
SOS for Higher Order Processes
(Extended Abstract)

MohammadReza Mousavi1, Murdoch J. Gabbay2, and Michel A. Reniers1

1Department of Computer Science, 2Department of Computer Science,
Eindhoven University of Technology, King’s College London,

Eindhoven, The Netherlands London, UK

Abstract. We lay the foundations for a Structural Operational Seman-
tics (SOS) framework for higher order processes. Then, we propose a
number of extensions to Bernstein’s promoted tyft/tyxt format which
aims at proving congruence of strong bisimilarity for higher order pro-
cesses. The extended format is called promoted PANTH. This format is
easier to apply and strictly more expressive than the promoted tyft/tyxt
format. Furthermore, we propose and prove a congruence format for a
notion of higher order bisimilarity arising naturally from our SOS frame-
work. To illustrate our formats, we apply them to Thomsen’s Calculus
of Higher Order Communicating Systems (CHOCS).

Key words: Formal Semantics, Structural Operational Semantics, Bisim-
ulation, Congruence, Congruence Rule Formats.

1 Introduction

Bisimilarity, in its different flavors, is a central notion to concurrency theory.
Congruence is a very much desired property for bisimilarity which does not
generally hold. Congruence is essential for algebraic treatment of bisimilarity as
well as for using it in a compositional manner. Thus, it is an interesting question
whether a notion of bisimilarity is a congruence for a particular language or not.

This question has been addressed in a great depth and breadth for languages
endowed with a Structural Operational Semantics (SOS) [17] (see [1] for an
overview). These studies are usually formulated in terms of syntactic formats
that induce congruence for a notion of bisimilarity once the SOS rules conform
to the formats.

For languages with a higher order notion of behavior (which may emit and
receive their own terms as labels), a few proposals exist in the literature [3,14,19].
This work’s most direct inspiration is from Bernstein’s promoted tyft/tyxt for-
mat [3] which aims at proving congruence of strong bisimilarity for higher order
processes. We lay the foundations for an SOS framework for higher order pro-
cesses and extend Bernstein’s promoted tyft/tyxt , making it both easier to use
and strictly more expressive.

For processes with a higher order behavior, strong bisimilarity might be too
restrictive since it requires the emitted or received processes (shown as labels) to

be syntactically the same. In practice, however, processes are considered impor-
tant up to their behavior and hence they should be related using a behavioral
(and not syntactic) notion of equality. This leads to a higher order notion of
bisimilarity [2,6,22]. In this paper, we also present and prove a novel format that
induces congruence for higher order bisimilarity.

This paper is organized as follows: In the next section, we give more details
of our contribution in the context of the literature. Section 3 formally defines our
SOS framework and defines the intended notions of bisimilarity and congruence.
Based on these concepts, our promoted PANTH format is presented in Section 4.
Section 5 studies higher order bisimilarity and proposes the higher order PANTH
format which induces congruence for this notion. We conclude the paper and
comment on future work in Section 6.

2 Related Work

From Tyft/tyxt to PANTH. The tyft/tyxt format [13] is aimed at proving con-
gruence of strong bisimilarity and it allows for SOS rules of the following forms:

{ti
li→ yi | i ∈ I}

f(−→xj)
l→ t

,
{ti

li→ yi | i ∈ I}

x
l→ t

,

where xj and yi are distinct variables ranging over process terms, f is a function
symbol or operator (e.g., sequential composition, parallel composition, etc.), I
is a (possibly infinite) set of indices and t and ti’s are process terms.

In [12], negative premises of the form ti
li9 were added to the tyft/tyxt format,

resulting in the ntyft/ntyxt format. The format guarantees the congruence prop-
erty in this extended setting provided that the transition system specification
is stratified. Stratification is concerned with defining a measure that decreases
from the conclusion to negative premises and does not increase from the con-
clusion to positive premises. Note that the addition of negative premises to the
tyft/tyxt format is a non-trivial extension in that it increases expressiveness and
introduces technical complications with respect to existence and uniqueness of
an intended model for the semantics.

Finally, the PANTH format [23] (for Predicates And Negative Tyft/tyxt Hy-
brid format) extends the ntyft/ntyxt format. A deduction rule in the PANTH
format may have predicates, negative predicates, transitions and negative tran-
sitions in its premises and a predicate or a transition in its conclusion.

Promoted Tyft/tyxt. Bernstein in [3] proposes the promoted tyft/tyxt format
which extends the tyft/tyxt format by allowing for the use of terms as labels.
Rules in this format have the following form:

{ti
t′i→ yi | i ∈ I}

f(−→xj)
g(−→zk)→ t

,
{ti

t′i→ yi | i ∈ I}
f(−→xj)

z→ t
,

{ti
t′i→ yi | i ∈ I}

x
g(−→zk)→ t

,
{ti

t′i→ yi | i ∈ I}
x

z→ t
.

2

The intuition behind the symbols in common with the tyft/tyxt format remains
unchanged. For the rest, g is a function symbol, zk’s and z are variables, vari-
ables in the source and label of the conclusion and targets of the premises are
all distinct and furthermore, all t′i’s (labels of premises) are assumed to contain
at least one function symbol, i.e., they are not variables. Bernstein proves con-
gruence of strong bisimilarity for SOS specifications conforming to the promoted
tyft/tyxt format.

Promoted PANTH. In this paper, we show that most of the restrictions on la-
bels imposed above are not necessary in general and propose a more general
and relaxed format based on the promoted tyft/tyxt format of [3]. We call our
new format for strong bisimilarity promoted PANTH . Furthermore, the pro-
moted PANTH format extends syntactic capabilities of the promoted tyft/tyxt
format by allowing for predicates, negative premises and lists of terms as labels.
We show that the promoted PANTH format is strictly more expressive than
the promoted tyft/tyxt format and point out some usual patterns of SOS rules
that the promoted tyft/tyxt format cannot deal with and the promoted PANTH
format can.

Proof Methods for Evaluation Systems. The proof method of Howe [14] and
related methods such as those proposed in [18] have been used for proving con-
gruence of applicative bisimulation for functional languages. Sangiorgi also pro-
poses a similar framework in [19] for concurrent extensions of lambda-calculi.
Although some of the standard concepts of Howe’s method, such as abstraction
and evaluation structures, are not explicitly present in our framework, as shown
by [3], we can still model the systems studied by [14,18,19] and obtain similar
results using our formats.

Higher Order Bisimulation and Higher Order PANTH. It was first noted in
[2,6] that there is a need for a notion of behavioral equivalence that relates the
behavior of labels instead of their syntax. This notion was also used in [21,22]
for the Calculus of Higher Order Communicating Systems (CHOCS).

In this paper, we give a general framework for defining the semantics of such
systems and proving congruence for the higher order notion of bisimilarity. We
also specify CHOCS [22] in our framework, show that the higher order bisimi-
larity of [22] trivially coincides with ours and conclude that bisimilarity in this
framework is indeed a congruence. This way, one can save pages of proof (such
as those given explicitly in [22]) for proving congruence.

In [20], it is argued that the higher order notion of bisimilarity may be still
too strong for systems with static restriction while it works fine with dynamic
restriction of names. It goes beyond the scope of this paper to discuss this issue
but the techniques developed here can be useful in formulating congruence meta-
theorems for other notions of bisimilarity for higher order processes (e.g., normal
and context bisimilatities of [20]).

It is worth mentioning that in [3], the promoted tyft/tyxt format is used to
prove that higher order bisimilarity is a congruence for CHOCS. But to do so,

3

the semantics of CHOCS is translated into a new semantics and it is shown that
higher order bisimilarity in CHOCS coincides with strong bisimilarity in the new
semantics. Using our approach, one can save these intermediate steps and arrive
at the desired result directly.

Other SOS Frameworks. Our SOS framework is closest to that of [8] (simpli-
fied by omitting the binding signatures) for which no known congruence format
exists. The generalized PANTH format [15] includes variable binding operators
(which are not addressed in this paper), but does not allow for terms as labels
and hence cannot deal with higher order process algebras such as CHOCS di-
rectly. Galpin in [10] defines a multi-sorted SOS framework with terms as labels.
However there, the sort of labels is necessarily different from the sort of pro-
cesses. Thus higher order processes and higher order bisimilarity do not have a
natural presentation in the extended TSS framework of [10].

3 Preliminaries

3.1 SOS with First Order Labels

Fix an infinite set of variables x, y, . . . ∈ V . A signature is a collection of func-
tion symbols f , g, each with an associated arity ar(f) which is the number of
arguments of f . We call f a constant when ar(f) = 0.

(Process) terms t, t′, t0 . . . ∈ T (Σ) are inductively defined in the standard
way given variables and a signature. Terms p, q, . . . ∈ C(Σ) are closed when
they mention no variables. We tend to write p, q, p0, . . . for closed terms. We
shall keep Σ fixed but arbitrary henceforth, so we may drop it. Write L for the
set of finite lists of terms (of possibly zero length). We write L, L′, or (if we
want to refer to elements)

−→
ti for lists. Finally, we write f(

−→
ti) and by that we

mean f(t0, . . . , tar(f)−1) by an implicit assumption that the list
−→
ti is of the right

length, i.e., ar(f).
A substitution σ replaces variables in a term with other terms. The set of

variables appearing in term t is denoted by vars(t). Two substitutions σ and σ′

respect relation R when for all x ∈ V , (σ(x), σ′(x)) ∈ R.
A transition system specification, defined below, is a logical way of defining

transition relations and predicates on (closed) terms. We need some important
basic definitions first:

For a (transition) relation r ∈ Rel of arity n, t, t′ ∈ T , and
−→
ti ∈ L of length

n, call t
−→
ti→r t′ a positive and t

−→
ti9r a negative transition formula. We call

t the source of both transitions and t′ the target of the positive one.
For a predicate P ∈ Pred of arity n, t ∈ T , and

−→
ti ∈ L of length n, we call

P (
−→
ti) t a positive predicate formula and ¬P (

−→
ti) t a negative predicate

formula. A (positive or negative) formula is a (positive or negative) transition
or predicate formula.

We say formulae are closed when all the terms they mention are.

4

A deduction rule dr ∈ D is a tuple (H, c) where H is a set of formulae and
c is a positive formula. We call c the conclusion and formulae in H premises.
We write (H, c) as Hc .

Definition 1 (Transition System Specification (TSS)) A transition system
specification is a tuple (Σ,Rel ,Pred , D) consisting of a signature Σ, disjoint
sets of relations Rel and predicates Pred on terms with fixed arities, and a set
of deduction rules D.

Note that a transition relation of arity n can be viewed as a predicate of arity
n+1. [23] also shows how to code predicate formulae as transition formulae with
dummy right-hand sides.

In the following example, we give the TSS of a higher order process algebra
called CHOCS [22] which serves as a running example throughout the rest of
the paper.

Example 1 (Calculus of Higher Order Communicating Systems (CHOCS)) The
signature of CHOCS consists of the following operators: 0, a, τ. , c! . , c?a. , + ,
| , \ c and [S] where c is taken from the set C of channel names, a from

the set A of atoms and S : C → C is a function on channel names. (In [22],
atoms are called process variables. To avoid confusion with variables in our SOS
setting, we use the term atom instead.)

Process 0 is a deadlocking process. An atom a is supposed to represent a
“hole” in the process description which can be substituted by another process
term. Other than being substituted by a term, an atom does not have any other
observable behavior. Internal action prefixing τ.p first performs a τ -step and then
behaves as p. A send prefixed process c!p.p′ sends process p along the channel c
and becomes p′ afterwards. A receive prefixed process c?a.p, receives a process
along c and substitutes it for atom a in p. Choice is denoted by + and parallel
composition by |. To make a channel name c internal to process p the restriction
expression p \ c is used. Finally, renaming expression p[S] renames all channel
names of p as specified by the the renaming function S.

The transition relations for this formalism are classes of unary substitution
t→/a , send t→c! and receive t→c? transitions and a nullary internal action →τ

transition. Substitution transition p
p′

→/a p
′′ stands for “substituting a with p′ in

p results in p′′”. Send transition p
p′

→c! p
′′ means that process p emits process p′

along channel c and arrives in p′′, similarly p
p′

→c? p
′′ means that p receives p′

along channel c and becomes p′′. No predicates are used in the TSS of CHOCS.
The deduction rules of the CHOCS semantics are given in Figure 1. For

brevity, we have omitted the rules dedicated to commutativity of choice and
parallel composition. Also, we assume that processes are written in such a way
that the substitution happening in the receive rule avoids capture of bound
atoms. This can be dealt with explicitly in our SOS framework (cf. [3]) but it
will only clutter our presentation and hence we dispense with it.

5

a
z→/a z b

z→/a b
a 6= b

x0
z→/a y0 x1

z→/a y1

c!x0.x1
z→/a c!y0.y1

x
z→/b y

c?a.x z→/b c?a.y
a 6= b

x0
z→/a y0 x1

z→/a y1

x0 +x1
z→/a y0 + y1

x0
z→/a y0 x1

z→/a y1

x0 | x1
z→/a y0 | y1

x0
z→/a y0

x0 \ c
z→/a y0 \ c

x0
z→/a y0

x0[S] z→/a y0[S]

τ.x→τ x c!x0.x1
x0→c! x1

x1
z→/a y1

c?a.x1
z→c? y1

x0→τ y0
x0 +x1→τ y0

x0
z→c! y0

x0 +x1
z→c! y0

x0
z→c? y0

x0 +x1
z→c? y0

x0→τ y0
x0 | x1→τ y0 | x1

x0
z→c? y0 x1

z→c! y1
x0 | x1→τ y0 | y1

x0
z→c! y0

x0 | x1
z→c! y0 | x1

x0
z→c? y0

x0 | x1
z→c? y0 | x1

x0→τ y0
x0 \ c→τ y0 \ c

x0
z→c′! y0

x0 \ c
z→c′! y0 \ c

c 6= c′ x0
z→c′? y0

x0 \ c
z→c′? y0 \ c

c 6= c′

x0→τ y0
x0[S]→τ y0[S]

x0
z→c! y0

x0[S] z→S(c)! y0[S]
x0

z→c? y0

x0[S] z→S(c)? y0[S]

Fig. 1. Deduction Rules for CHOCS

Not all TSS’s induce a unique set of transition relations and predicates.
However, in this paper and in all practical cases, it is essential to make sure
that a TSS uniquely defines the intended semantics. A criterion that helps in
this respect is stratification [12] which guarantees that a TSS uniquely defines
an intuitive model, called its stable model. Since it plays no role in the technical
development of this paper, we do not give the details about stratification and
only use it in our proofs. Henceforth and without comment, we assume all TSS’s
under study are stratified and consequently, induce a unique stable model.

Definition 2 (Proof) We say a positive closed formula φ is provable from a
set of positive formulae T and a TSS tss, denoted by (T, tss) ` φ when there is
a well-founded upwardly branching tree with nodes labelled by closed formulae
such that:

– the root node is labelled by φ, and
– if the label of a node q, denoted by ψ, is a positive formula and {ψi | i ∈ I}

is the set of labels of the nodes directly above q, then there is a deduction

rule
{χi | i ∈ I}

χ
in tss (N.B. χi can be a positive or a negative formula) and

a substitution σ such that σ(χ) = ψ and for all i ∈ I, σ(χi) = ψi;
– if the label of a node q, denoted by p

L9 , is a negative formula then there
exists no p′ such that p L→ p′ ∈ T (or similarly, if it is of the form ¬P (L)p
then P (L)p /∈ T).

6

Definition 3 (Stable Model) A stable model defined by tss is a set of positive
formulae T such that φ ∈ T if and only if (T, tss) ` φ, for all closed positive
formulae φ.

3.2 Bisimilarity

Strong bisimilarity is a natural behavioral equivalence. It is generally too fine-
grained (it does not equate enough terms) but it can serve as a basis for other
weaker equivalences (e.g., those ignoring internal actions [11]). Congruence for-
mats for weak equivalences (e.g. [4]) are often based on those for strong bisimi-
larity. Hence, we start with studying strong bisimilarity as an important notion
of behavioral equivalence.

We may write pRq for (p, q) ∈ R, or even −→piR
−→qi to say −→pi and −→qi have the

same length and piRqi, for each i.

Definition 4 (Strong Bisimulation and Bisimilarity) Given a TSS (Σ, Rel ,
Pred , D) which induces a unique set of transition relations and predicates, a
relation R ⊆ C ×C is a strong simulation relation if and only if ∀p,q∈C pRq ⇒

1. ∀r∈Rel,L∈L,p′∈C p
L→r p

′ ⇒ ∃q′∈C q
L→r q

′ ∧ p′Rq′;
2. ∀P∈Pred,L∈L P (L)p ⇒ P (L)q.

A strong bisimulation relation is a symmetric strong simulation relation. Closed
terms p and q are strongly bisimilar, denoted by p ↔s q, if and only if there
exists a strong bisimulation relation R such that pRq.

We treat this notion in Section 4 and there, we formulate a congruence meta-
theorem for it in Theorem 1.

On one hand, our SOS framework allows for processes as labels. On the other
hand processes are usually considered important up to their behavior (and not
up to their syntax). Hence, it seems more natural to use a different notion of
bisimilarity, rather than the strong one, which not only relates the behavior of
source and target processes but also the behavior of label processes. This way,
we come to the notion of higher order bisimilarity defined below.

Definition 5 (Higher Order Bisimulation and Bisimilarity [2]) Given a TSS
(Σ,Rel , Pred , D) which induces a unique set of transition relations and predi-
cates, a relation R ⊆ C × C is a higher order simulation relation if and only
if ∀p,q∈C pRq ⇒

1. ∀r∈Rel,L∈L,p′∈C p
L→r p

′ ⇒ ∃L′∈L,q′∈C q
L′

→r q
′ ∧ LRL′ ∧ p′Rq′;

2. ∀P∈Pred,L∈L P (L)p ⇒ ∃L′∈L P (L′)q ∧ LRL′.

A higher order bisimulation relation is a symmetric higher order simulation re-
lation. Closed terms p and q are higher order bisimilar, denoted by p ↔h q, if
and only if there exists a higher order bisimulation relation R such that pRq.

7

We treat this notion in Section 5 and the corresponding congruence results are
given in Theorem 3.

Note that higher order bisimilarity is sometimes required to be closed under
substitution of atoms [6,22]. Here, we do not add this requirement for the sake of
generality but in the coming examples, we show that this additional constraint
can easily be coded in the semantic model.

It is also worth noting that higher order bisimilarity, though more natural
in our setting, does not make strong bisimilarity obsolete. In some cases, the
labels have a syntactic structure and use terms from the language but do not
show any behavior, or alternatively, scrutinizing their behavior is a very complex
task. In other words, not always terms on the labels are processes or treated as
such. In cases, where labels are indeed terms but do not show any observable
behavior, all labels are considered equal from a bisimilarity viewpoint and hence
higher order bisimilarity renders very weak and impractical. Thus, presenting a
meta-theorem for congruence of bisimilarity is interesting even in the presence
of terms as labels.

As one might expect, higher order bisimilarity is strictly coarser than strong
bisimilarity, i.e., it identifies more processes. Examples of this are shown in the
remainder. In Section 5, we also give some sufficient criteria for the two notions
to coincide.

3.3 Congruence for Bisimilarity

Next, we define the concept of congruence which is of central importance to our
topic.

Definition 6 (Congruence) For a TSS with signature Σ, an equivalence relation
R ⊆ T (Σ) × T (Σ) is a congruence when for all function symbols f ∈ Σ and
for all terms pi, qi ∈ T (Σ) (0 ≤ i < ar(f)), if −→piR

−→qi then f(−→pi)Rf(−→qi).

None of the notions of bisimilarity are necessarily a congruence. In the rest
of this paper, we endeavor to find sufficient conditions that guarantee them to
be a congruence. After all, it turns out that the sufficient conditions for the two
notions are somewhat different. A natural question is whether this difference
is genuine or not. In the following two examples we show that the notions of
congruence for these two equivalences are indeed unrelated, i.e., for neither of
the two equivalences, congruence of one implies congruence for the other.

Example 2
f(a) a→r a a

a→r a b
b→r b

Consider the above set of deduction rules defined on the signature a, b and
f(). In the above TSS, it holds that a ↔h b but not f(a) ↔h f(b) since f(a)
can make an r-transition with label a but f(b) cannot make any transition.
Higher order bisimilarity is not a congruence for the above TSS. As for strong
bisimilarity, it does not hold that a ↔s b in the first place and hence, strong
bisimilarity is trivially a congruence.

8

Example 3
f(a) a→r a f(b) b→r a a

a→r a b
a→r b

Consider the above set of deduction rules defined on the same signature as
of Example 2. This time, higher order bisimilarity is a congruence since a ↔h b
and f(a) ↔h f(b). However, strong bisimilarity is not a congruence since a ↔s b
but not f(a) ↔s f(b).

4 Congruence for Strong Bisimilarity

In this section, we propose a syntactic restriction on TSSs, in the form of a
format, that guarantees strong bisimilarity is a congruence. To begin with, we
define the auxiliary notion of volatile operators.

4.1 Volatile Operators

Due to the possible interaction between terms and labels, for some operators,
it is essential to make sure that transitions with these operators (as labels) are
always possible under the change of their arguments by bisimilar ones. First, we
give a simple example motivating this concept and then we present the formal
definition.

Example 4
a

g(x)→r y

f(x) a→r′ y a
g(a)→r a b

g(a)→r a
Consider the above TSS with a and b as constants and f and g as unary

function symbols. It holds that a ↔s b but it does not hold that f(a) ↔s f(b)
and hence strong bisimilarity is not a congruence.

In this case, we call g volatile for r transitions because in the premise of the
left-most rule, g appears as a label with an argument that comes from the source
of the conclusion of this rule and as such can be replaced by different terms. In
order for strong bisimilarity to be a congruence, we require that r-transitions
with g in the label should be indifferent to replacing arguments of g by bisimilar
ones. However, this is clearly not the case for the middle and rightmost rules
since for both an r transition with g(a) is allowed while the same transitions
with g(b) are prohibited, thus causing the anomaly.

Definition 7 (Volatile Operators) Given a TSS (Σ,Rel ,Pred , D) an operator
f ∈ Σ is called volatile for r ∈ Rel (similarly for P ∈ Pred) when there exists
a rule d ∈ D of the following form:

{Pi(Li)ti or ti
Li→ri t

′
i | i ∈ I} {¬Pj(Lj)tj or tj

Lj9rj | j ∈ J}

P ′(L)t or t
L→r′ t′

and f(
−→
tk) is a subterm of a component of Lm for some m ∈ I ∪ J such that

r = rm (P = Pm) and vars(
−→
tk) ∩ vars(t) 6= ∅ or ∃i∈Ivars(

−→
tk) ∩ vars(t′i) 6= ∅.

It trivially follows from the above definition that no constant can be volatile.

9

4.2 Promoted PANTH Format

Next, we formulate our congruence format for strong bisimilarity.

Definition 8 (Promoted PANTH Format) A deduction rule is in the promoted
PANTH format when it is of the following form

{Pi(Li)ti or ti
Li→ri

yi | i ∈ I} {¬Pj(Lj)tj or tj
Lj9rj

| j ∈ J}

P (L)f(−→xi) or f(−→xi)
L→r t

′

and first, all the variables xi and yj (0 ≤ i < ar(f) and j ∈ I) and the variables
in L are pairwise distinct, second, if a component of Lk (k ∈ I ∪ J) is a variable
(i.e., does not have any function symbol) then it is not among xi’s and yj ’s and
third, for all components t of L:

1. if t contains a volatile g ∈ Σ for r (for P) then t is of the form g(−→zl) where
all zl’s are distinct variables and for all k ∈ I ∪ J , all components of Lk

containing a variable among −→zl are of the form g′(
−→
tm) where g′ is volatile for

rk (for Pk),
2. if there is a volatile operator for r (for P) in the signature and if t is a

variable z then for all k ∈ I∪J , all components of Lk containing z are either
z itself or are of the form g′(

−→
tn) where g′ is volatile for rk (for Pk).

A TSS is in the promoted PANTH format when all its deduction rules are.

Observe that if there is no volatile operator in the signature then none of the
two checks on the labels are needed. Volatile operators are very rare in process-
algebraic formalisms as it can be observed in the coming examples. Hence, most
of the times, the above format can be simplified and checks on the labels can
be saved. Surprisingly, the promoted tyft/tyxt format is formulated in such a
way that all operators can be considered volatile and thus, it turns out to be
more restrictive and less expressive than ours. Examples of these phenomena are
pointed out next.

Example 5 (Congruence of Strong Bisimilarity for CHOCS) Consider the TSS
of CHOCS given in Example 1. No operator in this language is not volatile. All
the deduction rules of this TSS are in the promoted PANTH format but the one
concerning the send operator c! . . This rule violates the format by exploiting
variable x0 in both the source and the label of the conclusion. All the other
rules, having a premise are not in the promoted tyft/tyxt format since they have
variables as labels of premises. Note that this restriction of the promoted tyft/tyxt
format can be seen as a disadvantage since using this format, one cannot deal
with ordinary process algebraic operators (e.g., choice and parallel composition)
by replacing variables for constant labels. This restriction is not present in the
promoted PANTH format.

Hitherto, one can imagine two scenarios. Either our format is too weak to
capture the congruence of strong bisimilarity for CHOCS (since syntactic for-
mats only give sufficient and not necessary conditions) or strong bisimilarity for

10

CHOCS is not a congruence in the first place. Fortunately, the latter is the case
and this can be shown by a very simple example.

Consider two processes 0 and 0+0. It clearly holds that 0 ↔s 0+0 and 0 ↔s 0
but it does not hold that c!0.0 is bisimilar to c!(0 + 0).0 as the former can only
perform a 0→c! transition but the latter can only make a 0+0→c! a transition and
0 and 0 + 0 are not (syntactically) the same terms.

However, one can change the language a bit so that strong bisimilarity be-
comes a congruence. One such approach is presented in [3] and with a proof
of more than a page, it is shown that strong bisimilarity in the new language
coincides with a notion of higher order bisimilarity [22] in the original semantics
and hence, it is concluded that this notion of higher order bisimilarity for the
original language is a congruence. In Section 5, we propose a congruence format
for higher order bisimilarity and using that we give a direct proof for congruence
of higher order bisimilarity. So, we do not take the approach of [3] in this section.

Alternatively, in order to make the strong bisimilarity a congruence, we pro-
pose to change the send operator as follows. First, we change the syntax of a
send operator to be a class of unary send operators c!p. for given closed terms
p ∈ P . Then, we change the semantics of the send operator and replace it with
this rule:

c!p.x0
p→c! x0

.

Note that in the above rule the p in the source of the conclusion is part
of the function symbol while the p in the label is a term. To check that this
rule fits in the promoted PANTH format one has to check the following two
conditions: first, the set of variables appearing in p and c!p.x0 should be disjoint
which holds trivially since the former p is a closed term and second, either p
contains no volatile operator or it is of the form g(−→x) for a volatile g. Since the
language contains no volatile operator the second obligation is also discharged
and hence, we can conclude that strong bisimilarity is a congruence for this
slightly modified language. Note that one cannot get a similar result by using
the promoted tyft/tyxt format for it only allows for labels of the form x or g(−→x)
in the conclusion.

Next, by a simple and abstract example, we show that our format is strictly
more expressive than the promoted tyft/tyxt format of [3].

Example 6
x

z→r y

f(x) z→r y a
f(a)→r b b

f(a)→r b
Consider a TSS defined by signature {a, b, f()}, a unary transition relation

→r , no predicate and the deduction rules given above. None of the three deduc-
tion rules are in the promoted tyft/tyxt format while they are all in the promoted
PANTH format and one can check that strong bisimilarity is indeed a congru-
ence. Our claim is that there exists no TSS in the promoted tyft/tyxt format that
induces the same transition relation as the one induced by the above TSS.

The proof of our claim is quite simple and follows from the proof of The-
orem 2.1 in [3]. There, it is shown that, for a TSS in the promoted tyft/tyxt
format, for all terms f(−→pi) and g(−→qj) if there exists p′ ∈ C and

−→
p′i ,

−→
q′j ∈ L such

11

that f(−→pi)
g(−→qj)→r p

′, −→pi ↔s

−→
p′i and −→qj ↔s

−→
q′j then there exists a p′′ ∈ C such that

f(
−→
p′i)

g(
−→
q′

j)
→r p

′′. Getting back to our example, suppose that there exists a TSS in
the promoted tyft/tyxt format that induces the same transition relation as the

one induced by the above TSS. Then, since a ↔s b and f(a)
f(a)→r b, it should

hold that f(b)
f(b)→r p

′′ for some p′′ ∈ C such that b ↔s p
′′. But note that in the

transition relation induced by the above TSS, no transition with label f(b) is
provable. Q.E.D.

4.3 Characteristic Theorem

Common to [3], we impose an extra constraint on the promoted PANTH format
to prove congruence, namely the well-foundedness of the TSS under considera-
tion.

Definition 9 (P-Well-Foundedness) For a deduction rule, the p-variable or-
dering ≤p is an ordering among variables. We wrie x ≤p y, for two variables x
and y, when x appears in the source or the label of a premise of the deduction rule
and y in the target of the same premise. A TSS is called p-well-founded when
for all deduction rules in TSS, there is no infinite backward chain of variables
with respect to ≤p.

Note that in [7] it has been shown that the well-foundedness assumption, al-
though being very convenient for proofs, is not essential for the PANTH format.
Indeed, for each non-well-founded TSS in the PANTH format, one can construct
a well-founded one in a subset of this format (called NTree rules format) that
induces the same transition relations and predicates. We leave it open whether
the results of [7] carries over to our settings or not.

Theorem 1 (Congruence for Promoted PANTH) For a p-well-founded TSS in
the promoted PANTH format, strong bisimilarity is a congruence.

5 Congruence for Higher Order Bisimilarity

5.1 Persistency

In this section, we seek sufficient syntactic criteria for the higher order bisimi-
larity induced by a TSS to be a congruence.

We begin with an auxiliary definition that has the same spirit as that for
volatile operators. It is supposed to capture that the labels of a transition can
be replaced by bisimilar ones.

Definition 10 Consider a TSS (Σ,Rel , Pred , D) and a set Ps of tuples (U,L)
where U ∈ Rel ∪ Pred and L ∈ L. We call Ps a persistent set when for all

12

(U,L) ∈ Ps and all deduction rules d ∈ D if d has U in its conclusion then it is
of the following form:

{P (Li)ti or ti
Li→ri

yi | i ∈ I} {¬P (Lj)tj or tj
Lj9rj

| j ∈ J}

U(L′)f(−→x) or f(−→x) L′

→U t
′

where L = σ(L′) for some substitution σ and

1. all xi’s, yj ’s (0 ≤ i < ar(f) and j ∈ I) and variables appearing in L′ are
pairwise distinct;

2. for all k ∈ I ∪ J , (rk, σ(Lk)) ∈ Ps (or (Pk, σ(Lk)) ∈ Ps).

If a set Ps is persistent and (U,L) ∈ Ps then we say that U-transitions (pred-
icates) are persistent for L labels. A transition relation (predicate) is per-
sistent if it is persistent for a label of the form −→zi where zi are distinct variables.

The following theorem gives an idea about the intuition behind persistency.

Theorem 2 If for a TSS all its transition relations and predicates are persistent
then:

1. higher order bisimilarity is a congruence;
2. higher order and strong bisimilarity coincide.

Example 7 (Persistency for CHOCS) Substitution, receive and τ -transitions
are all persistent in CHOCS, i.e., substitution and receive are persistent for a
variable.

5.2 Higher Order PANTH Format

Our criteria are formulated as a syntactic format which we call higher order
PANTH.

Definition 11 (Higher Order PANTH Format) A deduction rule is in the higher
order PANTH format when it is of the following form

{P (Li)ti or ti
Li→ri

yi | i ∈ I} {¬P (Lj)tj or tj
Lj9rj

| j ∈ J}

P (L)f(−→xi) or f(−→xi)
L→r t

′

where variables xi’s and yj ’s (0 ≤ i < ar(f) and j ∈ I) are all pairwise distinct
and for all k ∈ I ∪ J

1. rk-transitions (predicates) are persistent for Lk labels (Definition 10);
2. or alternatively, k ∈ I, Lk is a list of distinct variables −−→zkm that are dis-

tinct from labels of other non-persistent transitions and predicates and are
different from xi’s and yj ’s.

13

A TSS is in the higher order PANTH format when all its rules are.

Next, we define the notion of well-foundedness for TSS’s in the higher order
PANTH format.

Definition 12 (H-Well-Foundedness) An h-variable ordering ≤h with re-
spect to a deduction rule is an ordering on variables. For two variables x and y,
x ≤h y if x appears in the source of a premise of the rule and y appears in its
label or target. A TSS is h-well-founded when for all deduction rules in TSS,
there is no infinite backward chain of variables with respect to ≤h.

We believe that well-foundedness for this format is a convenience for our
proofs and is not a necessary ingredient for congruence but this remains to be
formally checked.

Theorem 3 (Congruence for Higher Order PANTH) For an h-well-founded TSS
in the higher order PANTH format, higher order bisimilarity is a congruence.

Example 8 (Congruence of Higher Order Bisimilarity for CHOCS) The seman-
tics of CHOCS as given in Example 1 conforms to our format. To verify this claim
we have to check that in the conclusion of each deduction rule mentions only
one function symbol, the targets of premises mention distinct variables and the
label of premises either mention distinct variables or are persistent. The first
two checks are straightforward. For the third, the only problem arises from the
rules having two premises mentioning the same label z. Two of such rules ap-
pear in the definition of substitution transitions which is shown to be persistent,
so they conform to our format. The only other rule having the same condition
is the one defining communication for parallel composition. But in that rule,
the receive transition is persistent and hence, the only non-persistent premise
(the send transition) trivially satisfies the second criterion of Definition 11. Note
that the notion of higher order bisimilarity in [22] also requires that bisimilarity
should be closed under substitution of atoms. Our notion does not require this
in general, but in the case of CHOCS semantics, the addition of substitution,
makes sure that bisimilar terms always have the same “substitution behavior”.
Hence, the two notions trivially coincide.

6 Conclusion

In this paper, we presented two syntactic formats that guarantee congruence for
two notions of strong and higher order bisimilarity. We applied these formats to
the CHOCS process algebra [22].

Due to the abundant presence of notions of names and binders in the for-
malisms with higher order behavior, the addition of these notions to our formats
is a very natural and useful extension. We are currently considering this exten-
sion and we try to exploit the Gabbay-Pitts Nominal Techniques [9,16] for this
purpose.

14

References

1. L. Aceto, W. J. Fokkink, and C. Verhoef. Structural operational semantics. In
Handbook of Process Algebra, Chapter 3, pages 197–292. Elsevier Science, 2001.

2. E. Astesiano, A. Giovini, and G. Reggio, Generalized bisimulation in relational
specifications. In Proc. of STACS’88, volume 294 of LNCS, pages 207–226,
Springer, 1988.

3. K. L. Bernstein. A congruence theorem for structured operational semantics of
higher-order languages. In Proc. of LICS’98, pages 153–164. IEEE CS, 1998.

4. B. Bloom. Structural operational semantics for weak bisimulations. TCS, 146:25–
68, 1995.

5. R. Bol and J. F. Groote. The meaning of negative premises in transition system
specifications. JACM, 43(5):863–914, 1996.

6. G. Boudol. Towards a lambda-calculus for concurrent and communicating systems.
In Proc. of TAPSOFT’89, volume 351 of LNCS, pages 149–161, Springer, 1989.

7. W. J. Fokkink and R. J. van Glabbeek. Ntyft/ntyxt rules reduce to ntree rules.
I&C, 126(1):1–10, 1996.

8. W. J. Fokkink and C. Verhoef. A conservative look at operational semantics with
variable binding. I&C, 146(1):24–54, 1998.

9. M. J. Gabbay and J. Cheney. A Sequent Calculus for Nominal Logic, In Proc. of
LICS’04, pages 139–148, IEEE CS, 2004.

10. V. Galpin. A format for semantic equivalence comparison, TCS, 309(1-3):65–109,
2003.

11. R. J. van Glabbeek and W. P. Weijland. Branching Time and Abstraction in
Bisimulation Semantics. JACM, 43(3):555–600, 1996.

12. J. F. Groote. Transition system specifications with negative premises. TCS,
118(2):263–299, 1993.

13. J. F. Groote and F. W. Vaandrager. Structured operational semantics and bisim-
ulation as a congruence. I&C, 100(2):202–260, 1992.

14. D. J. Howe. Proving congruence of bisimulation in functional programming lan-
guages. I&C, 124:103–112, 1996.

15. C. A. Middelburg. Variable binding operators in transition system specifications.
JLAP, 47(1):15–45, 2001.

16. A. M. Pitts. Nominal logic, a first order theory of names and binding. I&C,
186(2):165–193, 2003.

17. G. D. Plotkin. A structural approach to operational semantics. JLAP, 60:17–139,
2004.

18. D. Sands. From SOS rules to proof principles: An operational metatheory for
functional languages. Proc. of POPL’97, pages 428-441, ACM Press, 1997.

19. D. Sangiorgi. The Lazy lambda calculus in a concurrency scenario. I&C,
111(1):120–153, 1994.

20. D. Sangiorgi. Bisimulation for Higher-Order Process Calculi. I&C, 131(2):141–178,
1996.

21. B. Thomsen. Plain CHOCS a second generation calculus for higher order processes.
Acta Informatica, 30(1):1–59, 1993.

22. B. Thomsen. A theory of higher order communicating systems. I&C, 116:38–57,
1995.

23. C. Verhoef. A congruence theorem for structured operational semantics with pred-
icates and negative premises. Nordic Journal of Computing, 2(2):274–302, 1995.

15

