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Abstract. We present a sound and complete model of lambda-calculus
reductions based on structures inspired by modal logic (closely related to
Kripke structures). Accordingly we can construct a logic which is sound
and complete for the same models, and we identify lambda-terms with
certain simple sentences (predicates) in this logic, by direct compositional
translation. Reduction then becomes identified with logical entailment.
Thus, the models suggest a new way to identify logic and computation.
Both have elementary and concrete representations in our models; where
these representations overlap, they coincide.
In a concluding speculation, we note a certain subclass of the models
which seems to play a role analogous to that played by the cumulative
hierarchy models in axiomatic set theory and the natural numbers in
formal arithmetic — there are many models of the respective theories,
but only some, characterised by a fully second order interpretation, are
the ‘intended’ ones.

1 Introduction

We try to unify logic and computation by using a class of structures which
are (very nearly) Kripke structures. It turns out that these structures allow
sound and complete interpretations of both a logic (an extension of second-order
propositional logic), and computation (the untyped λ-calculus). Furthermore, we
are able to compositionally translate λ-terms and formulae into our logic, and
when we do so, the ‘computational’ reduction� maps to logical entailment, and
λ maps to a kind of logical quantifier.

Combining logic and computation is of course not a new idea. The two notions
are clearly related and intertwined, and there are good theoretical and practical
reasons to be interested in these questions.

A naive combination of logic and computation can lead to some famous con-
tradictions. Consider untyped λ-calculus quotiented by computational equiva-
lence, e.g. β-equivalence. Suppose also the naive addition of some basic logical
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operations, e.g. negation ¬. Then we can form a term encoding the Liar paradox
L = λp.¬(p·p)·λp.¬(p·p). Then L = ¬L and from this a contradiction quickly
follows. This is, in a nutshell, the argument in [15].3

We can persist with adding logic to λ-terms. This motivated the development
of types, as in higher-order logic [21], where the paradox is avoided by restricting
which terms can receive an interpretation. Also, with the same intuitions but
different design decisions, illative combinatory logics [3,2] can admit an untyped
system but restrict which λ-terms count as ‘logical’.

Conversely, we can view, e.g. the negation of a λ-term as a category error,
and think of computation as an object or vehicle of logical systems. So for exam-
ple rewriting logic has a logic with an oriented equality � representing reduc-
tion; whereas deduction modulo [4,7] has a background ‘computational engine’
which may be triggered to efficiently compute equalities between terms, but the
logic is modulo this and reasons up to computational equivalence. In both cases
the interpretations of the logical and computational parts of the languages are
separated, like sentences are separated from terms in first-order languages and
semantics.

The model of logic and computation of this paper is like rewriting logic in
that we explicitly represent computations (reductions) by an arrow,→. However,
in line with the original intuition equivocating logic and computation, → is the
same arrow as is used to represent logical implication.

In our models, λ-terms are interpreted as sets on a domain and → is in-
terpreted as ‘complement union’. Entailment and reduction are both therefore
represented in the models as subset inclusion (see Definition 2.13). That is, this
arrow → really is standard implication, just as the reader is used to. We discuss
in Section 5.1 how this relates to the paradox above.

The kernel of the ideas in this paper is a class of models, presented in Sec-
tion 2.1; the rest of the paper can be considered to arise just by considering
their structure. It turns out that it is possible to consider λ-abstraction as a
kind of quantifier and to consider reduction as subset inclusion (Section 2.2).
The models are sets-based: The usual logical connectives such as conjunction,
negation, and quantification are interpreted in the models as operations on sets;
and logical entailment is interpreted as subset inclusion. We obtain an extension
of classical second-order propositional logic with quantifiers (Section 2.3). We
make our logic rich enough that it captures the structure we used to interpret λ-
abstraction and reduction; because reduction is interpreted as subset inclusion,
it maps directly to logical entailment.

The idea of modelling λ-reduction is not new. Models of reduction where
terms are interpreted as points in an ordering are discussed by Selinger in [19];
and models, based on graph models, where terms are interpreted as sets on a do-
main of functions, are given in [16]. The models in Section 2 have similarities with
these. One significant difference is that our models have a Boolean structure, in

3 Historically, Church wanted to base maths on the notion of function as opposed to a
notion of set. The λ-calculus was invented as a foundation for logic, not a foundation
for computation. [15] proved that this foundation was logically inconsistent.



particular every denotation has a complement and a universal quantification. So
the denotational domains for λ-terms also display the structure of denotational
domains of propositions of classical logic.

So: logic and computation are not identical in this story (we do not claim
that logic is computation, or vice versa) — but the two notions overlap in the
models, and in this overlap, they coincide.

One possible use for our models is that they might provide a relatively el-
ementary and systematic framework for extensions of the pure λ-calculus with
‘logical’ constructs, and indeed the design of other logics. We do not consider
that there is anything sacred about the particular languages we use in this paper.
However, they do have the virtues of being simple and well-behaved. In particu-
lar we can give tight soundness and completeness results for both the logic and
the λ-calculus (Theorems 2.27 and 4.13).

The structure and main results of this paper are as follows: We develop a
simple model theory and the syntax it motivates in Section 2; in Section 3 we
verify that we can faithfully translate a system of λ-reduction into this syntax
(and thus obtain a new model theory for λ-reduction); in Section 4 we prove
completeness for an axiomatisation of the model theory. We conclude with some
comments on the significance of the models presented here both for current and
further research.

2 The models, computation, logic

2.1 Frames

Definition 2.1 If W is a set, write P(W ) for the set of subsets of W .
A frame F is a 3-tuple (W , •,H) of

−W a set of worlds,

− • an application function from W ×W to P(W ), and

−H ⊆ P(W ).

Remark 2.2 Frames are not monoids or any other form of applicative structure
— an applicative structure would map W ×W to W and not, as we do here, to
P(W ). One reasonable way to think of • is as a non-deterministic ‘application’
operation, although we suggest a better way in the concluding section 5.2 (where
we also discuss in more detail the differences between frames and other known
structures that ‘look’ like frames).

Subsets of W will serve as denotations of sentences (Definitions 2.7 and 2.13).
We can interpret both computational and logical connectives as elementary oper-
ations on sets of worlds (e.g. we interpret logical conjunction as sets intersection).

Remark 2.3 H ⊆ P(W ) (‘H’ for ‘Henkin’) plays a similar role to the structure
of Henkin models for higher-order logic [1,12,20]. This makes our completeness
results possible and is a famous issue for second- and higher-order logics. Power-
sets are too large; for completeness results to be possible we must cut them down



— at least when we quantify. This is why in Definitions 2.7 and 2.13, the binders
restrict quantification from P(W ) down to H. More on this in the concluding
section 5.2.

The reader familiar with modal logic can think of • as a ternary ‘accessibility
relation’ R such that Rw1w2w3 if and only if w3 ∈ w1 • w2. We can also think
of • is as a non-deterministic ‘application’ operation, but note that frames are
not applicative structures — an applicative structure would map W ×W to W ,
whereas in the case of frames, W ×W maps to P(W ). However, • does induce
an applicative structure on P(W ):

Definition 2.4 Suppose F = (W , •,H) is a frame. Suppose S1,S2 ⊆ W and
w ∈W .

The function • induces functions from W × P(W ) and P(W ) × P(W ) to
P(W ) by:

w • S1 =
⋃
{w • w′ | w′ ∈ S1} S1 • S2 =

⋃
{w1 • w2 | w1 ∈ S1, w2 ∈ S2}

2.2 λ-terms

Definition 2.5 Fix a countably infinite set of variables. p, q, r will range over
distinct variables (we call this a permutative convention)

Define a language Lλ of λ-terms by:

t ::= p | λp.t | t·t

λp binds in λp.t. For example, p is bound (not free) in λp.p·q. We identify terms
up to α-equivalence.

We write t[p::=s] for the usual capture-avoiding substitution. For example,
(λp′.q)[q::=p] = λp′.p, and (λp.q)[q::=p] = λp′.p where p′ is a fixed but arbitrary
choice of fresh variable.

Definition 2.6 Suppose F = (W , •,H) is a frame. A valuation (to F ) is a map
from variables to sets of worlds (elements of P(W )). v will range over valuations.

If p is a variable, S ⊆ W , and v is a valuation, then write v[p::=S] for the
valuation mapping q to v(q) and mapping p to S.

Definition 2.7 Define an denotation of t inductively by:

[[p]]v = v(p) [[t·s]]v = [[t]]v • [[s]]v

[[λp.t]]v = {w | w • h ⊆ [[t]]v[p::=h] for all h ∈ H}

Reduction on terms is defined in Figure 1 on page 9.

Remark 2.8 We will be particularly interested in models where the denotation
of every λ-term is a member of H. This is because Definition 2.7 interprets λ as
a kind of quantifier over all members of H. β-reduction then becomes a form of
universal instantiation and so requires that all possible instantiations (i.e. the
denotation of any term) is a member of H. More on this in Section 5.2.



Lemma 2.9 β-reduction and η-expansion are sound, if we interpret reduction
as subset inclusion:

β-reduction [[λp.t]]v • [[s]]v ⊆ [[t[p::=s]]]v (if [[s]]v ∈ H)
η-expansion [[t]]v ⊆ [[λp.(t·p)]]v (p not free in t)

Proof. By routine calculations from the definitions. We prove a more general
result in Theorem 2.23.

Remark 2.10 It may help to give some indication of what the canonical frame
used in the completeness proof for Lλ (Definition 3.5) looks like: worlds are β-
reduction-η-expansion closures of λ-terms t, and for each h ∈ H there exists
some t such that h is the set of worlds that contain t.

As we emphasised in Remark 2.2, our frames are not applicative structures,
and the denotations of λ-terms are not worlds, but sets of worlds. Thus, in the
canonical frame, the denotation of a λ-term t is not the set of its reducts (i.e.
not some world in the canonical frame). Rather, the denotation of t is the set
of all worlds that reduce to t.

We can identify a world with its ‘top’ term, so roughly speaking, in the
canonical model a world w ∈ W is a term t, and an h ∈ H (or any denotation)
is a set of all terms which reduce to some particular term s.

Remark 2.11 We suggest an intuition why our models ‘have to’ satisfy β-
reduction and η-expansion. Both β-reduction and η-expansion lose information:
in the case of β we perform the substitution as is usual; in the case of η-expansion
λp.(t·p) has lost any intensional information that might reside in t. So we con-
sider validating η-expansion as an interesting feature, and not necessarily a bug.

Others have also noted good properties and justification in models for η-
expansion [14]. It is possible to refine the models to eliminate η-expansion, at
some cost in complexity; see the Conclusions.

We will fill in more details of the semantics of λ-terms in Section 2.4, including
the role of H, once we have built the logic in Section 2.3.

2.3 The logic

Definition 2.12 Define a language L with sentences φ by:

φ ::= p, q, r . . . | φ→ φ | ∀p.φ | 2φ | φ·φ | φ� φ | ⊥

∀p binds in ∀p.φ. For example, p is bound in ∀p. (p·q). We identify sentences up
to α-equivalence.

We now give notions of logical entailment and denotation for L. In Section 2.4 we
discuss expressive power and in Sections 3 and 4 we sketch proofs of soundness
and completeness.



Definition 2.13 Suppose F = (W , •,H) is a frame and v is a valuation to F .
Define [[φ]]v the denotation of φ by:

[[p]]v = v(p) [[⊥]]v = ∅
[[φ·ψ]]v = [[φ]]v • [[ψ]]v [[φ� ψ]]v = {w | w • [[φ]]v ⊆ [[ψ]]v}

[[φ→ ψ]]v = (W \ [[φ]]v) ∪ [[ψ]]v [[∀p.φ]]v =
⋂
h∈H [[φ]]v[p 7→h]

[[2φ]]v =

{
W [[φ]]v = W

∅ [[φ]]v 6= W

Remark 2.14 Intuitions are as follows:

− p, q, r, are variables ranging over subsets of W .

− φ→ ψ is classical implication.

−∀p.φ is a quantification over elements of H. Think of ∀p.φ as ‘the intersection
of the denotation of φ for all of a pre-selection of possible denotations of p’. The
possible denotation of p are subsets of W and not elements of the W ; pre-
selection is done by H, which identifies those denotations that ‘exist’ in the
sense of being in the ranges of the quantifiers. More on this later.

−2φ is a notion of necessity. 2φ is either W or ∅ depending on whether φ is
itself W or not.
2 is the modality of S5 [11].

− φ·ψ is a notion of application; the construction in Definition 2.4 ensures that
the interpretation of · it is monotonic with respect to subset inclusion.4

The maps φ·- and -·ψ behave like the box operator of the modal logic K.

−� is the right adjoint to · with respect to →. It is easily verified from Def-
inition 2.13 that [[φ·ψ]]v ⊆ [[µ]]v exactly when [[φ]]v ⊆ [[ψ � µ]]v. So φ � ψ is
interpreted as the largest subset of W that when applied to φ, is included in ψ.

L is a second-order classical propositional logic enriched with the necessity
modality 2 from S5, and notions of application · and its right adjoint � (with
respect to logical implication →).

When we mix all these ingredients, interesting things become expressible, as
we now explore.

2.4 Expressivity

Remark 2.15 We can express truth, negation, conjunction, disjunction, if-and-
only-if and existential quantification as below. We also unpack Definition 2.13
to see this denotationally:

> = (⊥→⊥) [[>]]v = W
¬φ = φ→⊥ [[¬φ]]v = W \ [[φ]]v

φ ∧ ψ = ¬(φ→¬ψ) [[φ ∧ ψ]]v = [[φ]]v ∩ [[ψ]]v

φ ∨ ψ = (¬φ)→ ψ [[φ ∨ ψ]]v = [[φ]]v ∪ [[ψ]]v

∃p.φ = ¬(∀p.¬φ) [[∃p.φ]]v =
⋃
h∈H [[φ]]v[p 7→h].

4 That is, [[φ]]v ⊆ [[φ′]]v and [[ψ]]v ⊆ [[ψ′]]v implies [[φ·ψ]]v ⊆ [[φ′·ψ′]]v.



Note that ∃. quantifies over elements of H. This is all standard, which is the
point.

Remark 2.16 For the reader familiar with the expression of product and other
types in System F [10], note that [[¬(φ → ¬ψ)]]v 6= [[∀p. (φ → ψ → p) → p]]v

in general; H may be too sparse. The equality holds in a frame if [[φ]]v ∈ H for
every φ. We can specify this condition as an (infinite) theory using an ‘existence’
predicate E (Definition 2.18).

Definition 2.17 We can express that two predicates are equal by: φ ≈ ψ =
2(φ↔ ψ).

We unpack the denotation of φ ≈ ψ and for comparison also that of φ↔ ψ
((φ→ ψ) ∧ (ψ→ φ)):

[[φ ≈ ψ]]v =

{
W [[φ]]v = [[ψ]]v

∅ [[φ]]v 6= [[ψ]]v

[[φ↔ ψ]]v = {w ∈W | (w ∈ [[φ]]v ∧ w ∈ [[ψ]]v) ∨ (w 6∈ [[φ]]v ∧ w 6∈ [[ψ]]v)}

Intuitively, φ↔ ψ holds at the worlds where φ and ψ are either both true or
both false, whereas φ ≈ ψ represents the statement ‘φ and ψ are true of the
same worlds’.

Definition 2.18 We can express that a predicate is in H by Eφ = ∃p. (φ ≈ p),
read ‘φ exists’. This is usually called an existence predicate [13, Ch.16].

It is not hard to verify that Eφ has the following denotation:

[[Eφ]]v =

{
W [[φ]]v ∈ H
∅ [[φ]]v /∈ H

We are now ready to interpret λ-abstraction in our logic. We also mention a
notion of matching, because it comes very naturally out of the logic as a ‘dual’
to the construction for λ:

Definition 2.19 λp.φ = ∀p. (p� φ) match p.φ = ∀p. (φ� p).

Intuitively, λp.φ reads as: ‘for any p, if p is an argument (of the function in-
stantiated at this world), then we get φ’. As a kind of inverse to this, match p.φ
reads as: ‘for any p, if φ is an argument, then we get p’. So match p.φ is a kind
of pattern-matching or inverse-λ.

λis a logical quantifier, so we name it reversed by analogy with the reversed
A and E of universal and existential quantification.

Theorem 2.20 − [[ λp.φ)]]v = {w | w • h ⊆ [[φ]]v[p 7→h] for all h ∈ H}
− [[match p.φ]]v = {w | w • [[φ]]v[p 7→h] ⊆ h for all h ∈ H}



Proof.

[[ λp.φ]]v = [[∀p. (p� φ)]]v Definition 2.19
=
⋂
h∈H [[p� φ]]v[p 7→h] Definition 2.13

=
⋂
h∈H{w | w • [[p]]v[p 7→h] ⊆ [[φ]]v[p 7→h]} Definition 2.13

= {w | w • h ⊆ [[φ]]v[p 7→h] for all h ∈ H} Definition 2.4

The case for match p. is similar.

Lemma 2.21 If p is not free in φ, then for any h ∈ H, [[φ]]v = [[φ]]v[p 7→h].

Proof. An easy induction on φ.

Lemma 2.22 (Substitution Lemma) For any v, [[φ[p::=ψ]]]v = [[φ]]v[p 7→[[ψ]]v ].

Proof. By induction on φ, we present the cases for ∀q and ·:

[[(∀q.µ)[p::=ψ]]]v =
⋂
h∈H [[µ[p::=ψ]]]v[q 7→h] Definition 2.13

=
⋂
h∈H [[µ]]v[q 7→h,p 7→[[ψ]]v[q 7→h]] Induction Hypothesis

=
⋂
h∈H [[µ]]v[q 7→h,p 7→[[ψ]]v] Lemma 2.21

= [[∀q.µ]]v[p 7→[[ψ]]v] Definition 2.13

[[(µ1·µ2)[p::=ψ]]]v = [[µ1[p::=ψ]]]v • [[µ2[p::=ψ]]]v Definition 2.13
= [[µ1]]v[p 7→[[ψ]]v] • [[µ2]]v[p 7→[[ψ]]v ] Induction Hypothesis
= [[µ1·µ2]]v[p 7→[[ψ]]v] Definition 2.13

Theorem 2.23 The following hold in any frame:

(β-reduction) [[( λp.φ)·ψ]]v ⊆ [[φ[p::=ψ]]]v (for [[ψ]]v ∈ H)
(η-expansion) [[φ]]v ⊆ [[ λp. (φ·p)]]v (for p not free in φ)
(matching) [[(match p.φ)·(φ[p::=ψ])]]v ⊆ [[ψ]]v (for [[ψ]]v ∈ H)

Proof.

[[∀p. (p� φ)·ψ]]v

= [[∀p. (p� φ)]]v • [[ψ]]v Definition 2.13
=
⋂
h∈H{w | w • h ⊆ [[φ]]v[p 7→h]} • [[ψ]]v Definition 2.13

⊆ {w | w • [[ψ]]v ⊆ [[φ]]v[p7→[[ψ]]v]} • [[ψ]]v [[ψ]]v ∈ H
⊆ [[φ]]v[p 7→[[ψ]]v ] Definition 2.4
= [[φ[p::=ψ]]]v Lemma 2.22

[[φ]]v ⊆ {w | w • S ⊆ [[φ]]v • S for any S ∈ H} Definition 2.4
=
⋂
h∈H{w | w • S ⊆ [[φ·p]]v[p 7→h]} p not free in [[ψ]]v

= [[ λp. (φ·p)]]v Definition 2.19

(matching) follows by a similarly routine calculation.

Corollary 2.24 − If p is not free in φ and [[⊥]]v ∈ H then [[(match p.φ)·φ]]v =
∅.



(Eq) t� t (β) (λp.t)·s� t[p::=s] (η) t� λp.(t·p) (p not free in t)

(ξ)
t� s

λp.t� λp.s (cong)
t1 � s1 t2 � s2
t1·t2 � s1·s2 (trans)

t1 � t2 t2 � t3
t1 � t3

Fig. 1: λ-reduction

− If [[ψ]]v ∈ H then [[(match p.φ)·(( λp.φ)·ψ)]]v ⊆ [[ψ]]v.

−match p. p = λp. p.

Proof. The first two parts follow easily from Theorem 2.23. The third part follows
unpacking definitions, since both are equal to ∀p. (p� p).

Read (match p.φ)·µ as returning the intersection of all ψ such that µ is equiv-
alent to φ[p::=ψ]. If there are many such ψ, e.g. when p is not free in φ, then
(match p.φ)·µ→ψ for all such ψ and so (match p.φ)·µ is included in their inter-
section.

Definition 2.25 Define a translation τ from Lλ (Definition 2.5) to L (Defini-
tion 2.12) by:

pτ = p (t1·t2)τ = (tτ1 ·tτ2) (λp.t)τ = λp. tτ

Definition 2.26 Write t� s if t� s is derivable using the axioms of Figure 1.

Our implementation of λ is sound in the following sense:

Theorem 2.27 t � s only if [[tτ → sτ ]]v = W for all v and F = (W , •,H)
such that [[uτ ]]v ∈ H for all u.5

Proof. This follows (mostly) by Theorem 2.23.

3 Completeness for λ-reduction

In this section we show that the axiomatisation of λ-reduction of Figure 1 is
complete for our interpretation of λ-terms in terms of λ. We do this by proving
the converse of Theorem 2.27.

To complete Theorem 2.27 we must show that if t 6� s then there is a frame
and valuation v where [[uτ ]]v ∈ H for all u and [[tτ → sτ ]]v 6= W (where τ is the
translation of Definition 2.25).

Definition 3.1 Say a λ-term is complex if it contains term formers, i.e. is not
simply a variable. The size of a λ-term is the number of term formers within it.

5 In other words, if [[E(uτ )]]v = W for all terms u.



Now we can begin the construction of the desired frame. First we add in-
finitely many new variables r1, r2 . . . to the language Lλ. Since the language is
countable we can enumerate its complex terms t1, t2 . . . and these new variables
r1, r2 . . . . We describe a one-one function f from terms to variables.

f(ti) = rj where j is the least number such that j > i and rj is not free
in ti nor is the value under f of any tk for k < i.

Thus f is a one-one function that assigns a distinct ‘fresh’ variable to each
complex term of the language. Thus f(t) is a variable that ‘names’ t. These
play the role of witness constants in the construction of the canonical frame in
Theorem 3.7. The f(t) also help us carry out inductions on the size of λ-terms,
as t[p::=f(s)] is smaller than λp.t even if t[p::=s] might not be.

Definition 3.2 Next we add two new axioms of reduction, denote them by (ζf ):

t� f(t) f(t)� t (ζf )

Write t �ζf s when t � s is derivable using the (ζf ) rules in addition to the
rules of Figure 1.

Lemma 3.3 If t �ζf s and neither s or t contain any of the new variables
r1, r2 . . . , then t� s.

Proof. By simultaneously substituting each instance of f(ti) with ti each in-
stance of (ζf ) becomes an instance of (Eq) without affecting the rest of the
derivation.

Definition 3.4 If t is a term let wt = {s | t �ζf s}. Thus wt is the closure of
t under �ζf .

Definition 3.5 Define the canonical λ-frame Fλ= 〈Wλ, •λ,Hλ〉 as follows:

−Wλ= {wt | t is a term}
− For any wt1 ,wt2 ∈W , wt1 •λwt2 = {w ∈Wλ | t1·t2 ∈ w}
−Hλ=

{
{w ∈Wλ | t ∈ w} | t is a term

}
Definition 3.6 Given Fλ = 〈Wλ, •λ,Hλ〉 and a term t. Let ‖t‖ = {w ∈ Wλ |
t ∈ w}.

Theorem 3.7 Let Fλ be the canonical λ-frame (Definition 3.5). Let τ be the
translation from λ-terms t to sentences φ (Definition 2.25). Let v(p) = ‖p‖ for
any variable p. Then for any term t, [[tτ ]]v = ‖t‖.

Proof. By induction on the size of t we show that w ∈ ‖t‖ (i.e. t ∈ w) if and
only if w ∈ [[tτ ]]v.

− t is a variable p. Then ‖p‖ = v(p) = [[p]]v by the definition of v.



− t is t1·t2. Then (t1·t2)τ = tτ1 ·tτ2 .
Suppose t1·t2 ∈ w, and consider the worlds wt1 and wt2 in Wλ. If s1 ∈ wt1 and
s2 ∈ wt2 then by Definition 3.4, t1 �ζf s1 and t2 �ζf s2. Thus t1·t2 �ζf s1·s2
and s1·s2 ∈ w. Then by the definition of •λ we have that w ∈ wt1 •λ wt2 .
Furthermore, wt1 ∈ ‖t1‖ and so by the induction hypothesis, wt1 ∈ [[tτ1 ]]v.
Similarly wt2 ∈ [[tτ2 ]]v. Hence w ∈ [[tτ1 ·tτ2 ]]v by Definition 2.13.

Conversely, suppose that w ∈ [[tτ1 ·tτ2 ]]v. Then there are ws1 ,ws2 such that
ws1 ∈ [[tτ1 ]]v and ws2 ∈ [[tτ2 ]]v and w ∈ ws1 •λws2 . By the induction hypothesis
ws1 ∈ ‖t1‖ and ws2 ∈ ‖t2‖. Then ` s1 �ζf t1 and ` s2 �ζf t2. Furthermore,
by the construction of •λ, s1·s2 ∈ w and hence by (cong) t1·t2 ∈ w.

− t is λp.s. Then [[(λp.s)τ ]]v = [[ λp. sτ ]]v = {w | ∀h ∈ Hλ.w •λh ⊆ [[sτ ]]v[p 7→h]}.
Suppose λp.s ∈ w1. Suppose that w3 ∈ w1 •λw2, and that w2 ∈ h for some
h ∈ Hλ, then h = ‖u‖ for some term u. By (ζf ) we have that u�ζf r and r �ζf u

for some r. So h = ‖r‖ and r ∈ w2. By the construction of •λ, λp.s·r ∈ w3 and
so s[p::=r] ∈ w3, i.e. w3 ∈ ‖s[p::=r]‖. By the induction hypothesis ‖s[p::=r]‖ =
[[sτ [p::=r]]]v. Furthermore by Lemma 2.22 [[sτ [p::=r]]]v = [[sτ ]]v[p 7→[[r]]v]. But by
the definition of v, [[r]]v = ‖r‖, and so w3 ∈ [[sτ ]]v[p 7→‖r‖]. But h = ‖r‖ so
w3 ∈ [[sτ ]]v[p 7→h]. Thus w1 ∈ {w | ∀h ∈ Hλ.w •λ h ⊆ [[sτ ]]v[p 7→h]} = [[(λp.s)τ ]]v.
Hence, ‖λp.s‖ ⊆ [[(λp.s)τ ]]v

Conversely, suppose that λp.s /∈ wu for some u. Let q be a variable not free in u

or s and consider the worlds wq and wu·q. If s[p::=q] ∈ wu·q then u·q �ζf s[p::=q],
so λq.(u·q) �ζf λq(s[p::=q]) by (ξ). But by our choice of q, (η) entails that
u �ζf λq.(u·q). So u �ζf λq.s[p::=q], which contradicts our initial supposition
that λp.s /∈ wu, therefore s[p::=q] /∈ wu·q. In other words wu·q /∈ ‖s[p::=q]‖.
Therefore, by the induction hypothesis, wu·q /∈ [[sτ [p::=q]]]v. Since [[q]]v = ‖q‖,
it follows by Lemma 2.22 that wu·q /∈ [[sτ ]]v[p 7→‖q‖]. But clearly wu·q ∈ wu •λwq,
so it follows that wu /∈ {w | ∀h ∈ Hλ.w •λh ⊆ [[sτ ]]v[p 7→h]}. By the semantics of
(λq.s)τ (i.e. λq. sτ ), this means that wu /∈ [[(λq.s)τ ]]v. Hence, since every w ∈Wλ

is wu for some u, [[(λp.s)τ ]]v ⊆ ‖λp.s‖.

We can now prove the converse of Theorem 2.27:

Theorem 3.8 t � s if and only if [[tτ → sτ ]]v = W for all v and all frames
F = (W , •,H) such that [[uτ ]]v ∈ H for all u.6

Proof. The left-right direction is Theorem 2.27.
If t 6� s then t 6�ζf s and so s /∈ wt in Fλ. Therefore ‖t‖ 6⊆ ‖s‖ and so

by Theorem 3.7 there is a valuation v such that [[tτ ]]v 6⊆ [[sτ ]]v. Furthermore,
Hλ= {[[uτ ]]v | u is a λ-term}.

4 The axioms, Soundness and Completeness

We can axiomatise the interpretation of L given by Definition 2.13. Axioms are
given in Figure 2.

6 In other words, if [[E(uτ )]]v = W for all terms u.



(∀R) φ→∀p.φ (p /∈ φ)
(∀L) ∀p.φ→ Eψ→ φ[p::=ψ]
(∀A) ∀p. (φ→ ψ)→ (∀p.φ→∀p.ψ)

(Gen)
Ep→ φ

∀p.φ

(·K)
φ·(ψ ∨ µ)→ (φ·ψ) ∨ (φ·µ)
(ψ ∨ µ)·φ→ (ψ·φ) ∨ (µ·φ)

(·C)
φ·∃p.ψ→∃p. (φ·ψ)
(∃p.ψ)·φ→∃p. (ψ·φ)

(p /∈ φ)

(�K)
(φ� ψ) ∧ (φ� µ)→ φ� (ψ ∧ µ)
(ψ � φ) ∧ (µ� φ)→ (ψ ∨ µ) � φ

(�C)
∀p. (φ� ψ)→ φ� ∀p.ψ
∀p. (ψ � φ)→ (∃p.ψ � φ)

(p /∈ φ)

(Prop)
Propositional Tautologies
and Modus Ponens

(�L) ((φ� ψ)·φ)→ ψ
(�R) φ→ (ψ � φ·ψ)

(⊥)
(φ·⊥)→⊥
(⊥·φ)→⊥

(N)
φ1→ · · · → φn→ ψ

2φ1→ · · · → 2φn→ 2ψ
0 ≤ n

(T ) 2φ→ φ
(5) ¬2φ→ 2¬2φ

(2·)
2(φ→ ψ)→ (φ·µ)→ (ψ·µ)
2(φ→ ψ)→ (µ·φ)→ (µ·ψ)

(2�)
2(φ→ ψ)→ (ψ � µ)→ (φ� µ)
2(φ→ ψ)→ (µ� φ)→ (µ� ψ)

Fig. 2: Axioms for L, we write ‘p /∈ φ’ as short ‘p is not free in φ’.

Definition 4.1 Let Γ ,∆ . . . denote sets of sentences. Write ` φ if φ is derivable
using the rules of Figure 2. Write Γ ` A when there are φ1 . . . φn ∈ Γ such that
` φ1→ . . . φn→ φ (associating to the right).

4.1 Theorems and admissible rules

Theorem 4.2 The converses of (·K),(·C),(�K), and (�C) are all derivable. Also
derivable are:

∀p.φ↔∀p. (Ep→ φ) (2φ·ψ)→2φ 2φ→ (ψ·µ)→ (ψ·(2φ ∧ µ))
∀p.2φ↔2∀p.φ (ψ·2φ)→2φ 2φ→ (ψ·µ)→ ((2φ ∧ ψ)·µ)
φ�> ¬2φ→ (2φ� ψ) 2φ→ (ψ � µ)→ (ψ � (2φ ∧ µ))
⊥� φ ¬2φ→ (ψ � ¬2φ) 2φ→ ((2φ ∧ ψ) � µ)→ (ψ � µ)

Notice that the second sentence of the leftmost column is the Barcan formula [13,
Ch.13].

If n = 0 then (N) becomes a simple necessitation rule stating that ` A implies
` 2A. From this we get the following group of inference rules, (Subs):

(Subs)

φ→ ψ

(φ·µ)→ (ψ·µ)

φ→ ψ

(µ·φ)→ (µ·ψ)

φ→ ψ

(ψ � µ)→ (φ� µ)

φ→ ψ

(µ� φ)→ (µ� ψ)



4.2 Soundness

Theorem 4.3 Suppose F = (W , •,H) is a frame. Then ` φ implies [[φ]]v = W
for any v.

Proof. By induction on derivations. Assume ` φ. We consider each axiom and
inference rule in turn.

To show that an axiom of the form φ→ψ is sound it is enough to show that
[[φ]]v ⊆ [[ψ]]v for any v, for that implies that (W \ [[φ]]v) ∪ [[ψ]]v = W .

− φ and is an instance of (Prop). The soundness of tautological consequence
for the chosen interpretation of → is well known.

− Instances of (∀L). Given Lemma 2.22
⋂
h∈H [[φ]]v[p 7→h] ⊆

⋂
h∈H [[φ]]v[p 7→[[ψ]]v ]

provided that [[ψ]]v ∈ H. But if [[ψ]]v /∈ H then [[Eψ]]v = ∅ and the axiom is
validated.

−The cases for (∀R) and (∀A) are equally straightforward.

− Instances of (Gen). By induction hypothesis [[Ep→ φ]]v = W for any v so
[[Ep]]v[p 7→h] ⊆ [[φ]]v[p 7→h] for any h. But [[Eφ]]v[p 7→h] = W for all h and so [[∀p.A]]v =
W .

− Instances of (�L) and (�R). We reason using Definitions 2.13 and 2.4:

[[(φ� ψ)·φ]]v = [[φ� ψ]]v • [[φ]]v Definition 2.13
= {w | w • [[φ]]v ⊆ [[ψ]]v} • [[φ]]v Definition 2.13
⊆ [[ψ]]v Definition 2.4

[[φ]]v ⊆ {w | w • [[ψ]]v ⊆ [[φ]]v • [[ψ]]v} Definition 2.4
= {w | w • [[ψ]]v ⊆ [[φ·ψ]]v} Definition 2.13
= [[(ψ � φ·ψ)]]v Definition 2.13

− Instances of (·K).

[[(φ·ψ) ∨ (φ·µ)]]v

= ([[φ]]v • [[ψ]]v) ∪ ([[φ]]v • [[µ]]v) Remark 2.15

=

⋃
{w1 • w2 | w1 ∈ [[φ]]v & w2 ∈ [[ψ]]v}

∪
⋃
{w1 • w2 | w1 ∈ [[φ]]v& w2 ∈ [[µ]]v} Definition 2.4

=
⋃
{w1 • w2 | w1 ∈ [[φ]]v & w2 ∈ ([[ψ]]v ∪ [[µ]]v)} Definition 2.4

= [[φ·(ψ ∨ µ)]]v Remark 2.15

The other case for (·K) and the cases for (�K) are similar.

− Instances of (·C) and (�C).

[[φ·∃p.ψ]]v = [[φ]]v •
⋃
h∈H [[ψ]]v[p7→h] Remark 2.15

=
⋃
h∈H([[φ]]v • [[ψ]]v[p 7→h]) Definition 2.4

=
⋃
h∈H([[φ]]v[p 7→h] • [[ψ]]v[p 7→h]) Lemma 2.21

= [[∃p. (φ·ψ)]]v Remark 2.15

The other cases are similar.



− Instances of (⊥). [[⊥·φ]]v = [[φ·⊥]]v = [[φ]]v • [[⊥]]v = ∅ etc.

− Instances of (2)̇. We must show that [[2(φ→ ψ)]]v ∩ [[φ·µ]]v ⊆ [[ψ·µ]]v. This
is trivial if [[φ → ψ]]v 6= W , so we may assume that [[φ]]v ⊆ [[ψ]]v. But then
[[φ·µ]]v ⊆ [[ψ·µ]]v. The argument is similar for (2�)

− Instances of (N). By induction hypothesis
⋂
i[[φi]]

v ⊆ ψ for any v. If for some
φi, [[φi]]

v 6= W then [[2φi]]
v = ∅ and so

⋂
i[[2φi]]

v ⊆ 2ψ. On the other hand, if
[[φi]]

v = W then [[ψ]]v = [[2ψ]]v = W and again
⋂
i[[2φi]]

v ⊆ 2ψ.

−Axioms (T ) and (5) are easily seen to be sound from semantic conditions for
2.

4.3 Completeness

Definition 4.4 Say that a set of sentences Γ is consistent if Γ 0 ⊥.

We will show that given a consistent set of sentences Γ we can construct a
frame F and a valuation v such that

⋂
φ∈Γ [[φ]]v 6= ∅.

Definition 4.5 A maximal set ∆ is a consistent set such that

(1) φ ∈ ∆ or ¬φ ∈ ∆ for any φ,

(2) for every sentence φ there is some variable p such that φ ≈ p ∈ ∆ (see
Definition 2.17), and

(3) if ¬∀p.φ ∈ ∆ then ¬φ[p::=q],Eq ∈ ∆ for some variable symbol q.

Remark 4.6 The second requirement on maximality ensures that every sen-
tence φ is ‘named’ by some atomic variable. The third requirement is the more
familiar condition that every existential quantifier have a ‘Henkin witness’.

Lemma 4.7 If ∆ consistent then there exists a maximal set ∆′ such that ∆ ⊆
∆′.

Proof. Add two infinite collections of new propositional variable symbols r1, r2 . . . ,
c1, c2 . . . to L, then enumerate all sentences φ0,φ1 . . . and describe two one-one
functions f , g from predicates to variables:

f(φi) = rj where j is the least number such that j > i and rj is not free in
φi nor in ∆ nor is the value under f of any φk < φi.

g(∀p.φi) = cj where j is the least number such that j > i and cj is not free
in φi nor in ∆ nor is the value under f of any ∀p.φk < ∀p.φi. We also write
g(∀p.ψ) as g∀p.ψ.

We now construct ∆0, ∆1,. . . as follows (using the enumeration φ0,φ1 . . . above,
or a new one):

∆0 = ∆ ∪ {φ ≈ f(φ)} ∪ {¬∀p.φ→
(
¬φ[p::=g∀p.φ] ∧ E(g∀p.φ)

)
} for all φ.

If ∆n ∪ {φn} is inconsistent then ∆n+1 = ∆n ∪ {¬φn}, otherwise ∆n+1 =
∆n ∪ {φn}.



Note that ∆i ⊆ ∆j if i ≤ j. Let Θ =
⋃
n∆n. By construction ∆ ⊆ Θ. We must

prove Θ is maximal:

−∆0 is consistent: Suppose ∆0 is inconsistent, then there are µ1 . . . µn ∈ ∆0

such that ` µ1→ · · · → µn→⊥. Suppose the µi that do not occur in ∆ are:

φ1 ≈ f(φ1) . . . φk ≈ f(φk)

and

¬∀p.ψ1→¬ψ1[p::=g∀p.ψ1 ] . . .¬∀p.ψl→¬ψl[p::=g∀p.ψl ]

First simultaneously substitute f(φi) with φi. We get that ` µ′1→· · ·→µ′n→⊥
where each µ′i is either in ∆ or is φ ≈ φ or is ¬∀p.ψ′→¬ψ′[p::=g∀p.ψ] (where
ψ′ = ψ[f(φi)::=φi]).
Let ρ be ¬∀p.ψ′j →

(
¬ψ′j [p::=g∀p.ψj ] ∧ E(g∀p.ψj )

)
where ψ′j is latest in the

enumeration of all sentences. We may assume that ρ = µ′n = µ′m+1. Since
` µ′1→ · · · → µ′m→ ρ→⊥ we have by (Prop) that

` µ′1→ · · · → µ′m→¬∀p.ψ′j

and

` µ′1→ · · · → µ′m→ E(g∀p.ψ′
j
)→ (∀p.ψ′j → ψ′j [p::=g∀p.ψ′

j
])

but by our choice of g∀p.ψ′
j

it follows by the quantifier axioms that ` µ′1→· · ·→
µ′m→∀p.ψ′j . So ` µ′1→ · · · → µ′m→⊥.
We may conclude from this that µ′1→ · · · → µ′l→⊥ is derivable where each µ′i
(i < l ≤ n) is either of the form φ ≈ φ or is in ∆. But this is impossible by the
consistency of ∆.

− For every φ, either φ ∈ Θ or ¬φ ∈ Θ: By the construction, either φ or ¬φ is
added to some ∆i. By the consistency of Θ, it is also deductively closed.

−By the construction of ∆0, for every sentence φ, there is some variable p such
that φ↔ p ∈ ∆0 ⊆ Θ.

− If ¬∀p.φ ∈ Θ then for some c, ¬∀p.φ→ (¬φ[p::=c] ∧ Ec) ∈ ∆0 ⊆ ∆′ and so
¬φ[p::=c],Ec ∈ Θ.

Thus Θ is indeed maximal.

Definition 4.8 If Θ is a maximal set then CΘ = {∆ | ∆ is maximal and 2φ ∈
Θ implies φ ∈ ∆}.

Definition 4.9 Define the canonical frame FCΘ = 〈CΘ, •CΘ ,HCΘ 〉:
− For any w1,w2 ∈ CΘ, w1•CΘw2 = {w ∈ CΘ | φ ∈ w1 & ψ ∈ w2 implies φ·ψ ∈
w}.
−HCΘ =

{
{w ∈ CΘ | φ ∈ w} | Eφ ∈ Θ

}
.

It follows by (T ) that Θ ∈ CΘ.

Definition 4.10 Given FCΘ = (CΘ, •CΘ ,HCΘ ) and a sentence φ. Let ‖φ‖ =
{w ∈ CΘ | φ ∈ w}.



Theorem 4.11 Let FCΘ be the canonical frame, and let v(p) = ‖p‖ for any
(sentential) variable p. Then for any sentence φ, [[φ]]v = ‖φ‖.

Proof. By induction on φ.

− φ is p for some variable p. Then ‖p‖ = v(p) = [[p]]v by the definition of v.

− φ is φ1→ φ2.
Suppose that φ1 → φ2 ∈ w. If w ∈ [[φ1]]v, then by the induction hypothesis
w ∈ ‖φ1‖, i.e. φ1 ∈ w. So φ2 ∈ w and w ∈ [[φ2]]v by the induction hypothesis.
Thus w ∈W \ [[φ1]]v ∪ [[φ2]]v.

Conversely, suppose that φ1→ φ2 /∈ w. Then by (Prop) ¬φ1 /∈ w and φ2 /∈ w.
By the induction hypothesis, and the maximality of w, we may conclude that
w /∈W \ [[φ1]]v and w /∈ [[φ2]]v.

− φ is ⊥. By the consistency of every w ∈ CΘ, ‖⊥‖ = ∅ = [[⊥]]v.

− φ is 2ψ.
If 2ψ ∈ w then by (5) and the construction of CΘ, ¬2ψ /∈ Θ. So 2ψ ∈ Θ and
ψ ∈ w′ for all w′ ∈ CΘ.

For the converse case suppose that ψ ∈ w for all w ∈ CΘ. Then since CΘ
contains all maximal consistent sets containing {µ | 2µ ∈ Θ} it follows that
{µ | 2µ ∈ Θ} ` ψ. So by (N), {2µ | 2µ ∈ Θ} ` 2ψ and so 2ψ ∈ Θ. But by
(T ), (N) and (5), ` 2ψ→22ψ, so 2ψ ∈ w′ for any w′ ∈ CΘ.

− φ is ∀p.ψ.
Suppose that ∀p.ψ ∈ w then by (∀L) ψ[p::=µ] ∈ w whenever Eµ ∈ w. By the
cases above for 2, ψ[p::=µ] ∈ w whenever Eµ ∈ Θ.7 By the maximality of Θ, for
each µ, there is a variable fµ such that µ ≈ fµ ∈ Θ. Thus ‖µ‖ = ‖fµ‖ and every
h ∈ HCΘ is ‖fµ‖ for some µ such that Eµ ∈ Θ. By the induction hypothesis and
Lemma 2.22, w ∈ [[ψ[p::=fµ]]]v[fµ 7→h] for all h ∈ HCΘ . Thus w ∈ [[∀p.µ]]v.

Conversely, suppose that ∀p.ψ /∈ w. Then by the maximality of w, ¬∀p.ψ ∈
w and so ¬ψ′[p::=c] ∧ Ec ∈ w for some c. By the induction hypothesis and
Lemma 2.22 we have that w /∈ [[ψ′]]v[p 7→[[c]]v ], we also have Ec ∈ Θ, so w /∈
[[∀p.ψ]]v.

− φ is φ1·φ2.
Suppose w3 ∈ [[φ1·φ2]]v. Then there are w1,w2 such that w1 ∈ [[φ1]]v and
w2 ∈ [[φ2]]v and w3 ∈ w1 •CΘ w2. By the induction hypothesis w1 ∈ ‖φ1‖ and
w2 ∈ ‖φ2‖, so φ1 ∈ w1 and φ2 ∈ w2. This implies φ1·φ2 ∈ w3.

For the converse case suppose that φ1·φ2 ∈ w3, we must show that there are
w1,w2 such that w1 ∈ [[φ1]]v, w2 ∈ [[φ2]]v and w3 ∈ w1•CΘw2. Given the induction
hypothesis, it is enough to construct two maximal sets ∆1,∆2 such that φ1 ∈
∆1,φ2 ∈ ∆2 and ψ1·ψ2 ∈ w3 for every ψ1 ∈ ∆1,ψ2 ∈ ∆2. We must then verify
that these two sets are in CΘ by showing that {ψ | 2ψ ∈ Θ} ⊆ ∆1 ∩∆2. This is
done in Lemma 4.12.

7 Eµ is short for ∃p.2(p↔µ). The axioms for S5 (N),(T ) and (5) entail that ` ∃p.2(p↔
µ)→ 2∃p.2(p↔ µ). So, by the case for 2, Eµ ∈ w iff Eµ ∈ w′ for any w,w′ ∈ CΘ.



−The case where φ is φ1 � φ2 is similar to that for φ1·φ2 and uses a lemma
similar to Lemma 4.12.

Lemma 4.12 If ∆ ∈ CΘ and φ1·φ2 ∈ ∆, then there are two maximal sets
∆1,∆2 ∈ CΘ such that

(1) φ1 ∈ ∆1,φ2 ∈ ∆2

(2) ψ1·ψ2 ∈ ∆ for every ψ1 ∈ ∆1,ψ2 ∈ ∆2

(3) 2ψ ∈ Θ implies ψ ∈ ∆1 ∩∆2 for any ψ.

Proof. Enumerate all sentences ψ0,ψ1 . . . and construct two sequences Φ0,Φ1, . . .
and Ψ0,Ψ1, . . . :

Φ0 = {¬¬φ1} and Ψ0 = {¬¬φ2}

If ψn is not of the form ∀p.µ then:

Φn+1 =

{
Φn ∪ {¬ψn} if (

∧
Φn∧¬ψn)·(

∧
Ψn)∈∆

Φn ∪ {ψn} otherwise

Ψn+1 =

{
Ψn ∪ {¬ψn} if(

∧
Φn+1)·(

∧
Ψn∧¬ψn)∈∆

Ψn ∪ {ψn} otherwise

If ψn is of the form ∀p.µ then:

Φn+1 =


Φn ∪ {¬∀p.µ,¬µ[p::=c],Ec}

if
(
∧
Φn ∧ ¬∀p.µ ∧ ¬µ[p::=c] ∧ Ec)·(

∧
Ψn) ∈ ∆

for some variable c

Φn ∪ {∀p.µ} otherwise

Ψn+1 =


Ψn ∪ {¬∀p.µ,¬µ[x::=c],Ec}

if
(
∧
Φn+1)·(

∧
Ψn ∧ ¬∀p.µ ∧ ¬µ[p::=c] ∧ Ec) ∈ ∆

for some variable c

Ψn ∪ {∀p.µ} otherwise

Note that Φi ⊆ Φj and Ψi ⊆ Ψj if i ≤ j. Let ∆1 =
⋃
n Φn and ∆2 =

⋃
n Ψn.

−Each (
∧
Φn)·(

∧
Ψn) ∈ ∆:

By induction on n. If n = 0 then since φ1·φ2 ∈ ∆ it follows by (Prop) and (Subs)

that ¬¬φ1·¬¬φ2 ∈ ∆.
Assume that (

∧
Φn)·(

∧
Ψn) ∈ ∆ but (

∧
Φn+1)·(

∧
Ψn) /∈ ∆. First we must show

that

(
∧
Φn ∧ ¬ψn)·(

∧
Ψn) /∈ ∆ implies (

∧
Φn ∧ ψn)·(

∧
Ψn) ∈ ∆. (†)

By (·K), (Prop) and the consistency of ∆ if (
∧
Φn ∧ ¬ψn)·(

∧
Ψn) /∈ ∆ and

(
∧
Φn ∧ ψn)·(

∧
Ψn) /∈ ∆ then(∧

(Φn ∧ ψn) ∨ (
∧
Φn ∧ ¬ψn)

)
·(
∧
Ψn) /∈ ∆.



So by (Prop) and (Subs)
(
(
∧
Φn∧ (ψn∨¬ψn))·(

∧
Ψn)
)
/∈ ∆. But this entails that

(
∧
Φn)·(

∧
Ψn) /∈ ∆ which is contrary to our assumption.

So the lemma holds if ψn is not of the form ∀p.µ. Suppose ψn is of the form
∀p.µ. We must show that:

(
∧
Φn ∧ ¬∀p.µ ∧ ¬µ[p::=c] ∧ Ec)·(

∧
Ψn) /∈ ∆ for all c,

implies that

(
∧
Φn ∧ ∀p.µ)·(

∧
Ψn) ∈ ∆

Given †, we need only show that

(
∧
Φn ∧ ¬∀p.µ ∧ ¬µ[p::=c] ∧ Ec)·(

∧
Ψn) /∈ ∆ for all c,

implies that

(
∧
Φn ∧ ¬∀p.µ)·(

∧
Ψn) /∈ ∆

If (
∧
Φn∧¬∀p.µ)·(

∧
Ψn) ∈ ∆ then by (·C), ¬∀p.¬

(
(
∧
Φn∧¬∀p.µ∧¬µ)·(

∧
Ψn)
)
∈

∆.8 But since ∆ is maximal and every negated universal quantification has a
witness:

¬
(
(
∧
Φn ∧ ¬∀p.µ ∧ ¬µ[p::=c])·(

∧
Ψn)
)
∧ Ec ∈ ∆ for some c

But then (
∧
Φn ∧ ¬∀p.µ ∧ ¬µ[p::=c] ∧ Ec)·(

∧
Ψn) /∈ ∆ (for some c).

So we can conclude that (
∧
Φn)·(

∧
Ψn) ∈ ∆ implies that (

∧
Φn+1)·(

∧
Ψn) ∈ ∆.

Analogous reasoning shows that this in turn implies that (
∧
Φn+1)·(

∧
Ψn+1) ∈ ∆

−∆1,∆2 are consistent:
Suppose ∆1 is inconsistent, then there are µ1 . . . µn ∈ ∆1 such that ` µ1→· · ·→
µn →⊥. The µi must all be in some Φk ⊆ ∆1, but as (

∧
Φk)·(

∧
Ψk) ∈ ∆ this

implies by (⊥) that ⊥ ∈ ∆. This is impossible since ∆ is consistent. We may
conclude analogously that ∆2 is not inconsistent.

− For any φ, either φ ∈ ∆1 or ¬φ ∈ ∆1:
This follows from the fact that every φ ∈ ∆1 is a ψi, and so either it or its
negation is added to Φi. Similarly, φ ∈ ∆2 or ¬φ ∈ ∆2 for any φ.

−¬∀p.µ ∈ ∆1 implies ¬µ[p::=c],Ec ∈ ∆1 for some c:
¬∀p.µ is a ψi+1 and so is added to Φi+1, but Φi+2 = Φi+1∪{¬∀p.µ,¬µ[p::=c],Ec}
for some c.9 Similarly for ∆2.

So ∆1 and ∆2 are maximal, now we verify that they satisfy the conditions of
the lemma.

(1) φ1 ∈ ∆1 and φ2 ∈ ∆2: By choice of Φ0,Ψ0 we have that ¬¬φ1 ∈ ∆1 and
¬¬φ2 ∈ ∆2, so by (Prop) and the maximality of ∆1 and ∆2 it follows that
φ1 ∈ ∆1 and φ2 ∈ ∆2.

8 As we may assume that p is not free in
∧
Φn.

9 We chose Φ0 and Ψ0 to be {¬¬φ1} and {¬¬φ2}, to guarantee the that the construc-
tion did not begin with a sentence of the form ¬∀p.µ.



(2) ψ1·ψ2 ∈ ∆ for every ψ1 ∈ ∆1,ψ2 ∈ ∆2. Choosing some suitable large i, we
have that ψ1 ∈ Φi and ψ2 ∈ Ψi and the result follows by (Prop), (Subs) and the
fact that

∧
Φi·
∧
Ψi ∈ ∆

(3) If 2ψ ∈ Θ then 22ψ ∈ Θ and so, since ∆ ∈ CΘ, 2ψ ∈ ∆. Now, if ¬2ψ ∈
∆1 or ¬2ψ ∈ ∆2 then, by (1) and (2), (¬2ψ)·φ2 ∈ ∆ or φ1·(¬2ψ) ∈ ∆.
But 2ψ ∈ ∆, so by Theorem 4.2 this implies that (2ψ ∧ ¬2ψ)·φ2 ∈ ∆ or
φ1·(2ψ ∧ ¬2ψ) ∈ ∆. This is impossible since ∆1 and ∆2 are consistent. So
2ψ ∈ ∆1 ∩∆2 and by (T ) ψ ∈ ∆1 ∩∆2.

Theorem 4.13 If ∆ is consistent then
⋂
φ∈∆[[φ]]v 6= ∅ for some frame F and

valuation v.

Proof. We have shown that ∆ can be extended to a maximal set Θ which is in
the canonical frame FCΘ . Then by Theorem 4.11, φ ∈ ∆ implies that Θ ∈ [[φ]]v ∈
WCΘ ∈ FCΘ , so Θ ∈

⋂
φ∈∆[[φ]]v 6= ∅.

Corollary 4.14 If [[φ]]v = W for all frames F , then ` φ.

Proof. If 0 φ then {¬φ} is consistent, so there is a frame F such that [[¬φ]]v 6= ∅.
By the semantics of negation it follows that [[φ]]v 6= W .

We can use this result together with Definition 4.1 to simplify Theorem 3.8.

Corollary 4.15 t� s if and only if {Euτ | u is a λ-term} ` tτ → sτ

It is a further issue whether Corollory 4.15 holds if {Etτ | t is a λ-term} is
replaced with {Eφ | φ is a sentence}, or even {Eφ | φ is a closed sentence}. A
result equivalent to the fact that the corollory does not hold for the assumptions
{Euτ | u is a closed λ-term} was shown by Plotkin in [18].

5 Conclusion

5.1 Negation and the Liar

How does our logic resolve the paradoxes that affected Church’s original sys-
tem? We can extend τ (Definition 2.25) to translate (¬t)τ to either ¬(tτ ) or
( λp.¬p)·tτ . The first case corresponds to negation as a term-former in λ-term
syntax; the second case corresponds to treating negation as a constant-symbol.

In the first case, let Lτ be short for λp.¬(p·p)· λp.¬(p·p). Then we may use
Theorem 2.27 and Corollary 4.14 to conclude that {E(uτ ) | u is a λ-term} `
Lτ→¬Lτ . So just as with Church’s system we get a sentence Lτ that implies its
own negation. Since [[¬Lτ ]]v = W \[[Lτ ]]v there is only one possible interpretation
of Lτ : the empty set.

In the second case similar reasoning applies, but more interpretations of Lτ

are available. This is because ( λp.¬p)·tτ may receive a different interpretation
from ¬tτ , even if we assume E(uτ ) for all terms u. The reason for this is that
[[ λp.¬p]]v =

⋂
h∈H{w | w • h ⊆ W \ h} and so contains only those w ∈ W



that relate, by ·, members of H to their complements. So although h ∈ H has
a complement in P(W ), there may be no w ∈ W to serve in the extension of
[[ λp.¬p]]v.

For example, if F is a frame where [[>]]v = W ∈ H then w ∈ [[ λp.¬p]]v implies
w •W ⊆ ∅ and so w • S ⊆ ∅ for any S ⊆W (as • is monotonic with respect to
⊆). So w ∈ [[ λp.¬p]]v implies w • w′ = ∅ for all w′ ∈W . So for such a frame F ,
[[( λp.¬p)·φ]]v = ∅ = [[⊥]]v for any φ!

What moral can we draw from this? The negations of λ-terms can be inter-
preted perfectly naturally in our models. Paradoxes are averted because they
may translate to impossible structural properties on the frames. Our models
might help design other extensions of the λ-calculus, by considering how these
extensions behave when interpreted in the models.

5.2 Related work

Multiplicative conjunction. L with its connective · (Definition 2.12) looks like a
(classical) logic with a multiplicative conjunction ⊗, as in linear logic or bunched
implications [8,17]. Multiplicative conjunction ⊗ does not have contraction, so
that for example A⊗A is not equivalent to A.

However · is not a species of multiplicative conjunction. This is because
multiplicative conjunction is usually taken to be associative and commutative,
whereas · is neither; it models application, and we do not usually want f(x) to
equal x(f), or f(g(x)) to equal (f(g))(x).10

Phase spaces. On a related point, a frame F based on a set W with its function
• from Definition 2.1 looks like a phase space [9]. Indeed the denotation for λ in
Definition 2.7 uses the same idea as the denotation of multiplicative implication
( (see for example [9, Section 2.1.1]).

However F is unlike a phase space in one very important respect: • does not
make W into a commutative monoid because it maps W ×W to P(W ), and not
to W . This is also, as we have mentioned, why W is not an applicative structure.

An interesting interpretation of our models. The ‘application operation’ • re-
turns not worlds but sets of worlds. In Section 2.1 we have already suggested that
we can read • as a ternary Kripke accessability relation, or as a non-deterministic
application operation. We would now like to suggest another reading, which we
have found useful.

Think of worlds w ∈ W as objects, programs, and/or data. What happens
when we apply one object to another (e.g. a rock to a nut; a puncher to some
tape; a program to an input; a predicate to a datum)? On the one hand, we obtain
an output (a nut that is broken; strip of perforated tape; a return value; a truth-
value). Yet, on its own, an output is meaningless. What makes the execution
of some action a computation is not the raw output, but the concept that this

10 There is some interest in non-commutative multiplicative conjunction, but this does
not change the basic point.



output signifies. That is, we apply w1 to w2 not to obtain some w3, but to obtain
some meaning that w3 signifies. A raw output like ‘42’ tells us nothing; it is only
significant relative to the meaning we give it.

The output of a computation, rather than a mere action, is a concept.

As is standard, we can interpret concepts extensionally as sets of data. So,
when • maps W ×W to P(W ) we can read this as follows: • takes two objects
and applies one to the other to obtain a concept.

By this reading, when we write λp.t or ∀p.φ, p quantifies over concepts —
not over data. Data is certainly there, and resides in W , but when we compute
on W this returns us to the world of concepts. It is certainly possible to envisage
frames in which w1 • w2 is always a singleton {w3} — but this is just a very
special case (and our completeness proofs do not generate such frames).

The fact that • maps to P(W ) is a key point of the semantics in this paper.
It turns out that this is sufficient to unify logic and computation, as we have
seen.

Relevance logic. The notion of a function from W ×W to P(W ) does appear
in the form of a ternary relation R on W , when giving denotations to relevant
implication in relevance logic [5], and to implication in other provability and
substructural logics such as independence logic [22]. For example, the clause for
� in Definition 2.13 is just like the clause for relevant implication → in [5, §3.7,
p.69].

However, these logics impose extra structure on R; see for example conditions
(1) to (4) in [5, §3.7, p.68]. In the notation of this paper, • for relevance logic and
other substructural logics models a form of logical conjunction and has structural
properties like associativity and commutativity. In our frames • models function
application, which does not have these structural properties.

H and Henkin models for higher-order logic. Another feature of frames is the set
H ⊆ P(W ). We mentioned in Remark 2.3 that we use H to restrict quantification
and ‘cut down the size’ of powersets so as to obtain completeness. This idea is
standard from Henkin semantics for higher-order logics.

Here, two classes of frame are particularly interesting: full frames in which
H = P(W ) (which we return to below), and faithful frames in which the de-
notation of every possible sentence is in H (see [20, Section 4.3]). Full frames
are simple, and may be represented as a pair F full = (W , •), but they inherit an
overwhelming richness of structure from the full powerset. Henkin models are
simpler ‘first order’ [20, Corollary 3.6] — and therefore completely axiomatisable
— approximations to the full models.

Henkin semantics for higher-order logic are actually unsound without the as-
sumption of faithfulness. We do not impose a general condition that models must
be faithful because we built the models in the general case without committing
to one specific logic. Once we fix a logic, conditions analogous to faithfulness
begin to appear. See for example Theorems 2.27 and 3.8, and Corollary 4.15.

Investigating the properties of full models is possible further work.



5.3 Summary, and further work

We have presented models in which logic and computation have equal standing.
They combine, among other things, the expressive power of untyped λ-calculus
and quantificational logic, in a single package. This has allowed us to give inter-
esting answers to two specific questions:

Q. What is the negation of a λ-term?
A. Its sets complement.

Q. What logical connective corresponds to functional (λ) abstraction?
A. λfrom Definition 2.19.

There are many questions to which we do not have answers.
The logic L is very expressive; interesting things can be expressed other than

the λ-calculus, including encodings of first-order logic and simple types, and also
less standard constructs. We note in particular matching (Definition 2.19) as a
‘dual’ to λ. What other programming constructs do the semantics and the logic
L invite?

We can take inspiration from modal logic, and note how different conditions
on accessibility in Kripke models match up with different systems of model
logic [13]. It is very interesting to imagine that conditions on H and • might
match up with systems of λ-reduction and equality.

Can we tweak the frames so that Theorem 2.27 becomes provable for a reduc-
tion relation that does not include (η), or perhaps does include its converse (yes,
but there is no space here for details). λ-calculus embeds in L, so can a sequent
system be given for L extending the sequent system for λ-reduction of [6]?

Note that logic-programming and the Curry-Howard correspondence both
combine logic and computation, where computation resides in proof-search and
proof-normalisation respectively.

Where does our combination of logic and computation fit into this picture,
if at all?

We can only speculate on applications of all this.
Models can be computationally very useful. For instance, we may falsify a

predicate by building a model that does not satisfy it. Our models might have
something specific to offer here, because they are fairly elementary to construct
and the tie-in to the languages Lλ and L is very tight, with completeness results
for arbitrary theories (see Definition 4.1 and Corollary 4.14).

We have already touched on possible applications to language design; we
might use the models and the logic to design new language constructs. We note
in passing that the models have a built-in notion of location, given by reading
w ∈ W as a ‘world’. It is not entirely implausible that this might be useful
to give semantics to languages with subtle constructs reflecting that not all
computation takes place on a single thread. To illustrate what we have in mind,

consider a simple ‘if. . . then. . . else’ λ-term λp.ψ
{
t1
t2 which is such that λp.ψ

{
t1
t2 ·s

reduces to t1[p::=s] if ψ, and to t2[p::=s] otherwise. But ‘where’ should ψ be
checked? Should it be checked at the world where the function resides, where the



argument resides, or where the result resides? Translations into our logic reflect
these possibilities:

At the function: ∀p.
(
(ψ→ (p� φ1)) ∧ (¬ψ→ (p� φ2))

)
At the argument: ∀p.

(
((p ∧ ψ) � φ1) ∧ ((p ∧ ¬ψ) � φ2)

)
At the result: ∀p.

(
p� ((ψ→ φ1) ∧ (¬ψ→ φ2))

)
Note that p may be free in ψ.

We conclude the paper with a hypothesis. Consider the full frames where
H = P(W ) and using the translation τ of Definition 2.25 consider the relation
�2 defined such that t�2 s when [[tτ → sτ ]]v = W for any valuation v on any
full frame. Our hypothesis is this: there are t and s such that t�2 s but t��� s;
furthermore, t�2 s is ‘true’ in the sense that t intuitively does compute to
s. In other words, we hypothesise that the intuitive concept of computation is
captured by the F full, just like our intuitive concept of natural number is cap-
tured by the standard model N . We suggest that λ-calculi and axiomatisations
of computation are actually first order implementations of �2.
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