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Semantic nominal terms

Murdoch J. Gabbay and Dominic P. Mulligan

1 Introduction

Nominal terms [UPG04] extend first-order syntax with binding symbols. They have
been quite widely applied; examples include [FG07,CU04,LP08,Mat07]. Much of the
flavour of first-order terms is preserved, and we can represent informal statements
like

“If y 6∈ fv(t) then λx.t is α-equivalent with λy.[y/x]t”, and
“How can we choose t and u to make λx.λy.(y t) equal to λx.λx.(x u)?”.

Nominal terms use a characteristic combination of features: Two levels of variable:
atoms a and unknowns X. Freshness conditions a#X and permutations π. An ab-
straction [a]r with a distinctive α-equivalence based on freshness and permutation.

The first statement above is rendered in nominal terms as the equality judgement
b#X ` [a]X =α [b](b a) ·X. a and b denote atoms, which represent the ‘x’ and ‘y’;
X denotes an unknown, it represents the ‘t’; b#X is a freshness side-condition, it
represents the ‘y 6∈ fv(t)’; (b a) is a permutation meaning ‘map a to b and b to a’,
it represents the ‘[y/x]’ (it can do this, since we assume y 6∈ fv(t)).

The second statement above is rendered as the nominal unification problem
{λ[a]λ[b](b X) ?=? λ[a]λ[a](a Y )}.

Nominal terms display some curious properties:
−The native notion of equivalence of first-order syntax is syntactic identity. For
nominal terms, a notion of derivable α-equality is also needed. We cannot ‘just
quotient terms by α-equality’ because α-equality is not a property of terms but
of terms-in-freshness-contexts. Thus [a]X = [b](b a) ·X has no meaning, only, for
example, ∅ ` [a]X = [b](b a) ·X and b#X ` [a]X = [b](b a) ·X have meaning (the
former is not derivable, the latter is).
−With first-order and higher-order terms, it is always possible to ‘just pick a fresh
name’, and therefore we can ‘always α-convert’.

In nominal terms it may not be possible to ‘just pick a fresh atom’ or ‘just α-
convert’. For example in the empty freshness context ∅, there is no a such that
a#X, and there is no atom b such that we can α-convert a to b in ∅ ` [a]X. 1

Nominal terms also raise a question which has puzzled us for some time. Atoms
in nominal terms are denoted by themselves in the cumulative hierarchy (Defini-
tion 2.1, or [GP01]). Unknowns take denotation using a valuation (the standard
first-order semantics for variables). There is nothing wrong with this but we find
it inelegant because it is asymmetric with the denotation of atoms (and also, using
functions to give semantics to unknowns is a circularity we want to avoid; one moti-
vation of nominal terms is to axiomatise function binding). We want an alternative

1 We encountered this before: In [GM07, Figure 2, axiom (fr)] and in [GM09, e.g. Lemma 25 and Theorem
33] we ‘freshly extend’ the freshness context. In [GL08,FG05] we can extend nominal terms syntax with an
explicit ‘fresh’ binder.
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denotation of unknowns, which uses fixed elements in the cumulative hierarchy just
as for atoms.

We will examine these issues through the prism of the following idea: nominal
unknowns denote infinite lists of distinct atoms. This yields a structure in which
unknowns have a single fixed ‘nominal’ denotation, very much like atoms (and un-
like variables). We do not have to add an extra class of unknowns to the cumulative
hierarchy; the denotation for unknowns is built out of what is already there. Fresh-
ness contexts are built in to terms. α-equivalence coincides with syntactic identity
(for example in Definition 2.13, [a]a and [b]b are syntactically identical semantic
nominal terms; in [UPG04] they are syntactically distinct nominal terms, which
happen to be α-equivalent). We also generalise the nominal substitution action,
such that capture-avoiding and capturing substitution fuse together.

2 Terms and semantics

Definition 2.1 Fix an uncountably infinite set A of atoms. a, b, c, . . . will range
over distinct atoms (we call this the permutative convention).

If X is a set write P(X) for the powerset of X. Let α and β range over ordinals.
Define the cumulative hierarchy universe by transfinite induction:

Uβ+1 = Uβ ∪ P(Uβ) Uβ = A ∪
⋃
α<β

Uα (β a limit ordinal) U =
⋃
α

Uα

x, y, z, . . . will range over elements of U . 2 Note that 0 is a limit ordinal, so U0 = A.

Remark 2.2 Standard set-wise constructions are definable within U . In particular,
we can form ordered tuples (x1, . . . , xn), the set of integers Z, function-sets, and so
on. For details see [Joh87]. i will range over elements of Z.

Remark 2.3 [GP01] uses a universe built on a countable set of atoms. For our
purposes here, we just want access to infinite lists of atoms. A generalisation of
‘finite support’ by Cheney [Che04, Section 3, support ideals] could be used, which
admits infinite support without using uncountably many atoms. Definition 2.1
follows [Gab07], which includes further treatment of the theory of U .

Definition 2.4 A permutation is a bijection π on atoms such that {a | π(a) 6= a}
is finite. π, π′, π′′ will range over permutations (it may be that π = π′).

Write id for the identity permutation, such that id(a) = a always. Write ◦ for
functional composition, so (π◦π′)(a) = π(π′(a)) always. Write π-1 for the inverse
of π. As standard [GP01] write (b a) for the swapping, such that (b a)(a) = b,
(b a)(b) = a, and (b a)(c) = c for all other c.

Definition 2.5 Define a permutation action by: π ·a = π(a) and π ·U = {π ·x |
x ∈ U} for U ∈ U \ A.

Definition 2.6 Write a#x when {b | (b a) · x 6= x} is countable. Write supp(x) =
{a | ¬a#x}; supp(x) is the set of a ∈ A such that {b | (b a) · x = x} is uncountable.

2 This is not the finitely-supported hierarchy of [GP01], but we do not need to restrict to finitely- or
countably-supported elements. We need only use those parts of U which we find convenient.
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Definition 2.7 and Lemmas 2.8 and 2.9 mirror [GP01,Gab07].

Definition 2.7 Define [a]x = {(a, x)} ∪ {(b, (b a) · x) | b#x}.

Lemma 2.8 supp([a]x) = supp(x) \ {a}.

Lemma 2.9 [a]x = [b]y if and only if (b a) · x = y and b#x.

Definition 2.10 Let Aω range over injective functions X from Z to A. We call
these semantic unknowns. X,Y, Z, . . . will range over semantic unknowns.

We do not introduce a distinct class of tokens as in [UPG04, Definition 2.3].
Semantic unknowns are constructible in U with integers and injective functions
(‘for free’, in the cumulative hierarchy). Semantic unknowns can be considered as
infinite lists; X is identified with (. . . , X(−2), X(−1), X(0), X(1), X(2), . . .).

Lemma 2.11 π ·X maps i to π(X(i)). Also, supp(X) = {X(i) | i ∈ Z}.

In [UPG04, Definition 2.4], ‘π ·X’ is written, but this is just a pair of π and X

(π ‘acts’ when X is substituted for a term in in Definition 2.13, but still suspends
on unknowns). In contrast, in Lemma 2.11 π ·X is π acting on the element X ∈ U .

Remark 2.12 supp(X) = supp(Y ) does not imply X = Y . supp(X) = supp(Y )
does not imply that there exists a permutation π such that Y = π ·X. We provide
counterexamples: Fix a semantic unknown X. Consider Y mapping i to X(i+ 1).
Then supp(X) = supp(Y ) but X 6= Y ; there is no permutation π such that Y =
π ·X.

Thus X generates infinitely many ‘incomparable’ semantic unknowns with the
same support. We can use this to inject nominal terms-in-context into semantic
nominal terms. Details of the construction will be in a full paper; the reader can
view [DGM09, Section 6], where the construction is carried out in a similar situation.

Definition 2.13 Define semantic nominal terms by:

r, s, t, . . . ::= a | X | [a]r | (r1, . . . , rn) | i ∈ Z

r, s, t will range over semantic nominal terms. 3

Here, [a]r denotes abstraction in the sense of [GP01] and Definition 2.7.

Lemma 2.14 π · r is inductively characterised by:

π·a=π(a) (π·X)(i)=π(X(a)) π·[a]r=[π(a)]π·r π·(r1, . . .)=(π·r1, . . .) π·i=i

Corollary 2.15 supp(r) is inductively characterised by:

supp(a) = {a} supp(X) = {X(i) | i ∈ Z} supp([a]r) = supp(r) \ {a}
supp(r1, . . . , rn) =

⋃
1≤i≤n

supp(ri) supp(i) = ∅

In ‘ordinary’ nominal terms, to generate a fresh atom we must extend the
freshness context (for instance, see [GM09, Definition 24]). Here, X has support
supp(X), but A \ supp(X) is infinite so an infinite supply of fresh atoms is guaran-
teed, and it is always possible to α-convert:

3 We could take term-formers as primitive, but tuples and integers are more convenient here.
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Theorem 2.16 For every r, there exist an infinite number of a such that a#r.
Also, for every a and r there exist uncountably many b such that there exists

some s such that [a]r = [b]s.

Proof The first part is by an easy induction on r. We consider only the case of X.
supp(X) is countable and A is uncountable. The result follows.

The second part follows from Lemma 2.9, taking s = (b a) · r. 2

Some results from [UPG04], which have relatively long proofs by induction on
derivable α-equality, become trivial in the ‘semantic’ world, because α-equality co-
incides now with identity. For example: “If π(a) = π′(a) for every a ∈ supp(r),
then π · r = π′ · r” [UPG04, Lemma 2.8] is now an easy property of supporting sets
[GP01, Proposition 3.4]. “If r = s then π · r = π · s” [UPG04, Theorem 2.11] is
a fact of equality. This saving of labour scales well; the authors wish it had been
available in [GM09] and [GM08], and look forward to using it in future.

3 A new, more general substitution action

Definition 3.1 Suppose S ⊆ A. Specify π/S by:
− If a ∈ S then (π/S)(a) = π(a).
− If a 6∈ S and π-1(a) 6∈ S then (π/S)(a) = a.
− If a 6∈ S and π-1(a) ∈ S then (π/S)(a) = an, where an ∈ S and there exist a1,
. . . , an−1 such that π(a) = a1 and ai 6∈ S and ai+1 = π(ai) for i < n.

If π = (a b c d e)(f g) (π maps a to b to c to d to e to a, and f to g to f), then
π/{a} = (a b) π/{a, b} = (a b c) π/{a, c} = (a b c d) π/{a, f} = (a b)(f g).

Definition 3.2 Write Orb(X) for {π · X | all π}; call this the (permutation)
orbit of X. A substitution is a function from semantic unknowns to terms such
that for each orbit Orb(X) there exists some representative X ∈ Orb(X) such
that σ(π ·X) = (π/supp(X)) · σ(X) for all π.

σ, σ′, σ′′, . . . will range over substitutions. Write [X 7→ t] for the function map-
ping π ·X to (π/supp(X)) · t, and all other Y to Y .

In [UPG04] substitutions must observe a freshness context (e.g. the ‘∇′ ` θ(∇)’
in Lemma 2.14, and ‘∇ ` a#θ(t)’ in Definition 3.1 of [UPG04]). In the semantic
world this corresponds with insisting that supp(σ(X)) ⊆ supp(X) always; then
(π/supp(X)) · σ(X) = π · σ(X) (by [GP01, Proposition 3.4]) and semantic nominal
terms substitution specialises to (a semantic casting of) nominal terms substitution.

Definition 3.3 Define a substitution action by:

aσ = a Xσ = σ(X) (r1, . . . , rn)σ = (r1σ, . . . , rnσ) iσ = i

([a]r)σ = [b](b a) · (rσ) (b#r, b#rσ)

In the final clause, we make an arbitrary fixed choice of fresh b for each r and rσ.

Suppose that a, b ∈ supp(X) and c, d 6∈ supp(X). Then

X[X 7→ a] = a ([a]X)[X 7→ a] = [b]b = [a]a ([c]X)[X 7→ c] = [d]c
([a][c]X)[X 7→ (a, c)] = [a][d](a, c).
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Our substitution is capturing and capture-avoiding; in the examples above a is
captured, and c is not, because a ∈ supp(X) and c 6∈ supp(X).

Theorem 3.4 If a ∈ supp(X) then ([a]X)σ = [a]σ(X).
If a 6∈ supp(X) then ([a]X)σ = [b]σ(X), for b#X and b#σ(X).

Proof Suppose a ∈ supp(X). Recall our choice of fresh b for X and σ(X). Note
((b a)/supp(X)) = (b a). Using Lemma 2.9, ([a]X)σ = [b](b a) · (Xσ) = [a]σ(X).

Suppose a 6∈ supp(X). Recall our choice of fresh b for X and σ(X). Note
((b a)/supp(X)) = id . Then ([a]X)σ = [b]id · (Xσ) = [b]σ(X). 2

Further properties will be described in a full paper.
Nominal terms can be interpreted in semantic nominal terms using a construc-

tion like that in [DGM09] (Remark 2.12). The practical consequences of seman-
tic nominal terms are unclear. Computationally, semantic nominal terms are a
step back relative to nominal terms, but they are not computationally prohibitive.
We can reason and program on them using well-founded induction in the sense of
[GP01]; we should think of them as finite trees-with-binding. Infinite structure en-
ters the trees through the the labels, which may include infinite lists of atoms, but
that does not place implementation out of the question — consider infinite precision
floating point arithmetic.

Semantic nominal terms provide a new semantics for nominal terms. As often
happens, we trade abstraction for computational properties. However, it is good to
have an abstract model to go with our concrete syntax, and the model has inherent
interest, explaining nominal unknowns in terms of the existing universe instead of
as variables ranging over elements of that universe.
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