Quantifier rules in reductive proof using nominal semantics

Murdoch J. Gabbay
http:/ /www.gabbay.org.uk

(reporting on work with Claus-Peter Wirth)

Abstract: Reductive proof-search tries to reduce a goal to tautologies. In the presence of quantifiers
this becomes a complex design problem by which proof-theory shades into ‘proof-engineering’.
There is no single right answer here, but there are a lot of practical problems with strong roots
in theory. In this work we consider a nominal semantics for this design space. The reduction in
complexity is striking, and we get an elementary account of reductive proof-search with quantifiers.

1 The problem

It is not enough to study proof in principle; we may
also want to prove things in practice. This means
creating notions of derivation that are succinct and
amenable to automation. We concentrate on reductive,
analytic, or backward proof-search, reducing goals to
assumptions. Examples include sequent, tableau, ma-
trix, and indexed-formula-tree systems.

The quantifier V is what interests us. It generates
a pair of rules, called left-intro and right-intro, or (6V)
and (7V) rules respectively. Intuitively:

1. left-intro/(y¥) means “Vz.¢ implies [r/x]¢ for
any r”, where here [r/z] is the usual capture-
avoiding substitution of r for z (call r a witness).

2. right-intro/ (V) means “[r/x]¢ for some suffi-
ciently generic r implies Vx.¢".

(V) has obvious potential for branching and we de-
lay the choice of witness as long as possible by in-
troducing variables called existential variables, meta-
variables, or (in tableaux) free variables. These are vari-
ables whose instantiation transforms the proof as a
whole. We use variables X from nominal terms to do
this (no surprise to the expert in nominal techniques;
X was a unification unknown in [20]).

Concerning (§¥): what should ‘sufficiently generic’
mean? The standard rule takes a fresh entity variously
called a fresh constant, a fresh variable, an eigenvariable,
or parameter. Here it is in sequent style:

'y, A (zfreshforT, A)

I'EVaa), A
This rule is inefficient because x is unnecessar-
ily generic; choosing x ‘completely fresh’ does not
record—and cannot take advantage of—information
about what variables existed when = was created.

An industry exists devising rules to prove Va.¢
more efficiently, and it is worthwhile to list some of it:
Fitting’s original free-variable é-rule [7, Section 7.4];
then its ‘liberalised’ version §* (introduced in [16],
and treated in [3, Section 7.4]); 6+ [2]; 6* [1];} 6% [3]
and 6¢ [15, Section 4.1].

1This had error corrected in [4, Subsection 5.3].
2This also had errors, also corrected in [4, Subsection 5.4].

(VR)/(67V)

So in the quest for efficiency, inference systems have
developed interesting kinds of names and binding,
and there is a direct connection between recognising
how names in derivations interact (and when they
must be generated, and when they may be thrown
away) and devising efficient quantifier rules.> This
kind of thing is hard to get right, errors have been
made, and aside from work by Wirth reported in [21],
no semantics has been available to aid understanding.

This abstract reports on cutting-edge research in the
application of two nominal tools to reductive proof-
search: permissive-nominal terms from [6] and nominal
sets semantics from [14] (surveys in [9, 11]).

Technical details are elided. In this abstract we give
a flavour of how this rather substantial body of math-
ematics hangs together. If pressed to describe this
work in a sentence, it is this: we have an elementary
explanation of the variables and meta-variables typ-
ically found in proof-search, as nominal atoms and
unknowns, and of the proof-search rules listed above;
and if you can get past the unfamiliar nominal-ness
of the semantics, the technical difficulty threshold is
quite low.

2 Sketch of the syntax

Fix disjoint countably infinite sets of atoms a, b, c and
variables/unknowns X,Y, 7.

Atoms a are variables in goals and resemble the pa-
rameters or eigenvariables found in the literature. This
is the entity introduced by the (VR) rules of sequent
systems. Variables X are proof-search variables; these
display complex ‘nominal” behaviour but have the ef-
fect of Skolem terms, without extending the signa-
ture or introducing functions. X corresponds to the
dummy variable of [19] and [18] and the free variable of
[8], the meta-variable of planning and constraint solv-
ing, and the free y-variable of [21].

Assume constants 1, T, =, A, and V and a simple
type system which we elide.

Then terms are justr :=a | X | f | r'r | [a]r*

3Speedups can be significant. The (§1) of [16] allows exponen-
tial speedup relative to (67) [8], and (5++) [2] allows further expo-
nential speedup relative to (67) [1, Section 3].

4 A white lie: X is moderated as 7 X. See [20, 6].

http://www.gabbay.org.uk

This looks familiar (variables; meta-variables; con-
stants; application; abstraction) but substitution for
X is capturing and the semantics of [a]r is nomi-
nal atoms-abstraction instead of functional abstrac-
tion. So, the underlying semantics is different, non-
functional, and “first-order’; for details see [13] which
applies this to Henkin-style semantics for higher-
order logic.

Atoms are not constant symbols; models are subject
to a permutation symmetry group of atoms, so atoms
are special symmetric elements, translated specially in
the denotation. Constant symbols are interpreted ar-
bitrarily; no special properties are assumed. So [a]r
makes sense because the interpretation of a is specific
such that atoms-abstraction has meaning; [f]r makes
no model-theoretic sense because there is virtually no
restriction on how f is interpreted.

3 Sketch of the proof-rules

Here are the two crucial rules, in sequent style:
C, Xt[a]-~¢; H F pla—X] C; pla—r] ¢
C;HEVa.g C;H,VNa.¢o b+

H is a set of predicates. C is a maximisation condi-
tion; a set of syntax of the form X1[a]¢. This can be
read as an instruction to ‘maximise’ the truth-value of
¢la—X]. Intuitively, if the value of X makes ~¢[a— X]
true, then Va.¢ must be true. If this reminds the reader
of expressing Va.¢ as ¢la—ea.~¢] [5, page 15] then
that is no accident—but here there is no choice made,
only a maximisation condition.

The nominal semantics makes itself particularly
useful because ¢ is a possibly open predicate—it may
have free atoms. Nominal semantics allow us to map
this open predicate to an open element of a nominal
algebra of possibly open truth-values.

The underlying message is that nominal semantics
here replace Skolemisation in both syntax and seman-
tics. The price we pay is a notion of ‘truth-values alge-
bra with atoms’, but this seems not only worthwhile
but is in itself interesting.

(9VR) (9VL)

4 Sketch of the semantics

We just give the flavour of how it works; the partic-
ularly dedicated reader can find full details of simi-
lar technology applied in abstract algebra in [10]. We
assume a Boolean algebra, but elements are nominal
and contain free atoms. These atoms can be substi-
tuted for; this substitution is not syntactic, but an ab-
stract nominal algebraic axiomatisation of substitu-
tion following [12]. Next is quantification, which is
just an operation on algebra elements related to the
quantification operation of cylindric algebra [17] but in
a nominal context. Atoms are interpreted as them-
selves and variables X are interpreted with valua-
tions.

Once all this is in place, proving compositionality
of the semantics and the proof-rules is very easy, be-
cause the semantics includes abstract nominal struc-
tures which mirror what is done in the syntax. Every
‘normal” model (with Skolemisation and choice) can
be converted to a nominal model, so this simplicity
does not come by absurd restriction of models.

5 Summary

What we have discussed can be accomplished with
choice and Skolemisation. But these are powerful,
and using such tools has a price; we must manipu-
late a system with more structure than necessary, and
must use many emulations.

Nominal techniques give the benefits of Skolemi-
sation without introducing functions or higher types.
Maximisation conditions give the benefit of Hilbert’s
choice without making choices. The nominal seman-
tics is not hard—we can even import it off-the-shelf
from [13, 10]—and allows us to talk about open ele-
ments easily and directly, and it all fits together nicely.

References

[1] M. Baaz and C. G. Fermiiller. Non-elementary speedups between different ver-
sions of tableaux. In Proceedings of the 4th International Workshop on Theorem
Proving with Analytic Tableaux and Related Methods (TABLEAUX'95), pages 217—
230. Springer, 1995.

[2] B. Beckert, R. Hihnle, and P. H. Schmitt. The even more liberalized delta-rule
in free variable semantic tableaux. In G. Gottlob, A. Leitsch, and D. Mundici,
editors, Proceedings of the third Kurt Godel Colloquium (KGC'93), volume 713 of
LNCS, pages 108-119. Springer, 1993.

[3] D. Cantone and M. Asmundo. A further and effective liberalization of the §-
rule in free variable semantic tableaux. In R. Caferra and G. Salzer, editors,
Automated Deduction in Classical and Non-Classical Logics, volume 1761 of Lecture
Notes in Computer Science, pages 408—414. Springer, 2000.

[4] D.Cantone and M. Nicolosi-Asmundo. A sound framework for delta-rule vari-
ants in free variable semantic tableaux. Journal of Automated Reasoning, 38:31-56,
2007.

[5] P. B. David Hilbert. Grundlagen der Mathematik (volume II). Number 50 in
Grundlehren der mathematischen Wissenschaften. Springer, second edition,
1970.

[6] G. Dowek, M. J. Gabbay, and D. P. Mulligan. Permissive Nominal Terms and
their Unification: an infinite, co-infinite approach to nominal techniques (jour-
nal version). Logic Journal of the IGPL, 18(6):769-822, 2010.

[7] M. Fitting. First-order Logic and Automated Theorem Proving. Texts and mono-
graphs in computer science. Springer, 1 edition, 1990.

[8] M. Fitting. First-order Logic and Automated Theorem Proving. Texts and mono-
graphs in computer science. Springer, 2 edition, 1996.

[91 M.]. Gabbay. Foundations of nominal techniques: logic and semantics of vari-
ables in abstract syntax. Bulletin of Symbolic Logic, 17(2):161-229, 2011.

[10] M.]J. Gabbay. Stone duality for First-Order Logic: a nominal approach. In
Howard Barringer Festschrift. December 2011.

[11] M.]. Gabbay. Nominal terms and nominal logics: from foundations to meta-
mathematics. In Handbook of Philosophical Logic, volume 17. Kluwer, 2012.

[12] M.]J. Gabbay and A. Mathijssen. Capture-Avoiding Substitution as a Nominal
Algebra. Formal Aspects of Computing, 20(4-5):451-479, June 2008.

[13] M.]. Gabbay and D. Mulligan. Nominal Henkin Semantics: simply-typed
lambda-calculus models in nominal sets. In Proceedings of the 6th International
Workshop on Logical Frameworks and Meta-Languages (LFMTP 2011), volume 71
of EPTCS, pages 58-75, September 2011.

[14] M.]. Gabbay and A. M. Pitts. A New Approach to Abstract Syntax with Vari-
able Binding. Formal Aspects of Computing, 13(3-5):341-363, July 2001.

[15] M. Giese and W. Ahrendt. Hilbert’s e-terms in automated theorem proving. In
N. Murray, editor, Automated Reasoning with Analytic Tableaux and Related Meth-
ods, volume 1617 of Lecture Notes in Computer Science, pages 662-662. Springer,
1999.

[16] R. Hihnle and P. H. Schmitt. The liberalized §-rule in free variable semantic
tableaux. Journal of Automated Reasoning, 13(2):211-222, 1994.

[17] L.Henkin, J. D. Monk, and A. Tarski. Cylindric Algebras. North Holland, 1971
and 1985. Parts I and II.

[18] S. Kanger. A simplified proof method for elementary logic. In J. Siekmann
and G. Wrightson, editors, Automation of Reasoning volume 1 - classical papers on
Computational Logic 1957-1966, pages 364-371. Springer, 1963.

[19] D. Prawitz. An improved proof procedure. InJ. Siekmann and G. Wrightson,
editors, Automation of Reasoning volume 1 - classical papers on Computational Logic
1957-1966, pages 159-199. Springer, 1983.

[20] C.Urban, A. M. Pitts, and M. J. Gabbay. Nominal Unification. Theoretical Com-
puter Science, 323(1-3):473-497, September 2004.

[21] C.-P. Wirth. Descente infinie + Deduction. Logic Journal of the IGPL, 12(1):1-96,
2004.

http://www.gabbay.org.uk/papers.html#perntu-jv
http://www.gabbay.org.uk/papers.html#perntu-jv
http://www.gabbay.org.uk/papers.html#perntu-jv
http://www.gabbay.org.uk/papers.html#fountl
http://www.gabbay.org.uk/papers.html#fountl
http://www.gabbay.org.uk/papers.html#stodfo
http://www.gabbay.org.uk/papers.html#nomtnl
http://www.gabbay.org.uk/papers.html#nomtnl
http://www.gabbay.org.uk/papers.html#capasn-jv
http://www.gabbay.org.uk/papers.html#capasn-jv
http://www.gabbay.org.uk/papers.html#nomhss
http://www.gabbay.org.uk/papers.html#nomhss
http://www.gabbay.org.uk/papers.html#newaas-jv
http://www.gabbay.org.uk/papers.html#newaas-jv
http://www.gabbay.org.uk/papers.html#nomu-jv

	The problem
	Sketch of the syntax
	Sketch of the proof-rules
	Sketch of the semantics
	Summary

