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Abstract. We define Boolean algebras over nominal sets with a function-
symbol Nmirroring the N‘fresh name’ quantifier. We also define dual
notions of nominal topology and Stone space, prove a representation
theorem over fields of nominal sets, and extend this to a Stone duality.

1 Introduction

Na.φ(a) means ‘for fresh a, φ(a) holds’. Here a is intended to be an atomic
resource: examples are a variable symbol, memory location, channel name, or
(in security) nonce.

Nis interesting from both a mathematical and computational point of view.
It is self-dual (¬ Na.φ(a)⇔ Na.¬φ(a)) and this gives a computationally useful
some/any property : to prove Nwe check φ(a) for some fresh name, but we can
then use any fresh b. (Definitions below or in [18,14].)

Nalso appears to be useful. It has been applied to syntax-with-binding [18],
resource generation in functional programming [29], local names in incomplete
trees [5], π-calculus name-restriction [3], game semantics [1,33], and domains
[32]. See Example 3.6 for more discussion.

Proof-theories for Nhave been suggested [11,15,7,10], but no equational ax-
iomatisation or representation theorem. Nominal domains have been studied,
but not topologies. As we shall see, algebra and topology with Nare non-trivial
and interesting.

In this paper we study Boolean logic with Nin nominal sets. We introduce
Banonas (Boolean Algebra, NOminal with Na) and nominal Stone spaces, and
prove representation and duality theorems.

Stone’s representation does not generalise easily to nominal sets: the ultra-
filter lemma breaks down (since a union of finitely-supported sets need not be
finitely-supported). To ‘fix’ this, a name-restriction operation seems to be re-
quired. So Banonas seem to arise naturally from the proofs: the mathematics
leads us to this structure even if we did not start off with it. On that topic,
Banonas are also Boolean algebra objects in the category Res of nominal re-
striction sets considered recently in [26,27]. There seems to be convergence in
the recent literature, on name-restriction as an interesting object of study.

One application of Stone duality relates coalgebras for ‘sufficently well-behaved’
functors on sets, with algebras for ‘sufficently well-behaved’ functors on Boolean
algebras (definitions in [21]). This allows a uniform construction of logic(s) for
coalgebras. So this paper lays the groundwork for a duality-based approach to
nominal coalgebraic logic with built-in name generation. Coalgebras on nominal



sets do provide a natural semantics for name-passing calculi such as π-calculus
(see e.g. [9, Section 1.2] and [30] for information and references). See Example 3.6
and the Conclusions for more discussion of applications.

The results in this paper describe a natural mathematical building-block of
inherent mathematical elegance, which seems to arise spontaneously by consid-
ering algebra and topology in a ‘nominal’ setting, and with potential practical
interest. We discuss further work in the Conclusions.

2 Basic definitions for nominal sets

A nominal set is a ‘set with names’. The notion of a name being ‘in’ an element
is given by support supp(x) (Definition 2.7). For more details of nominal sets,
see [18,14]. The reader can reasonably think of supp(x) as ‘the free atoms of
x’, but without committing to x being syntax—on the contrary, x could have
any structure provided it admits a permutation action, and this includes taking
powersets as we see later in Section 5.

Definition 2.1. Fix a countably infinite set of atoms A. We use a permuta-
tive convention that a, b, c, . . . range over distinct atoms.

Definition 2.2. A (finite) permutation π is a bijection on atoms such that
nontriv(π) = {a | π(a) 6= a} is finite.

Write id for the identity permutation such that id(a) = a for all a. Write
π′ ◦ π for composition, so that (π′ ◦ π)(a) = π′(π(a)). Write π-1 for inverse, so
that π-1 ◦ π = id = π ◦ π-1. Write (a b) for the swapping (terminology from
[18]) mapping a to b, b to a, and all other c to themselves, and take (a a) = id.

Definition 2.3. If A ⊆ A define fix (A) = {π | ∀a ∈ A.π(a) = a}.

Definition 2.4. A set with a permutation action X is a pair (|X|, ·) of an
underlying set |X| and a permutation action written π·x which is a group
action on |X|, so that id·x = x and π·(π′·x) = (π ◦ π′)·x for all x ∈ |X| and
permutations π and π′.

Say that A ⊆ A supports x ∈ |X| when ∀π.π ∈ fix (A)⇒ π·x = x. If a finite
A supporting x exists, call x finitely-supported.

Definition 2.5. Call a set with a permutation action X a nominal set when
every x ∈ |X| has finite support. X, Y, Z will range over nominal sets.

Definition 2.6. Call a function f ∈ |X| → |Y| equivariant when π·f(x) =
f(π·x) for all permutations π and x ∈ |X|. In this case write f : X→ Y.

Definition 2.7. Suppose X is a nominal set and x ∈ |X|. Define the support of
x by supp(x) =

⋂
{A | A supports x}. Write a#x as shorthand for a 6∈ supp(x)

and read this as a is fresh for x.



(Commute) x ∧ y = y ∧ x
(Assoc) (x ∧ y) ∧ z = x ∧ (y ∧ z)
(Huntington) x = ¬(¬x ∧ ¬y) ∧ ¬(¬x ∧ y)

(Swap) Na. Nb.x = Nb. Na.x
(Garbage) a#x⇒ Na.x = x
(Distrib) Na.(x ∧ y) = ( Na.x) ∧ ( Na.y)
(SelfDual) ¬ Na.x = Na.¬x
(Alpha) b#x⇒ Na.x = Nb.(b a)·x

Fig. 1: Axioms of Banonas.

Theorem 2.8. Suppose X is a nominal set and x ∈ |X|. Then supp(x) is the
unique least finite set of atoms that supports x. (Proofs in [18,14].)

Definition 2.9. Write π|A for the partial function which is π restricted to A.

Corollary 2.10. 1. If π(a) = a for all a ∈ supp(x) then π·x = x.
2. If π|supp(x) = π′|supp(x) then π·x = π′·x.
3. a#x if and only if ∃b.b#x ∧ (b a)·x = x.

Proposition 2.11. supp(π·x) = {π(a) | a ∈ supp(x)} (cf. Definition 5.1).

3 Nominal Boolean algebra with N

Definition 3.1. A nominal Boolean algebra with N(with a new-binder) or
Banona is a tuple (B,∧,¬, N) of a nonempty nominal set B, and equivariant
functions (Definition 2.6)

– conjunction ∧ : B× B→ B written x ∧ y (for ∧(x, y)),
– negation ¬ : B→ B written ¬x, and
– new N: A× B→ B written Na.x (for N(a, x)),

such that the equalities in Figure 1 hold.

Banonas arise naturally as nominal powersets (Section 5), just as Boolean
algebras arise naturally as ‘ordinary’ powersets. For an example consider any (for
simplicity) unary predicate P on some syntax, represented as the set of terms
of which it is true. Then asserting that P holds ‘if a is fresh’ (as in ‘if a is fresh
then for all u, t[a::=u] = t) is an instance of Na.P .

Remark 3.2. (Commute), (Assoc), and (Huntington) axiomatise Boolean al-
gebra (see, e.g., [25]). We write ⊥ for x ∧ ¬x, x ∨ y for ¬(¬x ∧ ¬y), and x ≤ y
for x ∧ y = x. With these definitions, the axioms ensure standard properties of
Boolean algebra including: absorption, distributivity, and poset properties.

Nis a name-restriction operation in the sense of [26, Definition 1] since it
satisfies (Swap), (Garbage), and (Alpha). So each Banona has an underlying



nominal restriction set. (Distrib), (SelfDual) imply that ∧ and ¬ are morphisms
in the category Res [27], thus Banonas are Boolean algebra objects in Res.

All these axioms are valid properties of the N-quantifier [18] (Definition 4.3,
in this paper). See Theorem 5.9 for a proof.1

Lemma 3.3. If x ≤ y then Nb.x ≤ Nb.y. In words: Nis monotone.

Proof. By x ≤ y we mean x ∧ y = x. So Nb.(x ∧ y) = Nb.x. We use (Distrib).

Lemma 3.4. a# Na.x. As a corollary, Na. Na.x = Na.x.

Proof. Choose a fresh b (so b#x). By (Alpha) Na.x = Nb.(b a)·x. By equivariance
Nb.(b a)·x = (b a)· Na.x. By Proposition 2.11 a#(b a)· Na.x. The result follows.

The corollary follows using (Garbage).

Definition 3.5. Call a function f ∈ |B′| → |B| a (Banona) morphism when:

f(x ∧ y) = f(x) ∧ f(y) f(¬x) = ¬f(x) f( Na.x) = Na.f(x) f(π·x) = π·f(x)

Write BAnona for the category of Banonas and Banona morphisms.

Example 3.6. – Call a set X ⊆ A cofinite when A \X is finite. The set of
finite or cofinite sets of atoms is a Banona where conjunction and negation
are interpreted as intersection and complement respectively, and Na.X =
X \ {a} if X is finite, and Na.X = X ∪{a} if X is cofinite (cf. Example 5.3).
In Section 5 we exhibit a class of Banonas given by nominal powersets; The
results in Section 6 prove this class complete for all possible examples in a
certain formal sense.

– The discrete nominal restriction set B = {True,False} from [27, Section 3.2]
is also a Banona.

– The term model for nominal logic constructed by Cheney and Urban in
[8] is a Banona where we interpret conjunction as conjunction, negation as
negation, and Na.φ as ‘for fresh a, φ’ as specified in Figure 9 of [8].

– Predicates of Cardelli and Gordon’s ambient calculus up to logical equiva-
lence form a (very richly-structured) Banona where Nis interpreted as Nas
defined in Definition 4.3 of [6] (see [6, Corollary 4.5]).

– Formulas of hybrid logic with downarrow ↓x.φ (see, e.g, [2]) up to logical
equivalence, where atoms serve as world variables, permutation is syntactic
permutation and freshness is ‘not free in’, are a Banona where Nmaps to ↓. A
broader class of Banonas (with additional operators) can be constructed by
adapting an abstract equational class of algebras including sets denotations
for hybrid logic defined in [22] to nominal setting.

1 The axioms are nominal algebraic because of their freshness side-conditions. In a
sense which has been made formal, nominal algebra is an equational logic [17,12,20],
and is sound and complete for nominal sets.



4 Equivariance and the N-quantifier

Our reasoning can be formalised in Zermelo-Fraenkel set theory with atoms
(ZFA). Nominal sets can be implemented in ZFA sets such that nominal sets
map to equivariant elements (elements with empty support) and the permutation
action maps to ‘real’ permutation of atoms in the model [14, Subsection 9.3].
From this, follow short and elegant proofs of theorems about equivariance and
support. For more details, see [14, Section 4].

Definition 4.1. If x denotes a list x1, . . . , xn, write π·x for π·x1, . . . , π·xn.

Theorem 4.2. Suppose φ(x) is a ZFA predicate on variables included in x.
Suppose χ(x) is a ZFA function specified using a list of variables included in x.
Then we have the following principles:

1. Equivariance of predicates. φ(x)⇔ φ(π·x).2

2. Equivariance of functions. π·χ(x) = χ(π·x).
3. Conservation of support. If x denotes elements with finite support

then supp(χ(x)) ⊆ supp(x1)∪ · · · ∪supp(xn).

Definition 4.3. Write Na.φ(a) for ‘{a | ¬φ(a)} is finite’.

Remark 4.4. We can read Nas ‘for all but finitely many a’, ‘for fresh a’, or
‘for new a’. This is like a ‘for most’ quantifier [35], and is a generalised quantifier
[19, Section 1.2.1]. However, Nover nominal sets satisfies additional properties:

Theorem 4.5. Suppose φ(z, a) is a predicate on variables included in z, a.3 Sup-
pose z denotes elements with finite support. Then the following are equivalent:

∀a.(a ∈ A ∧ a#z)⇒ φ(z, a) Na.φ(z, a) ∃a.a ∈ A ∧ a#z ∧ φ(z, a)

This is the some/any property : to prove a N-quantified property we test it for
one fresh atom; we may then use it for any fresh atom.

5 The nominal powerset as an algebra

Definition 5.1. Define the nominal powerset pow(X) by:

– U ⊆ |X| has the pointwise action π·U = {π·x | x ∈ U}.
– |pow(X)| is the set of finitely-supported U ⊆ |X|.

2 x must contain all the variables mentioned in the predicate. It is not the case that
a = a if and only if a = b—but it is the case that a = b if and only if b = a.

3 φ has to be expressible in the language of ZFA set theory without choice. Every φ
used in this paper will satisfy this property.



Definition 5.2. If X∈|pow(X)| then define na.X = {x | Nb.(b a)·x ∈ X}.

Example 5.3. |pow(A)| is the set of finite and cofinite subsets of atoms and
na.X is characterised on pow(A) by:

– If X is finite then na.X = X\{a}.
– If X is cofinite then na.X = X∪{a}.

In the case of X ∈ |pow(X)| for general X, the elements added/removed by n are
called crucial elements in [13, Subsection 4.2] and correspond to adding/removing
elements from a-orbits [13, Subsection 4.1]. In fact na. is equal to the operation
X−a described in [13, Subsection 4.2], used there for different purposes.

Remark 5.4. Definition 5.2 is the sets-based interpretation of Nwhich we will
prove sound and complete for the axioms in Definition 3.1. Visibly, n is defined
using N. Conversely, Na.φ(a) if and only if a ∈ na.{x ∈ A | φ(x)}.
Lemma 5.5. If X ∈ |pow(X)| then na.X ∈ |pow(X)|.
Proof. By Theorem 4.2 supp(na.X) ⊆ supp(X) ∪ {a}.
Lemma 5.6. 1. If a#X then na.X = X.
2. na.(X ∩ Y ) = (na.X) ∩ (na.Y ).
3. na.(|X| \X) = |X| \ na.X.

As a corollary, if X ⊆ Y then na.X ⊆ na.Y .

Proof (Sketch). Suppose a#X. Choose x∈|X| and fresh b (so b#x,X). By the
pointwise action and Corollary 2.10 (b a)·x∈X if and only if x∈X.

Choose x ∈ |X| and fresh b (so b#x,X, Y ). Then (b a)·x ∈ X ∩ Y if and only
if (b a)·x ∈ X and (b a)·x ∈ Y .

Choose x ∈ |X| and fresh b (so b#x,X, |X|\X). Then (b a)·x ∈ |X| \X if and
only if (b a)·x 6∈ X.

Lemma 5.7. b#X implies na.X = nb.(b a)·X. As a corollary, a#na.X.

Proof (Sketch). Choose fresh b (so b#X) and x∈|X|. By the pointwise action
(b c)·x∈(a b)·X if and only if x∈(b c)·(a b)·X. By Corollary 2.10 (b c)·(a b)·X =
(a c)·X. The result follows.

Lemma 5.8. na.nb.X = nb.na.X.

Proof. By routine calculations using the fact that (a′ a)·(b′ b)·x = (b′ b)·(a′ a)·x.

Theorem 5.9. (pow(X), ∩, |X|\-, n) is an object of BAnona.

Proof. Validity of (Commute), (Assoc), and (Huntington) is by routine sets
calculations. Validity of (Alpha) and (Swap) is by Lemmas 5.7 and 5.8. Validity
of (Garbage), (Distrib), and (SelfDual) is by Lemma 5.6.

Proposition 5.10. If a#x then x ∈ X if and only if x ∈ na.X.

Proof. Choose b fresh (so b#x,X). By definition x ∈ na.X when (b a)·x ∈ X.
By Corollary 2.10 (b a)·x = x. The result follows.



6 A representation theorem

We introduce n-filters of a Banona B (Definition 6.1). We define the canonical
extension B• as the nominal powerset of its maximal n-filters (Definition 6.20).
Finally we prove B isomorphic to a subalgebra of B• (Theorem 6.25).

6.1 n-Filters

Definition 6.1. An n-filter is a finitely-supported subset p ⊆ |B| such that:

1. ⊥ 6∈ p 2. ∀x, y.(x ∈ p ∧ y ∈ p)⇔ (x ∧ y ∈ p) 3. Na.∀x.x∈p⇒ Na.x∈p

Remark 6.2. The first two conditions of Definition 6.1 are as standard. The
third condition corresponds to a property of nominal sets (Proposition 5.10) in
a sense made formal in the proof of Lemma 6.12.

Definition 6.3. Given C ⊆ A and x ∈ |B| define NC.x by:

NC.x = Nc1 . . . Ncn.x where C ∩ supp(x) = {c1, . . . , cn}

By assumption x has finite support so C∩supp(x) is finite even if C is not. Also,
by (Swap) the order of the ci does not matter.

Lemma 6.4. Suppose C ⊆ A and a ∈ C. Then:

1. NC.⊥ = ⊥ 2. NC.(x ∧ y) = ( NC.x) ∧ NC.y 3. NC.x = NC. Na.x

Proof. 1. Follows from (Garbage). 2. Follows from (Distrib),(Swap) and (Garbage).
3. If a#x then x = Na.x by Lemma 3.4. If a ∈ supp(x), then a ∈ C ∩ supp(x)
and the result follows from the second part of Lemma 3.4 and (Swap).

Definition 6.5. Suppose z ∈ |B|. Write C = A \ supp(z). Define z↑ by

z↑ = {x | z ≤ NC.x}.

Remark 6.6. The standard definition of z↑ is {x | z ≤ x}. This definition
seems to not work, and proofs based on it break. We can view Definition 6.5 as
elaborating the standard definition to respect property 3 of Definition 6.1.

Lemma 6.7. If z∈|B| and z 6= ⊥ then supp(z↑) ⊆ supp(z) and z↑ is an n-filter.

Proof. Write C = A \ supp(z). The first part is by Theorem 4.2 and the fact
that supp(C) = supp(z).4 That z↑ is an n-filter follows from Lemma 6.4.

Definition 6.8. Call an n-filter p ⊆ |B| maximal when for all n-filters p′ ⊆ |B|
if p ⊆ p′ then p′ = p.

4 In fact it can be proved by a further calculation that supp(z↑) = supp(z).



We now show that every n-filter is contained in a maximal n-filter (Theo-
rem 6.17). We use Zorn’s lemma, but this requires a bound on support. Thus we
consider n-filters maximal amongst n-filters with smaller support. Surprisingly,
these n-filters are the maximal n-filters (Lemma 6.13).

Lemma 6.9. Suppose q is an n-filter and suppose x 6∈ q. Write q′ for the set
q′ = {z | z ∨ x ∈ q}. Then q′ is an n-filter.

Proof. That ⊥ 6∈ q′ and ∀z1, z2.(z1 ∈ q′ ∧ z2 ∈ q′) ⇔ (z1 ∧ z2 ∈ q′) is routine.
Na.∀z.(z ∈ q′ ⇒ Na.z ∈ q′) follows from the fact that if a is fresh (so a#q, x) then

by (Garbage), (SelfDual), and (Distrib), Na.(z ∨ x) = ( Na.z)∨ Na.x = ( Na.z)∨ x.

Proposition 6.10. q is maximal if and only if ∀x.¬x ∈ q ⇔ x 6∈ q.

Proof. For q maximal, suppose ¬x 6∈ q and x 6∈ q. By Lemma 6.9, q′ = {z |
z∨x∈q} is an n-filter. Also, ¬x∈q′ whereas ¬x 6∈q, so q ( q′, contradicting max-
imality of q. The rest follows from conditions 1 and 2 of Definition 6.1.

Lemma 6.11. If q is an n-filter and C=A\supp(q) then so is q′ = {z | NC.z∈q}.

Proof. Follows from Lemma 6.4.

Lemma 6.12. Suppose q is an n-filter such that for all n-filters q′, q ⊆ q′ and
supp(q′) ⊆ supp(q) imply q = q′. Then Na.(∀x.x ∈ q ⇔ Na.x ∈ q).

Proof. The left-to-right implication is condition 3 of Definition 6.1. Write C =
A \ supp(q). The set q′ = {z | NC.z ∈ q} (Definition 6.3) is an n-filter by
Lemma 6.11. By condition 3 of Definition 6.1 q ⊆ q′, by Theorem 4.2 supp(q′) ⊆
supp(q), hence q′ = q (note that supp(C) = supp(q)). The right-to-left implica-
tion follows.

Lemma 6.13. q is a maximal n-filter if and only if for all n-filters q′, q ⊆ q′

and supp(q′) ⊆ supp(q) imply q = q′.

Proof. The left-to-right implication is trivial. Now suppose q is maximal amongst
n-filters with smaller support. By Proposition 6.10 it suffices to show that ¬x ∈ q
if and only if x 6∈ q.
¬x ∈ q and x ∈ q is impossible by conditions 1 and 2 of Definition 6.1.
Now suppose ¬x 6∈ q and also x 6∈ q. Write C = A \ supp(q) and x′ = NC.x.

By definition, (SelfDual), and Lemma 6.12 x′ 6∈ q and ¬x′ 6∈ q.
By Lemma 6.9, q′ = {z | z ∨ x′ ∈ q} is an n-filter. Also, ¬x′ ∈ q′ whereas

¬x′ 6∈ q, so q ( q′. By Theorem 4.2 supp(q′) ⊆ supp(q). This contradicts the
existence of x.

Definition 6.14. Given a nominal set X, call Y ⊆ |X| bounded-supported
when

⋃
{supp(x) | x ∈ Y } is finite.

Remark 6.15. By [14, Theorem 2.29] if Y is bounded-supported then Y is
finitely-supported and supp(Y ) =

⋃
{supp(x) | x ∈ Y }. See also [32, Defini-

tion 3.4.2.3] and subsequent discussion.



Lemma 6.16. Consider a nominal set X and ≤ a partial order on X (≤ need
not be equivariant, but when we use this in Theorem 6.17, it will be). If every
chain C ∈ pow(X) has an upper bound b(C) with supp(b(C)) ⊆ supp(C) then
for every x ∈ |X| the set x◦ = {y ∈ |X| | y ≥ x, supp(y) ⊆ supp(x)} has a
maximal element.

Proof. By Remark 6.15 every chain C in x◦ is finitely-supported and supp(C) ⊆
supp(x). Then C has an upper bound b(C) such that supp(b(C)) ⊆ supp(C).
Thus b(C) ∈ x◦. The result follows using Zorn’s lemma for x◦.

Theorem 6.17. For every n-filter p, there is a maximal n-filter q with p ⊆ q.

Proof. If C is a finitely-supported chain in the nominal set of n-filters on B
ordered by subset inclusion, then an upper bound for C is defined by

⋃
C = {x |

∃p′ ∈ C.x ∈ p′}, and by Theorem 4.2 supp(
⋃
C) ⊆ supp(C). By Lemma 6.16

the set p◦ of n-filters p′ such that p ⊆ p′ and supp(p′) ⊆ supp(p) has a maximal
element q with respect to inclusion.

Then q is a maximal amongst n-filters with smaller support and p ⊆ q.
Indeed, if q′ is such that q ⊆ q′ and supp(q′) ⊆ supp(q) then q′ ∈ p◦, hence
q = q′. By Lemma 6.13 q is a maximal n-filter (Definition 6.8).

6.2 The canonical extension -•

Definition 6.18. Define points(B) = {p ⊆ |B| | p is a maximal n-filter}.

Lemma 6.19. points(B) is a nominal set.

Proof. By Theorem 4.2 the predicate ‘p is a maximal n-filter’ holds if and only
if the predicate ‘π·p is a maximal n-filter’ holds.

Definition 6.20. Define the canonical extension B•=(pow(points(B)),∧,¬, N):

A ∧B = A ∩B ¬A = |B•| \A Na.A = na.A

A and B will range over elements of |B•|. (na.A defined in Definition 5.2.)

Proposition 6.21. B• is a nominal Boolean algebra with N.

Proof. From Theorem 5.9.

Definition 6.22. Define a map -• ∈ |B| → |B•| by:

x• = {p ∈ |points(B)| | x ∈ p}

We need to check that -• does map to |B•|. It suffices to show that supp(x•) ⊆
supp(x). This follows by Theorem 4.2.



Proposition 6.23. -• is an arrow in BAnona (Definition 3.5).

Proof. Equivariance is by Theorem 4.2.

1. (x ∧ y)• = {p ∈ |points(B)| | x ∧ y ∈ p}. By assumption in Definition 6.1
x∧ y ∈ p if and only if x ∈ p and y ∈ p and it follows that (x∧ y)• = x• ∧ y•.

2. (¬x)• = {p ∈ |points(B)| | ¬x ∈ p}. We use Proposition 6.10.
3. ( Na.x)• = {p ∈ |points(B)| | Na.x ∈ p}. Suppose p ∈ ( Na.x)•. Choose fresh a′

(so a′#x, x•, p). By (Alpha) Na.x = Na′.(a′ a)·x. By definition Na′.(a′ a)·x ∈
p. By Lemma 6.12 (a′ a)·x ∈ p. By definition p ∈ (a′ a)·x•. By Proposi-
tion 5.10 p ∈ na′.(a′ a)·x•. By Lemma 5.7 na′.(a′ a)·x• = na.x•.

Remark 6.24. Note the ‘internal’ and ‘external’ names in part 3 of the proof of
Proposition 6.23. We begin with a ‘internally restricted’ with N. We use (Alpha)

to apply an ‘external’ renaming of a to ‘externally’ fresh a′. This is picked up
by the definition of n-filter and Proposition 5.10 moves to the ‘external’ N.

In part 3 a#x implies a#x•—but this does not matter; we choose a fresh.

Theorem 6.25. -• is injective, thus B is isomorphic to a subalgebra of B•.

Proof. Suppose x ∈ |B| and y ∈ |B| are distinct. Suppose without loss of gen-
erality that x 6≤ y, so that x ∧ ¬y 6= ⊥. By Lemma 6.7 (x ∧ ¬y)↑ is an n-filter.
By Theorem 6.17 there exists a point q containing (x ∧ ¬y)↑. Then x ∧ ¬y ∈ q,
hence q ∈ x• and q 6∈ y•. The result follows by Proposition 6.23.

7 Nominal Stone duality

We introduce nominal topological spaces. As expected, the carrier set and topol-
ogy are nominal sets and open sets are finitely-supported (this can restrict—
sometimes considerably; see Example 5.3—the available open sets). Thus we
cannot take arbitrary unions of open sets, but only finitely-supported unions.
Banonas correspond to nominal topological spaces with additional properties
which we call nominal Stone spaces with N(Definition 7.4). To the new-binder
Ncorresponds on the topological side the semantic n (Definition 5.2); elements

correspond to clopen sets (sets that are both open and closed), so clopens must
be closed under n. The notion of compactness must also be subtly tweaked to
take into account the role of n. We conclude with a duality theorem.

Definition 7.1. A nominal topological space T is a pair (|T|,OT) of a car-
rier nominal set |T| and equivariant set of open sets OT⊆pow(|T|) such that:

– ∅ ∈ OT and |T| ∈ OT

– U ∈ OT ∧ V ∈ OT implies U ∩ V ∈ OT.
– U ∈ pow(OT) implies

⋃
U ∈ OT; we call this a finitely-supported union.

Call equivariant f ∈ |T1|→|T2| continuous when V ∈OT2 implies f -1(V )∈OT1 .
Write nTop for the category of nominal topological spaces and continuous maps.



Definition 7.2. Call U n-closed when Na.∀U.(U ∈ U ⇒ na.U ∈ U). Call
U ∈ pow(OT) a cover when

⋃
U = |T|. If U is a cover and is n-closed then call

U an n-cover. Call T n-compact when every n-cover has a finite subcover.

Lemma 7.3. If U ∈ pow(OT) is finite then Na.∀U.U ∈ U ⇒ a#U . As a corol-
lary, T is n-compact when every n-cover has an n-closed finite subcover.

Proof. For finite U , supp(U) =
⋃
{supp(U) | U ∈ U} [14, Theorem 2.29]. We use

part 1 of Lemma 5.6.

Definition 7.4. Call U closed when |T| \U ∈ OT, and clopen when U is open
and closed. Call T totally separated when for every x, y ∈ |T| there is a clopen
U with x ∈ U and y 6∈ U .

Say T is a nominal topological space with Nwhen na.U ∈ OT for every
clopen U .5 Write nTop Nfor the full subcategory of nTop on T with N.

A nominal Stone space with Nis a totally separated n-compact nominal
topological space with N. Write nStone Nfor the full subcategory of nTop Non
nominal Stone spaces with N.

Definition 7.5. Given B in BAnona define F (B) in nTop by:

– |F (B)| = points(B) (Definition 6.18).
– OF (B) is the closure of {x• | x ∈ |B|} (Definition 6.22) under finitely-

supported unions. So U ∈ OF (B) when ∃M ∈ pow(|B|).U =
⋃
{x• | x ∈M}.

Given f : B→B′ in BAnona define F (f) : F (B′)→F (B) by F (f)(p) = f -1(p).

F (B) is indeed a nominal topological space, for if U ∈ pow(OF (B)) then
⋃
U =⋃

{x• | ∃U∈U .x•⊆U} is open. The next lemma shows that F (f) is well-defined.

Lemma 7.6. For f : B→ B′ in BAnona and p ∈ points(B′), f -1(p) ∈ points(B).

Proof. It is not hard to use the homomorphism properties of f and Theorem 4.2
to show that f -1(p) is an n-filter. Using Proposition 6.10 ¬x ∈ f -1(p) if and only
if x 6∈ f -1(p), and it follows that f -1(p) is also maximal.

Lemma 7.7. If U is n-closed then so is V = {x• | ∃U∈U .x• ⊆ U}.

Proof. Choose b fresh (so b#U ,V). If x• ∈ V then x• ⊆ U ∈ U . By Lemma 5.6
nb.(x•) ⊆ nb.U and by assumption nb.U ∈ U .

Proposition 7.8. F (B) is totally separated and n-compact.

Proof. Consider distinct p, q ∈ |F (B)|. Without loss of generality take x ∈ p \ q.
By Definition 6.20, p ∈ x• and q 6∈ x•. So x• is an open set separating p and q.
By Proposition 6.10 points(B) \ x• = (¬x)•, so x• is also closed.

Consider an n-cover U ∈ pow(OF (B)). It suffices to find a finite subcover of
V = {x• | ∃U∈U .x• ⊆ U}, since for every x• ∈ V there exists x• ⊆ U ∈ U .

5 We need not require na.U to be open for all U ; of course, we do not forbid it either.



Write X =
∧

fin{x′ | ∃x.¬x≤x′ ∧ x•∈V} where
∧

fin denotes closure under
finite intersections. So V has a finite subcover if and only if ⊥ ∈ X. By Propo-
sition 6.23 and Lemma 7.7 X satisfies conditions 2 and 3 of Definition 6.1. If X
satisfied also ⊥ 6∈ X then X would be an n-filter; by Theorem 6.17 X ⊆ p for
some point p; it would follow that p 6∈

⋃
V, a contradiction. Therefore ⊥ ∈ X.

Lemma 7.9. If U ∈ F (B) is clopen then U = x• for some x ∈ |B|.

Proof. By assumption U =
⋃
{x• | x• ⊆ U} and |F (B)| \ U =

⋃
{x• | x• ⊆

|F (B)| \ U}. It follows that {x• | x• ⊆ U ∨ x• ∩ U = ∅} covers F (B). This cover
is also n-closed, by part 1 and the corollary in Lemma 5.6. So it has a finite
subcover by Proposition 7.8. The result follows by Proposition 6.23.

Proposition 7.10. F is a functor from BAnona to nStoneop
N.

Proof. If U∈OF(B) is clopen then U=x• for some x∈|B| by Lemma 7.9. By part 3
of Proposition 6.23 na.(x•)=( Na.x)•∈OF(B). By Proposition 7.8 F (B) is a nominal
Stone space with N.

Consider f : B→ B′ in BAnona. By Lemma 7.6 F (f) maps |F (B′)| to |F (B)|.
Continuity of F (f) follows using the fact that F (f)-1(x•) = (f(x))•.

Definition 7.11. Map T ∈ nStone Nto a G(T) ∈ BAnona defined by:

– |G(T)| = {U ∈ OT | U is clopen}.
– ∧, ¬, and Nare interpreted as intersection, complement, and n.

Given f : T→ T′ in nStone Ndefine G(f) : G(T′)→ G(T) by G(f)(U) = f -1(U).

Lemma 7.12. G is a functor from nStoneop
N to BAnona.

Proof. If U is clopen then na.U is open by Definition 7.4. na.U is closed from
the fact that na.(|T| \ U) = |T| \ na.U , immediate from part 3 of Lemma 5.6. It
is routine to check that G(T) is an object of BAnona.

Consider continuous f : T → T′. If U is clopen then so is f -1(U). G(f) is
equivariant because f is, and preserves intersections and complements. Given
U ∈ OT′ a clopen, G(f)(na.U) = na.G(f)(U) follows from Definitions 5.2
and 7.11 and the equivariance of f . Thus G(f) is a morphism in BAnona.

Lemma 7.13. Suppose T ∈ nTop Nis n-compact and U is a finitely-supported set
of closed sets with the finite intersection property: the intersection of finitely
many sets in U is nonempty. Then Nb.∀U.U∈U ⇒ nb.U∈U implies

⋂
U 6= ∅.

Theorem 7.14. G defines an equivalence between BAnona and nStoneop
N.

Proof. We use [23, Theorem 1, Chapter IV, Section 4].
G is essentially surjective on objects. Given B in BAnona and x ∈ |B|, x• ∈ OF (B)

is clopen. By Lemma 7.9 if U ∈ OF (B) is clopen then U = x• for some x ∈ |B|.
By Theorem 6.25, the map -• defines an isomorphism between GF (B) and B.
G is faithful. From the fact that nominal Stone spaces are totally separated.



G is full. Given T,T′ in nStone Nand u : G(T′)→ G(T) in BAnona we construct
a morphism v : T→ T′ in nStone N, such that G(v) = u.

Define αT : T→ FG(T) by t 7→ {U ∈ G(T) | t ∈ U}.
αT is well defined: αT(t) is supported by supp(t), and is indeed a maximal

n-filter. We must also show that a#t and U ∈ α(t) imply na.U ∈ α(t); this
follows from Proposition 5.10.

That αT is injective follows, as in for the classical Stone duality, from the
totally separatedness of the spaces. For surjectivity, consider a maximal n-filter
U ∈ FG(T). This is a finitely-supported set of closed sets of T with the finite
intersection property such that U ∈ U and b#U imply nb.U ∈ U . By Lemma 7.13
there exists some t ∈

⋂
U ⊆ |T|. That U = α(t) follows from maximality of U .

αT and α-1
T are continuous. The proof is analoguous to the classical case, see [4].

We set v = α-1
T′ ◦ F (u) ◦ αT. This is continuous and G(v) = u.

8 Conclusions

We have seen how Boolean algebras in nominal sets naturally support an opera-
tion corresponding to the N-quantifier from [18]. So nominal sets are sufficiently
different that this paper is not a pure ‘replay’ of the standard proofs—on the
contrary, the fine detail is extremely subtle.

In particular, as an empirical observation the proofs seem to ‘want’ N. They
break for nominal Boolean algebras without N(remove Nand its axioms from
Definition 3.1, presumably to obtain a Bano). Without Nwe would need to use
finitely-supported filters, rather than n-filters. But then the proofs of Lemma 6.13
and Theorem 6.17 would break. Banonas seem to be natural ; a representation
theorem for Banos is future work.

That our results are consistent with the full structure of classical logic (if
we want it) is interesting, but note that our proofs do not depend on it. We
believe that they should adapt to subreducts (e.g., Heyting algebras, distributive
lattices) and expansions with operations/operators. A concrete example of a
Hanona (Heyting algebras with N; weaken the initial three axioms appropriately
and add Na.(x⇒y) = ( Na.x)⇒( Na.y) in Figure 1) is a intuitionistic hybrid logic
with ↓ (cf. Example 3.6 and [28]). We believe that, modulo an easy syntactic
translation, the logic LG by Tiu [31] is another.

On related work, Sections 5.3 and 5.4 of [34] outline the Jónsson-Tarski rep-
resentation of Boolean algebras with operators, i.e., normal modalities. Does it
suffice to consider Nand permutations as families of modalities? Yes, but this
paper gives a strictly stronger result. Nominal sets have an ‘external’ theory
of names and freshness given by permutations and support (extending the ‘ex-
ternal’ set intersection and complement corresponding to ‘internal’ conjunction
and negation of Boolean algebra). An ‘internal’ notion of freshness is x = Na.x;
a similar idea is used in cylindric/polyadic algebras and Lambda Abstraction
Algebras [24]. Our challenge has been to make ‘internal’ and ‘external’ theo-
ries coincide for boolean connectives, and to represent Nas n (Definition 5.2),
permutation as permutation, and to satisfy e.g. a#x implies x = Na.x.



Some speculation on computational applications: fresh names create symme-
try, since ‘it does not matter’ which are chosen. It is known by those working in
satisfiability checkers (e.g. SMT solvers) that symmetry is important in reduc-
ing search space. Domain-specific symmetries are a major theme. Banonas and
nominal sets give an explanatory foundation for freshly generated resources—a
fairly common case. We might use this to extend problem input languages with
explicit statements of these symmetries, thus improving and automating their
recognition. Then this paper guarantees that a satisfiability checker based on
nominal sets and n would be adequate for any classical logic with a N.

On pow(A), n is the unique function satisfying the axioms of Definition 3.1.
We do not know whether n is uniquely determined by those axioms on arbitrary
nominal powersets. (The map X 7→ if a#X then X else ∅ fails (SelfDual).)

Nominal powersets (Definition 5.1) have rich structure. In particular, function-
symbols could be added to reflect freshness X#a = {x ∈ X | a#x} and name-
restriction νa.X = {π·x | x ∈ X, π ∈ fix (supp(X)\{a})} [16]. We do not believe
that these can be represented using n. Note that n does not equal ν. For instance
X ⊆ νa.X is true, but X ⊆ na.X is false in general.6 So there are two natural
name-restrictions on nominal sets. Nominal sets have been around for a decade,
but their structure is not fully understood. For future work we hope to charac-
terise the structure of nominal powersets, as complete atomic Boolean algebras
do for ‘ordinary’ powersets.
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