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1 Introduction15

Consider the consensus problem as traditionally presented [11]: n processes in a distributed16

system each propose an arbitrary value and must then arrive (except those that fail) at a17

consensus (i.e. an agreement) on one of them. Solving consensus matters, because it allows18

a distributed system to function and coordinate its actions.19

Now consider an open system where participants do not know each other and may have20

different objectives. In this case, global agreement as per the traditional notion of consensus21

from [11] might not be relevant, or even desirable: instead, participants might wish to agree22

with one or more sets of trusted participants whom they care about or otherwise share a23

common objective with — and participants make independent decisions on whom to trust.24

We call such a system heterogeneous. So what is a sensible definition of the consensus25

problem in the heterogeneous setting?26

In this paper, we propose to model heterogeneous systems using the new notion of27

semitopological space and we propose to define the consensus problem as the problem of28

computing a continuous function on the semitopological space.29

The difference between semitopology and topology is that in semitopologies we drop the30

requirement that intersections of open sets be open. We develop a theory of semitopologies,31

thus casting a new light on, and giving a (we would argue) very clear new language for32

discussions about, the essential distributed-computing problem of consensus. Notably:33

1. Whereas topology often studies spaces with strong separability properties between points34

(like Hausdorff separability), in a semitopological space it seems interesting to study35

points that cannot be separated. We state and discuss a novel anti-separation axiom36

which we call being intertwined (see Definition 13 and Remark 14).37

2. A semitopological space partitions itself naturally into a collection of disjoint sets which38

we call topens (for transitive open set; Definition 6 and Remark 12) on which values of39

continuous functions are strongly correlated. Thus semitopologies articulate, in a clear40

and familiar topological language, mathematical reasons that a heterogeneous consensus41

system is likely to self-partition into unanimous communities (Theorems 18 and 27).42

3. A substantial body of topology-flavoured results can now be developed. See for example43

the characterisation of topen sets and the two ways to build a closure from a point as44

summarised in Theorems 18 and 27 and Remark 28 (see also Subsection 6.2).45
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23:2 The semitopology of heterogeneous consensus

4. Although semitopologies are not inherently computational — a semitopology is just a set46

of points and open sets on those points — the definitions support a natural computational47

structure which we call a witness function (Definition 29(1)), which is related to event48

structures [20]. This gives open and closed sets, and the topens mentioned above,49

computational content in a way that we make mathematically precise (Propositions 4250

and 36), culminating with a compactness result (Theorem 43).51

5. We discuss connections with related work in Subsection 6.1 (notably: event structures,52

consensus tasks, algebraic topology, and fail-prone systems and quorum systems).53

Finally, note that semitopology is practically motivated: it is in use since 2015 in the54

Stellar payments network [12], whose notion of Federated Byzantine Agreement System [16]55

is an example of semitopological space.56

2 Semitopology57

A semitopology is like a topology, minus the condition that the intersection of two open sets58

be an open set, and continuity can be identified with consensus:59

I Definition 1. A semitopological space, or just semitopology, is a pair (P,Open(P))60

of a nonempty set P of points, and a set Open(P) ⊆ pow(P) of open sets, such that:61

1. ∅ ∈ Open(P) and P ∈ Open(P).62

2. If X ⊆ Open(P) then
⋃
X ∈ Open(P).63

We may write Open(P) just as Open, if P is irrelevant or understood.64

I Definition 2 (Continuity). If P and P′ are sets and f : P → P′ and O′ ⊆ P′ then define65

the inverse image by f -1(O′) = {p∈P | f(p) ∈ O′}.66

If (P,Open) and (P′,Open′) are semitopological spaces then call f : P→ P′ continuous67

when O′ ∈ Open′ implies f -1(O′) ∈ Open.68

I Remark 3 (Continuity=consensus). We can identify consensus as the instance of continuity69

in which we map from a semitopology to a discrete semitopology of values.70

To see why, consider a semitopology (P,Open) and view p ∈ P as participants and open71

neighbourhoods p ∈ O ∈ Open as quorums of p — that is, p ∈ O ∈ Open indicates that O72

is a set that p would be willing to agree or cooperate with. Give some set Val of values or73

beliefs the discrete semitopology such that {v} is open for every v ∈ Val (Example 4(1)).74

Then having consensus amongst the P regarding a suitable value Val can be identified75

with having a continuous function f from P to Val because:76

f assigns a value or belief to each p ∈ P, and77

continuity asserts that for every value or belief v ∈ Val, each p ∈ f -1(v) is contained in a78

(by continuity) open set f -1(v) of peers that it is willing to agree or cooperate with, and79

which (by f) agree with p that v.180

(We briefly discuss in Subsection 6.2 how one might set about computing such an f .)81

I Example 4. Examples of semitopologies include:82

1 The astute reader may notice that we sweep some things under the rug. How do we compute these
functions? See Subsection 6.2. What about failures and Byzantine participants? Well, our slogan
‘continuity=consensus’ is a simplification, though a constructive and useful one; e.g. Byzantine behaviour
can be modelled with partiality or discontinuity. More in longer paper.
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1. The discrete semitopology on nonempty P just takes Open = pow(P). We may silently83

treat B = {⊥,>} as a discrete semitopological space.84

Any function from a discrete semitopology is continuous, and intuitively, participants85

only care to agree with themselves and nobody cares what anybody else thinks.86

2. Take P to be any nonempty set. The trivial semitopology on P takes Open = {∅,P}.87

Only constant functions are continous, and intuitively, participants want to agree with88

everyone; if someone objects, we do not have an open set nor a continuous function.89

3. Let P be people in a town with one cinema and O ∈ Open the semitopology generated by90

groups of friends willing to coordinate to go see a movie together. Then Open describes91

the sets of people that can be found inside the cinema.92

4. Take P = {0, 1, . . . , 41}. The supermajority semitopology takes Open = {O ⊆ P |93

#O ≥ 28}. So an open set contains at least two-thirds of the points; 2/3 participation is94

a typical threshold used for making progress in consensus algorithms.295

The supermajority semitopology captures that consensus is reached when a clear 2/396

majority of participants are in agreement. This is not a topology: that O and O′ contain97

at least two-thirds of the points in P does not mean their intersection O ∩O′ does.98

5. Let O ⊆ P be open when O = ∅ or #O = #P (e.g. if P = N then {n | n even} and99

{n | n odd} are open). This many semitopology is not a topology.100

6. Let O ⊆ P be open when O = ∅ or O = P or O = P \ {p} for any p ∈ P . Intuitively, in101

this lone objector semitopology (which is not a topology), participants are deemed to have102

reached consensus when there is at most one objector.103

7. Consider any L-labelled automaton A (by which here we mean: a rooted directed graph104

with labels from L). Let P be finite (possibly empty) lists of elements from L and let a set105

be open when it is a union of sets of finite initial segments of an infinite path through A.106

To make this concrete: take A to have one node, and two edges labelled 0 and 1. Then107

{[], [0], [0, 1], [0, 1, 0], [0, 1, 0, 1], . . . } is an open set, obtained as finite approximations108

to the path 0, 1, 0, 1, . . . . In this semitopology, ‘participants’ are finite approximations,109

and a set is open when it is a union of sequences of participants, with each sequence110

appoximating some infinite limit.111

3 Transitive sets and (maximal) topen sets112

I Definition 5. Suppose X, Y , and Z are sets. Write X G Y and say that X and Y113

intersect when X ∩ Y 6= ∅. We may chain G, writing e.g. X G Y G Z for X G Y ∧ Y G Z.114

I Definition 6. Suppose (P,Open) is a semitopology and S ⊆ P. Call S transitive when115

∀O,O′∈Open.O G S G O′ =⇒ O G O′ and call S a (maximal) topen when S is a (maximal)116

nonempty open and transitive set.3117

Values of continuous functions are strongly correlated on transitive sets (thus topens):118

I Proposition 7. Suppose (P,Open) is a semitopology and Val is a set of values (e.g.B or119

N) with the discrete semitopology (Example 4(1)), and suppose f : P → Val is continuous120

(Definition 2) and S ⊆ P is transitive (usually, S will be topen). Then f is constant on S.121

Proof. Suppose p, p′ ∈ S and write v = f(p) and v′ = f(p′). By construction f -1(v) G S G122

f -1(v′). Therefore f -1(v) G f -1(v′), by transitivity of S. This means precisely that there123

exists p′′ such that v = f(p′′) = v′, and so v = v′. J124

2 The procedural threshold in the US Senate is often set to two-thirds of the Senators present and voting.
3 ‘Transitive open’ → ‘topen’, like ‘closed and open’ → ‘clopen’.
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I Example 8. 1. {p} and ∅ are (trivially) transitive, for any p ∈ P.125

2. If S ⊆ P is topologically indistinguishable (∀O∈Open.(SGO =⇒ S⊆O)) then S is transitive.126

3. Take P = {0, 1, 2, . . . } and let open sets be ∅, P, and sets On = {n× i | i ≥ 1} for every127

n ≥ 1. This has one maximal topen O1 = {1, 2, . . . }, and one isolated point 0.128

4. Take P = {-1, 0, 1}, with open sets ∅, P, {-1}, {-1, 0}, {1}, {0, 1}, and {-1, 1}. This has129

two maximal topens {-1} and {1}, and 0 is not in any topens.130

I Lemma 9. Suppose (P,Open) is a semitopology.131

1. If S, S′ ⊆ P are topen then ∀O,O′ ∈ Open.O G S G S′ G O′ =⇒ O G O′.132

2. If S is a set of topens that are pairwise intersecting (so ∀S, S′∈S.SGS′) then
⋃
S is topen.133

Proof. 1. We simplify using Definition 6:

O G S G S′ G O′ =⇒ O G S′ G O′ S transitive, S′ open
=⇒ O G O′ S′ transitive.

2.
⋃
S is open by Definition 1(2). Also, if O G

⋃
S G O′ then there exist S, S′ ∈ S such that134

O G S and S′ G O′. We assumed S G S′, so by part 1 of this result we have O G O′. J135

I Remark 10. We care about topens (rather than sets that are just transitive) because they136

have somewhat better closure properties. E.g. Lemma 9 fails for transitive sets in general:137

if P = {1, 2, 3} and Open = {∅,P, {2}, {3}, {2, 3}} then {1, 2} and {1, 3} are transitive, but138

their union {1, 2, 3} is not. There is fine structure to these results, which we will document139

in a longer paper.140

I Corollary 11. If (P,Open) is a semitopology then every topen S ⊆ P is contained in a141

unique maximal topen M ⊇ S.142

Proof. Consider S = {S ∪S′ | S′ topen∧S G S′}. By Lemma 9(2) this is a set of topens and143

by Lemma 9(2) again so is
⋃
S. It is easy to check that this is a unique maximal transitive144

open set that contains S. J145

I Remark 12. We see from Corollary 11 above that a semitopology (P,Open) naturally146

partitions itself into some disjoint collection of maximal topens, and other points not147

contained in any topen.4148

Combining this with Proposition 7 we see that consensus on a semitopology self-organises149

into partitions of strongly correlated points acting together, along with some isolated points.150

In the special case of a space that is a single finite topen, then all participants must agree.151

I Definition 13. Suppose (P,Open) is a semitopology and p, p′ ∈ P.152

1. Call p and p′ intertwined when {p, p′} is transitive. Unpacking Definition 6 this means153

∀O,O′∈Open.(p ∈ O ∧ p′ ∈ O′) =⇒ O G O′. By a mild abuse of notation, write p G p′154

when p and p′ are intertwined.155

2. Define pG = {p′ ∈ P | p G p′}. So pG is the points intertwined with p.156

I Remark 14. The reader can check that the usual Hausdorff separation axiom can be157

succinctly written as ∀p.pG = {p}. Conversely, p G p′ for p 6= p′ is the very opposite to being158

Hausdorff: that p and p′ they cannot be separated by pairwise disjoint open sets.5159

4 This raises the question of what those other points can look like topologically. One answer is implicit in
Theorem 18, if we consider the topological boundary of a maximal topen. Or, a point can simply be
isolated. See Example 8, items 3 and 4. A more detailed analysis is possible but out of scope here.

5 One might call this an anti-Hausdorff property.
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For semitopologies as applied to consensus, Hausdorff makes a space separated and160

liable to non-consensus. Conversely, to maximise consensus and minimise separation — the161

literature might call this avoiding forking — we may prefer a space to be very intertwined.162

I Lemma 15. Suppose (P,Open) is a semitopology and S ⊆ P. Then S is transitive if and163

only if ∀p, p′∈S.p G p′. In words: a set is transitive when it is pointwise intertwined.164

I Corollary 16. Suppose (P,Open) is a semitopology and S ⊆ P. Then the following165

assertions are equivalent:166

1. S is topen.167

2. S is nonempty, open, and p G p′ for every p, p′ ∈ S.168

3. S is nonempty, open, and S ⊆ pG, for some/any element p ∈ S.169

In words: A topen set is a nonempty open set of intertwined points.170

Proof. By Definition 6, S is topen when it is nonempty, open, and transitive. By Lemma 15171

this last condition is equivalent to p G p′ for every p, p′ ∈ S. Thus parts 1 and 2 are equivalent.172

By Definition 13(2) pG = {p′ | p G p′}, so part 3 just rephrases part 2. J173

I Definition 17. Suppose (P,Open) is a semitopology and R ⊆ P. Define the interior of R174

by interior(R) =
⋃
{O ∈ Open | O ⊆ R}.175

I Theorem 18 (Characterisation of topens). Suppose (P,Open) is a semitopology and S ⊆ P.176

Then the following are equivalent:177

S is a maximal topen.178

S is nonempty and S = interior(pG) for some/any element p ∈ S.179

In words: A maximal topen is the nonempty open interior of pG.180

Proof. From Corollary 16 using Definition 6. J181

4 Closed sets and interiors182

4.1 Basic definitions (TL;DR: this part is just like topology)183

I Definition 19. Suppose (P,Open) is a semitopology and p ∈ P and R ⊆ P. Define the184

closure of R by |R| = {p′ ∈ P | ∀O′∈Open.p′ ∈ O′ =⇒ R G O′}.185

We may write |p| for |{p}|, so |p| = {p′ ∈ P | ∀O′∈Open.p′ ∈ O′ =⇒ p ∈ O′}.186

Call C closed when C = |C|, and write Closed(P) for the set of closed sets.187

Closed sets are complements of open sets, and open/closed sets are interiors/closures188

of closed/open sets — just like in topologies. We check that this works as expected in189

Lemma 20, Corollary 21, and Lemma 22:190

I Lemma 20. Suppose (P,Open) is a semitopology. Then C ∈ Closed(P) is closed if and191

only if P \ C is open, and O ∈ Open is open if and only if P \O is closed.192

Proof. 1. Suppose p ∈ P \ C. Since C = |C|, p ∈ P \ |C|. From Definition 19 there exists193

O ∈ P with p ∈ O and O ∩C = ∅, and this is the openness condition from Definition 30.194

2. Suppose O ∈ Open. It follows from Definition 19 that O ∩ |P \O| = ∅. But (as can be195

checked from routine calculations) P \O ⊆ |P \O|. J196

I Corollary 21. Suppose (P,Open) is a semitopology. Then Closed(P ) contains ∅ and P197

and is closed under arbitrary intersections. Furthermore, |R| equals the intersection of the198

closed sets that contain it: |R| =
⋂
{C ∈ Closed | R ⊆ C}.199

CVIT 2016



23:6 The semitopology of heterogeneous consensus

Proof. The first assertion is immediate from Lemma 20. The second follows from Lemma 20200

and Definition 1(1&2). The third assertion follows from the second. J201

I Lemma 22. Suppose (P,Open) is a semitopology. Then O ∈ Open is open if and only if202

interior(|O|) = O, and C ∈ Closed is closed if and only if |interior(C)| = C.203

Proof. Routine from Definitions 17 and 19. J204

4.2 Intertwined elements and topens205

Recall from Definition 13 the notions of p G p′ and pG.206

I Lemma 23. Suppose (P,Open) is a semitopology and p, p′ ∈ P. Then:207

1. p G p′ when ∀O∈Open.p ∈ O =⇒ p′ ∈ |O|.208

2. pG =
⋂
{|O| | p ∈ O ∈ Open} =

⋂
{C ∈ Closed | p ∈ interior(C)}.209

3. pG is closed and (by Lemma 20) P \ pG is open.210

Proof. 1. We just rearrange Definition 13:

∀O,O′ ∈ Open.(p ∈ O ∧ p′ ∈ O′) =⇒ O G O′ rearranges to
∀O ∈ Open.p ∈ O =⇒ ∀O′ ∈ Open.p′ ∈ O′ =⇒ O G O′ and by Definition 19 this is
∀O ∈ Open.p ∈ O =⇒ p′ ∈ |O|.

2. Using part 1, then Lemma 22.211

3. We combine part 2 of this result with Corollary 21. J212

I Lemma 24. Suppose (P,Open) is a semitopology and S ⊆ P is topen and p ∈ S. Then213

|p| ⊆ pG = |S|, and the subset inclusion may be strict (that is, |p| 6= pG is possible).214

Proof. pG = |S| follows using Theorem 18. For the subset inclusion, by Corollary 21(3)
|p| = |{p}| =

⋂
{C ∈ Closed | p ∈ C} and also by Lemma 23(2) pG =

⋂
{C ∈ Closed | p ∈

interior(C)}. We note that if p ∈ interior(C) then p ∈ C, so that

{C | p ∈ interior(C)} ⊆ {C | p ∈ C} and so
⋂
{C | p ∈ interior(C)} ⊇

⋂
{C | p ∈ C}.

Example 25 shows that |p| 6= pG can hold: J215

I Example 25. Take P = {0, 1} and Open = {∅, {0}, {0, 1}}. Then |1| 6= 1G:216

|1| = {1} ({0} is open), but217

1G = {0, 1} (open neighbourhoods of 0 and 1 all intersect).218

Lemma 26 complements Lemma 24:219

I Lemma 26. Suppose (P,Open) is a semitopology and S ⊆ P is topen and p ∈ S and220

O ⊆ S. Then |O| = pG = |S|.221

Proof. pG = |S| follows using Theorem 18. We now consider the left-hand equality. Unpacking
Definition 19 we have:

p ∈ |O| ⇐⇒ ∀O′∈Open.p ∈ O′ =⇒ O′ G O and
p ∈ |S| ⇐⇒ ∀O′∈Open.p ∈ O′ =⇒ O′ G S.

We see that it suffices to prove O′ G O ⇐⇒ O′ G S for any O′ ∈ Open. But this is routine:222

Suppose O′ G S. By assumption S G O and by transitivity of S (Definition 6) O′ G O.223

Suppose O′ G O. By assumption O ⊆ S, and O′ G S follows. J224
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I Theorem 27. Suppose (P,Open) is a semitopology and p ∈ P. Then:225

1. P \ |p| =
⋃
{O ∈ Open | p 6∈ O}, and this is an open set.226

2. P \ pG =
⋃
{C ∈ Closed | p 6∈ C}, and this is an open set.227

3. P \ pG ⊆ P \ |p| and the inclusion may be strict.228

4. If interior(|p|) 6= ∅ (so |p| has a nonempty open interior) then |p| = pG and P\|p| = P\pG.229

Proof. 1. Immediate from Definition 19.6 Openness is from Definition 1(2).230

2. We reason using Lemma 23(2): P \ pG =
⋃
{P \ |O| | p ∈ O} =

⋃
{C ∈ Closed | p 6∈ C}.231

Openness is Lemma 23(3).232

3. From Lemma 24.233

4. From Lemma 26. J234

I Remark 28 (Summary). |p| is a closed set and is the closure of p (Definition 19: the p′235

whose every open neighbourhood p′ ∈ O′ intersects with {p}).236

P \ |p| is the union of open sets that avoid p.237

pG is also a closed set and is the points intertwined with p (Definition 13(2): the p′ whose238

every open neighbourhood p′ ∈ O′ intersects with every open neighbourhood p ∈ O).239

P \ pG is the union of the closed sets that avoid p.240

The open interior of pG, if non-empty, is a topen (as studied above, culminating with241

Theorem 27), and pG is equal to the closure of any nonempty open that it contains.242

Thus we have two ways to build a closed set from p ∈ P: from its closure |p| (Definition 19)243

which is the set of points all of whose open neighbourhoods contain p; or we can take pG244

(Definition 13(2)) which is the set of points that are intertwined with p, which is closed by245

Lemma 23(3). Furthermore: |p| ⊆ pG and the reverse inclusion holds if |p| has an open interior246

(Lemmas 24 and 26); and interior(pG) is a maximal topen if it is nonempty (Theorem 18).247

5 The witness function: computable semitopologies248

Let us recap: semitpologies are topologies without the restriction that the intersection of two249

opens be open; notions of continuity and closure carry over from topology and continuity =250

consensus; we note an anti-Hausdorff property which we call being intertwined; we characterise251

open interiors of maximal sets of intertwined sets as maximal topens which partition the space252

into blocks of consensus, in the formal sense that values of continuous functions are strongly253

correlated on each topen. This is descriptively nice, but is it compatible with algorithmic254

content? We consider this next.255

5.1 The witness function256

Write pow(X) for the powerset of X, and pow 6=∅(X) for the nonempty powerset of X, and257

fin(X) for the finite powerset of X, and fin 6=∅(X) for the nonempty finite powerset of X.258

I Definition 29. Suppose P is a set. Then:259

1. A witness function on P is a function W : P→ fin 6=∅(pow 6=∅(P)). Call a pair (P,W )260

of a set and a witness function on that set, a witnessed set.261

2. If (P,W ) is a witnessed set and p ∈ P then call w ∈W (p) a witness for p and say that262

w witnesses p.263

6 A longer proof via Corollary 21(3) and Lemma 20 is also possible.

CVIT 2016
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In words: a witnessed set is a set along with a witness function that assigns to each element264

of that set a nonempty finite set of nonempty (possibly infinite) witnesses.265

I Definition 30. Suppose (P,W ) is a witnessed set. Define the witness semitopology by

O ∈ Open(W ) when ∀p ∈ P.
(
p ∈ O =⇒ ∃w∈W (p).w ⊆ O

)
.

I Remark 31. Witness functions matter because they yield semitopologies with computational266

meaning, as we shall see. But before we jump into the details, we pause to reflect on how267

witness functions can be interpreted:268

1. Consensus interpretation: W represents groups of ‘immediate friends’: w ∈W (p) is a269

group of elements that p personally trusts. An open set O is a community of participants270

such that every p ∈ O is accompanied by some group of immediate friends.271

2. Computational interpretation: W represents a nondeterministic parallel computation.272

Each p ∈ P is a process and w ∈W (p) a parallel computation to which p can nondetermin-273

istically evolve. An open set O is a computation trace in which each p is accompanied by274

(at least one) choice of evolution w ∈W (p).275

Example 4(7) illustrates this: e.g. for p ∈ {0, 1}∗ set W (p) = {{p+ 0}, {p+ 1}}. Thus p276

computes its next step by evolving either to p+ 0 or p+ 1, and open sets are generated by277

computations of infinite streams (this example has nondeterminism but no parallelism).278

3. Modal / event structures interpretation: W is an enabling modality. Each p ∈ P is an279

event and w ∈W (p) is a combination of events that enable p to be possible. An open set280

O is a computation trace in which each p ∈ O is enabled by at least one w ∈W (p).281

I Remark 32. Continuing the modal interpretation above, a witnessed set (P,W ) from282

Definition 29 is an infinitary generalisation of a special case of an event structure [20,283

Definition 1.1.1] — namely, it is an event structure in which the witness function plays the284

role of the enabling relation, and sets of events are generalised so they may be infinite (and285

the consistency predicate is trivial).7286

This does not make semitopologies a special case of event structures; not only because of287

the infinitary generalisation, but because we take the definitions in a new direction. It is an288

exciting possibility for future work to use this new maths to transfer ideas and algorithms289

between the two worlds— e.g.minimisation algorithms or bisimulation properties from event290

structures, or concrete algorithmics and applications from Stellar.291

5.2 The witness function and open sets292

I Definition 33. Suppose that (P,W ) is a witnessed set (Definition 29) and X,X ′ ⊆ P.293

Define the witness (partial) ordering by X � X ′ when X ⊆ X ′ ∧ ∀p∈X.∃w∈W (p).w ⊆294

X ′. If X � X then call X a �-fixedpoint.295

In words: X � X ′ when X ′ extends X with (at least) one witnesses for every p ∈ X.296

I Lemma 34. � is indeed a partial order (transitive possibly irreflexive relation), and � ⊆ ⊆.297

I Lemma 35. Suppose (P,W ) is a witnessed set. Then O is open in the witness semitopology298

(Definition 30) if and only if O is a �-fixedpoint. In symbols: Open = {X ⊆ P | X � X}.299

Proof. Being a �-fixedpoint from Definition 33 — every point in O is witnessed by a subset of300

O — reformulates the openness condition of the witness semitopology from Definition 30. J301

7 A clear overview is online at https://depend.cs.uni-saarland.de/fileadmin/user_upload/depend/
neuhaeusser/concurrency_seminar_2011/event_structures.pdf; see in particular Definition 9.

https://depend.cs.uni-saarland.de/fileadmin/user_upload/depend/neuhaeusser/concurrency_seminar_2011/event_structures.pdf
https://depend.cs.uni-saarland.de/fileadmin/user_upload/depend/neuhaeusser/concurrency_seminar_2011/event_structures.pdf
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I Proposition 36. Suppose (P,W ) is a witnessed set and suppose X = (X0 � X1 � . . . ) is302

a countably ascending �-chain. Write
⋃
X for the sets union

⋃
iXi. Then:303

1.
⋃
X is a �-limit for X . In symbols: ∀i.Xi �

⋃
X .304

2.
⋃
X is a �-fixedpoint. In symbols:

⋃
X �

⋃
X .305

Proof. 1. We must show that if p ∈ Xi then w ⊆
⋃
X for some w ∈ W (p). But this is306

automatic from the fact that Xi � Xi+1 ⊆
⋃
X .307

2. From part 1 noting that if p ∈
⋃
X then p ∈ Xi for some i. J308

Proposition 36 and Lemma 35 above are not complicated (note that this is a feature,309

which required conscious design effort) and they say something important: in the witness310

semitopology, open sets can be computed using a simple iterative algorithm which we can311

sum up as ‘just iteratively add witnesses’.312

5.3 The witness function and closed sets313

I Definition 37. Suppose R is a set and W is a set (or a sequence) of sets. Define R GW314

when ∀W∈W.R GW . In words: R GW when R intersects with every W ∈ W.315

I Definition 38. Suppose (P,W ) is a witnessed set and R ⊆ P. Define limw(R) by

limw(R) = R ∪ {p ∈ P | R G W (p)}.

In words: limw(R) is the set of points p whose every witness contains an R-element.316

We iterate this
lim0(R) = R

limi+1(R) = limw(limi(R))
lim(R) =

⋃
n≥0 limn(R)

and we call lim(R) the set of limit points of R.317

I Lemma 39. Suppose (P,W ) is a witnessed set and R ⊆ P. Then R ⊆ lim(R).318

Proof. It is a fact of Definition 38 that R = lim0(R) ⊆ lim1(R) ⊆ lim(R). J319

I Lemma 40. Suppose (P,W ) is a witnessed set and p ∈ P and R ⊆ P. Then:320

1. If lim(R) G W (p) (Definition 37) then p ∈ lim(R).321

2. By the contrapositive and expanding Definition 37, if p ∈ P \ lim(R) then ∃w∈W (p).w ∩322

lim(R) = ∅.323

Proof. Suppose lim(R) G W (p). Unpacking Definitions 37 and 38 it follows that for every324

w∈W (p) there exists nw ≥ 0 such that limnw (R) G w. Now by Definition 29(1) W (p) is325

finite, and it follows that for some/any n greater than the maximum of all the nw, we have326

limn(R) G W (p). Thus p ∈ limw(limn(R)) ⊆ lim(R). J327

I Lemma 41. Suppose (P,W ) is a witnessed set and p ∈ P and R ⊆ P and O ∈ Open:328

1. If O G limw(R) then O G R.329

2. If O G lim(R) then O G R.330

3. As a corollary, if O ∩R = ∅ then O ∩ lim(R) = ∅.331

Proof. 1. Consider p ∈ P such that p ∈ O and p ∈ limw(R). By assumption there exists332

w ∈W (p) such that w ⊆ O. Also by assumption w G R. It follows that O G R.333

2. If O G lim(R) then O G limn(R) for some finite n ≥ 0. By a routine induction using part 1334

of this result, it follows that O G R.335

CVIT 2016



23:10 The semitopology of heterogeneous consensus

3. This is just the contrapositive of part 2 of this result, noting that O G R when O ∩R = ∅336

by Definition 5, and similarly for O G lim(R). J337

I Proposition 42. Suppose (P,W ) is a witnessed set and R ⊆ P. Then lim(R) = |R|. In338

words: the set of limit points of R (Definition 38) equals the closure of R (Definition 19).339

Proof. Suppose p 6∈ |R|. Then there exists some p ∈ O ∈ Open such that O ∩ R = ∅.340

Thus by Lemma 41(3) also O ∩ lim(R) = ∅.341

Suppose p 6∈ lim(R). By Definition 19 we need to exhibit an p ∈ O ∈ Open that is disjoint342

from R, and since R ⊆ lim(R) by Lemma 39, it would suffice to exhibit p ∈ O ∈ Open343

that is disjoint from lim(R). We set O = P \ lim(R). Lemma 40(2) expresses that this is344

an open set, and by construction it is disjoint from lim(R). J345

Proposition 42 above does for closed sets as Proposition 36 and Lemma 35 do for open346

sets: in the witness semitopology, closed sets can be computed using an iterative algorithm347

which we can sum up as ‘iteratively add points all of whose witnesses intersect’.348

5.4 Compactness of descending chains of open sets349

Intuitively, ‘compactness’ is used to indicate ‘generalising finiteness’. Theorem 43 is a350

remarkable property, that a descending chain of open sets behaves as if it were finite — even351

though it isn’t:8352

I Theorem 43 (Compactness of descending chains). Suppose that:353

(P,W ) is a witnessed set with the witness semitopology (Definition 30).354

α ≥ 1 is a nonzero ordinal.355

O ⊆ Open is a descending α-chain of open sets.9356

Then ⋂
O ∈ Open.

In words: in a witness semitopology, the intersection of a descending chain of open sets, is357

an open set.358

Proof. Suppose
⋂
O = ∅.359

Then we note that ∅ ∈ Open (Definition 1(1)) and we are done.360

Suppose α = α′+1, so that α is a successor ordinal.361

Then the sequence O has a final element Oα and by facts of sets
⋂
O = Oα ∈ Open and362

again we are done.363

Suppose α is a limit ordinal and
⋂
O 6= ∅.364

Consider some p ∈
⋂
O. By construction of the witness semitopology (Definition 30) for365

each Oi there exists a witness wi ∈W (p) such that wi ⊆ Oi. Now by Definition 29(1)366

W (p) is finite, so by the pigeonhole principle, there exists some w ∈ W (p) such that367

w = wi for infinitely many wi ∈ W (p) ∧ wi ⊆ Oi. It follows from the fact that O is a368

descending chain that w ⊆
⋂
O.369

8 One might be tempted to call this property Noetherian, since it has to do with a descending chain having
a terminator, but to us that seems not right: ‘Noetherian’ means ‘well-founded’, but infinite descending
chains of open sets are possible in a witness semitopology — they just have an open intersection. Note
also that this result says something strictly stronger than ‘every descending chain of open sets has a
greatest lower bound’; the point is that this greatest lower bound is the sets intersection on-the-nose.

9 . . . an α-indexed chain of sets such that Oα′ ⊆ Oα′′ for every 0 ≤ α′′ < α′ < α.
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Now p in the previous paragraph was arbitrary, so we have shown that if p ∈
⋂
O then370

also there exists w ∈W (p) such that w ⊆
⋂
O. It follows by construction of the witness371

semitopology in Definition 30 that
⋂
O is open as required. J372

I Corollary 44. Suppose (P,W ) is a witnessed set with the witness semitopology. Then:373

1. Any nonempty O ⊆ Open contains a ⊆-minimal element.374

2. If p ∈ O ∈ Open then {O′ ∈ Open | p ∈ O′ ⊆ O} has a ⊆-minimal element, which we375

may call a cover of p.376

3. If p ∈ P then {O ∈ Open | p ∈ O} has a minimal element.377

Proof. Parts 2 and 3 are immediate from part 1 (noting that the sets are nonempty because378

they contain O and P respectively). For part 1 we reason as follows: It follows from379

Theorem 43 that O, ordered by the superset relation (the reverse of the subset inclusion380

relation) contains limits, and so upper bounds, of ascending chains. By Zorn’s lemma [10, 4]381

O contains a ⊇-maximal element, and this is the required ⊆-minimal element. J382

I Remark 45. It would be nice if the reverse implication in Theorem 43 held but we383

suspect that there may exist (P,Open) in which every descending chain of open sets has an384

open intersection, yet it is not obtainable as a witness semitopology. To see why, consider385

Example 4(6) and take X = N; then opens have the form ∅ or N or N \ {n}. An infinite386

set of witnesses to n is N \ {n′} for n′ 6= n, but this is not finite as required in Definition 29.387

This example or one like it might be used for a proof of non-existence, in future work.388

We could allow an infinite set of witnesses in Definition 29, but at a price:389

Theorem 43 depends on the pigeonhole principle, which uses finiteness of the witness set.390

Lemma 40 depends on witness sets being finite, and this is required for Proposition 42.391

I Remark 46. Recall that in our semitopological analysis consensus is continuity, and392

continuity means that preimages of open sets are open. Thus to understand consensus near393

a point p, we need to know what the open sets containing p look like; call this informally the394

consensus neighbourhood of p.395

Theorem 43 and Corollary 44 above have specific mathematical meaning — but they396

also tell us something more general: that in a witness semitopology, we can understand397

the structure of consensus at a point p ∈ P by understanding the structure of its open398

covers, where a cover is a minimal set containing p. This is because if a continuous function399

f : P→ P′ such that f(p) = p′ ∈ O′ is continuous at p ∈ P, then certainly there exists some400

open cover p ∈ O ⊆ f -1(O′). Turning this around: if we want to create consensus around p401

(e.g. because we are designing a consensus algorithm) it suffices to find some open cover of p,402

and convince that cover.403

I Remark 47 (Computational content of witnessed sets). A semitopology from Definition 1 is404

just some points and some open sets. This in and of itself carries no computational structure,405

and a simple example illustrates this point. Let the uncomputable semitopology have406

P = N and have open sets generated as unions of uncomputable subsets of N. This is a407

semitopology and by design it is uncomputable. It is not a topology since the intersection of408

two uncomputable subsets need not be uncomputable.409

Witnessed sets (Definition 29) make semitopologies computationally tractable, in the410

sense made formal by Propositions 36 and 42 (which show that algorithms exist to compute411

open and closed sets) and by the remarkable Theorem 43 (which shows intuitively that412

witness semitopologies behave locally like finite sets, even if they are globally infinite).413

I Remark 48. We take a moment to unpack the algorithms implicit in Propositions 36 and 42.414

Consider a witnessed set (P,W ). Then:415

CVIT 2016



23:12 The semitopology of heterogeneous consensus

To compute an open set in the witness semitopology, pick some p ∈ P and set R0 = {p}.416

Once each Ri is defined, branch over all p′ ∈ Ri and for each p′ pick some witness417

w(p′) ∈W (p′) and set Ri+1 = Ri ∪
⋃
p′∈Ri

w(p′). This algorithm is parallel and may run418

forever, but it is clearly an algorithm.419

To compute a closed set we proceed much as for the previous case, but (following420

Proposition 42 and Definition 38) we extend Ri to Ri+1 by adding those p such that421

every witness to p intersects with Ri.422

We make no claims to efficiency (we have not even set up machinery in this paper to measure423

what that would mean) but what matters is that for witness semitopologies such procedures424

exist, in contrast e.g. to the uncomputable semitopology from Remark 46.425

6 Conclusions426

6.1 Related work427

Topology428

Topologies are everywhere and we have found another one — almost, since semitopologies429

are not topologies, and the anti-separation properties which we study here seem different in430

flavour from the separation properties usually imposed in a topological context. Still, it is431

pleasing to see (yet another) application gain clarity and rigour thanks to topology-flavoured432

ideas, and to have this new mathematical structure to investigate.433

Event structures434

We discussed in Remark 32 how our notion of witness function is an infinitary generalisation of435

a special case of the enabling relation of event structures. This does not make semitopologies436

a special case of event structures, since the definitions are subtly different and we apply them437

in very different ways — but it does hold out a prospect in future work of transferring ideas438

from event structures to semitopologies, and to the instantiation of semitopologies to the439

Stellar network in particular. Perhaps also ideas may flow in the other direction as a new440

application of topology-flavoured ideas to event structures.441

The Consensus Task442

In the traditional Consensus Problem, every process proposes a value and every process must443

decide a value subject to two conditions:444

(Agreement) all processes that decide must decide the same value, and445

(Non-Triviality) every decided value must have been proposed by some process.446

The Consensus Problem can be identified as a task [7, Section 8.3.1], and in this context447

we can intuitively identify computing agreement with computing a continuous function on a448

semitopology (possibly starting from some non-continuous starting state), and non-triviality449

with a structural property implicit in Remark 46, that (in the terminology of that Remark)450

if p outputs v, then some process in a cover of p (see Remark 46) must have received the451

input v (see also Lemma 26). This suggests:452

I Definition 49. Suppose (P,Open) is a finite semitopology and V is a set of values. Then453

the semitopological consensus task is the triple (I,O,∆) where:454

I is the (pure) simplicial complex with facets simplices {(p0, v0), ..., (pn, vn)} where n = |P|,455

pi ∈ P and vi ∈ V for every 0 ≤ i ≤ n, and pi 6= pj for every i 6= j.456
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O is the (pure) simplicial complex with facets simplices o = {(p0, v0), ..., (pn, vn)} where457

n = |P|, pi ∈ P and vi ∈ V for every 0 ≤ i ≤ n, pi 6= pj for every i 6= j, and o, when seen458

as a function from P to V, is a continuous function on the semitopology (P,Open).459

∆ is the function mapping i ∈ I to the (pure) simplicial complex ∆(i) ∈ 2O such that460

∆({(p0, v0), ..., (pm, vm)}), 0 ≤ m ≤ |P|, is the simplicial complex with facets simplices461

o = {(p0, w0), ..., (pm, wm)} ∈ O where, for every 0 ≤ i ≤ m, there exists a cover (minimal462

open set) O ∈ Open for pi and 0 ≤ j ≤ m such that pj ∈ O and wi = vj.463

This definition can be extended to the case in which P is infinite when (P,Open) is a464

witness semitopology from Definition 30; Corollary 44 ensures that covers exist.465

Note that in contrast to the classic consensus task, the semitopological consensus task466

is not colourless [7, Section 4.1.4] in general: e.g. if we have two disjoint topens, it matters467

which process is assigned which output value, because the two topens must agree within468

themselves but may disagree between one another.469

Algebraic topology as applied to distributed computing tasks470

Continuing the discussion of tasks above, the reader may know that solvability results about471

distributed computing tasks have been obtained from algebraic topology, starting with the472

impossibility of k-set consensus and the Asynchronous Computability Theorem [8, 1, 17] in473

1993. See [7] for numerous such results.474

The basic observation is that states of a distributed algorithm form a simplicial complex,475

called its protocol complex, and topological properties of this complex, like connectivity, are476

constrained by the underlying communication and fault model. These topological properties477

in turn can determine what tasks are solvable. For example: every algorithm in the wait-free478

model with atomic read-write registers has a connected protocol complex, and because the479

consensus task’s output complex is disconnected, consensus in this model is not solvable [7,480

Chapter 4].481

This paper is also topological, but in a different way: we use (semi)topologies to study482

consensus in and of itself, rather than the solvability of consensus or other tasks in particular483

computation models. Put another way: the papers cited above use topology to study the484

solvability of distributed tasks, but this paper shows how the very idea of ‘distribution’ can485

be viewed as a (semi)topological structure.486

Of course we can now imagine that these might be combined — that there might be487

interesting and useful things to say about the topologies of distributed algorithms when488

viewed as algorithms on and in a semitopological space — and this is an explicit longer-term489

motivation for our research. Investigating this is future work.490

Fail-prone systems and quorum systems491

Given a set of processes P in a distributed system, a fail-prone system [15] (or adversary492

structure [9]) is a set of fail-prone sets F = {F1, ..., Fn} where, for every 1 ≤ i ≤ n, Fi ⊆ P.493

F denotes the assumptions that the set of processes that will fail (potentially maliciously)494

is a subset of one of the fail-prone sets. A quorum system for F is a set {Q1, ..., Qm} of495

quorums where, for every 1 ≤ i ≤ m, Qi ⊆ P, and such that496

for every two quorums Q and Q′ and for every fail-prone set F , (Q ∩Q′) \ F 6= ∅ and497

for every fail-prone set F , there exists a quorum disjoint from F .498

Several well-known distributed algorithms such as Bracha Broadcast [2] and PBFT [5] rely499

on a quorum system for a fail-prone system F in order to solve problems such as reliable500

broadcast and consensus assuming (at least) that the assumptions denoted by F are satisfied.501
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More recent models generalise fail-prone systems to heterogeneous settings in which502

processes make different failure assumptions and have different quorums. Those models503

include Asymmetric Fail-Prone Systems [3], Learner Graphs [19], Federated Byzantine504

Agreement Systems [16], Federated Byzantine Quorum Systems [6], and Personal Byzantine505

Quorum Systems [13]. The last three build on Stellar’s Federated Byzantine Agreement506

Systems, where quorums are obtained using quorum slices (in Stellar’s terminology), which507

are a special case of the notion of witness in Definition 29(2). Cobalt, SCP, Heterogeneous508

Paxos, and the Ripple Consensus Algorithm [14, 16, 19, 18] are consensus algorithms that509

rely on heterogeneous quorums or variants thereof. The Stellar network [12] and Ripple [18]510

are two global payment networks that use heterogeneous quorums to achieve consensus511

among an open set of participants.512

The literature on fail-prone systems and quorum systems is most interested in synchron-513

isation algorithms for distributed systems and has been less concerned with their deeper514

mathematical structure. Some work by the second author and others [13] gets as far as515

proving an analogue to Lemma 9 (though we think it is fair to say that the presentation in516

this paper much simpler and more clear), but it fails to notice the connection with topology517

and the subsequent results which we present in this paper. So we can view this paper as518

beginning an in-depth mathematical study of heterogeneous quorum systems.519

6.2 Comments and future work520

Heterogeneous quorum systems are an empirical fact of many distributed systems (see the521

references in the two paragraphs above), and we believe we can make a strong claim in522

this paper to have proposed an illuminating and mathematically tractable analysis of what523

they are: semitopologies are novel but sit in a well-understood mathematical landscape, the524

proofs come out well, and witness functions go some way to explaining at a high level why525

heterogeneous quorum systems are empirically practical in the real world.526

The next step, which is current work and will be presented in a longer paper, is to527

study the mathematical and computational content of arriving at consensus, starting from a528

non-consensus state. In the language of this paper: given a possibly non-continuous function529

out of a semitopology, what does it mean to find a ‘nearby’ function that is continuous (i.e.530

represents a consensus state) that is in some sense close to and related to the starting state;531

and how, and in what conditions, can a nearby continuous function be computed? We hint532

at this in Remarks 12 and 46 where we note that such an analysis might do well to start533

locally by studying sets of open covers of points; this is future work.534

We also hope this paper may mark a beginning for new discussions, especially based on535

connections with topologies and perhaps event structures — including importing algorithms536

to improve implementations of heterogeneous quorum systems, exporting new and interesting537

applications, and gaining broader and deeper understandings of the mathematical structures538

and connections that seem to be involved here.539
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