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Abstract

Permissive-Nominal Logic (PNL) extends first-order predicate logic with term-formers
that can bind names in their arguments. It takes a semantics in (permissive-)nominal
sets. In PNL, the ∀-quantifier or λ-binder are just term-formers satisfying axioms, and
their denotation is functions on nominal atoms-abstraction.

Then we have higher-order logic (HOL) and its models in ordinary (i.e. Zermelo-
Fraenkel) sets; the denotation of ∀ or λ is functions on full or partial function spaces.

This raises the following question: how are these two models of binding connected?
What translation is possible between PNL and HOL, and between nominal sets and
functions?

We exhibit a translation of PNL into HOL, and from models of PNL to certain models
of HOL. It is natural, but also partial: we translate a restricted subsystem of full PNL
to HOL. The extra part which does not translate is the symmetry properties of nominal
sets with respect to permutations. To use a little nominal jargon: we can translate names
and binding, but not their nominal equivariance properties. This seems reasonable since
HOL—and ordinary sets—are not equivariant.

Thus viewed through this translation, PNL and HOL and their models do different
things, but they enjoy non-trivial and rich subsystems which are isomorphic.
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1. Introduction

Permissive-Nominal Logic (PNL) extends first-order predicate logic with name-binding
term-formers. For instance first-order logic, set theory, and the untyped λ-calculus ax-
iomatise in PNL; their binders ∀, comprehension, and λ are just modelled as binding
PNL term-formers. The canonical semantics of PNL is in nominal sets, and it is first-
order.

Higher-order logic (HOL) also has binding [Mil92a, Far08]. This has been used to
encode other binders, e.g. the Church encoding of quantifiers as constants of higher type
such as ∀ : (ι→o)→o [And86, Chu40]; higher-order abstract syntax (HOAS) encoding
term-formers of an encoded syntax with binders as constants of higher type such as
∀ : (ι→ρ)→ρ or ∀ : (ν→ρ)→ρ (strong vs. weak HOAS)1 [DH94, PE88]; and higher-order
rewrite systems [MN98].

Since PNL is first-order and has a sound and complete semantics (so expressivity
and models are fairly ‘small’), whereas HOL is higher-order (so expressivity and models
are fairly ‘large’), the natural direction for a translation is from nominal sets and PNL,
to functions and HOL (a shallow embedding of PNL into HOL).2

In this paper we translate a subsystem of PNL into HOL and prove it sound and
complete using arguments on nominal sets and and nominal renaming sets models
[GH08]. The proof of completeness involves giving a functional semantics to nomi-
nal terms, and a nominal semantics to λ-terms in the spirit of Henkin models [And86,
BBK04]. This involves a construction on nominal sets models corresponding to a free
extension to nominal renaming sets, as previously considered by the second author with
Hofmann [GH08].

1A word of clarification here: we take o to be a type of truth-values, ι to be a type of terms, and ρ to be a type
of predicates. ∀-the-quantifier generates truth-values, whence the type headed by o, namely ∀ : (ι→o)→o.
∀-the-syntax-building-constant in HOAS generats terms, whence the types headed by ρ, namely ∀ : (ι→ρ)→ρ
or ∀ : (ν→ρ)→ρ. Do not confuse a HOL constant for a HOAS-style binder (a way to give meaning to building
syntax with binding) with a HOL constant for the corresponding quantifier (a way to give meaning to what
that that syntax is intended to denote; namely, actual quantification).

2A deep embedding e.g. of HOL in PNL is an answer to a different question; for more on this direction, see
[GM09b].
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The partiality of the translation of PNL seems to be inherent and reflects natural dif-
ferences in structure between nominal and ‘ordinary’ sets; nominal sets are subject to
the action of a symmetry group of atoms-permutations, which cannot be naturally repre-
sented in HOL or its ‘ordinary’ sets semantics. That is, it is not the case that nominal
techniques are ‘just’ a concise presentation of HOL with a weakened β-equivalence (e.g.
higher-order patterns [Mil91]). There is that, but there is also more. The nominal and
functional models of binding are distinct, but they do have non-trivial and rich subsys-
tems which are isomorphic in a sense made precise in this paper.

1.1. Some background on PNL
We study PNL for its own sake in this paper, but the interested reader can find ex-

ample nominal theories in the literature: for substitution, β-equivalence, and first-order
logic [GM06a, GM08a, GM10, GM06b, GM08b].

These axiomatisations are in nominal algebra (which can be viewed as the equal-
ity fragment of PNL) and are accompanied by proofs of correctness in the respective
papers.

Not all PNL theories are expressed in the equality fragment. For instance, in the
papers which introduced PNL [DG10, DG12] we included theories of first-order logic
and arithmetic which put universal quantification to the left of an implication.

To give some idea of what this family of logics looks like in practice, assume a name-
sort ν and a base sort ι and term-formers lam : ([ν]ι)ι, app : (ι, ι)ι, and var : (ν)ι. (Full
definitions are in the body of the paper.) We sugar lam([a]r) to λa.r and app(r′, r) to r′r
and var(a) to a. Atoms in PNL are a form of data and populate their own sort ν; so var
serves to map them into the sort ι, where they represent object-level variables.

Here is η-equivalence, written out as it would be informally:

λx.(tx) = t if x is not free in t

Here is a PNL axiom for η-equivalence, written out formally:

∀Z.(λa.(Za) = Z) (a 6∈ pms(Z))

(See [GM10] for a detailed study of this axiom in a nominal context.)
a is an atom and corresponds to the object-level variable x; a is not a PNL variable but

it represents a variable of the object level system being axiomatised. Z is an unknown and
correspond to the meta-level variable t; Z is a variable in PNL and may be instantiated.

The reader can see how similar the two axioms look. Their status is different in
the following sense: whereas t is typically taken to range over terms, Z ranges over
elements of nominal sets (via a valuation; see Definition 6.3). This is possible because
nominal sets have a notion of supporting set of atoms which mirrors the free variables of
a term.

The condition a 6∈ pms(Z) is a typing condition in PNL. The types, or permission sets
as we call them, restrict the support of denotations associated to Z by a valuation. They
correspond to freshness side-conditions in nominal terms from [UPG04] and to informal
freshness conditions of the form ‘x not free in t’ in informal practice. To see this intu-
ition made formal see a translation from nominal terms to permissive-nominal terms in
[DGM10].
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There is no requirement to axiomatise α-equivalence because this is done automati-
cally by the PNL system.

For instance, axioms for β-equivalence [GM10] are:

∀Y. (λa.a)Y = Y
∀Z,X. (λa.Z)X = Z (a 6∈ pms(Z))
∀X ′, X, Y. (λa.(X ′X))Y = ((λa.X ′)Y )((λa.X)Y )
∀X,Z. (λb.(λa.X))Z = λa.((λb.X)Z) (a 6∈ pms(Z))
∀X. (λa.X)a = X

See [GM10] for a proof that these axioms really do axiomatise the λ-calculus.3

It is important to appreciate that most models of the axioms above are abstract and
algebraic, not concrete and syntactic. So for instance the final axiom is not admissible
because the objects X ranges over do not necessarily have inductive structure and we
cannot necessarily push the β-redex in to the atoms.

In particular, this is not a paper about representing syntax-with-binding, unlike the
first applications of nominal techniques to syntax-with-binding [GP01]. True, we wrote
above that atoms represent object-level variables. But indeed, they represent variables,
not variable symbols. Nominal sets admit open elements and we can write axioms about
names and binding in PNL, so that the full behaviour of variables is in PNL susceptible
to algebraic axiomatisation. For instance the equality axioms above give atoms the be-
haviour of β-convertibile λ-calculus variables; see [GM10] for a proof. Most models of
the theory above are not built out of syntax.

Several nominal algebraic theories have been developed, with proofs of correctness:
see [GM08a] (substitution), [GM10] (λ-calculus) or [DG10, DG12] (first-order logic and
arithmetic). For examples of natural non-syntactic models of nominal-style theories see
[DG12, Subsection 5.2] and [Gab11b].

Thus, the design philosophy of PNL is that axioms should look like what we would
write informally anyway, where variables map to atoms, meta-variables to unknowns,
binding to atoms-abstraction, and capture-avoidance conditions to choice of permission
sets. In particular, open terms and predicates map to elements and subsets of nominal
sets with non-empty support.

1.2. On symmetry
The thing that goes missing in the translation from PNL to HOL is name-symmetry.

Nominal sets are sets with an action of permutations of atoms; that is, nominal sets are
sets with a symmetry action.

It turns out that this symmetry is key. For instance, we can define define atoms-
abstraction as a symmetric equivalence class (Definition 5.29, in this paper). This class
is ‘first-order’ in flavour and does not involve the construction of a full function-space.

In PNL syntax permutative symmetry is reflected in the use of atoms and atoms-
abstraction and by the permutations in terms (the interested reader could look at the
‘symmetry-based’ definition of α-equivalence in Definition 2.18).

3These axioms first appeared in [GM06a, GM06b] where a slightly different version of the final axiom was
used. They are equivalent; see part 5 of Example 2.20 in this paper.

5



In PNL derivation this is reflected in the axiom rule (rule (Ax) of Figure 1 in this
paper). This rule gives that φ ⇒ π·φ for all PNL predicates; so PNL predicates are
fully symmetric up to permuting atoms. This is impossible to model in HOL because
functional abstraction is asymmetric: obviously, λx.λy.x is not equal to λy.λx.x.

Truth in restricted PNL (Figure 2) is also asymmetric; restricted PNL is therefore a
weaker system. It still has nominal semantics, but its predicates are not symmetric. This
is the logic that we translate to HOL.

The symmetry of full PNL might seem counterintuitive—especially if the reader is
used to modelling names as functional arguments (or indeed as numbers). We do not
expect λx, y.P (x, y) to be symmetric with λy, x.P (x, y), or (for numbers) x ≤ y to be
symmetric with y ≤ x.

Consider the predicate a = b in PNL (assume an equality, for the sake of argument).
This is false because a is a distinct atom from b. If the reader is used to thinking of
variables as things that ‘vary’ then x = y might be either false or true depending the
values associated to x and y. Not so in PNL: at the level of PNL syntax atoms are not
variables; a and b are distinct; and their distinctness is symmetric up to permuting atoms
so that b = a, c′ = a, and d = e are also false. If the reader is used to thinking of variables
as numbers then there might exist some predicate ≤ that puts them in order. Not so in
PNL: such a predicate is forbidden.4 The unknowns X and Y in PNL do vary, and they
are variables. More on this in Remark 2.22 and Subsection 2.6.

1.3. Map of the paper
This paper has a lot of technical ground to cover. This is unavoidable, because we

need to deal with two logics (restricted PNL and HOL) and two semantics (nominal sets,
and the hand-crafted Henkin models in nominal renaming sets used in the completeness
proof), as well as two translations (from logic to logic, and from models to models).

For the reader’s convenience, we provide an overview of the main technical points
with brief justifications for their design:

• Section 2 introduces permissive-nominal logic. This comes from previous work
into ‘nominal’ axiomatisations of systems with binding [DG10, DG12].5

In fact, we need to introduce two logics: full PNL and also a restricted version
which has a weaker non-equivariant axiom rule. We write the entailment relations
` and `π respectively. It is the restricted version that we will eventually translate
to HOL.

• Section 3 introduces higher-order logic as a theory over the syntax of the simply-
typed λ-calculus. We write the entailment relation `λ.

• Section 4 defines the translation from restricted PNL to HOL, and proves it sound
using arguments on syntax. In order to do the translation, we need to introduce a
capture typing D ` r : A which is a measure of how many functional abstractions
are required to translate a given nominal term without losing information; that is,
of the functional complexity of a nominal term.

4This is because we used all finite permutations of atoms as our symmetry group. Generalisations of this
as suggested e.g. in [BBKL12, Subsection 3.1] are possible. See also Remark 2.1.8 of [Gab12b].

5Note that PNL is not only about nominal abstract syntax as considered in e.g. [GP01, Gab11a]. Nominal
abstract syntax is a denotation for syntax with binding. PNL and its models are a (more general) syntax and
semantics for denotations with binding in general, which are not all necessarily datatypes of abstract syntax.
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• Our goal is then to prove completeness of the translation. We do this by transform-
ing models of PNL into models of HOL. So Section 5 introduces two categories:
PmsPrm of permissive-nominal sets and PmsRen of permissive-nominal renaming
sets. We also give a free construction, transforming a permissive-nominal set into
a permissive-nominal renaming set.

• In Section 6 we interpret full and restricted PNL in PmsPrm. In Section 7 we inter-
pret HOL in PmsRen.

• Finally, in Section 8 we use the free construction of Section 5 to map a model of
PNL in PmsPrm to a model in PmsRen, and because the free construction does not
‘make anything equal’ this is sufficient to prove completeness.

• As one further mathematical note, the results in the literature concern full PNL
and not restricted PNL. So in Appendix A we sketch proofs of soundness, cut-
elimination, and completeness of restricted PNL with respect to non-equivariant
models in PmsPrm. These are modest, if not entirely direct, modifications of the
existing definitions and proofs for full PNL and equivariant models in PmsPrm.

Quite a number of new ideas are required to make this all work. The highlights are:
permissive-nominal renaming sets and their application to give non-standard ‘nomi-
nal’ Henkin models for higher-order logic; restricted PNL and its semantics; the free
construction; and the technical arguments as discussed in Section 8.

1.4. Review of motivation
Given that the proofs and constructions in this paper are non-trivial and involve an

effort to extend existing machinery, we should pause to ask again why doing this is
justified, even necessary.

Nominal techniques were designed originally to reason on syntax-with-binding (see
the original journal paper [GP01] or a recent survey paper [Gab11a]). But since then
this remit has expanded to reasoning about denotations with binding more generally
(an overview of which is in [Gab12b]). In doing this, we have created a whole new
syntax and semantics for meta-mathematics.

We will not argue for or against either the nominal foundation or the higher-order
foundation for mathematics.6 Our question is: given that these two foundations exist,
how do they relate?

In fact, questions have been asked about how nominal names and binding are re-
lated to functions, ever since nominal techniques were conceived in the second author’s
thesis. Since then, the development of PNL [DG12] and nominal renaming sets [GH08]
has given us two powerful new tools with which to address these questions: a proof-
theory for a logic in which nominal reasoning so far can be formalised, and a visibly
nominal semantics which is not based on permutations but on possibly non-bijective
renamings on atoms, so that atoms-abstraction can be considered as a function in that
semantics.

In this paper, we leverage this to give a precise, concrete, and mathematically de-
tailed account of how these two worlds really stand in relation to one another—and

6There has been more than enough of that already, and anyway, because truth is free, proving theorems is
never a zero sum game.
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how they differ. In conclusion we speculate that there is some potential (not explored
in this paper) that our translations might be used to piggyback nominal techniques on
the substantial implementational efforts that have gone into developing HOL over the
past seventy years.

2. Permissive-Nominal Logic

Permissive-nominal logic is a first-order logic for nominal terms quotiented by α-
equivalence. Doing this is not entirely trivial; the interested reader can find more on
this elsewhere [UPG04, DG10, DG12, Gab12b].

2.1. Syntax
Definition 2.1. A sort-signature is a pair (A,B) of name and base sorts. ν will range
over name sorts; τ will range over base sorts. A sort language is then defined by

α ::= ν | (α, . . . , α) | [ν]α | τ.

Remark 2.2. Examples of base sorts are: ‘λ-terms’, ‘formulae’, ‘π-calculus processes’,
and ‘program environments’, ‘functions’, ‘truth-values’, ‘behaviours’, and ‘valuations’.

Examples of name sorts are ‘variable symbols’, ‘channel names’, or ‘memory loca-
tions’.

[ν]α is an abstraction sort. This does a similar job to function-types in higher-order
logic but note that ν must always be a name-sort. The behaviour of a term of sort [ν]α
corresponds to ‘bind a name of sort ν in a term of sort α’. Such a term does not denote
a function, though later on in our completeness proof we will deliberately undermine
that intuition to obtain our completeness result.

Definition 2.3. For each ν fix a disjoint countably infinite set of atoms Aν , and an arbi-
trary bijection fν between Aν and the integers Z = {0, -1, 1, -2, 2, . . .}. Write

A<ν = {fν(i) | i < 0} A>ν = {fν(i) | i ≥ 0}.

Finally, write
A< =

⋃
A<ν A> =

⋃
A>ν A =

⋃
Aν

a, b, c, . . . will range over distinct atoms (we call this the permutative convention).
A permission set has the form (A<∪A)\B where A ⊆ A> and B ⊆ A< are finite (and

a permission set may be finitely represented by the pair (A,B)). S, T , and U will range
over permissions sets.

The use of A< and A> ensures that permission sets are infinite and also co-infinite
(their complement is also infinite).

Remark 2.4. Permission sets are simple, but surprisingly subtle.
A< and A> are reminiscent of some treatments of syntax where a formal distinction

is made between ‘names that exist to be bound’ and ‘names that exist to be free’. See
for instance the freie and gebundene Gegenstansvariable of Gentzen [Gen35, Section 1], and
the individual variables and parameters of Prawitz [Pra65, Section 1], or Smullyan [Smu68,
Chapter IV, Section 1].
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However, for any given atom there is no fixed sense in which it is either capturable
or not capturable. Each permission set defines a world of capturable/non-capturable
atoms. Furthermore, even once a permission set is fixed, we shall see that permutations
can shift an atom from one to the other. See Example 2.20 and Remark 2.28 for examples
of permission sets in action, controlling α-equivalence and substitution respectively.

We make A< and A> both infinite so that we have inexhaustible supplies of both
kinds of atom.7 Further technical discussion of the advantages of permissive-nominal
techniques is in [DGM10].

Definition 2.5. A term-signature over a sort-signature (A,B) is a tuple (F ,P, ar ,X )
where:

• F and P are disjoint sets of term- and proposition-formers.
f will range over term-formers. P will range over proposition-formers.

• ar assigns to each f ∈ F a term-former arity (α)τ and to each P ∈ P a proposition-
former arity α, where α and τ are in the sort-language determined by (A,B).
We will write ((α1, . . . , αn))τ just as (α1, . . . , αn)τ .

• X is a set of unknowns X , each of which has a sort sort(X) and a permission set
pms(X), such that for each sort α and permission set S the set {X ∈ X | sort(X) =
α, pms(X) = S} is countably infinite. X,Y, Z will range over distinct unknowns.

A signature S is then a tuple (A,B,F ,P, ar ,X ).
We write f : (α)τ for ar(f) = (α)τ and similarly we write P : α for ar(P) = α.

Example 2.6. The signature for the λ-calculus from the Introduction has a name-sort
for λ-calculus object-level variables ν, a base sort ι for λ-terms, and appropriate term-
formers:

• var : (ν)ι to form λ-calculus variables in ι out of names in ν,
• app : (ι, ι)ι for application, and
• lam : ([ν]ι)ι taking an abstraction in [ν]ι and forming from it a λ-abstraction term

in ι.

Definition 2.7. A permutation is a bijection π on A such that a ∈ Aν ⇔ π(a) ∈ Aν and
nontriv(π) = {a | π(a) 6= a} is finite. Write P for the set of permutations.
Given a, b ∈ Aν let a swapping (a b) be the bijection on atoms that maps a to b, b to a,
and all other c to themselves.

Notation 2.8. We use the following notation:

• Write π ◦ π′ for functional composition, so (π ◦ π′)(a) = π(π′(a))).
• Write id for the identity permutation, so id(a) = a always.
• Write π-1 for inverse, so π ◦ π-1 = id .

7For comparison, nominal terms have only a finite supply of fresh atoms. The effect of this is that the
nominal terms of [UPG04] cannot be quotiented by α-equivalence as primitive, and the freshness context
may need to be extended dynamically with fresh names. This introduces an ‘impure’ flavour of state and
sequentiality into the theory of nominal terms which is absent from the permissive-nominal version. In short,
making permission sets infinite and coinfinite makes the whole theory noticably more ‘pure’.
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Definition 2.9. For each signature S, define terms and propositions over S by:

(a ∈ Aν)

a : ν

r1 : α1 . . . rn : αn

(r1, . . . , rn) : (α1, . . . , αn)

r : α (ar(f) = (α)τ)

f(r) : τ

r : α (a ∈ Aν)

[a]r : [ν]α

(sort(X) = α)

π·X : α

⊥ prop.

φ prop. ψ prop.

φ⇒ ψ prop.

r : α (ar(P) = α)

P(r) prop.

φ prop.

∀X.φ prop.

Example 2.10. Continuing Example 2.6, we have the following terms and propositions:

• var(a) : ι where a ∈ Aν .
• [a]X : [ν]ι where a ∈ Aν and sort(X) = ι.
• lam([a]X) : ι since [a]X : [ν]ι and lam : ([ν]ι)ι.
• ∀X.P(lam([a]X), X) is a proposition if P is a proposition-former and P : (ι, ι).

2.2. Permutation, substitution, and so on
These definitions are all needed for the rest of the paper, starting with α-equivalence

in Subsection 2.3. We need them at both levels; both for atoms and for unknowns.

Definition 2.11. Define a (level 1) permutation action on syntax by:

π·a = π(a) π·(r1, . . . , rn) = (π·r1, . . . , π·rn)
π·[a]r = [π(a)]π·r π·(π′·X) = (π◦π′)·X
π·f(r) = f(π·r)
π·⊥ = ⊥ π·(φ⇒ ψ) = (π·φ)⇒ (π·ψ)

π·P(r) = P(π·r) π·(∀X.φ) = ∀X.π·φ

Definition 2.12. Let Π range over sort- and permission-set-preserving bijections on un-
knowns (so sort(Π(X))=sort(X) and pms(Π(X))=pms(X)) such that {X | Π(X) 6= X}
is finite.

Write Π ◦Π′ for functional composition, Id for the identity permutation, and Π-1 for
inverse, much as in Notation 2.8.

Define a (level 2) permutation action by:

Π·a = a Π·(r1, . . . , rn) = (Π·r1, . . . ,Π·rn)
Π·[a]r = [a]Π·r Π·(π·X) = π·(Π(X))
Π·f(r) = f(Π·r)

Π·⊥ = ⊥ Π·(φ⇒ ψ) = (Π·φ)⇒ (Π·ψ)
Π·P(r) = P(Π·r) Π·(∀X.φ) = ∀Π(X).Π·φ

10



Remark 2.13. A curious asymmetry between Definitions 2.11 and 2.12 is that π·(∀X.φ) =
∀X.π·φ but Π·(∀X.φ) = ∀Π(X).Π·φ. Note that π not applied to the binding occurrence
of X , but Π is.

In fact, we could take π·(∀X.φ) = ∀π·X.π·φ. We would have to complicate Defini-
tion 2.9 by introducing ∀π·X.φ as well-formed syntax, but we could do this. However,
it turns out that this would make no difference. It turns out that ∀π·X.φ and ∀X.φ are
logically equivalent.

To gain a quick intuitive understanding of why this is so, bear in mind that the
substitution ‘X maps to r’ maps π·X to π·r (this is made formal later, in Definition 2.26)
and in fact ‘π·X maps to π·r’ would map X to r (the interested reader can find a wider
discussion of this in and around [Gab12b, Remark 3.4.7]).

So, rather curiously, ∀π·X.φ means the same thing and would receive the same de-
notation, regardless of π: this would be the denotation of the PNL proposition ∀X.φ.
We can therefore simplify our syntax and take π·(∀X.φ) = ∀X.π·φ.

Something similar happens in the much more abstract semantic context of two-level
nominal sets; see [Gab11c, Lemma 2.25]. Further comments on asymmetries between
atoms and unknowns in PNL will follow in Remark 2.22.

Definition 2.14. Suppose f is a function on a set X and U ⊆ X . Define f ·U by

f ·U = {f(x) | x ∈ U}.

This is the standard pointwise action of a function on a set. We use this for π acting on
sets of atoms, Π acting on sets of unknowns, and (from Definition 5.1 onwards) ρ acting
on sets of atoms.

Definition 2.15. Define free atoms fa(r) and fa(φ) by:

fa(π·X) = π·pms(X) fa([a]r) = fa(r) \ {a} fa(a) = {a}
fa(f(r)) = fa(r) fa((r1, . . . , rn)) =

⋃
fa(ri)

fa(⊥) = ∅ fa(φ⇒ ψ) = fa(φ) ∪ fa(ψ)
fa(P(r)) = fa(r) fa(∀X.φ) = fa(φ)

Define free unknowns fU (r) and fU (φ) by:

fU (a) = ∅ fU (π·X) = {X} fU (f(r)) = fU (r)
fU ([a]r) = fU (r) fU ((r1, . . . , rn)) =

⋃
fU (ri)

fU (⊥) = ∅ fU (φ⇒ ψ) = fU (φ) ∪ fU (ψ)
fU (P(r)) = fU (r) fU (∀X.φ) = fU (φ) \ {X}

Lemma 2.16. fa(π·r) = π·fa(r) and fa(π·φ) = π·fa(φ).
Also, fU (Π·r) = Π·fU (r) and fU (Π·φ) = Π·fU (φ).

Proof. By routine inductions on r.

2.3. α-equivalence
The use of permissive-nominal terms allows us to ‘just quotient’ syntax byα-equivalence.

We can do this for both level 1 variable symbols (atoms) and level 2 variable symbols
(unknowns).
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Definition 2.17. Call a relationR on terms and on propositions a congruence when it is
closed under the following rules:8

ri R si 1 ≤ i ≤ n

(r1, . . . , rn) R (s1, . . . , sn)

r R s (f : (α)τ, r, s : α)

f(r) R f(s)

r R s

[a]r R [a]s

φ R φ′ ψ R ψ′

φ⇒ ψ R φ′ ⇒ ψ′

r R s (P : α, r, s : α)

P(r) R P(s)

φ R φ′

∀X.φ R ∀X.φ′

Definition 2.18. Write (a b) for the (level 1) swapping permutation which maps a to b
and b to a and all other c to themselves. Similarly, provided sort(X) = sort(Y ) and
pms(X) = pms(Y ), write (X Y ) for the (level 2) swapping.

Define α-equivalence =α on terms and propositions to be the least equivalence re-
lation that is a congruence and is such that:

(a, b 6∈ fa(r))

(b a)·r =α r

(X,Y 6∈ fU (φ))

(Y X)·φ =α φ

Remark 2.19. Definition 2.18 is inductive, but the reader familiar with nominal terms
from e.g. [UPG04, DGM10, DG12] might be familiar with a more syntax-directed in-
ductive characterisation whose characteristic rules for atoms would look like this in our
current notation:

(b 6∈ fa(r))

[a]r =α [b](b a)·r
(∀a.π(a) 6= π′(a)⇒ a 6∈ pms(X))

π·X =α π
′·X

The form of Definition 2.18 is more compact and more abstract. It was introduced in
[GM06a, GM07] (in particular see [GM07, Lemma 3.2] and the discussion surrounding
it); a detailed proof of an equivalence of the two presentations is in [GM08a, Theo-
rem 2.31]

Example 2.20. We illustrate Definition 2.18. Suppose a, b, c, d : ν and X,Y : τ for some
name sort ν and base sort τ . Also suppose a, b, c, d 6∈ pms(Y ) and suppose b 6∈ pms(X).

1. We α-convert a and b in [a][b]a.
First we note that b, d 6∈ fa([b]a) so by symmetry [b]a =α (b d)·[b]a = [d]a, and by
congruence [a][b]a =α [a][d]a. Next we note that a, c 6∈ fa([a][d]a) so by symmetry
[a][d]a =α (c a)·[a][d]a = [c][d]c. We use transitivity.

2. We α-convert [a][a]b to [c][d]b.
We reason as follows: [a][a]b =α [a][d]b =α [c][d]b.

8We do not assume a congruence is an equivalence relation. We prefer to keep the notion of ‘being pre-
served by all term-formers’ orthogonal to the notion of ‘being transitive, reflexive, and symmetric’. For in-
stance, we want a rewrite relation to have the first property but not the second. In [DHK98] the second author
considers combining sequents with rewriting. This is deduction modulo; a nominal version of deduction mod-
ulo is future work and is one of the background motivations for the creation of PNL.
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3. Weα-convert ((a b)◦(c d))·Y to Y . First we note that a, b 6∈ fa((c d)·Y ) = (c d)·pms(Y ),
so ((a b) ◦ (c d))·Y = (a b)·((c d)·Y ) =α (c d)·Y . Then we note that c, d 6∈ fa(Y ) so
(c d)·Y =α Y . We use transitivity.

4. We α-convert X and a in ∀X.P([a]X).
Using (a b) and (X Y ) we deduce:

∀X.P([a]X)
(a b)
=α ∀X.P([b](b a)·X)

(X Y )
=α ∀Y.P([b](b a)·Y ).

It is routine to convert this sketch into a full derivation-tree.
5. In [GM06a, GM06b] an axiom of substitution/β-equivalence was stated which,

translated to a permissive-nominal syntax, is expressed thus:

( 7→ren) (λ([a]X))b = (b a)·X (b 6∈ pms(X))

Since a, b 6∈ fa([a]X) we have [a]X =α [b](b a)·X . Writing X ′ for an unknown with
pms(X ′) = (b a)·pms(X) we can therefore rephrase this axiom as follows:

( 7→id) (λ([b]X ′))b = X ′ (b 6∈ pms(X ′))

This is the form that the same axiom took in [GM10]; that paper used the slightly
less flexible nominal terms framework, so the equivalence noted above had to be
the subject of a proof [GM10, Lemma 2.16].

It is not hard to prove by inductive arguments that the definition of α-equivalence
here gives the same result as that found for instance in [DG12, Subsection 2.4] or [DG10,
Definition 2.16].9

Definition 2.21. For each signature S, we take terms and propositions quotiented by
α-equivalence.

Remark 2.22. Atoms and unknowns both have permutation actions and both participate
in α-conversion and both ‘look like’ variable symbols. Indeed, in the translation to HOL
of Subsection 4.1 atoms and unknowns both are translated to variables. However, in
PNL syntax atoms and unknowns are very distinct:

• Atoms populate only their own special name-sorts ν. Unknowns populate any
sort.

• Unknowns depend on atoms in the sense that pms(X) is a set of atoms. Atoms do
not depend on anything.

• Atoms and unknowns both get permuted in syntax but only unknowns also have
a substitution action (defined next in Subsection 2.4). Conversely, only atoms-
permutation is explicit in the syntax, as π·X (there is no Π in any r, only an action
of Π on r).

• If φ is proposition then ∀X.φ is a proposition, but ∀a.φ is never well-formed syn-
tax.

9In fact, this was the characterisation used to design the ‘exotic’ multi-level α-equivalences of permissive-
nominal logic or two-level nominal sets [Gab11c].
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• Later on when we build the denotation in Subsection 6.2, atoms are interpreted
as themselves (so JaKIς = a) whereas unknowns are interpreted via a valuation, in
typical Tarski style (so JXKIς = ς(X)).

Why this asymmetry?

• PNL is a first-order logic. Therefore it has a syntactic class of variables which we
call unknowns X , with an unknowns-substitution action [X:=r] (Definition 2.27),
a universal quantifier ∀X , α-conversion, and a denotation using valuations for
unknowns JXKIς = ς(X) (Definition 6.4).

• PNL treats atoms (names) as a special kind of symmetric data (i.e. data with a
group action). It has sorts for atoms ν which are populated by atoms-as-terms, a
nominal-terms style explicit permutation π·X to permute atoms in terms, atoms-
abstraction [a]r to bind atoms in terms, and a nominal sets style semantics for
atoms as themselves; so that JaKIς = a and J[a]rKIς = [a]JrKIς (Definition 6.4).

PNL is expressive enough to axiomatise a substitution action for atoms, and even a
universal quantifier for atoms. Thus we can make atoms behave like first-order logic
variables, if we want to do this. For more on these and other nominal theories see
[GM08a] or Figures 4 and 5 of [DG10, DG12].

The asymmetry noted above reflects the standard design of first-order logic: un-
knowns ‘live in’ φ in the sense that they are used to make universal assertions ∀X.φ,
and atoms ‘live in’ r in the sense that they interact with the term- and sort-system and
we can form [a]r and f(a).

What can be a little confusing is that can mimic variables, and indeed, we can and do
use PNL to axiomatise logic. In short: PNL is a first-order logic for axiomatising logics.

Remark 2.23. We can still ask to what extent it might be possible to go beyond PNL
and to ‘fold’ unknowns back down into the syntax, possibly recursively, to obtain some
language and/or semantics in which atoms and unknowns are just two aspects of a
single well-founded structure.

In fact this idea predates PNL: the Lambda Context Calculus (LamCC) [GL08, GL09]
features just such an infinite hierarchy, but it has no semantic theory, no primitive notion
of proposition, and has a weak notion of α-equivalence.10 Concurrently with PNL, in
two recent papers [Gab11c, Gab12a] the first author has investigated these questions
from a semantic perspective. In [Gab11c] we develop an abstract notion of two-level
nominal set that can directly interpret unknowns X and atoms a just as the nominal
sets of this paper directly interpret atoms a. In [Gab12a] we develop a concrete model
of unknowns as infinite lists of distinct atoms. It would be future work to integrate these
semantics into a new logic.11 A PNL-like logic with more than two levels of variable and
a perfect symmetry across levels, is certainly imaginable.

10In the LamCC, atoms are level 1 variables, unknowns are level 2 variables and behave much like ‘holes’
in a program context, and there are level 3 variables, and so on. Many interesting program constructs can be
expressed in this language.

11The second author is most interested in PNL as a first-order basic for specifying logic and computation
in theorem-proving and also in undergraduate teaching. Fancier logics and semantics than PNL can certainly
be imagined, and perhaps created, but this does not undermine the interest of a ‘simple’ logic, like PNL.
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2.4. Substitution

Definition 2.24. A (level 2) substitution θ is a function from unknowns to terms such
that:

• For all X , θ(X) : sort(X) and fa(θ(X)) ⊆ pms(X).
• θ(X) = id ·X for all but finitely many X .

θ will range over substitutions.

Definition 2.25. Define nontriv(θ) by:

nontriv(θ) = {X | θ(X) 6=id ·X or X∈fU (θ(Y )) for some Y }

nontriv(θ) is unknowns that can be produced or consumed by θ, other than in the
trivial manner that θ(X) = id ·X .

Definition 2.26. Define a substitution action by:

aθ = a (r1, . . . , rn)θ = (r1θ, . . . , rnθ)
([a]r)θ = [a](rθ) (π·X)θ = π·θ(X)
f(r)θ = f(rθ)
⊥θ = ⊥ (φ⇒ ψ)θ = (φθ)⇒ ψθ

(P(r))θ = P(rθ) (∀X.φ)θ = ∀X.(φθ) (X 6∈ nontriv(θ))

One kind of substitution will be particularly useful, starting with (∀L) in Figure 1:

Definition 2.27. Suppose X : α and r : α and fa(r) ⊆ pms(X). Define [X:=r] by:

[X:=r](X) = r [X:=r](Y ) = Y all other Y

It is easy to verify that [X:=r] is indeed a substitution.

Remark 2.28. Famously, nominal terms substitution is capturing [UPG04, Definition 2.13].
We spell out how this works in our permissive-nominal context: Suppose a ∈ pms(X)
and b 6∈ pms(X) (where we assume appropriate sorts). Then:

• ([a]X)[X:=a] = [a]a. The a in the substitution [X:=a] has been captured by the
[a]X .

• ([b]X)[X:=a] = [b]a.
• It is impossible to even ask what ([b]X)[X:=b] is equal to because [X:=b] is not a

substitution, since b 6∈ pms(X). So b 6∈ pms(X) cannot be captured by a substitu-
tion [X:=b], because that substitution does not exist.

• Also, [b](b a)·X = [a]X . By construction,

([b](b a)·X)[X:=a] = [b](b a)·a = [b]b = [a]a.

So the choice of representative of [a]X does not matter for capture to occur.
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(Ax)
Φ, φ ` π·φ, Ψ

(⊥L)
Φ, ⊥ ` Ψ

Φ ` φ, Ψ Φ, ψ ` Ψ
(⇒L)

Φ, φ⇒ ψ ` Ψ

Φ, φ ` ψ, Ψ
(⇒R)

Φ ` φ⇒ ψ, Ψ

Φ, φ[X:=r] ` Ψ
(fa(r)⊆pms(X), r:sort(X))

(∀L)
Φ, ∀X.φ ` Ψ

Φ ` φ, Ψ (X 6∈ fU (Φ,Ψ))
(∀R)

Φ ` ∀X.φ, Ψ

Figure 1: Sequent derivation rules of full Permissive-Nominal Logic

In [Gab12a] we propose a view of X as a well-ordering on its permission set; that is,
we identify X literally with an infinite list of atoms. Viewed from this perspective,
the nominal substitution action is not capturing at all: it is simply a compact way to
present an ‘infinite raising’ or ‘infinite Skolemisation’ (cf. Remark 4.5), or a de Bruijn
index [dB72]. This idea underlies also the translation to HOL which we construct later
in Definition 4.3.

2.5. Sequents and derivability
Definition 2.29. Φ and Ψ will range over sets of propositions. We may write φ,Φ and
Φ, φ as shorthand for {φ} ∪Φ (where we do not insist that φ 6∈ Φ, that is, the union need
not be disjoint).

• A sequent of restricted PNL is a pair Φ `π Ψ.
• A sequent of full PNL is a pair Φ ` Ψ.

Write fU (Φ,Ψ) =
⋃
{fU (φ) | φ ∈ Φ} ∪

⋃
{fU (ψ) | ψ ∈ Ψ}.

Definition 2.30 (Derivable sequents). Define the derivable sequents of full PNL and
restricted PNL by the rules in Figures 1 and 2 respectively.

The sole difference between Figures 1 and 2 is in the axiom rule, and is highlighted
with a light blue rectangle.

Notation 2.31. We may write Φ `π Ψ as shorthand for ‘Φ `π Ψ is a derivable sequent’. We
may write Φ 6`π Ψ as shorthand for ‘Φ `π Ψ is not a derivable sequent’.

Similarly for Φ ` Ψ and Φ 6` Ψ.

2.6. Discussion of the PNL axiom rule
Figure 1 is the logic of [DG12, Gab12b]. Figure 2 is the logic we translate to HOL in

this paper. The only difference is the ‘π’ in the axiom rule: full PNL has it (see (Ax)),
and restricted PNL does not (see (Axπ)). Restricted PNL is a subset of full PNL, in the
sense that (obviously) Φ `π Ψ implies Φ ` Ψ (this suggests that the models of restricted
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(Axπ)
Φ, φ `π φ, Ψ

(⊥L)
Φ, ⊥ `π Ψ

Φ `π φ, Ψ Φ, ψ `π Ψ
(⇒L)

Φ, φ⇒ ψ `π Ψ

Φ, φ `π ψ, Ψ
(⇒R)

Φ `π φ⇒ ψ, Ψ

Φ, φ[X:=r] `π Ψ
(fa(r)⊆pms(X), r:sort(X))

(∀L)
Φ, ∀X.φ `π Ψ

Φ `π φ, Ψ (X 6∈ fU (Φ,Ψ))
(∀R)

Φ `π ∀X.φ, Ψ

Figure 2: Sequent derivation rules of restricted Permissive-Nominal Logic

PNL should be a superset of those of full PNL, which will indeed turn out to be the case;
see Appendix A).

Why the difference? Because the translation to HOL identifies atoms with functional
arguments. Atoms are symmetric up to permutation in full PNL; this is built into (Ax)
in Figure 1. Functional arguments are typically not symmetric.

We might try to translate full PNL to HOL by translating n! permutation instances of
each r or φ, where n is some notion of the number of atoms in r or φ (cf. capture typings in
Definition 4.7); but that would be ‘cheating’ in the sense that most of the syntax would
then be generated by a meta-level ‘macro’ which does n! amount of work. The issue
here is not whether PNL can be encoded in HOL; the issue is whether it can be cleanly
translated into HOL. These are related but distinct questions.

To quickly see the difference in derivational power between full and restricted PNL,
assume a name sort ν, a proposition-former P : ν, and two atoms a, b : ν. Then the
difference in the entailment relations of PNL and restricted PNL can be summed up as
follows:

• P(a) ` P(a) and P(a) ` P(b).
• P(a) `π P(a) but P(a) `π P(b).

Note that not even full PNL can derive that Q(a, b) entails Q(a, a); we can permute, but
we have to permute in the entire proposition. So for instance if we axiomatise the syntax
and derivability of first-order logic in PNL then we would have a predicate entails and
we might prove entails(P(a),P(a)). By equivariance of full PNL we could also derive
entails(P (b),P(b)).12 However, we still cannot derive entails(P(a),P(b)), and if we could
then that would be wrong.

In Appendix A we see that this difference corresponds in models to proposition-
formers being interpreted by equivariant functions (for full PNL) or not necessarily
equivariant functions (for restricted PNL).

12This has actually been used in real proofs; starting with [Gab07a] we used what amounts to (Ax) to
rename variable symbols in inductive proofs. See [Gab11a, Subsection 4.2] for this equivariance principle
discussed as a practical tool to obtain one-line proofs at the rigorous but informal meta-level of papers.

17



It has to be this way: Definition 4.3 translates PNL terms and predicates to HOL
terms and predicates. In Lemma 4.17 we illustrate why only restricted PNL can be
translated to HOL by our translation: the derivability of full PNL is too strong for HOL
derivability and the translation would not be sound.

Note that this does not prove that other translations to HOL do not exist, but (as
the discussion of n! above suggests) we speculate that they would be significantly less
natural.

3. HOL syntax and derivability

Higher-order logic (HOL) syntax and derivability should be familiar [Mil92a, Far08,
And86, Chu40]. We give the basics.

3.1. Syntax
We present HOL as a derivation system over simply-typed λ-terms with constants

and types for logical reasoning (like a type of truth-values and constant symbols like⇒
and ∀). This is all standard.

Definition 3.1. A HOL signature is a setD of base types, which includes a distinguished
base type of truth-values o ∈ D. µ will range over base types. A type-language is
defined by

β ::= µ | (β, . . . , β) | β → β.

It is not necessary to include products (β1, . . . , βn), but for the purposes of translat-
ing PNL into HOL doing this is convenient.

Definition 3.2. A term-signature over a HOL signature D is a tuple (G, type) where:

• G is a set of constants, which must contain elements ⊥,⇒, and ∀β for every type
β.

• type assigns to each g ∈ G a type β in the type-language determined by D, such
that type(⊥) = o, type(⇒) = o→ o→ o, and type(∀β) = (β → o)→ o.

A signature T is then a tuple (D,G, type).

Notation 3.3. We write g : β for type(g) = β.

Remark 3.4. We strongly deprecate referring to the constant ∀β : (β → o)→ o as ‘higher-
order abstract syntax’ (HOAS), as sometimes happens. That term should refer to induc-
tive types with binding constructed using constants of higher type like (Λ → Λ) → Λ
(strong HOAS) or (ν → Λ) → Λ (weak HOAS) [DH94, PE88] (the study of inductive
syntax with binding is not the topic of this paper).

A term ∀β : (β → o)→ o (plus axioms) expresses the meaning of ∀ [Chu40, Section 2]
and would still have meaning if our syntax was, e.g. combinators. In contrast, the syntax
of combinators could be represented without any need for higher-order syntax, since it
does not have binders [HS08, Section 2].
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Definition 3.5. For each signature T = (D,G, type) and each type β over D fix a count-
ably infinite set of variables of that type.

X,Y, Z will range over distinct HOL variables.13 Write type(X) for the type of X .

Definition 3.6. For each signature T define HOL terms over T by

t ::= X | λX.t | tt | (t, . . . , t) | g

and a typing relation by:

t : β (type(X)=β′)

λX.t : β′→β

t′ : β′→β t : β′

t′t : β

t1 : β1 . . . tn : βn

(t1, . . . , tn) : (β1, . . . , βn)

(type(g)=µ)

g : µ

We now define α-equivalence. We would not normally be so detailed about this, but
when we map PNL terms and propositions to HOL later, it will be useful to have been
precise here:

Definition 3.7. A permutation of HOL variables is a bijection $ such that nontriv($) =
{X | $(X) 6= X} is finite. Give HOL terms a permutation action $·t defined by:

$·X=$(X) $·λX.t=λ$(X).$·t $·(t′t)=($·t′)($·t)
$·(t1, . . . , tn)=($·t1, . . . , $·tn) $·g=g

Free variables are defined by:

fv(X)={X} fv(λX.t)= fv(t) \ {X} fv(t′t)= fv(t′) ∪ fv(t)
fv((t1, . . . , tn))=

⋃
i fv(ti) fv(g)=∅

Call a relation R on HOL terms a congruence when it is closed under the following
rules:

t R u

λX.t R λX.u

t′ R u′ t R u

t′t R u′u

ti R ui (1 ≤ i ≤ n)

(t1, . . . , tn) R (u1, . . . , un)

Define α-equivalence to be the least congruence that is an equivalence relation and is
such that:

(X,Y 6∈ fv(t))

(Y X)·t =α t

We quotient terms by α-equivalence and define capture-avoiding substitution t[X:=u]
as usual.

Definition 3.8. We write t :β for t is a term and has type β. We call t typable when t : β
for some type β.

We call a term a HOL proposition when it has type o. ξ and χ will range over HOL
propositions. We may write ∀β λX.ξ as ∀X.ξ.

13This means that if the reader sees ‘X’ this could refer either to a HOL variable or—recalling Defini-
tion 2.5—to a PNL unknown. We will make sure that it is always clear from context which is meant.
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(hAx)
Ξ, ξ `λ ξ, χ

(h⊥L)
Ξ, ⊥ `λ χ

Ξ `λ ξ, χ Ξ, χ `λ χ
(h⇒L)

Ξ, ξ ⇒ χ `λ χ
Ξ, ξ `λ χ, χ

(h⇒R)
Ξ `λ ξ ⇒ χ, χ

Ξ, ξ[X:=t] `λ χ (t:type(X))
(h∀L)

Ξ, ∀X.ξ `λ χ
Ξ `λ ξ, χ (X 6∈ fv(Ξ,χ))

(h∀R)
Ξ `λ ∀X.ξ, χ

Figure 3: Sequent derivation rules of Higher-Order Logic

Definition 3.9. Ξ and χ will range over sets of HOL propositions. We may write ξ,Ξ
and Ξ, ξ as shorthand for {ξ} ∪ Ξ.

Write fv(Ξ,χ) =
⋃
{fv(ξ) | ξ ∈ Ξ} ∪

⋃
{fv(χ) | χ ∈ χ}.

A sequent is a pair Ξ `λ χ.

Definition 3.10 (Derivable sequents). The derivable sequents are defined in Figure 3.

4. The translation from nominal to functional syntax, and its soundness

4.1. Translation from PNL to higher-order logic
In this subsection we show how to translate a PNL signature S and propositions and

terms in that signature, to a higher-order logic (HOL) signature and propositions and
terms in that signature. We start by translating a PNL signature S to a HOL signature
TS . First, we set up some notation:

Notation 4.1. Let D range over finite lists of distinct atoms.

• Write a ∈ D when a occurs in D.
• Write D′ ⊆ D when every element in D′ occurs in D (disregarding order). Simi-

larly if S is a set of atoms write D ⊆ S when every element in D occurs in S.
• If S is a set of atoms write D ∩ S for the list obtained by removing from D just

those atoms not in S.
• Write π·D for the list obtained by applying π pointwise to the elements of D in

order.
• Write D, a for the list obtained by appending a; when we write this we include an

assumption that a 6∈ D.
• Write λD.t for λd1. . . . λdn.t where D = [d1, . . . , dn].

Definition 4.2. From a PNL signature S determine a HOL signature TS by the following
specification:

1. For every atoms-sort ν in S assume a HOL base type µν .
2. For every base sort τ assume a HOL type µτ .
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bacD = a b(r1, . . . , rn)cD = (br1cD, . . . , brncD) bf(r)cD = gf brcD
b[a]rcD = λa.brcD bπ·XcD = XDπ·(D ∩ pms(X))
b⊥cD = ⊥ bφ⇒ ψcD =⇒bφcDbψcD bP(r)cD = gP brcD

b∀X.φcD = ∀λXD.bφcD

Figure 4: Translation from PNL to HOL

Translate sorts in S to types in TS as follows:

bνc= µν bτc= µτ b(α1, . . . , αn)c= (bα1c, · · · , bαnc)
b[ν]αc= µν → bαc

3. For every term-former f : (α)τ assume a HOL constant gf : bαc→ τ .
4. For every proposition-former P : α assume a HOL constant gP : bαc→ o.
5. For every atom a : ν assume a HOL variable a : µν .

It is convenient to assume this correspondence is a literal identity; i.e. that Aν is
actually a subset of the set of HOL variables of type µν , and that there are countably
infinitely many HOL variables of type µν that are not atoms.
In particular, this means that every permutation π in the sense of Definition 2.7 is
also a permutation $ in the sense of Definition 3.7.

6. For every unknown X : α and list D assume a distinct HOL variable XD that is
not an atom14 of type µν1→ . . .→µνn→bαc where νi is the sort of the ith atom in
D ∩ pms(X) (by convention and as standard, if D ∩ pms(X) is empty we take this
to be bαc).

Definition 4.3. Given a listD translate PNL terms and propositions in S to HOL terms
and propositions in TS (Definition 4.2) by the rules in Figure 4.
(The notation π·(D ∩ pms(X)) is defined in Notation 4.1.)

Example 4.4. Suppose D ∩ pms(X) (Notation 4.1) is the list [a]. Assume a proposition-
former equal of appropriate arity. Then:

bid ·XcD = XD a b(b a)·XcD = XD b b[a]id ·XcD = λa.(XD a) b[b](b a)·XcD = λb.(XD b)

b∀X.equal([a]X, [b](b a)·X)cD = ∀btype(XD)cλX.(equal(λa.(XD a))(λb.(XD b)))

Assuming appropriate axioms for equal, we would expect this to be true. Now assume
D ∩ pms(Y ) is the list [a, b]. Then:

bid ·Y cD = YDab b(b a)·Y cD = YDba b[a]id ·Y cD = λa.(YDab) b[b](b a)·Y cD = λb.(YDba)

b∀Y.equal([a]Y, [b](b a)·Y )cD = ∀btype(YD)cλYD.(equal(λa.(YDab))(λb.(YDba)))

We would expect this to be false. What has changed with respect to the previous case,
is that b is fresh for X but not for Y .

14So X is one of the countably infinitely many HOL variables that are not atoms.
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Remark 4.5. The translation of π·X to XDπ·(D ∩ pms(X)) can be seen as a Skolemisation
or raising, whereD is a finite collection of atoms/variables that are considered ‘relevant’.

See for instance Subsections 4.2 and 4.3 of Chapter 1 of [DGHP99] or Definition 53
of Chapter 3 of [DGHP99], where Skolemisation is discussed in the context of tableau
methods. There, just as here, there is a notion of the ‘relevant’ variables. See also Sec-
tion 5 of [Mil92b], where raising is discussed in the context of unification in the presence
of mixed quantifiers.

In fact, Definition 4.3 is a modified version of [DGM10, Definition 8.3] which trans-
lated between nominal unification and unification over a generalisation of the same
notion of pattern used by Miller in [Mil91, Mil92b]. See also [GM09b], where similar
ideas are applied to algebraic reasoning. The idea of these ‘nominal’ translations is that
X translates to a variableXD of higher order. In Proposition 4.10 we state a formal sense
in which, provided D contains all ‘relevant’ atoms, this translation loses no information
(the result itself is from [DGM10]). What does ‘relevant’ mean? We examine Figure 5
and see that it means intuitively ‘is permuted by some π acting on pms(X)’. In Subsec-
tion 4.3 we apply this to PNL.

Lemma 4.6. • Suppose a is an atom. Then if a ∈ fv(brcD) then a ∈ fa(r).
• bπ·rcD = π·brcD (for π on the right-hand side considered as a permutation of HOL vari-

ables).
As a corollary, the translation brcD is well-defined. That is, if r and s are α-equivalent then

brcD = bscD.

Proof. By routine inductions on r. The proof that fv(bπ·XcD) ⊆ fa(π·X) uses the fact that
D ∩ pms(X) ⊆ pms(X). The corollary follows; for more details see [DGM10, Section 8].

4.2. Capture typing
We mentioned in Remark 4.5 that the translation of Definition 4.3 requires us to

declare a finite list D of ‘relevant’ atoms. How large must D be in order to capture all
the important information in some r or φ? This is calculated by a capture typing, an idea
going back to [DGM09, DGM10].

Definition 4.7. Define capture typings D ` r : A and D ` φ : A inductively by the rules
in Figure 5. HereD ranges over finite lists of distinct atoms as described in Notation 4.1,
and A ranges over finite sets of atoms.

If A = ∅ then we may omit the ‘:A’ and write just D ` r and D ` φ. Write D ` Ψ
when D ` ψ for every ψ ∈ Ψ.

Remark 4.8. We are only interested in the caseA = ∅, but we need to consider nonempty
A just as part of the inductive definition. Intuitively, D ` r : A can be read as ‘D is rele-
vant to r in the context of abstractions over the atoms in A’.

Remark 4.9. As we mentioned in Remark 4.5, the intuitive reading ofD ` r is ‘the atoms
in D get permuted in some X occurring in r’.

Thus, the interesting case in Figure 5 is the rule for π·X . This ensures that D is large
enough to record all the important atoms in π or abstracted further up in the term—that
is, those permitted in X—so that we do not lose information when we form bπ·XcD =
XDπ·(D ∩ pms(X)). This is made formal in Proposition 4.10, which is Theorems 8.12
and 8.14 of [DGM10]:

22



D ` a : A

D ` r : A

D ` f(r) : A

D ` r : A, a

D ` [a]r : A

D ` ri : A (1≤i≤n)

D ` (r1, . . . , rn) : A

((nontriv(π) ∪A) ∩ pms(X) ⊆ D)

D ` π·X : A

D ` r : A

D ` P(r) : A

D ` φ : A D ` ψ : A

D ` φ⇒ ψ : A D ` ⊥ : A

D ` φ : A

D ` ∀X.φ : A

Figure 5: Capture typing

Proposition 4.10. • If D ` r and D ` s then brcD = bscD implies r = s (note that =
denotes α-equality, because we quotiented terms by this relation), and similarly for φ and
ψ.

• If D 6` r then there exists s such that brcD = bscD yet r 6= s, and similarly for φ.
Definition 4.3 maps PNL terms and predicates to typable HOL terms:

Proposition 4.11. If r : α then for any D, brcD : bαc, and bφcD : o.

Proof. By inductions on r and φ.

• The case a ∈ Aν . By Definition 4.2 a : µν .
• The case [a]r where a ∈ Aν . By inductive hypothesis brcD : β for some type β. It

follows that b[a]rcD = λa.brcD : µν → β.
• The case π·X . Suppose D ` π·X . It is routine to check that XDπ·(D ∩ pms(X)) :
bsort(X)c.

4.3. Soundness of the translation
Recall that HOL terms have a permutation action π·t given by considering π as a

permutation on HOL variables and using Definition 3.7. Then:

Lemma 4.12. If nontriv(π) ∩ fv(t) ⊆ D then (λD.t)π·D =αβ π·t (see Notation 4.1).

Proof. A fact of αβ-conversion [DGM10, Lemma 9.2].

Lemma 4.13. Suppose D ` r and D ` φ. Suppose r′ : sort(X) and fa(r′) ⊆ pms(X). Then:

• br[X:=r′]cD =αβ brcD[XD:=λ(D ∩ pms(X)).br′cD].
• bφ[X:=r′]cD =αβ bφcD[XD:=λ(D ∩ pms(X)).br′cD].

Proof. By routine inductions on r and φ. We sketch two cases:

• The case (π·X)[X:=r′]. We must prove that

bπ·r′cD =αβ

(
λ(D ∩ pms(X)).br′cD

)
π·(D ∩ pms(X)).

This follows by Lemmas 4.6 and 4.12.
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• The case P(r)[X:=r′]. We must prove that

bP(r[X:=r′])cD =αβ gP(brcD)[X:=λ(D ∩ pms(X)).br′cD].

This follows directly from the first part.

Proposition 4.14. Suppose D ` φ and D ` r′ and r′ : sort(X) and fa(r′) ⊆ pms(X).
Then b∀X.φcD `λ bφ[X:=r′]cD.

Proof. Using Lemma 4.13 and (h∀L) from Figure 3.

Lemma 4.15. For any finite set of predicates {φi | i ∈ I} there exists some D such that D ` φi
for every i ∈ I .

Proof. We calculate
⋃
nontriv(π) for every π occurring in every φi, in some order, and

take this to be D. It is not hard to verify that this sufficies.

Theorem 4.16. The interpretation is sound: if Φ `π Ψ with a derivation B and D ` Φ′ and
D ` Ψ′ for every sequent Φ′ `π Ψ′ appearing in B, then bΦcD `λ bΨcD (by Lemma 4.15, some
such D always exists).

Proof. By induction on the derivation B of Φ `π Ψ. It is routine to verify by induction on
B that bΦ′cD `λ bΨ′cD is derivable for each Φ′ `π Ψ′ appearing in B; the case of (∀R) uses
Proposition 4.14. So in particular bΦcD `λ bΨcD.

Lemma 4.17. The interpretation for full PNL (Figure 1, with the stronger axiom rule) would
not be sound. That is, there exist Φ and Ψ and D such that D ` Φ, D ` Ψ, and Φ ` Ψ, but
bΦcD 6`λ bΨcD.

Proof. Consider a name sort ν and a unary predicate P : ν. Then P(a) ` P(b) in full PNL,
but it is not the case that gP a ` gP b in HOL.

5. Semantics

For the reader’s convenience we will clarify one aspect of the coming notation now:
if the reader sees X� this is a set with a permutation action; if the reader sees X⇒ this is a
set with a renaming action. There is no particular connection between X� and X⇒.

A typical renaming is [a:=b] (instead of a typical permutation (a b)). Formal defini-
tions are in Definition 2.7 and 5.1.

The reader may not be surprised by the use of sets with a permutation action—
nominal techniques are based on these [GP01]. But why the renaming action? We need
renamings to make a function out of an atoms-abstraction, mirroring the clause b[a]rcD =
λa.brcD in Definition 4.3.

In PNL models, an abstraction [a]r is modelled as Gabbay-Pitts atoms-abstraction
[a]x, a sets-based construction from [GP01] (Definition 5.29, in this paper). This is con-
structed like a pair, forming [a]x from a and x, but destructed like a partial function the
graph of which is evident in Definition 5.29. It is defined on [a]x for fresh b but not for
b ∈ supp(x) \ {a}.
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When we translate [a]r to HOL we interpret [a]r as a function using λ-abstraction.
This suggests of our models that we translate a partial function [a]x to a total function.
But then we have to give meaning to [a]x applied to b where b is not fresh. This is where
renaming sets are used.

We can then conclude by noting that every model of PNL can be transformed into
a model of HOL, and in a compositional manner (Lemma 8.9). Completeness quickly
follows.

5.1. Categories of supported permutation and renaming sets
5.1.1. Permutation and renaming sets
Definition 5.1. Suppose ρ is a map from A to A. Define dom(ρ) and img(ρ) by

dom(ρ) = {a | ρ(a) 6= a} and img(ρ) = {ρ(a) | a ∈ dom(ρ)}.

Echoing Definition 2.7, a renaming is a map ρ from A to A such that a ∈ Aν ⇔ ρ(a) ∈ Aν
and nontriv(ρ) = dom(ρ) ∪ img(ρ) is finite. Write R for the set of renamings.

For a, b ∈ Aν let an atomic renaming [a:=b] map a to b, b to b, and other c to them-
selves.

ρ will range over renamings.

Notation 5.2. We use the following notation (analogously to Notation 2.8):

• Write ρ ◦ ρ′ for functional composition, so (ρ ◦ ρ′)(a) = ρ(ρ′(a))).
• Write id for the identity renaming, so id(a) = a always.

Unlike in Notation 2.8, we have no notation for inverse, because for renamings in-
verses need not exist.

Definition 5.3. • A permutation set is a pair X� = (|X�|, ·) of an underlying set
|X�| and a permutation action (P× |X�|)→ |X�|which is a group action; write it
infix.
(So id ·x = x and π·(π′·x) = (π ◦ π′)·x.)
• A renaming set is a pair X⇒ = (|X⇒|, ·) of an underlying set |X⇒| and a renaming

action (R× |X⇒|)→ |X⇒|which is a monoid action; write it infix.
(So id ·x = x and ρ•(ρ′ •x) = (ρ ◦ ρ′)•x.)

Definition 5.4. • Suppose X� is a permutation set. Say that A ⊆ A supports x ∈ |X�|
when for all π, π′ ∈ P, if ∀a ∈ A.π(a) = π′(a) then π·x = π′·x.

• Suppose X⇒ is a renaming set. Say that A ⊆ A supports x ∈ |X⇒| when for all
ρ, ρ′ ∈ R, if ∀a ∈ A.ρ(a) = ρ′(a) then ρ•x = ρ′ •x.

Lemma 5.5. If x ∈ |X�|/|X⇒| has a supporting permission set (Definition 2.3) then it has a
unique least supporting set which is equal to the intersection of all permission sets supporting
x. We call this the support of x when it exists, and write it supp(x).

Definition 5.6. • Call x ∈ |X�|/|X⇒| supported when supp(x) exists.
• Call X�/X⇒ supported when every element x ∈ |X�|/|X⇒| is supported.

Recall from Definition 2.14 the pointwise actions of π and ρ on sets of atoms.
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Lemma 5.7. 1. If x ∈ |X�| then supp(π·x) = π·supp(x).
2. If x ∈ |X⇒| then supp(ρ•x) ⊆ ρ·supp(x).

As a corollary, if ρ is injective on supp(x) then supp(ρ•x) = ρ·supp(x).

Proof. By routine calculations using the group/monoid action.

The reverse subset inclusion in part 2 of Lemma 5.7 is not true in general:

Lemma 5.8. There exists a renaming set X⇒, an element x ∈ |X⇒|, and a renaming ρ such that
ρ·supp(x) 6⊆ supp(ρ•x).

Proof. Consider (A×A)∪ {∗}with the non-standard ‘exploding’ renaming action such
that:

ρ(∗) = ∗ ρ•(a, b) = (ρ(a), ρ(b)) if ρ(a) 6= ρ(b)
ρ•(a, a) = (ρ(a), ρ(a)) ρ•(a, b) = ∗ if ρ(a) = ρ(b)

(Recall from Definition 2.3 that by our permutative convention, a and b are distinct.)
Then supp([a:=b]•(a, b)) = ∅ ( {b} = [a:=b]•supp((a, b)).

5.1.2. Equivariant elements and maps
Definition 5.9. Call an element x in |X�|/|X⇒| equivariant when supp(x) = ∅.

x is equivariant when π·x = x for all π, or ρ•x = x for all ρ, respectively.

Definition 5.10. • Call a function F ∈ |X�| → |Y�| equivariant when

∀π∈P.∀x∈|X�|.F (π·x) = π·F (x).

• Call a function G ∈ |X⇒| → |Y⇒| equivariant when

∀ρ∈R.∀x∈|X⇒|.G(ρ•x) = ρ•G(x).

F and G will range over equivariant functions between pairs of permutation and
renaming sets respectively.

Remark 5.11. Equivariance is a characteristic feature of nominal techniques. Equivari-
ance means in words ‘symmetric under permuting atoms’; in this paper we are also
interested in ‘symmetric under renaming atoms’. Whichever meaning is appropriate,
equivariance is a symmetry property.

For an element x ∈ |X�| or x ∈ |X⇒| equivariance means that x has empty support
(in fact, supp(x) is a measure of asymmetry in x). For a function F ∈ |X�| → |Y�| equiv-
ariance means that F commutes with π. For a function F ∈ |X⇒| → |Y⇒| equivariance
means that F commutes with ρ.

Equivariance and support are abstract mathematical concepts, but they were origi-
nally derived from the study of syntax in [GP01]. For syntax, equivariance corresponds
to ‘closed’; in usual informal usage the syntax λx.x is closed and is symmetric under
changing x to y.15 The reader might therefore find it useful to read ‘equivariant’ as
‘closed’.

15For the rest of this remark λ is a term-former. So λx.x refers to the term, not the function.
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However, this is just an analogy and it can be quite treacherous. For instance,
λx.λx.x is closed as a term but it is not permutatively symmetric with λx.λy.y. (If we
build our syntax using nominal abstract syntax then λ[a]λ[a]a is equal to λ[a]λ[b]b, but
the reason for this is that [a]a is equal, via symmetry up to permutation, with [b]b.)

So, while an analogy of ‘equivariance’ with ‘closure’ is historically reasonable and
may be helpful, bear in mind that what it really means is ‘symmetric’.

Lemma 5.12. 1. Suppose F ∈ |X�| → |Y�| is equivariant. Then supp(F (x)) ⊆ supp(x) for
every x ∈ |X�|.

2. Suppose G ∈ |X⇒| → |Y⇒| is equivariant. Then supp(G(x)) ⊆ supp(x) for every x ∈
|X⇒|.

Proof. We consider only the second part. Suppose S supports x so that for all ρ and ρ′, if
∀a ∈ S.ρ(a) = ρ′(a) then ρ•x = ρ′ •x. The result follows if we note that ρ•G(x) = G(ρ•x)
and ρ′ •G(x) = G(ρ′ •x).

Definition 5.13. • Write PmsPrm for the category with objects supported permu-
tation sets and arrows equivariant functions between them.
Henceforth, X� and Y� will range over objects in PmsPrm.
• Write PmsRen for the category with objects supported renaming sets and arrows

equivariant functions between them.
Henceforth, X⇒ and Y⇒ will range over objects in PmsPrm.

Remark 5.14. Both PmsPrm and PmsRen are categories of sets with a monoid action (in
the case of PmsPrm that monoid happens to be a group).

PmsPrm can be thought of as the category of pullback-preserving presheaves on the
category I′ of permission sets and finite injections between them (so an object S ∈ I′ is a
permission set, and an arrow from S to T is a permutation π such that π·S ⊆ T ). PmsRen
can be thought of as the category of those presheaves on the category F′ of permission
sets and finite renamings between them (so an object S ∈ F′ is a permission set, and an
arrow from S to T is a renaming ρ such that ρ•S ⊆ T ) that preserve pullbacks of monos.

For details on this see [GH08], and for a more wide-ranging survey of the applica-
tions of sets with an action and presheaves see [GMM06]. See also the discussion of
presheaves in Subsection 9.2.

5.2. The exponential in PmsRen

PmsPrm and PmsRen are both cartesian closed, but we only discuss exponentials for
PmsRen in this paper. The reader can find the constructions for PmsPrm e.g. in [Gab11a,
Section 9].

PmsPrm is used to give denotation to PNL only, while PrmRen is used to give a
denotation to PNL and also to HOL. For this reason, the exponentials of PmsRen are of
specific and immediate importance to us, but not those of PmsPrm.
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5.2.1. Functions
Recall the definitions of dom and img from Definition 5.1.

Definition 5.15. • Suppose X�,Y� ∈ PmsPrm. Suppose f ∈ |X�| → |Y�| (f is not
necessarily equivariant).
Call f supported when there exists a permission set Sf ⊆ A such that for every
x ∈ |X�| and permutation π ∈ P, if nontriv(π) ∩ Sf = ∅ then

π •(f(x)) = f(π •x).

• Suppose X⇒,Y⇒ ∈ PmsRen. Suppose f ∈ |X⇒| → |Y⇒| (f is not necessarily
equivariant).
Call f supported when there exists a permission set Sf ⊆ A such that for every
x ∈ |X⇒| and renaming ρ ∈ R, if dom(ρ) ∩ Sf = ∅ then

ρ•(f(x)) = f(ρ•x).

Remark 5.16. Definition 5.15 uses a word ‘supported’ for f , suggestive of Definition 5.4,
even though f has no permutation/renaming action. It will have a permutation/renaming
action (Remark 5.17 and Definition 5.20), and then the terminologies will coincide (see
Lemma 5.24).

Remark 5.17. It is a fact that PmsPrm is cartesian closed and functions have the conjuga-
tion action

(π·f)(x) = π·(f(π-1·x)).

and f is supported in the sense of Definition 5.15 if and only if it is supported as an
element of |X�| → |Y�| with the conjungation action. For more on this see [Gab11a,
GP01].

Renamings ρ are not invertible, so we must work a little harder to define a renaming
action. This is Definition 5.20. However, the end result is similar to the conjugation
action, in a sense made formal in Lemma 5.22 which is similar to an immediate corollary
of the conjugation action that π·(f(x)) = (π·f)(π·x).

Lemma 5.18. If f is supported then supp(f(x)) ⊆ Sf ∪ supp(x) for every x ∈ |X⇒|.

Proof. By contradiction. Suppose there exists a ∈ supp(f(x)) \ (Sf ∪ supp(x)). Choose b
fresh (so b 6∈ supp(f(x))∪Sf∪supp(x)). Then (b a)•(f(x)) = f((b a)•x) since a, b 6∈ Sf and
f((b a)•x) = f(x) since b, a 6∈ supp(x). It follows by Lemma 5.7 that (b a)•supp(f(x)) =
supp(f(x)), which is impossible.

Definition 5.19. Suppose S ⊆ A is a permission set and A ⊆ A is finite. Call ρ1 and ρ2 a
freshening pair of renamings for A with respect to S when:

• dom(ρ1) = A and dom(ρ2) = img(ρ1).
• (ρ2 ◦ ρ1)(a) = a for all a ∈ A.
• dom(ρ2) ∩ (S ∪A) = ∅.

In words, ρ1 maps the atoms in A to be outside S (and A), and ρ2 is an ‘inverse’ to
ρ1 that puts them back.
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5.2.2. Renaming action
Definition 5.20. (We continue the notation of Definition 5.15.) If f is supported then
define ρ•f by

(ρ•f)(x) = (ρ2 ◦ ρ)•f(ρ1 •x)

for some/any freshening pair of renamings ρ1 and ρ2 for nontriv(ρ) (which is finite),
with respect to supp(x) ∪ Sf .

Lemma 5.21. Definition 5.20 is well-defined. That is, it does not matter which freshening pair
of renamings we choose.

Proof. Consider two freshening pairs of renamings ρ1, ρ2 and ρ′1, ρ′2. These exist because
nontriv(ρ) is finite and A \ (supp(x) ∪ Sf ) is infinite.

Let ρ′′1 map img(ρ1) to img(ρ′1) and ρ′′2 map dom(ρ′2) = img(ρ′1) to dom(ρ2) = img(ρ1)
in such a way that

• ρ′1(a) = (ρ′′1 ◦ ρ1)(a) for all a ∈ dom(ρ′1),
• ρ′2(a) = (ρ2 ◦ ρ′′2)(a) for all a ∈ dom(ρ′2), and
• nontriv(ρ′′1) = img(ρ1) ∪ img(ρ′1) and nontriv(ρ′′2) = dom(ρ′2) ∪ dom(ρ2).

We reason as follows:

(ρ′2 ◦ ρ)•f((ρ′1 ◦ ρ)•x) = (ρ2 ◦ρ′′2 ◦ρ)•f((ρ′′1 ◦ρ1 ◦ρ)•x) Lems. 5.18 & 5.7, Def. 5.4
= (ρ2 ◦ρ′′2 ◦ρ◦ρ′′1)•f((ρ1 ◦ρ)•x) dom(ρ′′1) ∩ Sf = ∅
= (ρ2 ◦ρ′′2 ◦ρ′′1 ◦ρ)•f((ρ1 ◦ρ)•x) nontriv(ρ′′1) ∩ nontriv(ρ) = ∅
= (ρ2 ◦ ρ)•f((ρ1 ◦ ρ)•x) Lems. 5.18 & 5.7, Def. 5.4

Lemma 5.22. Suppose x ∈ |X⇒| and ρ is a renaming. Suppose f ∈ |X⇒| → |Y⇒| is supported.
Then ρ•(f(x)) = (ρ•f)(ρ•x).

Proof. Let ρ1 and ρ2 be a freshening pair of renamings of nontriv(ρ) with respect to
Sf ∪ supp(x).

Let ρ′ be a renaming with nontriv(ρ′) = img(ρ1) such that ρ1 ◦ ρ = ρ′ ◦ ρ1; this exists
since ρ1 is injective on nontriv(ρ) and ‘freshens’ this set to some fresh set of atoms.

We reason as follows:

(ρ•f)(ρ•x) = (ρ2 ◦ ρ)•f((ρ1 ◦ ρ)•x) Definition 5.20
= (ρ2 ◦ ρ)•f((ρ′ ◦ ρ1)•x) Definition 5.4
= (ρ2 ◦ ρ ◦ ρ′)•f(ρ1 •x) nontriv(ρ′) ∩ Sf = ∅
= (ρ ◦ ρ2)•f(ρ1 •x) Lem. 5.18, Def. 5.4
= ρ•f((ρ2 ◦ ρ1)•x) dom(ρ2) ∩ Sf = ∅
= ρ•f(x) Definition 5.4
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5.2.3. Definition of the exponential

Definition 5.23. Write X⇒ ⇒ Y⇒ for the renaming set with underlying set those f ∈
|X⇒| → |Y⇒| that are supported in the sense of Definition 5.15, and renaming action as
defined in Definition 5.20.

Lemma 5.24. If f is supported in the sense of Definition 5.15 then it is supported by Sf in the
sense of Definition 5.4. Thus, X⇒ ⇒ Y⇒ is indeed a permissive-nominal renaming set.

Proof. It suffices to show that if a 6∈ Sf then ([a:=b]•f)(x) = f(x). This follows by routine
calculations.

Lemma 5.25. PmsRen (Definition 5.13) is cartesian closed:

• The exponential is X⇒ ⇒ Y⇒ from Definition 5.23.
• Products are given pointwise as in Definition 5.36.
• The terminal object 1⇒ is the singleton set {0} with the trivial action ρ•0 = 0.

Proof. The bijection between (X⇒×Y⇒)→ Z⇒ and X⇒ → (X⇒ ⇒ Y⇒) is given by currying
and uncurrying as usual. Thus G : (X⇒ × Y⇒) → Z⇒ maps to x 7→ λy.G(x, y). It is not
hard to verify that if dom(ρ) ∩ supp(x) = ∅ then

(ρ•λy.F (x, y))(y) = ρ•F (x, y) = F (x, ρ•y) = (λy.F (x, y))(ρ•y).

Thus λy.G(x, y) is supported by supp(x) and is in Y⇒ ⇒ Z⇒.

We take a moment to build a particular exponential which will be useful later.

Definition 5.26. Suppose x ∈ |X⇒| and a ∈ Aν . Write λa.x ∈ |Aν | → |X⇒| for the function
mapping a to x and b to [a:=b]•x.

Lemma 5.27. λa.x ∈ |Aν ⇒ X⇒|.

Proof. It suffices to show that λa.x is supported by supp(x) (in fact, it is also supported
by supp(x)\{a}). Suppose dom(ρ)∩supp(x) = ∅ and z ∈ Aν (z is not necessarily distinct
from a). Write ρ-a for the renaming such that (ρ-a)(b) = ρ(b) and (ρ-a)(a) = a. We sketch
the relevant reasoning:

ρ•((λa.x)z) = (ρ ◦ [a:=z])•x = ([a:=ρ(z)] ◦ (ρ-a))•x = [a:=ρ(z)]•x = (λa.x)(ρ•z)

5.3. Atoms, products, atoms-abstraction, and functions out of atoms
5.3.1. Atoms
Definition 5.28. Write B for the nominal set and the permutation/renaming set with
underlying set {0, 1} and the trivial permutation/renaming action such that π·x =
x/ρ•x = x always.

We will be lax and write x ∈ B for x ∈ |B|.
Write Aν for the permutation set and the renaming set with underlying set Aν and

the natural permutation/renaming action such that π·x = π(x)/ρ•x = ρ(x) always.
We will be lax and write x ∈ Aν for x ∈ |Aν |.
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5.3.2. Atoms-abstraction in permutation and renaming sets
Definition 5.29. Suppose X� is a supported permutation set. Suppose x ∈ |X�| and
a ∈ Aν . Define atoms-abstraction [a]x and [Aν ]X� by:

[a]x = {(a, x)} ∪ {(b, (b a)·x) | b ∈ Aν\supp(x)}
|[Aν ]X�| = {[a]x | a ∈ Aν , x ∈ |X�|}
π·[a]x = [π(a)]π·x

Lemma 5.30. Suppose X� is a supported permutation set.

1. [Aν ]X� is a supported permutation set.
2. [a]x=[a]x′ if and only if x=x′, for a∈Aν and x∈|X�|.
3. [a]x=[a′]x′ if and only if a′ 6∈supp(x) and (a′ a)·x=x′, for a, a′∈Aν and x, x′∈|X�|.

We do not need Definition 5.31 for the completeness proof but we include it for the
interested reader to compare and constrast with Definition 5.29.

Definition 5.31. Suppose X⇒ is a supported renaming set. Suppose x ∈ |X⇒| and a ∈ Aν .
Define atoms-abstraction [a]x and [Aν ]X⇒ by:

[a]x = {(a, x)} ∪ {(b, [a:=b]•x) | b ∈ Aν\supp(x)}
|[Aν ]X⇒| = {[a]x | a ∈ Aν , x ∈ |X⇒|}
ρ•[a]x = [a]ρ•x (a 6∈ nontriv(ρ))

Remark 5.32. Definitions 5.29 and 5.31 look similar; both define graphs of partial func-
tions defined on supp(x) \ {a}. However, the critical difference is that in renaming sets,
this partial function can be extended to a total function in Aν → X⇒.

That is, [a]x ∈ [Aν ]X⇒ determines the total function λa.x from Definition 5.26, map-
ping a to x and any other b to [a:=b]•x. We return to this in Lemma 7.3 where we show
that the natural map from [Aν ]X⇒ to Aν ⇒ X⇒ which we construct in a moment in Def-
inition 5.34, is not surjective. So Definition 5.31 identifies a ‘small’ and ‘well-behaved’
subset of the function space.

A cognate of Lemma 5.30 also holds for [Aν ]X⇒:

Lemma 5.33. Suppose X⇒ is a supported renaming set.

1. [Aν ]X⇒ is a supported renaming set.
2. [a]x=[a]x′ if and only if x=x′, for a∈Aν and x∈|X⇒|.
3. [a]x=[a′]x′ if and only if a′ 6∈supp(x) and (a′ a)•x=x′ (or equivalently [a:=a′]•x=x′), for
a, a′∈Aν and x, x′∈|X⇒|.

It may be useful to organise Definitions 5.26 and 5.31 and Lemma 5.33 into two
functors and a natural transformation:

Definition 5.34. Write [Aν ]- for the functor taking X⇒ to [Aν ]X⇒ and takingG : X⇒ −→ Y⇒

to [Aν ]G : Aν⇒X⇒ −→ Aν⇒Y⇒ which maps [a]x to [a]G(x).
Write Aν⇒- for the functor taking X⇒ to Aν⇒X⇒ and takingG : X⇒ −→ Y⇒ to Aν⇒G :

Aν⇒X⇒ −→ Aν⇒Y⇒ which maps f to G ◦ f = λn∈Aν .G(f(n)).
Finally, write AbsFun for the natural transformation from [Aν ]- to Aν⇒- such that

AbsFun(X⇒) : [Aν ]X⇒ −→ Aν⇒X⇒ maps [a]x to λa.x (Definition 5.26).
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Lemma 5.35. The functors [Aν ]- and Aν⇒- and the natural transformation AbsFun are indeed
well-defined.

Proof. By routine calculations using the fact that G : X⇒ −→ Y⇒ is equivariant (Defini-
tion 5.10). We consider two of the relevant calculations:

• If G : X⇒ −→ Y⇒ then [Aν ]G is well-defined. Suppose [a]x = [b]y ∈ |[Aν ]X⇒|. By
Lemma 5.33 b 6∈ supp(x) and (b a)·x = y. By equivariance G((b a)•x) = (b a)•G(x).
By part 2 of Lemma 5.12 b 6∈ supp(G(x)). By Lemma 5.33 [a]G(x) = [b]G(y).

• AbsFun is a natural transformation. We need that λa.(G(x)) = λn∈Aν .G((λa.x)n).
Unpacking Definition 5.26 (λa.x)n = [a:=n]•x (here n∈Aν is not necessarily dis-
tinct from a). By equivariance of G, λn∈Aν .G((λa.x)n) = λn∈Aν .[a:=n]•G(x).
This is exactly equal to λa.G(x) as required.

In part 4 of Lemma 7.3 we prove that AbsFun does not have an inverse. This merely
points out the obvious: there are more functions from Aν to X⇒ than can be represented
in the form λa.x = λn∈Aν .[a:=n]•x.

5.3.3. Product
Definition 5.36. If X�

i and X⇒

i are supported permutation and renaming sets respectively
for 1 ≤ i ≤ n then define X�

1 × . . .× X�
n and X⇒

1 × . . .× X⇒
n by:

|X�
1 × . . .× X�

n| = |X�
1| × . . .× |X�

n|
π·(x1, . . . , xn) = (π·x1, . . . , π·xn)

|X⇒

1 × . . .× X⇒
n| = |X⇒

1 | × . . .× |X⇒
n|

ρ•(x1, . . . , xn) = (ρ•x1, . . . , ρ•xn)

Lemma 5.37. • supp(a) = {a}.
• supp([a]x) = supp(x) \ {a}.
• supp((x1, . . . , xn)) =

⋃
{supp(xi) | 1 ≤ i ≤ n}.

Proof. By routine arguments like those in [GP01] or [Gab11a, Corollary 2.30 & Theo-
rem 3.11].

5.4. The free extension of a permutation set to a renaming set
We now show how to construct a renaming set ren(X�) out of a nominal set. At

the start of Section 5 we noted that an atoms-abstraction [a]x ∈ |[Aν ]X�| can be viewed
as a partial function and that in renaming sets atoms-abstraction also exists but can be
completed to a total function (Remark 5.32). We can view our free construction as a
canonical way to move from a world in which atoms-abstraction is partial, to a world
in which it is total.

Notation 5.38. If ∼ is an equivalence relation, [-]∼ will denote the equivalence class of -
in ∼.

Definition 5.39. We define a functor ren(-) from PmsPrm to PmsRen as follows:
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• Action of ren(-) on objects.
X� maps to ren(X�) = ((R × |X�|)/∼, •) where ρ•[(ρ′, x)]∼ = [(ρ ◦ ρ′, x)]∼ and ∼ is
the least equivalence relation such that:

1. If ρ(a) = ρ′(a) for every a ∈ supp(x) then (ρ, x) ∼ (ρ′, x).
2. (ρ ◦ π, x) ∼ (ρ, π·x).

For convenience we will write ρ•x as shorthand for [(ρ, x)]∼.16

• Action of ren(-) on arrows.
An arrow F : X� −→ Y� maps to ren(F ) : ren(X�) −→ ren(Y�) given by:

ren(F )(ρ•x) = ρ•F (x)

Lemma 5.40. ren(F ) is well-defined; that is, that if (ρ, x) ∼ (ρ′, x′) then ren(F )((ρ, x)) ∼
ren(F )((ρ′, x′)).

Proof. Induction on the derivation that (ρ, x)∼(ρ′, x′). We consider the two base cases:

• The case ρ(a) = ρ′(a) for every a ∈ supp(x). By part 2 of Lemma 5.12 also ρ(a) =
ρ′(a) for every a ∈ supp(F (x)).

• The case (ρ ◦ π, x) ∼ (ρ, π·x). Then also (ρ ◦ π, F (x)) ∼ (ρ, π·F (x)) and by equiv-
ariance π·F (x) = F (π·x).

Remark 5.41. Rules 2 and 1 of Definition 5.39 can be viewed asα-conversion and garbage-
collection respectively. Thus in ρ•x ∈ ren(X�) we may without loss of generality (using
rule 2) assume that dom(ρ) ∩ S = ∅ for any permission set S, and we may also assume
(using rule 1) that dom(ρ) ⊆ supp(x).

Lemma 5.42. 1. ren(B) (for B considered a set with the trivial permutation action) is isomor-
phic to B (for B considered a set with a trivial renaming action).

2. ren(Aν) (for Aν with its natural permutation action) is isomorphic to Aν (for Aν with its
natural renaming action).

Proof. We consider only the second part. This follows if we note that according to the
rules for ∼ in Definition 5.39,

(ρ, a)
rule 1∼ ((ρ(a) a), a)

rule 2∼ (id , ρ(a)).

Where we are dealing with more than zero or one atoms at a time, isomorphisms
like those in Lemma 5.42 may fail:

Lemma 5.43. ren(Aν×Aν) is not isomorphic to ren(Aν)×ren(Aν) (which is isomorphic to
Aν×Aν).

Proof. Consider the element [a:=b]•(a, b).

16ρ•x is not ‘ρ acting on x’ and cannot be, since x ∈ |X�| only has a permutation action. However this
notation gives us cleaner-looking maths and the nice equality ρ•(id •x) = ρ•x (in long form: ρ•[(id , x)]∼ =
[(ρ, x)]∼). The notation follows the nominal terms tradition of writing π·X both for ‘π acting on the moder-
ated unknown id ·X’, and for ‘the moderated unknown π·X’ [UPG04].
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6. Interpretation of permissive-nominal logic

6.1. Interpretation of signatures
Definition 6.1. Suppose (A,B) is a sort-signature (Definition 2.1).

A PNL interpretation I for (A,B) consists of an assignment of a nonempty sup-
ported permutation set τ I to each τ ∈ B.

We extend an interpretation I to sorts by:

JτKI = τ I J(α1, . . . , αn)KI = Jα1KI × . . .× JαnKI

JνKI = Aν J[ν]αKI = [Aν ]JαKI

Definition 6.2. Suppose S = (A,B,F ,P, ar ,X ) is a signature (Definition 2.5).
A (non-equivariant) PNL interpretation I for S consists of the following data:

• An interpretation for the sort-signature (A,B) (Definition 6.1).
• For every f ∈ F with ar(f) = (α′)α an equivariant function f I from Jα′KI to JαKI

(Definition 5.10).
• For every P ∈ P with ar(P) = α a supported function PI from JαKI to {0, 1}.

If every PI is equivariant, then call I a fully equivariant interpretation.17

6.2. Interpretation of terms
Definition 6.3. Suppose I is an interpretation for S. A valuation ς to I is a map on
unknowns such that for each unknown X ,

• ς(X) ∈ Jsort(X)KI , and
• supp(ς(X)) ⊆ pms(X).

ς will range over valuations.
Having interpreted sorts α in Definition 6.1 as permissive-nominal sets JαKI , we now

interpret nominal terms r : α as elements of those sets JrKIς :

Definition 6.4. Suppose I is an interpretation of a signature S. Suppose ς is a valuation
to I.

Define an interpretation JrKIς in S by:

JaKIς = a J[a]rKIς = [a]JrKIς
Jf(r)KIς = f I(JrKIς) Jπ·XKIς = π·ς(X)

J(r1, . . . , rn)KIς = (Jr1KIς , . . . , JrnK
I
ς)

Lemma 6.5. If r : α then JrKIς ∈ JαKI .

17A non-equivariant PNL interpretation still interprets term-formers equivariantly. Only the predicates
might not be equivariant. We do this in order to completely model (Axπ) from Figure 2, so that P(r) 6⇔
P(π·r); see Theorem A.9. Of course it is possible to imagine a notion of non-equivariant interpretation where
term-formers are interpreted as non-equivariant functions. This would correspond to something else: namely,
to losing the property that π·f(r) = f(π·r).
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Proof. By a routine induction on r.

Lemma 6.6. π·JrKIς = Jπ·rKIς .

Proof. By a routine induction on r. We consider one case:

• The case π′·X . By Definition 6.4 Jπ′·XKIς = π′·ς(X). Therefore π·Jπ′·XKIς = π·(π′·ς(X)).
It is a fact of the group action (Definition 5.3) that π·(π′·ς(X)) = (π ◦ π′)·ς(X), and
of the permutation action (Definition 2.11) that π·(π′·X) = (π ◦ π′)·X . The result
follows.

Lemma 6.7. supp(JrKIς) ⊆ fa(r).

Proof. By a routine induction on r. We consider one case in detail:

• The case π·X . fa(π·X) = π·pms(X) by Definition 2.15. By assumption in Defini-
tion 6.3 supp(ς(X)) ⊆ pms(X).

The cases of a, [a]r, and (r1, . . . , rn) use parts 1, 2, and 3 of Lemma 5.37. The case of f
uses part 1 of Lemma 5.12.

6.3. Interpretation of propositions
Definition 6.8. Suppose ς is a valuation to an interpretation I. Suppose X is an un-
known and x ∈ Jsort(X)KI is such that supp(x) ⊆ pms(X). Define ς[X:=x] by

(ς[X:=x])(Y ) = ς(Y ) and (ς[X:=x])(X) = x.

It is easy to verify that ς[X:=x] is also a valuation to I.

Definition 6.9. Suppose I is an interpretation. Define an interpretation of propositions
by:

JP(r)KIς = PI(JrKIς)
J⊥KIς = 0

Jφ⇒ ψKIς = max{1−JφKIς , JψKIς}
J∀X.φKIς = min{JφKIς[X:=x] | x∈Jsort(X)KI, supp(x)⊆pms(X)}

We may identify JφKI with a set of valuations {ς | JφKIς = 1}. We discuss soundness
and completeness in Appendix A.

Lemma 6.10. • JrKIς[X:=Jr′KIς ]
= Jr[X:=r′]KIς .

• JφKIς[X:=Jr′KIς ]
= Jφ[X:=r′]KIς .

Proof. By routine inductions on the definitions of JrKIς and JφKIς in Definitions 6.4 and 6.9.
We consider two cases:

• The case of Jπ·XKIς[X:=r′]. We reason as follows:

Jπ·XKIς[X:=Jr′KIς ]
= π·Jr′KIς Definition 6.4
= Jπ·r′KIς Lemma 6.6
= J(π·X)[X:=r′]KIς Definition 2.26.

35



• The case of JP(r)KIς[X:=r′]. We reason as follows:

JP(r)KIς[X:=Jr′KIς ]
= PI(JrKIς[X:=Jr′KIς ]

) Definition 6.9
= PI(Jr[X:=r′]KIς) Part 1 of this result
= JP(r)[X:=r′]KIς Definition 6.9.

Lemma 6.11. If ς(X) = ς ′(X) for all X ∈ fU (r) then JrKIς = JrKIς ′ , and similarly for φ.

Proof. By a routine induction on r and φ.

7. Interpretation of HOL

For this section fix some PNL interpretation I of a PNL signature S. Recall from
Definition 4.2 the definition of the corresponding HOL signature TS .

We have our interpretation of PNL and we have from Definition 4.3 a translation of
PNL syntax to HOL syntax. We also have a functor from nominal sets to renaming sets
(Definition 5.39). It remains to interpret HOL in renaming sets consistent with these
interpretations and translations. This is Definitions 7.1 and 7.6, and the key technical
result Lemma 8.9. Completeness follows quickly as a corollary (Theorem 8.11).

Note that in the interpretation (Definition 7.1) the type µν → β is not necessarily
interpreted as the set of all functions; it may be interpreted as a small subset of this
function space. This is an old idea: since Henkin, models of HOL have been constructed
to cut down on the full function-space (e.g. to create a complete semantics [And86,
Section 55]; see also [BBK04] for a survey of non-standard semantics for HOL).

What we need to prove completeness of the syntactic translation b-cD is the existence
of some interpretation of HOL with certain properties. This should not be mistaken as a
commitment of nominal techniques to using this model of HOL always (unless we want
to).

7.1. Interpretation of types
Recall the definition of a valuation ς (Definition 6.3) to an interpretation I for the

PNL signature S. Recall the definition of ς[X:=x] (Definition 6.8), and the interpreta-
tions of terms JrKIς (Definition 6.4) and propositions JφKIς (Definition 6.9).

We give similar definitions for HOL and renaming sets, culminating with Theo-
rem 7.15 (soundness).

Definition 7.1. We provide an interpretationH of TS by:

JbαcKH = ren(JαKI)
JoKH = B

J(β1, . . . , βn)KH = Jβ1KH × . . .× JβnKH (βi not of the form bαc for at least one i)
Jβ′ → βKH = Jβ′KH ⇒ JβKH (β′ or β not of the form bαc)

Recall X⇒ ⇒ Y⇒ from Definition 5.23 and X⇒ × Y⇒ from Definition 5.36.
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Remark 7.2. Not all function types are interpreted equally by Definition 7.1.
If a type is the image of a PNL sort then we handle it using the first clause by wrap-

ping it up in ren(-). Otherwise the interpretation is as standard: pairs to product; func-
tion types to the (supported) function set. This case-split makes Lemma 8.9 work, which
is central to Corollary 8.10 and to Completeness (Theorem 8.11).

Why Lemma 8.9 could not work if we did not do this, is indicated in Lemma 7.3.
Briefly, Aν ⇒ - contains ‘exotic elements’ making it bigger than [Aν ]-, which readers
familiar with higher-order abstract syntax would expect [DH94, exotic terms].

Perhaps less familiar from Lemma 8.9 is that the free construction ren(-) does not
commute with atoms-abstraction or even with cartesian product (which tells us that the
associated functor does not have a left adjoint). So even e.g. Aν × Aν in PmsRen has an
‘exotic element’.

The natural maps below in Lemma 7.3 are functors (some are defined in Defini-
tion 5.34). Technically, Lemma 7.3 implies that various natural transformations between
these functors do not have inverses. More loosely, this is a way of putting some formal
measure to the intuition that the translation from (restricted) PNL to HOL cannot be
surjective:

Lemma 7.3. 1. The natural map from ren(Aν) to Aν mapping ρ•a to ρ(a), is a bijection (cf.
Lemma 5.42).

2. The natural map from ren(X� × Y�) to ren(X�)× ren(Y�) mapping ρ•(x, y) to (ρ•x, ρ•y)
is neither surjective nor injective.

3. The natural map from ren([Aν ]X�) to [Aν ]ren(X�) mapping ρ•[a]x where a 6∈ nontriv(ρ)
to [a]ρ•x, is not surjective.

4. The natural map from [Aν ]Y⇒ to Aν ⇒ Y⇒ mapping [a]x to λa.x (see Definitions 5.26
and 5.34), is not surjective.

Proof. 1. By rule 2 of Definition 5.39.
2. Take X� = Y� = Aν . The natural map from ren(X� ×Y�) to ren(X�)× ren(Y�) takes

id •(a, b) to (id •a, id •b). By equivariance it must map [a:=b]•(a, b) to (id •b, id •b). But
then it is not injective, since [a:=b]•(a, b) 6= id •(b, b) in ren(X� × Y�).
Now take X� = Y� = Aν ×Aν . It is not hard to see that ([a:=b]•(a, b), [b:=a]•(a, b)) is
not in the image of the natural map, so the map is also not surjective.

3. Take X� = Aν × Aν and consider [a][a:=b]•(a, b) ∈ [Aν ]ren(X�).
4. Take Y⇒ = Aν for Aν considered a renaming set as in Definition 5.28. Consider

(b a) ∈ Aν ⇒ Aν , mapping a to b, b to a, and all other c to c.

7.2. Interpretation of terms
Definition 7.4. A (HOL) valuation % toH is a map on variables X : β such that

• %(X) ∈ JβKH for every variable X .
• {a ∈ A | %(a) 6= id •a} is finite.18

% will range over valuations.

18In other words, % restricted to those HOL variables in µν that are PNL atoms (condition 5 of Definition 4.2)
is a renaming ρ (Definition 5.1).
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Definition 7.5. Suppose % is a valuation. Suppose X is a variable and x ∈ Jtype(X)KH.
Define a function %[X:=x] by:

(%[X:=x])(Y ) = %(Y ) and (%[X:=x])(X) = x

It is easy to verify that %[X:=x] is also a valuation toH.

Definition 7.6. ExtendH to terms as follows:

• JaKH(%) = %(a).
• JXKH(%) = %(X).
• JgfKH = ren(f I) and JgPKH = ren(PI) (Definition 5.39).
• J⊥KH(%) = 0.
• J⇒KH(%) = λx ∈ B, y ∈ B.max{1−x, y}.
• J∀β)KH(%) = λx ∈ Jβ ⇒ BKH.min{xy | y ∈ JβKH}.
• Jλa.tKH(%) = ρ•[a]x where JtKH(%) = ρ•x provided that t : bαc for some PNL

sort α and a ∈ Aν for some name sort ν and (α-converting if necessary) a 6∈⋃
X∈fv(t)\{a} supp(%(X)) and %(a) = id •a.

• JλX.tKH(%) = λx.JtKH(%[X:=x]) provided that λX.t : β′ → β where β′ → β is not
equal to b[Aν ]αc for any ν or α.

• JtuKH(%) = ([a:=b] ◦ ρ)•x provided that t : b[ν]αc for some PNL name sort ν and
sort α, where JuKH(%) = id •b (by construction some such b ∈ Aν always exists) and
JtKH(%) = ρ•[a]x, and (renaming if necessary) a 6∈ nontriv(ρ) ∪ {b}.

• JtuKH(%) = JtKH(%)JuKH(%) provided that t : β for β not equal to bαc for any PNL sort
α (it is a fact that this case and the previous case exhaust all the possibilities for
tu).

• J(t1, . . . , tn)KH(%) = (
⋃
ρi)•(x1, . . . , xn) provided that ti : bαic for 1 ≤ i ≤ n, where

JtiKH = ρi •xi, and we choose represenatives such that dom(ρi) ∩ dom(ρj) = ∅ for
all 1 ≤ i 6= j ≤ n.

• J(t1, . . . , tn)KH(%) = (Jt1KH(%), . . . , JtnKH(%)) provided that there exists some i and β
such that ti : β and β is not equal to bαc for any PNL sort α.

Remark 7.7. Definition 7.6 propagates to terms the case-split noted in Remark 7.2. We
treat terms differently depending on whether they populate the translation of a PNL
sort, or not. We must do this because of how we interpreted types in Definition 7.1.

Just to locate where we are, here is an schematic of the overall structure of the proof
of completeness:

PNL syntax
b-cD //

J-KIς

��

HOL syntax

J-KH(D(ς))

��

not possible

yys s
s

s
s

s
s

s
s

s
s

s

PmsPrm
ren(-)

// PmsRen

We translated PNL to HOL using b-cD in Definition 4.3. Ideally, to prove completeness
we would now give HOL a denotation directly in PmsRen.
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Unfortunately this is not possible (the dashed arrow) because [a]r translates to λa.brcD
and has nominal denotation as an atoms-abstraction [a]JrKIς . Atoms-abstraction (Defini-
tion 5.29) is the graph of a partial function, whereas λa.brcD ‘wants’ to take denotation
as a total function.

So instead we use a commuting square as illustrated; in PmsRen atoms-abstraction
can be viewed as a total function, as noted in Remark 5.32. Definition 7.6 uses this, and
fills in the right-hand arrow. We also need to convert the PNL valuation ς to a HOL
valuation D(ς); this comes later in Definition 8.7.

Note that by forming this diagram we give a new semantics to PNL in PmsRen, and
thus in particular give a semantics to nominal atoms-abstraction in which it becomes
interpreted as a total function.

The top arrow is Definition 4.3; the left-hand arrow is Definition 6.4; and the bottom
arrow is Definition 5.39. Lemma 8.8 proves commutativity of the square.

Lemma 7.8. Suppose a ∈ Aν and b ∈ Aν . Suppose a 6∈ supp(%(X)) for every X ∈ fv(t)\{a}
(including b). Suppose %(a) = id •a.

Then JtKH(%[a:=id •b]) = [a:=b]•(JtKH(%)).

Proof. By a routine induction on t. We mention two cases:

• The case t is a. Using the fact that id •b = [a:=b]•a in Aν with the action described
in Definition 5.28.

• The case t is X for some HOL variable that is not an atom. By assumption a 6∈
supp(%(X)) and so by Definition 5.4, %(X) = [a:=b]•%(X). The result follows.

Remark 7.9. Lemma 7.8 may fail if a ∈ supp(%(X)). For instance, if %(X) = a where
a ∈ Aν and type(X) = µν and X is not itself an atom, then JXKH(%[a:=id •b]) = id •a yet
[a:=b]•(JXKH(%)) = [a:=b]•(id •a) = id •b.

We need to check that the denotation of terms populates the denotation of their
types, and that β-equivalent terms receive equal denotations.

Lemma 7.10. If t : β then JtKH(%) ∈ JβKH.

Theorem 7.11. J(λX.t)uKH(%) = JtKH(%[X:=JuKH(%)]).

Proof. There are two cases, depending on whether λX.t : b[Aν ]αc for some PNL sort, or
not.

• The case t : bαc. By Definition 7.6 JuKH(%) = id •b and JλX.tKH(%) = ρ•[a]x, for some
b, a, and x. α-converting if necessary assume X is equal to a which we choose
fresh (so a 6∈ nontriv(ρ) ∪ {b} and a 6∈ supp(%(Y )) for every Y ∈ fv(t)\{a} and
%(a) = id •a). Then also by definition J(λa.t)uKH(%) = ([a:=b] ◦ ρ)•x.
Thus it suffices to check that ([a:=b] ◦ ρ)•x = JtKH(%[a:=b]). This follows using
Lemma 7.8.

• The case t : β where β is not equal to bαc for any PNL sort α. This is as standard.

7.3. Soundness
Lemma 7.12. If %(X) = %′(X) for all X ∈ fv(t) then JtKH(%) = JtKH(%′).

Proof. By a routine induction on terms.
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Lemma 7.13. JtKH(%[X:=JuKH(%)]) = Jt[X:=u]KH(%).

Proof. By a routine induction on t. We mention two cases (bearing in mind that in HOL,
a variable X : β may be an atom in Aν if β = µν):

• The case t equals X equals a ∈ Aν for some atom a.
By Definition 7.6, JaKH(%[a:=JuKH(%)]) = JuKH(%).

• The case t equals λY.t′.
We assume Y 6∈ fv(u), so (λY.t′)[X:=u] = λY.(t′[X:=u]), and use the inductive
hypothesis.

Definition 7.14 (Validity). Call the proposition ξ valid inH when JξKH(%) = 1 for all %.
Call the sequent ξ1, ..., ξn `λ χ1, ..., χp valid inH when (ξ1 ∧ ... ∧ ξn)⇒ (χ1 ∨ ... ∨ χp)

is valid.
If this is true for allH then write ξ1, . . . , ξn �λ χ1, . . . , χp.

Theorem 7.15 (Soundness). If Ξ `λ χ is derivable then Ξ �λ χ.

Proof. Fix some interpretation H. We work by induction on derivations (Figure 2). We
sketch the two non-trivial cases:

• The case of (h∀L). We check that u : type(X) implies J∀X.ξKH(%) ≤ Jξ[X:=u]KH(%).
We reason as follows:

J∀X.ξKH(%) = min{JλX.ξKH(%)y | y ∈ Jtype(X)KH} Definition 7.6
= min{JξKH(%[X:=y]) | y ∈ Jtype(X)KH} Definition 7.6
≤ JξKH(%[X:=JuKH(%)]) Fact
= Jξ[X:=u]KH(%) Lemma 7.13

In the second use of Definition 7.6 above, note that [Aν ]o is never of the form
b[Aν ]αc for any α.

• The case of (h∀R). We use Lemma 7.12 and routine calculations on truth-values.

8. Completeness of the translation of PNL to HOL

We are now ready to prove completeness (Theorem 8.11) of the translation from
Definition 4.3. The proof is subtle; notably Lemma 8.4 and the case of ∀X.φ in Lemma 8.9
are non-trivial. Some mathematical action also takes place in Lemma 8.8 and the case of
π·X in Lemma 8.9.

8.1. Renamings and HOL propositions
We need a few technical observations about how renamings interact with the deno-

tations of HOL propositions:

Lemma 8.1. Suppose G : X⇒ −→ B. Then for every ρ, G(x) = 1 implies G(ρ•x) = 1.

Proof. From equivariance and the fact that ρ•1 = 1 in B.

Corollary 8.2. Suppose F : X� −→ B. Then ren(F )(ρ•x) = F (x).
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Notation 8.3. Write ρ•% for the valuation mapping X to ρ•%(X).

Lemma 8.4. Suppose ξ is a HOL proposition. Then

• JξKH(ρ•%) = JξKH(%) for every ρ and %, and
• as a corollary, if X : β and x ∈ JβKH then JξKH(%[X:=x]) = JξKH(%[X:=ρ•x]).

Proof. We work by induction on ξ. For each ξ the corollary follows from the first part
using a freshening pair of renamings (see Definition 5.19). For the first part, the case
of gP is by Corollary 8.2. The case of ∀ follows using the second part and some routine
calculations. The cases of ⊥ and⇒ are immediate.

Remark 8.5. Lemma 8.4 expresses that JξKH does not examine atoms for inequality across
its arguments (if it did then Lemma 8.4 could not hold, because ρ can identify atoms—
make them become equal—in the denotations of variables in ξ). The corollary is even
more powerful: we can even apply renamings to the denotations of individual free
variables, and still not affect validity.

We use this in the case of ∀X.φ in Lemma 8.9 to ‘jettison’ unwanted ρ in the denota-
tion of the quantified variable.

8.2. The completeness proof
Notation 8.6. Suppose D = [d1, . . . , dn] is a finite list of distinct atoms in Aν1 , . . . , Aνn
respectively. Suppose r : α is a PNL term. Then:

• Write [D]r for the PNL term [d1] . . . [dn]r.
• Write [AD]α for the PNL sort [Aν1 ] . . . [Aνn ]α.

Definition 8.7. Given a finite list of distinct atoms D, map a PNL valuation ς to a HOL
valuation D(ς) defined by

D(ς) maps X : α to id •[D ∩ pms(X)]ς(X) ∈ Jb[AD∩pms(X)]αcKH and
a : ν to a ∈ Aν

Compare Lemma 8.8 with Lemma 4.12:

Lemma 8.8. Suppose x ∈ JαKI and nontriv(π) ∩ supp(x) ⊆ D′. Then

(id •[D′]x)π·D′ = id •(π·x).

Proof. From Definition 7.6 and rule 2 of Definition 5.39.

Lemma 8.9 proves that the schematic diagram of Remark 7.7 does indeed commute:

Lemma 8.9. Suppose r : α and φ is a proposition. Then:

• If D ` r then JbrcDKH(D(ς)) = id •JrKI(ς).
• If D ` φ then JbφcDKH(D(ς)) = JφKI(ς).

Proof. By inductions on r and φ.

• The case π·X . We reason as follows:
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Jbπ·XcDKH(D(ς)) = JXDπ·(D ∩ pms(X))KH(D(ς)) Definition 4.3
= D(ς)(XD)π·(D ∩ pms(X)) Definition 7.6
= (id •[D ∩ pms(X)]ς(X))π·(D ∩ pms(X))

Definition 8.7
= id •π·ς(X) Lemma 8.8,

supp(ς(X))⊆pms(X)
= id •Jπ·XKI(ς) Definition 6.4

Note of the penultimate step that by assumption D ` r, so by Definition 4.7
nontriv(π) ∩ pms(X) ⊆ D ∩ pms(X).

• The case [a]r. By Definition 4.3
Jb[a]rcDKH(D(ς)) = Jλa.brcDKH(D(ς)).

By inductive hypothesis JbrcDKH(D(ς)) = id •JrKI(ς) and so by Definition 7.6 (eliding
routine freshness reasoning for a)

Jλa.brcDKH(D(ς)) = id •[a]JrKI(ς).
Finally by Definition 6.4

id •[a]JrKI(ς) = id •J[a]rKI(ς)
and by transitivity of equality we are done.

• The case P(r). We reason as follows:
JbP(r)cDKH(D(ς)) = JgP(brcD)KH(D(ς)) Definition 4.3

= gH
P
(JbrcDKH(D(ς))) Definition 6.9

= gH
P
(id •JrKI(ς)) part 1

= ren(PI)(id •JrKI(ς)) Definition 7.6
= PI(JrKI(ς)) Corollary 8.2
= JP(r)KI(ς) Definition 6.9

• The case ∀X.φ. Write α = sort(X). From Definition 7.6

Jb∀X.φcDKH(D(ς)) = min{JbφcDKH(D(ς)[X:=x]) | x ∈ Jb[AD∩pms(X)]αcKH}

By construction in Definition 7.1 every x ∈ Jb[AD∩pms(X)]αcKH has the form ρ•x′ for
x′ ∈ [D ∩ pms(X)]JαKI . By Lemma 8.4 we have

min{JbφcDKH(D(ς)[X:=x]) | x ∈ Jb[AD∩pms(X)]αcKH}
= min{JbφcDKH(D(ς)[X:=id •x′]) | x′ ∈ J[AD∩pms(X)]αKI}

Using Lemma 8.4 again we assume without loss of generality that supp([D ∩ pms(X)]x′) ⊆
pms(X) \D ∩ pms(X), and so:

min{JbφcDKH(D(ς)[X:=id •[D ∩ pms(X)]x′]) | x′ ∈ J[AD∩pms(X)]αKI}
= min{JbφcDKH(D(ς)[X:=id •x′′]) | x′′ ∈ JαKI, supp(x′′)⊆pms(X)}

Now we unfold definitions and use the inductive hypothesis which tells us that
D(ς)[X:=id •[D ∩ pms(X)]x′′] = D(ς[X:=x′′]), and we obtain:

min{JbφcDKH(D(ς)[X:=id •[D ∩ pms(X)]x′′]) | x′′ ∈ JαKI, supp(x′′)⊆pms(X)}
= min{JbφcDKH(D(ς[X:=x′′])) | x′′ ∈ JαKI, supp(x′′)⊆pms(X)}
= min{JφKI(ς[X:=x′′]) | x′′ ∈ JαKI, supp(x′′)⊆pms(X)}
= J∀X.φKI(ς)
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Corollary 8.10. Suppose Φ = {φ1, . . . , φn} and Ψ = {ψ1, . . . , ψp} and D ` Φ, and D ` Ψ
(Definition 4.7). Suppose I is a PNL interpretation and suppose φ1, . . . , φn `π ψ1, . . . , ψp is not
valid in I.

ThenH from Definition 7.1 is a HOL interpretation and bφ1cD, . . . , bφncD `λ bψ1cD, . . . , bψpcD
is not valid inH.

Proof. Suppose ς is such that Jφ1 ∧ · · · ∧ φnKI(ς) = 1 and Jψ1 ∨ · · · ∨ ψpKI(ς) = 0. We use
Lemma 8.9 for D(ς) (Definition 8.7).

Theorem 8.11 (Completeness). Suppose D ` Φ and D ` Ψ. If Φ 6`π Ψ then bΦcD 6`λ bΨcD.

Proof. We use the contrapositive of completeness of restricted PNL (Theorem A.9), then
Corollary 8.10, then the contrapositive of HOL soundness (Theorem 7.15).

9. Conclusions

We have translated a logic with its own proof-theory, syntax, and sound and com-
plete semantics. Any formal theory specified in the PNL fragment of this paper can be
systematically, soundly, and completely translated to HOL.

For the reader interested in nominal techniques, the main contribution of this paper
is that in proving completeness of the translation, we have given another semantics
of permissive nominal logic, besides the ‘obvious’ one in nominal sets. In this new
semantics, a term of the form [a]t is interpreted as a function, like λa.t would be in
higher-order logic. This shows at the semantic level an implicit similarity between PNL
and HOL (we discuss presheaves in the next Subsection).

For the reader interested in higher-order logic, this paper is of interest because its
image is readily identified with the higher-order patterns developed by Miller [Mil91] (so
that, intuitively, restricted PNL could be thought of as a compact first-order logic and
nominal semantics for higher-order patterns).

In this semantics the sort [A]α is not interpreted as the set of all functions from atoms
to the interpretation of α, but as a small subset of this function space. This is an old idea:
since Henkin, models of HOL have been constructed to cut down on the full function-
space (e.g. to create a complete semantics [And86, Section 55]). Moreover in weak
HOAS to avoid so-called exotic terms, function existence axioms must be weakened in
HOL: for instance, the description axiom that entails the existence of a function for all
functional relations has to be dropped (an alternative is to introduce an explicit modal-
ity [DPS01]). We now have a new view of these ‘smaller’ function-spaces as being the
image of nominal atoms-abstractions via the semantic operations considered in this pa-
per.

9.1. The big picture
It is quite interesting to understand this paper via a contrast between what nominal

foundations and ‘ordinary’ foundations provide.
The denotation of an open term in PNL is an open element of a nominal set (i.e. an

element with atoms in its support): so for instance an atom maps just to itself in the
denotation, rather than being assigned some other element by a valuation. PNL has
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binding term-formers because its open denotation in nominal sets provides construc-
tions like atoms, permutations, and atoms-abstraction (Definition 5.29); see Section 6.

In contrast, in HOL there is no concept of open element—there are open terms, but
their denotation is closed by a valuation. If we want the effect of a free variable then
we Skolemise/raise. Indeed, any mathematics using technology based on the HOL/ZF
(Zermelo-Fraenkel sets) foundations of mathematics must handle names either as some-
thing like functional arguments or something like numbers; simply because numbers
and functions are what HOL/ZF foundations provide.

The translation from PNL to HOL in Section 4 works by raising.19 However, we can
only raise n variables, in order. So the translation has to be on a per-derivation basis, in-
cluding the (finitely many) atoms of interest in that (finite) derivation. Furthermore, we
lose the equivariance (name symmetry) of full PNL. So we can only naturally translate
individual derivations in restricted PNL.

This matters because in losing symmetry we lose what makes nominal techniques
so distinctive. So although we show how to translate a complete ‘nominal’ proof to a
complete ‘HOL’ proof, we also see how how the way in which nominal and HOL proofs
are manipulated and combined, are different.

The translation is not entirely trivial to define and prove sound, but the technically
hardest part in this paper is clearly the proof of its completeness. For this we build
a hybrid denotation for HOL in nominal renaming sets which is sound but in which
certain function spaces are restricted to be ‘not too large’. That motivates the bulk of the
technical mathematics of this paper.

9.2. Permissive nominal logic in perspective
Permissive-nominal logic is the endpoint—so far—of an evolution as follows:

• Fraenkel-Mostowski set theory and a first-order axiomatisation by Pitts introduced
and described the underlying nominal sets models in first-order logic [GP01, Pit03].

• Nominal terms introduced a dedicated syntax with two-levels of variable and
freshness side-conditions [UPG04].

• Nominal algebra and αProlog inserted nominal terms syntax into formal reason-
ing systems [GM09a, CU04].

• Permissive-nominal terms introduced permission sets [DGM10].
• PNL introduced a proof-theory and universal quantifier for nominal terms un-

knowns [DG10, DG12].

Meanwhile in the semantics

• Nominal renaming sets extended nominal sets from a permutation action to a re-
naming action [GH08].

• A permissive version of nominal algebra (an equality fragment of PNL) was given
semantics in PmsPrm and theories were translated from HOL [GM09b], but this
was done purely syntactically without using nominal renaming sets and without
considering universal quantification.

19If we translated PNL to first-order logic then we would probably map atoms to numbers instead. This is
future work.

44



The categories PmsPrm and PmsRen from Definition 5.13 are identical to the cate-
gories of nominal sets and nominal renaming sets from [GP01] and [GH08], except that
here we insist on supporting permission sets instead of supporting finite sets.

The reader familiar with presheaf techniques will see in PmsRen the category SetsF

(presheaves over the category of finite sets and functions between them). PmsRen cor-
responds to presheaves (not quite over F, as discussed in the previous paragraph) that
preserve pullbacks of pairs of monos [GH08] and because of this it admits an arguably
preferable sets-based presentation. (In the same sense, PmsPrm corresponds to SetsI.)

If for the sake of argument we set aside the issues of finiteness and preserving pull-
backs of monos, then this paper can be summed up as follows: PNL, and thus nominal
terms, can be given a semantics in something that looks like SetsF. This semantics is
functional in that atoms-abstractions in SetsF can be naturally identified with total func-
tions, though not all of them, which is good. HOL can also be given a semantics in
something that looks like SetsF, and in such a way that it overlaps with the semantics
of PNL, as described in Definition 7.6 and 8.9. We describe and exploit that overlap, in
this paper.

PmsRen from Definition 5.13 is related to the category of (finitely-supported) nomi-
nal renaming sets from [GH08]. Here, the difference that x ∈ |X⇒| need not have finite
support is significant because it is impossible with a finite renaming to rename supp(x)
to be entirely disjoint for some other permission set S. The definitions and proofs in Sub-
section 5.2 are delicately revised with respect to those in [GH08, Section 3]. Thus this
paper contributes to the use of non-finitely-supported objects in nominal techniques,
building on [GH08] and also on Cheney’s and the second author’s considerations of
infinitely supported permutation sets [Che06, Gab07b].

A similar construction as in Subsection 5.4 has been considered, also in the con-
text of names, though tersely, in Fiore and Turi’s paper on the semantics of name and
value passing [FT01]. The reader can compare for example the final two paragraphs of
Subsection 1.3 in [FT01] with Definition 5.39 from Subsection 5.4. Fiore and Turi want
substitutions to model bisimulation in the presence of name-generation and message-
passing; we want renamings to model function application on names. The underlying
technical demands overlap and are similar.

Fiore and Turi’s framework includes the possibility of arbitrary substitutions for
atoms (not just what we call renamings: substitution of atoms for atoms). This was ap-
parent in [FT01] and is developed greatly in subsequent work by Fiore and Hur [FH10].
We hypothesise that from the point of view of PNL, their logic and semantics corre-
spond to PNL enriched with substitution actions like those in [DG10, GM06a], but this
remains to be checked.20

Levy and Villaret translated nominal unification problems to higher-order unifica-
tion problems [LV08]. A similar but more detailed analysis, translating solutions and
introducing the same notion of capturable atoms as used in the capture typings in this
paper, appears in the paper which introduced permissive nominal terms [DGM10]. See

20Conversely, Fiore and Hur would view PNL as a restriction of their logic without substitution. The two
points of view are consistent with each other, of course, and it is interesting that different authors are converg-
ing on similar systems. It might be worth mentioning that deduction modulo by the first author with Hardin
and Kirchner was designed to mediate between these kinds of design decisions while retaining proof-theory
[DHK98].
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also a journal version of Levy and Villaret’s paper [LV11], which expanded on their pre-
vious work by eliminating freshness contexts (in a similar spirit to PNL, we feel, though
the details are different). This paper can be viewed as a very considerable extension, re-
finement, and generalisation of these works: this paper is their grandchild, so to speak,
via two other papers [DG10, GM09b].

The extension of nominal sets to nominal renaming sets is free. This is touched on in
Lemma 7.3 when we note that [a:=b]•(a, b) and id •(b, b) are distinct elements in ren(Aν×
Aν) in PmsRen; this happens because the free construction ‘suspends the non-injectivity’
of [a:=b] on (a, b). This is as things should be, in order to obtain completeness. The
second author has considered a more radical non-free construction [Gab09], which has
the effect of extending atoms-abstraction to a total function and in which [a:=b]·x really
does identify a with b in x in a suitable sense.

As we have emphasised, we translate a fragment of PNL to HOL. In [DG10] we
considered full PNL with equivariance, which corresponds to strengthening the axiom

rule (Axπ) in Figure 2 from
Φ, φ `π φ, Ψ

to
Φ, φ ` π·φ, Ψ

as illustrated in Figure 1. This

internalises the equivariance assumed in Definition 6.2 and allows us to derive e.g.
P(a) ` P(b).

In the journal version [DG12] of [DG10] we strengthen PNL further by allowing a
shift-permutation. This is a non-finitely-supported bijection on A similar to a de Bruijn
shift function ↑ [ACCL91, Subsection 2.2]. Its effect in this paper is to make all permission
sets isomorphic up to bijection (e.g. A< ∪ {a} = π·A< for some π, where a 6∈ A<) and this
deals with a subtle restriction in the power of universal quantification discussed for
instance in [DG10, Example 2.29]. Briefly, shift lets us derive ∀X.P(X) ` P(Z) where
pms(X) = A< and pms(Z) = A< ∪ {a}where a 6∈ A<, which was not possible in the PNL
from [DG10].

Neither equivariance nor shift are translated to HOL in this paper; more on this in
the next subsection.

9.3. Future work
We have translated Permissive-Nominal Logic to Higher-Order Logic. The transla-

tion is not surjective: all variables are at most second-order; all constants are at most
third-order; higher types are not used; and in fact all terms in the image of the trans-
lation are λ-patterns [Mil91]. In addition, the translation is not total: we have dropped
equivariance.

This is with good reason. We have not been able to simulate equivariance in HOL—
not without ‘cheating’ by simply adding it (and causing a blowup in the size of propo-
sitions). We have not proved this impossible, but we hypothesise that it cannot be done.
We further hypothesise (based on preliminary calculations not included in this paper)
that HOL augmented with the ∇-quantifier from [MT03] would allow us to express
equivariance.

It is not currently clear how to extend HOL with a shift-like permutation as discussed
in [DG12, Gab12b]. This seems reasonable since shift would correspond to an infinite
renaming.

Some natural theories in PNL might correspond to other fragments of HOL. Notably,
it is not known what relation exists between HOL and PNL with the theory of atoms-
substitution from [GM08a, DG12].
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A. Soundness and completeness of restricted PNL with respect to non-equivariant
models

A.1. Validity and soundness
Definition A.1 (Validity). Suppose I is a non-equivariant interpretation of a signature
S (Definition 6.2). Call the proposition φ valid in I when JφKIς = 1 for all ς .

Call the sequent φ1, ..., φn ` ψ1, ..., ψp valid in I when (φ1 ∧ ...∧φn)⇒ (ψ1 ∨ ...∨ψp)
is valid.

If this is true for all non-equivariant I then write φ1, . . . , φn �π ψ1, . . . , ψp. If this is
true for all equivariant I then write φ1, . . . , φn � ψ1, . . . , ψp.

Theorem A.2 (Soundness). 1. If Φ `π Ψ is derivable then Φ �π Ψ.
2. If Φ ` Ψ is derivable then Φ � Ψ.

Proof. Fix some interpretation I. We work by induction on derivations. The case of
(∀L) uses Lemma 6.10. The case of (∀R) uses Lemma 6.11. Other rules are routine by
unpacking definitions.

If the interpretation I is fully equivariant then it can further be proved that JφKIς =
Jπ·φKIς always, so that (Ax) is valid. If I is not fully equivariant, then just (Axπ) is
valid.

Theorem A.3. (Cut) is admissible in both full and restricted PNL.

Proof. The proof for full PNL is in [DG12, Section 7] or [Gab12b, Subsection 11.2]; the
derivation rules are almost exactly those of first-order logic, and so is the proof of cut-
elimination. The argument for restricted PNL is identical; we note that none of the
cut-eliminating transformations add π to axiom rules unless they are already there, so
the same reductions on derivations work also for the restricted system.

A.2. Completeness
In [DG12, Gab12b] we prove completeness of full PNL with respect to equivariant

models, by means of a Herbrand construction (a model built out of syntax). We can
leverage this result to concisely prove completeness of restricted PNL with respect to
non-equivariant models, without having to repeat the model constructions.

For this subsection, fix the following data:
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• A signature S = (A,B,F ,P, ar ,X ).
• A formula φ such that 6`π φ.

Definition A.4. Define a new signature Sπ as follows:

• Aπ = A and Bπ = B ∪ {τπ} (so we have the same atom sorts and the same base
sorts, plus one extra base sort τπ).

• Fπ = F and Pπ = P (so we have the same term- and proposition-formers).
• If f ∈ F then arπ(f) = ar(f) (the term-formers are identical).
• If P ∈ P and ar(P) = α then arπ(P) = (τπ, α) (so proposition-formers take one

extra argument of sort τπ).
• X π = X ∪ {Zπi,S | i ∈ N, S a permission set} where sort(Zπi,S) = τπ (so we add

unknowns of sort τπ).

Now fix some particular unknown Zπ with sort(Zπ) = τπ and such that fa(φ) ⊆
pms(Zπ).

Definition A.5. Define a translation -π from PNL propositions in the signature S to PNL
propositions in the signature Sπ by mapping P(r) to P(Zπ, r) and extending this in the
natural way to all predicates.

Our proof depends on the following technical lemma about restricted PNL:

Lemma A.6. If Φ ` Ψ is derivable in full PNL then there exists a derivation B such that every
sequent Φ′ ` Ψ′ in B satisfies fa(Φ′) ∪ fa(Ψ′) ⊆ fa(Φ) ∪ fa(Ψ).

Proof. By cut-elimination of restricted PNL (Theorem A.3) if a derivation of Φ ` Ψ exists
then a cut-free derivation exists. We now examine the derivation rules in Figure 2 and
the definition of free atoms in Definition 2.15 and note that the rules (⇒L), (⇒R), (∀L),
and (∀R) do not increase the free atoms moving from below the line to above the line.21

Lemma A.7. π·r = π′·r if and only if π(a) = π′(a) for every a ∈ fa(r), and similarly for φ.
See [Gab12b, Lemma 3.2.9] or [DGM10, Lemma 4.15].

Proposition A.8. If Φπ ` Ψπ in PNL and fa(Φ) ∪ fa(Ψ) ⊆ pms(Zπ) then Φ `π Ψ.

Proof. Using cut-elimination of full PNL (Theorem A.3) assume a cut-free PNL deriva-
tion B of Φπ ` Ψπ . Because of Lemma A.6, the condition on free atoms holds of every
sequent in B. Because of the form of the derivation rules in Figure 1, B cannot instanti-
ate Zπ .

So we can go through the entire syntax of B and delete Zπ to obtain a structure that
is a candidate for being a derivation in restricted PNL of Φ `π Ψ.

The only non-trivial thing to check is that valid instances of (Ax) are transformed
to valid instances of (Axπ). Suppose we deduce Φπ, ψπ ` π′·ψπ,Ψπ using (Ax). By
assumption π′·ψπ = ψ′

π for some ψ′. It follows that π′·Zπ = id ·Zπ (recall from Sub-
section 2.3 that we quotient by α-equivalence) and so by Lemma A.7 that π′(a) = a for
all a ∈ pms(Zπ). By assumption fa(Φ) ∪ fa(Ψ) ∪ fa(ψ) ∪ fa(ψ′) ⊆ pms(Zπ) and so by
Lemma A.7 ψ = ψ′, and we are done.

21(∀R) and (∀L) can increase the free unknowns—but not the free atoms.
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Theorem A.9. If Φ �π Ψ then Φ `π Ψ.

Proof. We prove the contrapositive, that if Φ 6`π Ψ then Φ 6�π Ψ. Suppose Φ 6`π Ψ. Using the
constructions above we augment to a signature Sπ (Definition A.4) with some Zπ with
fa(Φ) ∪ fa(Ψ) ⊆ pms(Zπ). Thus by Proposition A.8 Φπ 6` Ψπ .

By completeness of full PNL with respect to equivariant models ([DG12, Theorem 3.45],
[Gab12b, Theorem 9.4.15]) we have that Φπ 6� Ψπ . So there exists an equivariant model I
and valuation ς to I such that JΦKIς = 1 and JΨKIς = 0. It is now routine to convert I into
a non-equivariant model of the original signature S by taking PH(x) = PI(ς(Zπ), x).
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