
Quantifier rules in reductive proof using nominal semantics
Murdoch J. Gabbay (reporting on work with Claus-Peter Wirth)
http://www.gabbay.org.uk

Abstract: Reductive proof-search tries to reduce a goal to tautologies. In the presence of quantifiers
this becomes a complex design problem by which proof-theory shades into ‘proof-engineering’.
There is no single right answer here, but there are a lot of practical problems with strong roots
in theory. In this work we consider a nominal semantics for this design space. The reduction in
complexity is striking, and we get an elementary account of reductive proof-search with quantifiers.

1 The problem

It is not enough to study proof in principle; we may
also want to prove things in practice. This means
creating notions of derivation that are succinct and
amenable to automation. We concentrate on reductive,
analytic, or backward proof-search, reducing goals to
assumptions. Examples include sequent, tableau, ma-
trix, and indexed-formula-tree systems.

The quantifier ∀ is what interests us. It generates
a pair of rules, called left-intro and right-intro, or (δ∀)
and (γ∀) rules respectively. Intuitively:

1. left-intro/(γ∀) means “∀x.φ implies [r/x]φ for
any r”, where here [r/x] is the usual capture-
avoiding substitution of r for x (call r a witness).

2. right-intro/(δ∀) means “[r/x]φ for some suffi-
ciently generic r implies ∀x.φ”.

(γ∀) has obvious potential for branching and we de-
lay the choice of witness as long as possible by in-
troducing variables called existential variables, meta-
variables, or (in tableaux) free variables. These are vari-
ables whose instantiation transforms the proof as a
whole. We use variables X from nominal terms to do
this (no surprise to the expert in nominal techniques;
X was a unification unknown in [20]).

Concerning (δ∀): what should ‘sufficiently generic’
mean? The standard rule takes a fresh entity variously
called a fresh constant, a fresh variable, an eigenvariable,
or parameter. Here it is in sequent style:

Γ ` ψ,∆ (x fresh for Γ,∆)
(∀R)/(δ−∀)

Γ ` ∀x.ψ,∆
This rule is inefficient because x is unnecessar-
ily generic; choosing x ‘completely fresh’ does not
record—and cannot take advantage of—information
about what variables existed when x was created.

An industry exists devising rules to prove ∀a.φ
more efficiently, and it is worthwhile to list some of it:
Fitting’s original free-variable δ-rule [7, Section 7.4];
then its ‘liberalised’ version δ+ (introduced in [16],
and treated in [8, Section 7.4]); δ+

+

[2]; δ∗ [1];1 δ∗∗ [3];2

and δε [15, Section 4.1].
1This had error corrected in [4, Subsection 5.3].
2This also had errors, also corrected in [4, Subsection 5.4].

So in the quest for efficiency, inference systems have
developed interesting kinds of names and binding,
and there is a direct connection between recognising
how names in derivations interact (and when they
must be generated, and when they may be thrown
away) and devising efficient quantifier rules.3 This
kind of thing is hard to get right, errors have been
made, and aside from work by Wirth reported in [21],
no semantics has been available to aid understanding.

This abstract reports on cutting-edge research in the
application of two nominal tools to reductive proof-
search: permissive-nominal terms from [6] and nominal
sets semantics from [14] (surveys in [9, 11]).

Technical details are elided. In this abstract we give
a flavour of how this rather substantial body of math-
ematics hangs together. If pressed to describe this
work in a sentence, it is this: we have an elementary
explanation of the variables and meta-variables typ-
ically found in proof-search, as nominal atoms and
unknowns, and of the proof-search rules listed above;
and if you can get past the unfamiliar nominal-ness
of the semantics, the technical difficulty threshold is
quite low.

2 Sketch of the syntax

Fix disjoint countably infinite sets of atoms a, b, c and
variables/unknowns X , Y , Z.

Atoms a are variables in goals and resemble the pa-
rameters or eigenvariables found in the literature. This
is the entity introduced by the (∀R) rules of sequent
systems. Variables X are proof-search variables; these
display complex ‘nominal’ behaviour but have the ef-
fect of Skolem terms, without extending the signa-
ture or introducing functions. X corresponds to the
dummy variable of [19] and [18] and the free variable of
[8], the meta-variable of planning and constraint solv-
ing, and the free γ-variable of [21].

Assume constants ⊥, >, ¬, ∧, and ∀ and a simple
type system which we elide.

Then terms are just r ::= a | X | f | r′r | [a]r.4

3Speedups can be significant. The (δ+) of [16] allows exponen-
tial speedup relative to (δ−) [8], and (δ+

+
) [2] allows further expo-

nential speedup relative to (δ+) [1, Section 3].
4A white lie: X is moderated as π·X . See [20, 6].

http://www.gabbay.org.uk

This looks familiar (variables; meta-variables; con-
stants; application; abstraction) but substitution for
X is capturing and the semantics of [a]r is nomi-
nal atoms-abstraction instead of functional abstrac-
tion. So, the underlying semantics is different, non-
functional, and ‘first-order’; for details see [13] which
applies this to Henkin-style semantics for higher-
order logic.

Atoms are not constant symbols; models are subject
to a permutation symmetry group of atoms, so atoms
are special symmetric elements, translated specially in
the denotation. Constant symbols are interpreted ar-
bitrarily; no special properties are assumed. So [a]r
makes sense because the interpretation of a is specific
such that atoms-abstraction has meaning; [f]r makes
no model-theoretic sense because there is virtually no
restriction on how f is interpreted.

3 Sketch of the proof-rules

Here are the two crucial rules, in sequent style:

C, X↑[a]¬φ;H ` φ[a7→X]
(δX∀R)

C;H ` ∀a.φ

C;φ[a7→r] ` ψ
(δX∀L)

C;H,∀a.φ ` ψ
H is a set of predicates. C is a maximisation condi-
tion; a set of syntax of the form X↑[a]φ. This can be
read as an instruction to ‘maximise’ the truth-value of
φ[a7→X]. Intuitively, if the value ofX makes¬φ[a7→X]
true, then ∀a.φmust be true. If this reminds the reader
of expressing ∀a.φ as φ[a7→εa.¬φ] [5, page 15] then
that is no accident—but here there is no choice made,
only a maximisation condition.

The nominal semantics makes itself particularly
useful because φ is a possibly open predicate—it may
have free atoms. Nominal semantics allow us to map
this open predicate to an open element of a nominal
algebra of possibly open truth-values.

The underlying message is that nominal semantics
here replace Skolemisation in both syntax and seman-
tics. The price we pay is a notion of ‘truth-values alge-
bra with atoms’, but this seems not only worthwhile
but is in itself interesting.

4 Sketch of the semantics

We just give the flavour of how it works; the partic-
ularly dedicated reader can find full details of simi-
lar technology applied in abstract algebra in [10]. We
assume a Boolean algebra, but elements are nominal
and contain free atoms. These atoms can be substi-
tuted for; this substitution is not syntactic, but an ab-
stract nominal algebraic axiomatisation of substitu-
tion following [12]. Next is quantification, which is
just an operation on algebra elements related to the
quantification operation of cylindric algebra [17] but in
a nominal context. Atoms are interpreted as them-
selves and variables X are interpreted with valua-
tions.

Once all this is in place, proving compositionality
of the semantics and the proof-rules is very easy, be-
cause the semantics includes abstract nominal struc-
tures which mirror what is done in the syntax. Every
‘normal’ model (with Skolemisation and choice) can
be converted to a nominal model, so this simplicity
does not come by absurd restriction of models.

5 Summary

What we have discussed can be accomplished with
choice and Skolemisation. But these are powerful,
and using such tools has a price; we must manipu-
late a system with more structure than necessary, and
must use many emulations.

Nominal techniques give the benefits of Skolemi-
sation without introducing functions or higher types.
Maximisation conditions give the benefit of Hilbert’s
choice without making choices. The nominal seman-
tics is not hard—we can even import it off-the-shelf
from [13, 10]—and allows us to talk about open ele-
ments easily and directly, and it all fits together nicely.

References
[1] M. Baaz and C. G. Fermüller. Non-elementary speedups between different ver-

sions of tableaux. In Proceedings of the 4th International Workshop on Theorem
Proving with Analytic Tableaux and Related Methods (TABLEAUX’95), pages 217–
230. Springer, 1995.

[2] B. Beckert, R. Hähnle, and P. H. Schmitt. The even more liberalized delta-rule
in free variable semantic tableaux. In G. Gottlob, A. Leitsch, and D. Mundici,
editors, Proceedings of the third Kurt Gödel Colloquium (KGC’93), volume 713 of
LNCS, pages 108–119. Springer, 1993.

[3] D. Cantone and M. Asmundo. A further and effective liberalization of the δ-
rule in free variable semantic tableaux. In R. Caferra and G. Salzer, editors,
Automated Deduction in Classical and Non-Classical Logics, volume 1761 of Lecture
Notes in Computer Science, pages 408–414. Springer, 2000.

[4] D. Cantone and M. Nicolosi-Asmundo. A sound framework for delta-rule vari-
ants in free variable semantic tableaux. Journal of Automated Reasoning, 38:31–56,
2007.

[5] P. B. David Hilbert. Grundlagen der Mathematik (volume II). Number 50 in
Grundlehren der mathematischen Wissenschaften. Springer, second edition,
1970.

[6] G. Dowek, M. J. Gabbay, and D. P. Mulligan. Permissive Nominal Terms and
their Unification: an infinite, co-infinite approach to nominal techniques (jour-
nal version). Logic Journal of the IGPL, 18(6):769–822, 2010.

[7] M. Fitting. First-order Logic and Automated Theorem Proving. Texts and mono-
graphs in computer science. Springer, 1 edition, 1990.

[8] M. Fitting. First-order Logic and Automated Theorem Proving. Texts and mono-
graphs in computer science. Springer, 2 edition, 1996.

[9] M. J. Gabbay. Foundations of nominal techniques: logic and semantics of vari-
ables in abstract syntax. Bulletin of Symbolic Logic, 17(2):161–229, 2011.

[10] M. J. Gabbay. Stone duality for First-Order Logic: a nominal approach. In
Howard Barringer Festschrift. December 2011.

[11] M. J. Gabbay. Nominal terms and nominal logics: from foundations to meta-
mathematics. In Handbook of Philosophical Logic, volume 17. Kluwer, 2012.

[12] M. J. Gabbay and A. Mathijssen. Capture-Avoiding Substitution as a Nominal
Algebra. Formal Aspects of Computing, 20(4-5):451–479, June 2008.

[13] M. J. Gabbay and D. Mulligan. Nominal Henkin Semantics: simply-typed
lambda-calculus models in nominal sets. In Proceedings of the 6th International
Workshop on Logical Frameworks and Meta-Languages (LFMTP 2011), volume 71
of EPTCS, pages 58–75, September 2011.

[14] M. J. Gabbay and A. M. Pitts. A New Approach to Abstract Syntax with Vari-
able Binding. Formal Aspects of Computing, 13(3–5):341–363, July 2001.

[15] M. Giese and W. Ahrendt. Hilbert’s ε-terms in automated theorem proving. In
N. Murray, editor, Automated Reasoning with Analytic Tableaux and Related Meth-
ods, volume 1617 of Lecture Notes in Computer Science, pages 662–662. Springer,
1999.

[16] R. Hähnle and P. H. Schmitt. The liberalized δ-rule in free variable semantic
tableaux. Journal of Automated Reasoning, 13(2):211–222, 1994.

[17] L. Henkin, J. D. Monk, and A. Tarski. Cylindric Algebras. North Holland, 1971
and 1985. Parts I and II.

[18] S. Kanger. A simplified proof method for elementary logic. In J. Siekmann
and G. Wrightson, editors, Automation of Reasoning volume 1 - classical papers on
Computational Logic 1957-1966, pages 364–371. Springer, 1963.

[19] D. Prawitz. An improved proof procedure. In J. Siekmann and G. Wrightson,
editors, Automation of Reasoning volume 1 - classical papers on Computational Logic
1957-1966, pages 159–199. Springer, 1983.

[20] C. Urban, A. M. Pitts, and M. J. Gabbay. Nominal Unification. Theoretical Com-
puter Science, 323(1–3):473–497, September 2004.

[21] C.-P. Wirth. Descente infinie + Deduction. Logic Journal of the IGPL, 12(1):1–96,
2004.

http://www.gabbay.org.uk/papers.html#perntu-jv
http://www.gabbay.org.uk/papers.html#perntu-jv
http://www.gabbay.org.uk/papers.html#perntu-jv
http://www.gabbay.org.uk/papers.html#fountl
http://www.gabbay.org.uk/papers.html#fountl
http://www.gabbay.org.uk/papers.html#stodfo
http://www.gabbay.org.uk/papers.html#nomtnl
http://www.gabbay.org.uk/papers.html#nomtnl
http://www.gabbay.org.uk/papers.html#capasn-jv
http://www.gabbay.org.uk/papers.html#capasn-jv
http://www.gabbay.org.uk/papers.html#nomhss
http://www.gabbay.org.uk/papers.html#nomhss
http://www.gabbay.org.uk/papers.html#newaas-jv
http://www.gabbay.org.uk/papers.html#newaas-jv
http://www.gabbay.org.uk/papers.html#nomu-jv

	The problem
	Sketch of the syntax
	Sketch of the proof-rules
	Sketch of the semantics
	Summary

