply

(In) of →′ to x, y, P ′, n. We can do this, there are no side conditions.
The remaining issue is whether, for example, η(xy.P ′) = x[y]P and

η(P ′[n/y]) = P [n/y]. These follow from appropriate freshness hypothe-
ses. For example, the names for bound variables in P ′ were chosen fresh for
a context which included n and y, so accidental capture is impossible.

The case (Par1) of →. We consider only the case of a bound output.

Suppose we have P1, P2, y, Q1, Q2 with y#P1, P2, and P1
y.xy
→ Q1. By in-

ductive hypothesis for fresh choices of bound names η(P ′

1) = P1, η(P ′

2) =

P2, η(Q′

1) = Q1 we have P ′

1

x(y)

→′ P ′

2. The side-condition y 6∈ fn(P ′

2) follows

because fn(P ′

2) = S(P2) and y#P2, so we may apply (Par1) of →′.
The case (Open) of →. Suppose x, y, P, Q, z have y#x and z#x, y, P, Q,

and suppose P
z.xy
→ Q. By inductive hypothesis for fresh choices of bound

names η(P ′) = P, η(Q′) = Q we have P ′

xy

→′ Q′. The side-condition y 6= x

20 MURDOCH J. GABBAY

follows from y#x. �

5 CONCLUSIONS

FM techniques were developed to inductively represent syntax-with-binding,
so that we can reason and program on it structurally. These ideas have been
considered mathematically and logically [Gabbay and Pitts, 2001; Urban et
al., 2003; Pitts, 2001] and also implemented as a dialect of ML [FreshML,
2003; Pitts and Gabbay, 2000; Shinwell et al., 2003]—yet until now FM
literature has for simplicity only really considered the syntax of elementary
λ-calculi.

The π-calculus is a natural choice for a more complex study. Its binding
is more complicated and includes scope extrusion, name passing, and name-
generation (also called dynamic allocation).

We have seen how standard structural specifications of transition systems
translate quite directly to FM, with the equivalence being in essence just
the quotient map by binding which we would hope for. We have seen how
side-conditions on free and bound names are taken care of by judiciously
mixing ∀ and Nquantifiers.

In the course of this research we discovered the notion of an abstractive
function and the generalised Nquantifier described in §2.4. We needed it
first to express Theorem 38, but then realising its generality we devoted
some space to developing it.

In the syntax-free mathematical context of FM sets, abstractive functions
and generalised Nprovide a unifying account of (syntax-free mathematical
generalisations of) the Barendregt variable naming convention, FreshML
pattern-matching, and the Nquantifier.

Related work. FM techniques are related to presheaf semantics for
syntax, see for example [Fiore et al., 1999; Fiore and Turi, 2001]. The
presheaves used there are SetI and SetF (I the category of finite sets and
injections, F that of finite sets and all maps).

Presheaves can be viewed as sets with ‘actions’ at ‘stages’, so the two
presheaf categories above make injective and possibly non-injective renam-
ings respectively intensional features of the underlying universe. An FM
set X gives a presheaf mapping S ∈ Pfin(A) to

{

x ∈ X
∣

∣ S(x) ⊆ S
}

. It
is a special one though, such that every element appears at a unique min-
imal stage: its support, this is Theorem 7. In this way FM maintains a
‘first-order set-based’ presentation which we feel is particularly clear.

Approaches based on Higher-Order Abstract Syntax (HOAS) can suffer
the following three problems. First, the function spaces can be too large.
For this reason the Theory of Contexts has no ι unique choice [Bucalo et
al., 2001]. Second, function spaces can destroy inductive structure, so there
can be issues with deriving inductive principles for the datatypes. Thirdly,

THE π-CALCULUS IN FM 21

these problems overcome, if we need to generate names we may need to
index all our predicates and relations by an explicit set of known names
(called X or A, say) see for example [Bruni et al., 2002; Honsell et al.,
2001, Fig.2] and [Cattani and Sewell, 2000, Fig.1]. This is a programming
analogue of the the presheaf semantics mentioned above. Other more first-
order set-based presentations may do this too, for example [Cattani and
Sewell, 2000]. These indexes can be cleanly presented, but it would still be
better if they were not there at all.

Two advantages of HOAS are that they can be implemented in existing
frameworks (wheras FM based on FM sets, cannot), and that name-passing
can be modelled by function application. Name-passing in this paper is
modelled by substitution defined inductively on syntax in (13).

We already discussed de Bruijn approaches in the Introduction. Their
‘twisted’ inductive principles can cause great technical difficulties. In studies
by Hirschkoff [Hirschkoff, 1999; Hirschkoff, 1997] 75 per cent of the technical
lemmas of a full formalisation of the π-calculus regarded ‘straightening them
out’.

Of all approaches to syntax, surely the benchmark is name-carrying syn-
tax trees like the one in (3). The problems with capture-avoidance for
such datatypes are well-known. This paper shows how FM approach treats
names in the π-calculus in a way which is close to this elementary practice,
but entirely rigorous. This will hopefully serve as a model and theoretical
foundation for more complex examples.

We should mention that a lot of the problems with name-carrying syn-
tax only appear if we insist on a purely structural approach. In [Martin
and Gordon, 1993] pages 24 and 25 the authors are primarily interested
in expressivity (of the spi-calculus). Accordingly they adopt a ‘chemical’
presentation after [Berry and Boudol, 1990]; transitions are defined on pro-
cesses modulo scope extrusion and other structural congruence rules.

Even here, FM can help. We saw in §3.3 how it takes care of side-
conditions for freshness in scope extrusion. Of course this is a simple obser-
vation, but for more complex calculi with various forms of binding, it can
be useful both for presentation and theory.

Future work. The models of this paper are purely syntactic, and not
semantic. It is a feature of FM abstraction that we may only choose a
fresh name for the bound name. Wheras in HOAS abstraction is function
abstraction, and name-passing can therefore be function application, here
we use the renaming (inductively!) defined in Definition 23.

There is nothing wrong with this, but it does block an obvious abstract
account of name-passing based on FM abstractions instead of functions.
Other semantic models based on presheaves, such as [Fiore et al., 1996;
Cattani et al., 1997], also use function spaces. [Fiore and Turi, 2001] makes
the same observation of models of syntax in SetI and goes on to provide a
comprehensive categorical framework to account for name and value passing.

22 MURDOCH J. GABBAY

It might be interesting to carry out a similar programme using in an FM
style. Even if this turns out to be equivalent to the presheaf material, which
we doubt because our account would have a notion of support, it would be
a different perspective and presentation.

We see the most immediate and concrete application for this work to
History-Dependent (HD) Automata [Montanari and Pistore, 1997], which
are a notion of model based only on syntax. An HD automaton is roughly
speaking a graph of representative processes encoded in de Bruijn nota-
tion, with edges transitions annotated by permutations between the names
to take care of reindexing and name-generation (the many flavours of HD
automaton corresponding to different and differently-detailed implementa-
tions of this idea). This could be viewed as an FM construction and this
paper is a first step towards constructing it.

A related approach to the same issue is θ-automata described in [Bruni
et al., 2002]. Roughly, these models are obtained by adding a meta-level
restriction operator θ to the syntax of terms, which acts only at top level
and restricts certain names in a process. Name-generation is modelled by
generating a name, then restricting it. This concept is clearly related to the
datatype →⊆ Π × [A](Act × Π) developed in this paper, with restriction
replaced by FM abstraction. The concept of model in that work corre-
sponds to that of an HD automaton, only implemented using terms up to
α-equivalence (bound by θ) instead of a de Bruijn representation.

We plan to develop an FM based structure unifying these two approaches.
Since FM now comes equipped with a programming language FreshML
[FreshML, 2003], datatypes and inductive definitions should translate into
programs.

ACKNOWLEDGEMENTS

My grateful thanks go to Marino Miculan, Furio Honsell, and Ugo Monta-
nari. I also recognise the support of UK EPSRC grant GR/R07615 which
partly funded this research.

BIBLIOGRAPHY

[Berry and Boudol, 1990] Gerard Berry and Gerard Boudol. The chemical abstract ma-
chine. In Proceedings of the seventeenth annual ACM symposium on Principles of
programming languages, pages 81–94, New York, NY, USA, 1990. ACM Press.

[Bruni et al., 2002] R. Bruni, F. Honsell, M. Lenisa, and M. Miculan. Modeling fresh
names in pi-calculus using abstractions. Technical Report 21/2002, Dipartimento di
Matematica e Informatica, University of Udine (Italy), April 2002.

[Bucalo et al., 2001] A. Bucalo, M. Hofmann, F. Honsell, M. Miculan, and I. Scagnetto.
Consistency of the theory of contexts, 2001.

THE π-CALCULUS IN FM 23

[Cattani and Sewell, 2000] Gian Luca Cattani and Peter Sewell. Models for name-
passing processes: Interleaving and causal. In Logic in Computer Science, pages
322–332, 2000.

[Cattani et al., 1997] Gian Luca Cattani, Ian Stark, and Glynn Winskel. Presheaf mod-
els for the pi-calculus. In E[ugenio] Moggi and G[iuseppe] Rosolini, editors, Proceed-
ings of the 7th International Conference on Category Theory and Computer Science
(Santa Margherita Ligure, Italy, September 4–6, 1997), volume 1290 of LNCS, pages
106–126. Springer, 1997.

[Fiore and Turi, 2001] Marcelo Fiore and Daniele Turi. Semantics of name and value
passing. In Proc. 16th LICS Conf., pages 93–104. IEEE, Computer Society Press,
2001.

[Fiore et al., 1996] Marcelo Fiore, Eugenio Moggi, and Davide Sangiorgi. A fully-
abstract model for the π-calculus (extended abstract). In Eleventh Annual Symposium
on Logic in Computer Science (LICS) (New Brunswick, New Jersey), pages 43–54.
IEEE, Computer Society Press, July 1996.

[Fiore et al., 1999] M. P. Fiore, G. D. Plotkin, and D. Turi. Abstract syntax and variable
binding. In 14th Annual Symposium on Logic in Computer Science, pages 193–202.
IEEE Computer Society Press, Washington, 1999.

[FreshML, 2003] FreshML. FreshML homepage, 2003. http://www.freshml.org.
[Gabbay and Pitts, 2001] M. J. Gabbay and A. M. Pitts. A new approach to abstract

syntax with variable binding. Formal Aspects of Computing, 13:341–363, 2001.
[Gabbay, 2000] Murdoch J. Gabbay. A Theory of Inductive Definitions with alpha-

Equivalence. PhD thesis, Cambridge, UK, 2000.
[Hirschkoff, 1997] Daniel Hirschkoff. A full formalization of pi-calculus theory in the

Calculus of Constructions. In E. Gunter and A. Felty, editors, Proceedings of the 10th
International Conference on Theorem Proving in Higher Order Logics (TPHOLs’97),
pages 153–169, Murray Hill, New Jersey, August 1997.

[Hirschkoff, 1999] Daniel Hirschkoff. Mis en oeuvre de preuves de bisimulation. PhD

thesis, École Nationale des Ponts et des Chausées (ENPC), January 1999. In French.
[Honsell et al., 2001] Furio Honsell, Marino Miculan, and Ivan Scagnetto. π-calculus in

(co)inductive type theory. Theoretical Computer Science, 253(2):239–285, 2001.
[Martin and Gordon, 1993] M. Martin and D. Gordon. A calculus for cryptographic pro-

tocols : the spi calculus. Technical Report SRC-RR-149, Internationales Begegnungs
und Forschungszentrum Schloss Dagstuhl, Germany, 1993.

[Milner et al., 1992] Robin Milner, Joachim Parrow, and David Walker. A calculus of
mobile processes, II. Information and Computation, 100(1):41–77, September 1992.

[Montanari and Pistore, 1997] Ugo Montanari and Marco Pistore. An introduction to
history dependent automata. In Andrew Gordon, Andrew Pitts, and Carolyn Talcott,
editors, Conference Record of the Second Workshop on Higher-Order Operational
Techniques in Semantics (HOOTS II, Stanford University, December 8–12, 1997),
volume 10 of ENTCS. Elsevier Science Publishers, 1997.

[Parrow, 2001] Joachim Parrow. An introduction to the pi-calculus. In Jan Bergstra,
Alban Ponse, and Scott Smolka, editors, Handbook of Process Algebra, pages 479–543.
Elsevier Science, 2001.

[Pitts and Gabbay, 2000] A. M. Pitts and M. J. Gabbay. A metalanguage for program-
ming with bound names modulo renaming. In R. Backhouse and J. N. Oliveira, editors,
Mathematics of Program Construction. 5th International Conference, MPC2000,
Ponte de Lima, Portugal, July 2000. Proceedings, volume 1837 of Lecture Notes in
Computer Science, pages 230–255. Springer-Verlag, Heidelberg, 2000.

[Pitts, 2001] A. M. Pitts. Nominal logic, a first order theory of names and binding. In-
formation and Computation, 2001. To appear. (A preliminary version appeared in the
Proceedings of the 4th International Symposium on Theoretical Aspects of Computer
Software (TACS 2001), LNCS 2215, Springer-Verlag, 2001, pp 219–242.).

[Shinwell et al., 2003] M. R. Shinwell, A. M. Pitts, and M. J. Gabbay. FreshML: Pro-
gramming with binders made simple. In Eighth ACM SIGPLAN International Con-
ference on Functional Programming (ICFP 2003), Uppsala, Sweden. ACM Press,
August 2003.

24 MURDOCH J. GABBAY

[Urban et al., 2003] C. Urban, A. M. Pitts, and M. J. Gabbay. Nominal unification. In
M. Baaz, editor, Computer Science Logic and 8th Kurt Gödel Colloquium (CSL’03 &
KGC), Vienna, Austria. Proccedings, Lecture Notes in Computer Science. Springer-
Verlag, Berlin, 2003.

