
Principal Types for Nominal Theories

Elliot Fairweather, Maribel Fernández and Murdoch J. Gabbay

Abstract. We define rank 1 polymorphic types for nominal rewrite rules
and equations. Typing environments type atoms, variables, and function
symbols, and since we follow a Curry-style approach there is no need to
fully annotate terms with types. Our system has principal types, and we
give rule and axiom formats to guarantee preservation of types under
both rewriting and equality reasoning. This is non-trivial because sub-
stitution does not avoid capture, so a substituted symbol can—if we are
not careful—appear in inconsistent typing contexts.
Keywords: binding, polymorphism, type inference, rewriting.

1 Introduction

Suppose we want to specify λ-calculus βη-equivalence. We might well write this:

(

object-variable x
↓

λx. (λy.s))t =β λy.((λx.s)t)

freshness side-condition
↓

provided y not free in t
λx.
↑

binding term-former λ

(rx) =η r↑
meta-variable r

provided x not free in r

Equalities like this are typical, and appear in specifications of the λ-calculus
(as above), substitution, logic with quantifiers, π-calculus, and more. They have
common features as annotated above. To formalise and reason with this kind of
systems, in this paper we follow the nominal approach:

– Nominal terms directly represent syntax with binding using term-formers,
two levels of variable, and freshness side-conditions [20]. The terms and side-
conditions above can be represented symbol-for-symbol in a formal syntax.

– Equality on nominal terms can be formalised in nominal rewriting [10] (for
oriented equality) and nominal algebra [14] (for unoriented equality).

– Nominal terms can be given Hindley-Milner style types [9]. Given a type en-
vironment, principal types for nominal terms can be automatically deduced.

This paper combines types and equality reasoning—so we type terms and equa-
tions between them. This is not trivial because equality gives terms a dynamic
behaviour, and type systems must ensure types are robust with respect to it.

For a large class of closed theories, corresponding to what can be defined in
higher-order rewriting and equality reasoning, nominal rewriting is sound and
complete for nominal algebra [11]. The technical contributions of this paper are
notions of typeable closed rewrite rule and equality axiom such that types are
preserved under rewriting and equality reasoning respectively. To ensure this,
closedness and principal types play a key role, as our examples will demonstrate.

http://www.dcs.kcl.ac.uk/staff/maribel
http://www.gabbay.org.uk

Related work. Nominal terms support a capturing substitution and the notation,
though formal, is close to standard informal practice. For example β-reduction
may be represented as app(lam[a]X,Y) → sub([a]X,Y) where sub([a]X,Y) is
a term which may be given the behaviour of ‘non-capturing substitution’ by
rewrite rules [12,10].

Now consider static semantics, i.e. types like N for numbers and τ → τ
for functions. Assigning types to terms partitions the language into ‘numbers’,
or ‘functions between numbers’, and so on. This paper will not make the case
for types but the interested reader can find compelling practical and theoretical
motivations elsewhere, e.g. Java [17], ML [7], and System F [16].

Two approaches have been used to give static semantics for nominal terms: In
e.g. [20,19,18] atoms have a special type of atoms A. But, when we write lam[a]X
or lam[a]a to represent λx.- (a term with a hole, or context) or λx.x, we might not
expect a to be forbidden from having any type other than A. We can use explicit
casting function symbols to inject A into other types; but the a in lam[a]X still
has type A, so we cannot infer more about a untilX is instantiated. This notion of
typing is useful for terms without variables or in systems without polymorphism.
So an alternative approach was proposed in [9] which allows atoms to inhabit
any type. It follows a Curry-style approach, and has rank 1 polymorphism (ML-
style polymorphism or Hindley-Milner types [7]); that is, types are assigned to
terms without requiring type annotations for atoms or variables. Thus, we can
write lam[a]X, or fix[f]X, or forall[a]X, or app(lam[a]X, lam[b]Y), and so on, and
expect the type system to make sense of this. The syntax-directed typing rules
for nominal terms given in [9] guarantee that every typeable term has a principal
type (one which subsumes all others in a suitable sense) in a given environment,
and types are compatible with α-equivalence on nominal terms. Type inference is
decidable and an algorithm to compute principal types has been implemented [8].

In [9], a notion of typed nominal rewriting rule is given, with a condition to
ensure type preservation under rewriting. In this paper we consider also nominal
equational axioms, and give sufficient conditions for type preservation under
rewriting and equational deduction that are intuitive and easy to implement.

Overview of the paper. In Section 2 we recall nominal rewriting and equational
reasoning, as well as the Curry-style type system for nominal terms. Section 3
gives examples to motivate the design of the type system for rules and equations.
Section 4 contains the main results of the paper: it defines closed rules and
the closed rewrite relation (which is sound and complete for nominal equational
reasoning when the axioms are closed), and presents a notion of typeable rule and
typeable axiom that guarantee that rewriting and equational reasoning preserve
types. Finally, in Section 5 we draw conclusions and discuss future work.

2 Background

In this section we recall the main notions underlying the nominal approach to
the specification of systems with binders. We focus on equational specifications.

2

Fix denumerable sets of atoms, variables, and term-formers. a, b, c will
range over distinct atoms, X,Y, Z, . . . over distinct variables, and f, g, . . . over
distinct term-formers. A permutation π is a bijection on atoms such that
nontriv(π) = {a | π(a)6=a} is finite. Nominal terms r, s, t are defined by:

t ::= a | π·X | f t | (t, . . . , t) | [a]t

π·X is a (moderated) variable; [a]t is an atom-abstraction. We write V (t)
for the variables in t and A(t) for the atoms in t (so A([a]a) = {a} and A(π·X) =
nontriv(π)). We write (a b) for the swapping permutation mapping a to b, b to
a, and all other c to themselves; id for the identity permutation (so id(a) = a);
π ◦ π′ for composition (so (π ◦ π′)(a) = π(π′(a)) and π-1 for inverse).

A substitution σ is a map from variables to terms. Write [X 7→r] for the
substitution mapping X to r and all other Y to id ·Y .

Permutation and substitutions act on terms:
π·a = π(a) π·(π′·X) = (π ◦ π′)·X π·(f r) = f π·r

π·(r1, . . . , rn) = (π·r1, . . . , π·rn) π·[a]r = [π(a)]π·r

aσ = a (π·X)σ = π·(σ(X)) (f r)σ = f(rσ)
(r1, . . . , rn)σ = (r1σ, . . . , rnσ) ([a]r)σ = [a](rσ)

Definition 1. α-equality and freshness are defined by the following rules,
where ds(π, π′) = {a | π(a) 6= π′(a)} is the difference set of π, π′:

a#b
a#s

a#fs

a#si (1≤i≤n)
a#(s1, . . . , sn)

a#[a]s
a#s

a#[b]s

π-1(a)#X

a#π·X
s≈αt

f s≈α f t

a≈αa
s≈αt

[a]s≈α[a]t
s≈α(a b)·t a#t

[a]s≈α[b]t
ds(π, π′)#X

π·X≈απ′·X
si≈αti (1≤i≤n)

(s1, . . . , sn)≈α(t1, . . . , tn)
The intuition of a#t is ‘a is not free in t’, the intuition of s≈αt is ‘s and t are
α-equivalent’. Both are conditional on freshness assumptions on the variables
X. So freshness contexts ∆, ∇, . . . , are finite sets of freshness constraints
a#X, and we write ∆ ` a#r when a#r follows from ∆; similarly for ∆ ` r≈αs.

For example, [a]a≈α[b]b and ds((a b), id)={a, b} so a#X, b#X `(a b)·X≈αX;
see [20,10] for more examples.

We now recall the Curry-style type system from [9], which can typecheck
nominal terms even if they contain variables (representing unknown subterms);
see [8] for an implementation in Haskell.

Fix denumerable sets of base data types (e.g. δ, N), type variables (e.g.
α), and type-formers (e.g. C , List). Types τ , type-schemes σ, and type-
declarations (arities) ρ are generated by:

τ ::= δ | α | τ1 × . . .× τn | C τ | [τ ′]τ σ ::= ∀α.τ ρ ::= (τ ′)τ

α denotes any finite set of type variables (if empty we omit ∀); call them bound
in σ and call free type variables mentioned in σ not in α. Write TV (τ) for the
set of type variables in τ , and ≡ for equality modulo α-equivalence.1

1 Types could be expressed in nominal syntax; our focus here is the term language.

3

We associate a type declaration to each term-former. E.g. we can have succ :
(N)N and 0 : ()N (we may write just 0 : N in this case).

Type substitutions S, T , U are finite partial functions from type variables
to types. Write [α 7→τ ′] for the partial function just mapping α to τ ′, and id for
the identity substitution. Substitutions act on types, type schemes and arities as
usual; application is written τS and composition SS′ (apply S then S′). Write
σ < τ when σ ≡ ∀α.τ ′ and τ ′S ≡ τ for S with domain in α. τ may contain
other type variables; only bound type variables in σ may be instantiated; so
∀α.(α×β) < (β×β) but (α×β) 6< (β×β). Write ρ < ρ′ when ρS ≡ ρ′ for some
S. All variables in arities are bound, but since they are all bound we omit ∀.
Definition 2. A typing context Γ is a partial function from atoms and vari-
ables to type schemes, with finite domain. We write Γ, a : σ for Γ updated with
a : σ, that is, (Γ \ {a : σ′}) ∪ {a : σ}. Similarly we write Γ,X : σ. We write ΓS
for the typing context obtained by applying S to the types in Γ . Similarly, π·Γ
denotes the context obtained by applying π to the atoms in Γ . TV (Γ) denotes
the set of type variables occurring free in Γ .

A typing judgement is a tuple Γ ;∆ ` s : τ where Γ is a typing context,
∆ a freshness context, s a term and τ a type (when ∆ is empty we omit the
separating ‘;’). Define derivable typing judgements by:

σ < τ

Γ, a : σ;∆ ` a : τ

σ < τ Γ ;∆ ` π·X : �
Γ,X : σ;∆ ` π·X : τ

Γ, a : τ ;∆ ` t : τ ′

Γ ;∆ ` [a]t : [τ]τ ′

Γ ;∆ ` ti : τi (1 ≤ i ≤ n)
Γ ;∆ ` (t1, . . . , tn) : τ1 × . . .× τn

Γ ;∆ ` t : τ ′ f : ρ < (τ ′)τ

Γ ;∆ ` f t : τ

Γ ;∆ ` π·X : � holds if, for any a such that π·a 6= a, ∆ ` a#X or a : σ, π·a : σ ∈
Γ for some σ. The condition f : ρ < (τ ′)τ is shorthand for f : ρ and ρ < (τ ′)τ . If
Γ ;∆ ` s:τ for some τ then call Γ ;∆ ` s typeable; otherwise call it untypeable.

π·X represents an unknown term in which π permutes atoms. The second
rule ensures compatibility between this and α-equivalence (see Theorem 4 below)
since substitution does not avoid capture: e.g. ([a]X)[X 7→s] = [a]s.

We refer the reader to [9] for examples and give just the typing of one term
here: ([a](a, b), [a][b](a, b), a, b) : [α1](α1 × β)× [α2][β2](α2 × β2)× α× β).
Lemma 3. If Γ ;∆ ` t : τ then Γ [α 7→τ ′];∆ ` t : τ [α 7→τ ′].

If Γ ;∆ ` t:τ and a,b:σ ∈ Γ for some σ, then Γ ;∆ ` (a b)·t:τ .
Theorem 4. ∆ ` s ≈α t and Γ ;∆ ` s : τ imply Γ ;∆ ` t : τ .
Definition 5. A typing problem is a triple Γ ;∆ ` s, and its solution is a pair
(S, τ) of a type-substitution S and a type τ such that ΓS;∆ ` s:τ . Write S|Γ for
the restriction of S to TV (Γ). Solutions are naturally ordered by instantiation
of substitutions; call a minimal element in a set of solutions principal.

Principal solutions for Γ ;∆ ` s are unique modulo renaming type-variables.
A function pt to compute principal types, generalising Hindley-Milner [7] to
nominal terms, is given in [9, Definition 4]: pt(Γ ;∆ ` s) is a principal solution
(S, τ) such that ΓS;∆ ` s : τ , and is undefined if s is untypeable in Γ ;∆.

4

Lemma 6. 1. Type weakening: If Γ ;∆ ` s : τ then Γ, Γ ′;∆ ` s : τ , provided
that Γ ′ and Γ are disjoint.

2. Type strengthening for atoms: If Γ, a : τ ′;∆ ` s : τ then Γ ;∆ ` s : τ
provided that ∆ ` a#s.

3. Type strengthening for variables: If Γ,X : τ ′;∆ ` s : τ then Γ ;∆ ` s : τ
provided X does not occur in s.

We now introduce nominal algebra [14] and nominal rewriting [10]. See [11]
for a detailed treatment of their connections.

An equality judgement is a tuple ∆ ` s = t of a freshness context and two
terms. Similarly a rewrite judgement is a tuple ∆ ` s→ t. An equational
theory T = (Σ,Ax) is a pair of a signature Σ and a possibly infinite set of
equality judgements Ax (axioms) in Σ. A rewrite theory R = (Σ,Rw) is a
pair of Σ and a possibly infinite set of rewrite judgements Rw (rewrite rules)
in Σ. Where Σ is clear, we identify T with Ax and R with Rw .

Definition 7. Write ∆ ` (φ1, . . . , φn) for ∆ ` φ1, . . . , ∆ ` φn. A position C
is a pair (s,X) of a term and a distinguished unknown X that occurs precisely
once in s, as id ·X. If C = (s,X) then we write C[t] for s[X 7→t].

Nominal rewriting: The one-step rewrite relation ∆ ` s R→ t is the least
relation such that for every (∇ ` l → r) ∈ R, freshness context ∆, position C,
term s′, permutation π, and substitution θ,

s ≡ C[s′] ∆ `
(
∇θ, s′ ≈α π·(lθ), C[π·(rθ)] ≈α t

)
(Rew∇`l→r)

∆ ` s R→ t
. (1)

The rewrite relation ∆ `
R
s → t is the reflexive transitive closure of the

one-step rewrite relation. So, in particular, ∆ ` s ≈α s′ implies ∆ `
R
s→ s′.

Nominal algebra: ∆ `
T
s = t is the least transitive reflexive symmetric

relation such that for every (∇ ` l = r) ∈ T, freshness context ∆, position C,
permutation π, substitution θ, and fresh Γ (so if a#X ∈ Γ then a 6∈ A(∆, s, t)),

∆,Γ `
(
∇θ, s ≈α C[π·(lθ)], C[π·(rθ)] ≈α t

)
(Axi∇`l=r)

∆ `
T
s = t

. (2)

3 Examples

Consider a type Λ and term-formers lam : ([Λ]Λ)Λ, app : (Λ × Λ)Λ and sub :
([Λ]Λ × Λ)Λ, sugared to λ[a]s, s t, and s[a7→t]. Then X,Y :Λ ` (λ[a]X)Y : Λ
by Definition 2. The function pt can automatically infer this type and a most
general type for a, namely Λ, since lam : ([Λ]Λ)Λ. Anticipating Section 4, here
are rewrite rules for β-reduction (note typing and freshness conditions in rules);
types of abstracted atoms can be inferred and are Λ:

X,Y :Λ ` (λ[a]X)Y → X[a7→Y]:Λ X, Y :Λ; a#X ` X[a7→Y]→ X:Λ

Y :Λ ` a[a7→Y]→ Y :Λ X, Y :Λ; b#Y ` (λ[b]X)[a7→Y]→ λ[b](X[a7→Y]):Λ

X, Y, Z:Λ ` (XY)[a7→Z]→ (X[a7→Z])Y [a7→Z]:Λ

5

And here is an equality axiom for η: X:Λ; a#X ` λ[a](Xa) = X:Λ.
Rewriting and axioms are used to compute and reason with terms—not only

ground terms, but also terms with variables. Types should be compatible with
the resulting dynamics on terms. Since a variable might occur several times in a
term, under different abstractions, the interaction between types and rewriting
or equational reasoning is subtle. Closedness [10] ensures the interaction between
abstractions and variables is safe. Later we leverage this to conditions on closed
rewrite rules and axioms to ensure also type preservation. E.g. the rules for β and
η (as a rewrite or an equality) preserve types. Thus, the type Λ of b : Λ ` λ[a](ba)
is preserved in the reduced term b : Λ ` b.

We get more interesting types for λ-terms with a type-former ⇒ of arity 2
and term-formers λ : ([α]β)(α⇒β), ◦ : ((α⇒β)×α)β, and σ : (([α]β)×α)β. As
before, write σ([a]s, t) as s[a7→t]. Then the following rules preserve types:

X:α, Y :β; a#X ` X[a7→Y]→ X : α Y :γ ` a[a7→Y]→ Y : γ

X:α⇒ β, Y :α, Z:γ ` (XY)[a7→Z]→ (X[a7→Z])(Y [a7→Z]) : β
X:β, Y :γ; b#Y ` (λ[b]X)[a7→Y]→ λ[b](X[a7→Y]) : α⇒β

X:β, Y :α ` (λ[a]X)Y → σ([a]X,Y) : β

Assume types B and N. Then B:B, N :N ` ((λ[a]a)B, (λ[a]a)N) : B × N and
B:B, N :N ` ((λ[a]a)B, (λ[a]a)N)→ (B,N) : B× N.

λ[a]a takes different types just like λx.x in the Hindley-Milner type system;
pt(` λ[a]a) = (id , α⇒ α). Our system will not type B:B, N :N ` BN or λ[a]aa—
the previous system with a unique type Λ types the second term.

Below we show that η is compatible with this notion of type: X:α⇒β; a#X `
λ[a](Xa) = X : α ⇒ β. A term obtained from a typeable term by typed equa-
tional reasoning is also typeable.

4 Types for (closed) nominal rewriting and algebra

We recall closed rewrite rules [10] and closed equational axioms [11], then give
conditions to ensure nominal rewriting and equational reasoning preserve types.

4.1 Closed rules and closed rewriting

Intuitively, a closed term has no unabstracted atoms and all occurrences of X
(representing an unknown subterm) appear under the same abstracted atoms.
So f([a]X,X) is not closed since a is abstracted in the first X but not the
second, and a#X ` f([a]X,X) is closed, since the freshness constraint ensures
that a cannot occur in X. Closedness was introduced in [12]. Definition 8 tests
to check for closedness using freshened variants [10] (inductive definitions are
also possible [6,13]).

A freshened variant t Nof t is t in which atoms and unknowns have been
replaced by ‘fresh’ atoms and unknowns (not in A(t) and V (t), and perhaps also
fresh for some atoms and unknowns from other syntax, which we will always

6

specify). We omit an inductive definition. Similarly, if ∇ is a freshness context
then ∇ Nwill denote a freshened variant of ∇ (so if a#X ∈ ∇ then a N#X N∈ ∇ N,
where a Nand X Nare fresh for the atoms and unknowns of ∇). We may extend
this to other syntax, like equality and rewrite judgements. If ∇ N` l N→ r N is a
freshened variant of ∇ ` l→ r then V (∇ N` l N→ r N) ∩ V (∇ ` l→ r) = ∅.

For example: [a N][b N]X Nis a freshened variant of [a][b]X, a N#X Nis a freshened
variant of a#X, and ∅ ` a N→ b N is a freshened variant of ∅ ` a→ b.

Definition 8 (Closedness). Call∇ ` l closed when there exists a substitution
θ with dom(θ) ⊆ V (∇ N` l N) such that ∇, A(∇ N, l N)#V (∇, l) ` (∇ Nθ, l ≈α l Nθ).

Call R = (∇ ` l→ r) and A = (∇ ` l = r) closed when ∇ ` (l, r) is closed.
Given a rewrite rule R = (∇ ` l → r) and a term-in-context ∆ ` s, the

(one-step) closed rewriting relation ∆ ` s R→c t holds if there are C and θ,
such that, for a freshened variant R Nof R (fresh for R, ∆, s, t):

s ≡ C[s′] and ∆,A(R N) # V (∆, s, t) ` (∇ Nθ, s′≈αl Nθ, C[r Nθ]≈αt). (3)

Closed rewriting ∆ `
R
s→c t is the reflexive transitive closure, as in Def. 7.

The choice of freshened variant in Definition 8 does not matter. Closed rewrit-
ing is sound and complete for nominal algebra, if all axioms are closed [11].

4.2 Typed closed rewriting

We define a notion typeable rule such that rewriting preserves types:

Definition 9. A typeable closed rewrite rule R ≡ Φ;∇ ` l → r : τ is a
tuple of a type context Φ which only types the variables in l and has no type-
schemes (in particular, Φ mentions no atoms), a freshness context ∇, and terms
l and r such that
1. V (r,∇, Φ) ⊆ V (l),
2. pt(Φ;∇ ` l) = (id , τ) and Φ;∇ ` r : τ ,
3. RT is closed, where RT is a variant of R in which each abstracted atom

is decorated by appending the type of that atom to its name; a renamed
atom occurring in a freshness constraint in ∇ is replaced by new freshness
constraints, one for each differently decorated variant of the atom.

For example, under the signature f : ([N]N)N , g : ([Bool]N)N , the variant
of the rule X : N ; a#X ` f([a]X) → g([a]X) : N used in the third condition in
Definition 9 is X : N ; aN#X, aBool#X ` f([aN]X) → g([aBool]X). The con-
dition is satisfied: although one occurrence of X is under an abstraction for aN
and the other is under an abstraction for aBool, we have freshness assumptions
for both atoms: aN#X, aBool#X.

The type decorations for RT can be determined mechanically by running pt
to compute principal types on the left-hand side and right-hand side of R.

The first condition in the definition of typeable closed rule is standard. The
second condition says that l is typeable using Φ and ∇, and r is typeable with a

7

type at least as general. The third condition ensures that atom abstractions are
typed in a consistent manner throughout the rule. To check this, we compute
types for the abstracted atoms using the type inference algorithm, and annotate
atom abstractions with types. In a Church-style system, we would use the type
annotations provided by the user; thanks to the type inference algorithm, in our
system users need not provide explicit type annotations for every abstraction.

The typed closed rewriting relation is defined using typed matching.

Definition 10. A (typed) matching problem (Φ;∇ ` l) ?≈ (Γ ;∆ ` s) is a
pair of tuples (Φ and Γ are typing contexts, ∇ and ∆ are freshness contexts, l
and s are terms) such that variables and type-variables on the left are disjoint
from those in Γ,∆, s, and Φ mentions no atoms or type-schemes.

A solution to this matching problem, if it exists, is the least pair (S, θ) of
a type- and term-substitution (the ordering on substitutions extends to pairs
component-wise) such that:
1. Xθ ≡ X for X 6∈ V (Φ,∇,l), αS ≡ α for α 6∈TV (Φ)2, ∆ ` lθ≈αs and ∆ ` ∇θ.
2. pt(Φ;∇ ` l) = (id , τ), pt(Γ ;∆ ` s) = (id , τS), and for each X : φ′ ∈ Φ, we

have Γ, Γ ′;∆ ` Xθ : φ′S, where Γ ′ = Φ′S and Φ′ contains the typings for
the atoms abstracted above an occurrence of X in l and which may occur in
instances of X.

That is: we want to make l on the left α-equivalent to s on the right. The first
condition defines a matching solution for untyped nominal terms [20,10]. The last
condition enforces type consistency: terms should have compatible types, and the
solution should instantiate the variables consistent with the typing assumptions.
For typeable closed rules, the typing context Φ′ is uniquely defined.

The assumption that Φ mentions no atoms or type-schemes may seem strong,
but is all we need: we give applications in Section 4.4.

For example, (X:α ` X) ?≈ (a:B ` a) has solution ([α 7→B], [X 7→a]), whereas
(X:B ` X) ?≈ (a:α ` a) has no solution—α on the right is too general.

To see why we must check θ in the second condition, consider g(f True) where
g : (α)N and f : (β)N (i.e. both functions are polymorphic and produce a result
of type N) and a rule X : N ` g(f X) → sucX, where suc : (N)N. Then the
untyped matching problem g(f X)) ?≈ g(f True) has solution [X 7→True], but the
typed matching problem (X : N ` g(f X)) ?≈ (` g(f True)) has none: [X 7→True]
fails the last condition since X should have type N but is instantiated with a
Boolean. If matching did not fail, this rewrite would not preserve types.

Definition 11 (Typed closed rewriting). Take a typeable term Γ ;∆ ` s:µ
and a typeable closed rule R ≡ Φ;∇ ` l → r : τ . Assume s ≡ C[s′] and
Γ ′;∆ ` s′ : µ′ is the typing of s′ at the corresponding position in s.3 We say s
closed rewrites with R to t in the context Γ ;∆ and write Γ ;∆ ` s R→c t
when there is some R N a freshened variant of R (fresh for R, Γ , ∆, s, and t),
where ∆′ is the freshness context A(R N) # V (Γ,∆, s, t), such that:
2 So in particular, by the side-conditions on variables being disjoint between left and
right of the problem, Xθ ≡ X for X∈V (Γ,∆, s) and αS ≡ α for α ∈ TV (Γ).

3 Γ ⊆ Γ ′, and Γ ⊂ Γ ′ if C contains abstractions over s′.

8

1. The typed matching problem (Φ N;∇ N`l N) ?≈ (Γ ′;∆,∆′`s′) has solution (S,θ).
2. ∆,∆′ ` C[r Nθ] ≈α t.

The conditions of typed closed rewriting extend those of closed nominal rewrit-
ing, with types. The following lemma, proved by induction, is used to prove that
rewriting preserves types:

Lemma 12. Consider Φ′;∇ ` r′, where r′ is either the right-hand side of a
typeable closed rule R ≡ Φ;∇ ` l → r : τ or a subterm of the right hand side; if
r′ is under atom abstractions in r, we assume Φ′ = Φ ∪ Φ′′ where Φ′′ contains
the atom typings of the removed atom abstractions. Assume Φ′;∇ ` r′ : τ ′ (so
τ ′ = τ if r′ = r) and let (S, θ) be the substitutions that solve the typed matching
problem (Φ;∇ ` l) ?≈ (Γ ;∆ ` s). Then Γ,Φ′′S;∆ ` r′θ : τ ′S.

Theorem 13 (Subject Reduction). Let R ≡ Φ;∇ ` l → r : τ be a typeable
closed rule. If Γ ;∆ ` s : µ and Γ ;∆ ` s R→c t then Γ ;∆ ` t : µ.

Proof. It suffices to prove that if pt(Γ ;∆ ` s) = (id , ν) and Γ ;∆ ` s R→c t then
Γ ;∆ ` t : ν. Suppose Γ ;∆ ` s R→c t. Then (using the notation in the definition
of matching and rewriting above) we know that:
1. R N is a freshened variant of R (fresh for R, Γ , ∆, s, and t) and ∆′ is the

freshness context A(R N) # V (Γ,∆, s, t).
2. s ≡ C[s′], ∆,∆′ ` l Nθ ≈α s′, and ∆,∆′ ` a#Xθ for each a#X in ∇ N.
3. Γ ′;∆ ` s′ : ν′ is the typing of s′, and by the Weakening Lemma 6, also
Γ ′;∆,∆′ ` s′ : ν′.

4. pt(Φ N;∇ N` l N) = (id , τ) and pt(Γ ′, ∆ ` s′) = (id , τS) so there is some S′

such that Γ ′S′ = Γ ′ and τSS′ = ν′.
5. ∆,∆′ ` C[r Nθ] ≈α t.
By Theorem 4 (α-equivalence respects types), and 1, 2 and 3, we deduce Γ ′;∆,∆′ `
l Nθ : τSS′. Since pt(Φ N;∇ N` l N) = (id , τ), by our assumptions on rewrite rules
also Φ N;∇ N` r N: τ , and by Lemma 3 also Φ NSS′;∇ ` r N: τSS′. Since θ respects
the context Φ NSS′;∇ N by definition of typed matching, then, by the auxiliary
lemma 12, Γ ′;∆,∆′ ` r Nθ : τSS′ = ν′. Hence Γ ;∆,∆′ ` C[r Nθ] : ν. By The-
orem 4, also Γ ;∆,∆′ ` t : ν, and since A(∆′) 6∈ t (by definition of closed
rewriting), then Γ ;∆ ` t : ν as required.

Closure ensures that for each occurrence ofX in l and r, instantiation behaves
uniformly with respect to abstraction. This alone does not ensure preservation
of types under reduction: consider f : ([N]N)N , g : ([Bool]N)N , suc : (N)N .
The rule X : N ` f[a]X → g[a]X : N is closed, and the principal type of the
left-hand side is also the type of the right-hand side, but the term f[a]suc(a) : N
rewrites to g[a]suc(a), which is untypeable. Each X in l and r must be under
the same abstractions, typed in the same way. So condition 3 of Definition 9
annotates abstracted atoms in l→ r with types.

9

4.3 Typed equational reasoning

Definition 14. A typeable closed axiom A ≡ Φ;∇ ` l = r : τ is a tuple of a
type context Φ which only types the variables in l and r and has no type-schemes
(so Φ mentions no atoms), a freshness context ∇, and terms l and r such that
pt(Φ;∇ ` l) = pt(Φ;∇ ` r) = (id , τ) and AT is closed, where AT is a decorated
version of A from Definition 11.

Typed nominal equational reasoning is defined as in Definition 7, but with
the additional requirement that the substitution θ applied to l and r solves typed
matching problems, that is, it must respect the types given in the typing context.
Thus, using Lemma 12, equational deduction preserves types.

Theorem 15 (Preservation of types). Let T be a nominal theory with only
typeable closed axioms. If Γ ;∆ ` s:µ and Γ ;∆ `

T
s=t is in the typeable nominal

equality relation generated from T by typed nominal reasoning, then Γ ;∆ ` t : µ.

Proof. By induction on nominal algebra equality. The interesting case is the use
of the rule (AxiΦ;∇`l=r), for a typeable closed axiom A ≡ Φ;∇ ` l = r : τ in T .
The conditions in Definition 14 ensure that pt(Φ;∇ ` l) = pt(Φ;∇ ` r). Since
the substitution used to instantiate l and r to derive Γ ;∆ `

T
s = t respects Φ;∇

(it solves typed matching problems), we can proceed as for Theorem 13.

4.4 Examples

Rewrites for surjective pairing cannot be implemented by compositional trans-
lation to λ-calculus [3]. We can define it; assume fst : (α×β)α and snd : (α×β)β:

X:α, Y :β ` fst(X,Y)→ X:α X:α, Y :β ` snd(X,Y)→ Y :β

Z:α×β ` (fstZ, sndZ)→ Z:α×β

Consider a type o and term-formers >,⊥ : o, ∧,⇒,⇔ : (o×o)o, ≈ : (α×α)o,
∀ : ([α]o)o, and substitution σ : ([α]o, α)o sugared as before. Rewrite rules for
equality and simplification for (a fragment of) first-order logic are typeable
closed; we use infix notation for the binary connectives:

X:α ` X ≈ X → >:o X:o; a#X ` ∀[a]X → X:o

X,Y :o ` ∀[a](X ∧ Y)→ ∀[a]X ∧ ∀[a]Y :o

Using P [a7→T] as syntactic sugar for the term σ([a]P, T) representing the sub-
stitution of a by T in P , we also have the following typeable closed axioms:

P : o, T : α ` ∀[a]P⇒P [a7→T] = > : o
P,Q : o; a#P ` ∀[a](P⇒Q)⇔ P⇒∀[a]Q = > : o
U, T : α, P : o ` U ≈ T ∧ P [a7→T]⇒P [a7→U] = > : o

We can extend this with arithmetic. Consider a type N, term-formers 0 : N,
succ : (N)N, + : (N×N)N. Then [a](a ≈ a) has principal type [α]o, and ∀[a](a ≈
0) is typeable (with type o) whereas ∀[a](> ≈ 0) is not typeable.

10

We can also axiomatise the λ-calculus by these equalities [15], using the
notation introduced in Section 3:

a[a7→X] = X a#Z ` Z[a7→X] = Z c#X ` (λ[c]Z)[a7→X] = λ[c](Z[a7→X])

(Z ′Z)[a7→X] = (Z ′[a7→X])(Z[a7→X]) Z[a7→a] = Z

All are typeable closed axioms except for the last, which is not closed: it contains
a free atom a on the left hand side and the atoms in an instance of Z on the left
are under the scope of an abstraction for a, but they escape the abstraction on
the right. The results presented here do not apply to this rule. Non-closed rules
are arguably rare (and the standard higher-order rewriting formalisms do not
accept them), but interesting examples exist—in this case, the rule is needed for
completeness with respect to the models [15]. We conjecture that an extension
with essential typings [9] (type assignments need not be unique but every type
assignment for an occurrence of a variable X on the right must have already
been made for an occurrence of X on the left) would let us deal with non-closed
rules or axioms like this.

5 Conclusions and future work

Type inference is well-studied for the λ-calculus and Curry-style systems also
exist for first-order rewriting systems [1] and algebraic λ-calculi (which combine
term rewriting and λ-calculus) [2]. We know of no type assignment system for
the standard higher-order rewriting formats (HRSs use a typed metalanguage,
and restrict rewrite rules to base types). Our system is in Curry style; type
annotations on terms are not required. We do rely on type declarations for
term-formers (arities) and in future we may investigate conditions under which
this assumption and the closedness assumptions could be relaxed.

The types produced resemble the Hindley-Milner polymorphic type system
for the λ-calculus, but are acting on nominal terms which include variables X
representing context holes as well as atoms a representing program variables.

The function pt is implemented [8]. The conditions on typeable closed rules
and typeable closed axioms are decidable and easily mechanisable using pt and
nominal matching, which is also implemented [5].

Theorem 4 proves our types compatible with the powerful notion of α-
equivalence inherited from nominal terms [20]. Theorem 13 shows that a notion
of typeable closed nominal rewrite rule exists which guarantees the preservation
of types under closed nominal rewriting. Theorem 15 shows that types are also
preserved under equational reasoning using a notion of typeable closed axioms.

Our type system has rank 1 polymorphism. More powerful systems, e.g. rank
2 polymorphic types or intersection types [4], should be possible. The latter have
been used to characterise normalisation properties of λ-terms. Normalisation
of nominal rewriting using type systems is a subject for future work, and one
of our long-term goals is to come closer to applying logical semantics such as
intersection types, to nominal rewriting.

11

References

1. Steffen van Bakel and Maribel Fernández, Normalization results for typeable rewrite sys-
tems, Information and Computation 133 (1997), no. 2, 73–116.

2. Franco Barbanera and Maribel Fernández, Intersection type assignment systems with
higher-order algebraic rewriting, Theoretical Computer Science 170 (1996), 173–207.

3. Henk P. Barendregt, Pairing without conventional constraints, Zeitschrift für mathema-
tischen Logik und Grundlagen der Mathematik 20 (1974), 289–306.

4. Henk P. Barendregt, Mario Coppo, and Mariangiola Dezani Ciancaglini, A filter lambda
model and the completeness of type assignment, Journal of Symbolic Logic 48 (1983),
no. 4, 931–940.

5. Christophe Calvès, Complexity and implementation of nominal algorithms, Ph.D. thesis,
King’s College London, 2010.

6. Ranald Clouston, Closed terms (unpublished notes), http://users.cecs.anu.edu.au/
~rclouston/closedterms.pdf, 2007.

7. Luis Damas and Robin Milner, Principal type-schemes for functional programs, Proceed-
ings of the 9th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages (POPL 82), ACM, 1982, pp. 207–212.

8. Elliot Fairweather, Principal types for nominal terms: tool description, Available from
http://www.inf.kcl.ac.uk/pg/elliotf/research.

9. Maribel Fernández and Murdoch J. Gabbay, Curry-style types for nominal terms, Types
for Proofs and Programs (TYPES 06), Lecture Notes in Computer Science, vol. 4502,
Springer, September 2007, pp. 125–139.

10. , Nominal rewriting (journal version), Information and Computation 205 (2007),
no. 6, 917–965.

11. , Closed nominal rewriting and efficiently computable nominal algebra equal-
ity, Proceedings of the 5th International Workshop on Logical Frameworks and Meta-
Languages (LFMTP 2010), 2010.

12. Maribel Fernández, Murdoch J. Gabbay, and Ian Mackie, Nominal Rewriting Systems,
Proceedings of the 6th ACM SIGPLAN symposium on Principles and Practice of Declar-
ative Programming (PPDP 2004), ACM Press, August 2004, pp. 108–119.

13. Murdoch J. Gabbay, Nominal terms and nominal logics: from foundations to meta-
mathematics, Handbook of Philosphical Logic, vol. 17, Kluwer, 2011.

14. Murdoch J. Gabbay and Aad Mathijssen, Nominal universal algebra: equational logic with
names and binding, Journal of Logic and Computation 19 (2009), no. 6, 1455–1508.

15. , A nominal axiomatisation of the lambda-calculus, Journal of Logic and Compu-
tation 20 (2010), no. 2, 501–531.

16. Jean-Yves Girard, The system F of variable types, fifteen years later, Theoretical Com-
puter Science 45 (1986).

17. James Gosling, Bill Joy, and Guy Steele, The Java language specification, Addison-Wesley,
1996.

18. Andrew M. Pitts, Nominal system T, Proceedings of the 37th ACM SIGACT-SIGPLAN
Symposium on Principles of Programming Languages (POPL 2010), ACM Press, January
2010, pp. 159–170.

19. Mark R. Shinwell, Andrew M. Pitts, and Murdoch J. Gabbay, FreshML: Programming with
Binders Made Simple, Proceedings of the 8th ACM SIGPLAN International Conference
on Functional Programming (ICFP 2003), vol. 38, ACM Press, August 2003, pp. 263–274.

20. Christian Urban, Andrew M. Pitts, and Murdoch J. Gabbay, Nominal Unification, The-
oretical Computer Science 323 (2004), no. 1–3, 473–497.

Acknowledgements. Thanks to the anonymous referees. Supported by grant
RYC-2006-002131 at the Polytechnic University of Madrid.

12

http://users.cecs.anu.edu.au/~rclouston/closedterms.pdf
http://users.cecs.anu.edu.au/~rclouston/closedterms.pdf
http://www.inf.kcl.ac.uk/pg/elliotf/research
http://www.gabbay.org.uk/papers.html#curstn
http://www.gabbay.org.uk/papers.html#nomr-jv
http://www.gabbay.org.uk/papers.html#clonre
http://www.gabbay.org.uk/papers.html#clonre
http://www.gabbay.org.uk/papers.html#nomr
http://www.gabbay.org.uk/papers.html#nomtnl
http://www.gabbay.org.uk/papers.html#nomtnl
http://www.gabbay.org.uk/papers.html#nomuae
http://www.gabbay.org.uk/papers.html#nomuae
http://www.gabbay.org.uk/papers.html#nomalc
http://www.gabbay.org.uk/papers.html#frepbm
http://www.gabbay.org.uk/papers.html#frepbm
http://www.gabbay.org.uk/papers.html#nomu-jv

	Principal Types for Nominal Theories
	Elliot Fairweather, http://www.dcs.kcl.ac.uk/staff/maribelMaribel Fernández and http://www.gabbay.org.ukMurdoch J. Gabbay
	Introduction
	Background
	Examples
	Types for (closed) nominal rewriting and algebra
	Closed rules and closed rewriting
	Typed closed rewriting
	Typed equational reasoning
	Examples

	Conclusions and future work

