
A study of substitution, using nominal techniques and
Fraenkel-Mostowki sets

Murdoch J. Gabbay

http://www.gabbay.org.uk

Abstract

Fraenkel-Mostowski (FM) set theory delivers a model of names and alpha-equivalence.
This model, now generally called the ‘nominal’ model, delivers inductive datatypes of
syntax with alpha-equivalence — rather than inductive datatypes of syntax, quotiented
by alpha-equivalence.

The treatment of names and alpha-equivalence extends to the entire sets universe.
This has proven useful for developing ‘nominal’ theories of reasoning and program-
ming on syntax with alpha-equivalence, because a sets universe includes elements rep-
resenting functions, predicates, and behaviour.

Often, we want names and alpha-equivalence to model capture-avoiding substitu-
tion. In this paper we show that FM set theory models capture-avoiding subsitution for
names in much the same way as it models alpha-equivalence; as an operation valid for
the entire sets universe which coincides with the usual (inductively defined) operation
on inductive datatypes.

In fact, more than one substitution action is possible (they all agree on sets rep-
resenting syntax). We present two distinct substitution actions, making no judgement
as to which one is ‘right’ — we suspect this question has the same status as asking
whether classical or intuitionistic logic is ‘right’. We describe the actions in detail, and
describe the overall design issues involved in creating any substitution action on a sets
universe.

Along the way, we think in new ways about the structure of elements of FM set
theory. This leads us to some interesting mathematical concepts, including the notions
of planes and crucial elements, which we also describe in detail.1

Keywords: Substitution, nominal techniques, Fraenkel-Mostowski set theory.

1Thanks to Arnon Avron. Supported by grant RYC-2006-002131 at the Polytechnic University of Madrid.

http://www.gabbay.org.uk

Contents

1 Introduction 2
1.1 Design issues . 3

2 Fraenkel-Mostowski set theory 6
2.1 Axioms, permutations, equivariance 6
2.2 Support . 8
2.3 Orbits under the permutation action 11
2.4 α-abstraction . 12

3 The substitution action 14
3.1 Axioms, pointwise substitution action, syntactic substitution action . . 14
3.2 A short quiz . 17
3.3 The planes of a set . 18
3.4 Construction of the first substitution action 19
3.5 Substitutions on syntax, substitutions commuting 26

4 New properties of FM: a-orbits and crucial elements 29
4.1 a-orbits . 30
4.2 Crucial elements . 34
4.3 Operations on sets of crucial elements 36

5 A second substitution action, using crucial elements 37
5.1 Definition and properties . 38
5.2 Scope-extrusion and hereditarily finite crucial sets 42

6 Summary, related work, and conclusions 45
6.1 Summary of the two substitution actions 46
6.2 Related work . 47
6.3 The rôle of Fraenkel-Mostowski sets 48

1. Introduction

Fraenkel-Mostowski set theory [7, 40] was originally developed to prove the in-
dependence of the axiom of Choice from the other axioms of Zermelo-Fraenkel set
theory. It was re-discovered and used — rather far from its original application —
by the author and Pitts to provide a model of naming and abstraction in datatypes of
abstract syntax [23].

Fraenkel-Mostowski set theory is a foundational theory and part of its usefulness is
that the model of naming and abstraction which it provides [23, 15], extends smoothly
from sets representing abstract syntax to all sets including those representing non-
syntactic entities such as functions, domains, and predicates. It has been a success
story of the continuing relevance of set-theoretic foundations to computer science.

This model of names has inspired programming languages with datatypes for names
and constructors to bind those names [36, 8], logics [35, 21], it has been used to study

2

correctness properties of functional programming with storage [6], and in many other
applications.

However, why should we wish naming and abstraction in the first place? In many
cases, this is because we want a names with a capture-avoiding substitution action. For
example, this is the behaviour displayed by variables in syntax.

In this paper we demonstrate by a non-trivial but elementary construction on sets
that Fraenkel-Mostowski set theory also provides a model of capture-avoiding substi-
tution on names. This model is compatible with the notion of abstraction from previous
work; thus substitution is modelled in sets and we extend the Fraenkel-Mostowski story
about names and abstraction from syntax to semantics, by showing how to model sub-
stitution on any set, not just sets representing syntax.

We shall show that in the case of sets representing abstract syntax, the substitution
action coincides with the ‘usual’ substitution defined inductively on syntax. We show
that on all sets — not just those representing syntax — the action satisfies the condi-
tions laid out by an algebraic axiomatisation of substitution investigated in previous
work [20, 22].

We will also show that more than one possible ‘substitution action’ exists: the
behaviour on sets representing abstract syntax is constrained by the axioms; for more
complex sets there is some freedom, and we explore the design space and specify two
actions in full detail.

During the exploration of our two substitution actions we introduce some mathe-
matical concepts which may be useful tools in their own right:

• Planes, in Subsection 3.3, particularly Theorems 3.12 and 3.13.

• a-orbits in Subsection 4.1. A fundamental technical result is Theorem 4.5, though
Definition 4.11 and Remark 4.12 are more readable.

• Crucial elements in Subsection 4.2, notably Corollary 4.14, and the interaction
of crucial elements with support, symmetric set difference, and permutation de-
scribed in Corollary 4.15, Lemma 4.17, and Lemma 4.19.

1.1. Design issues
We now sketch the design issues involved in defining a substitution action on

Fraenkel-Mostowski sets. Definitions and notation are given in full formal detail in
this paper, and also also [23, 17].

Fraenkel-Mostowski sets contain atoms a, b, c, These are empty (x ∈ a is
impossible) but they are not equal to the empty set. Following the nominal style intro-
duced in [23] we use atoms to model variable symbols;

• In [23] we showed how to construct datatypes of syntax up to α-equivalence
(‘λ-terms’, ‘terms of first-order logic’, ‘π-calculus terms’, and so on) such that
substitution — and other functions — could be defined on the datatypes purely
inductively.

• In this paper we give a substitution action on all of the sets universe, write it
z[a7→x] and read it ‘substitute a with x in z’ (so z and x can be anything, not
just elements representing syntax).

3

We want our new substitution to coincide with ‘usual’ substitution on elements repre-
senting syntax (i.e. representing labelled trees). This gives us useful information which
we now sketch:

Atoms model variable symbols, therefore let

a[a7→x] = x and b[a7→x] = b

(x is any element, a and b are any two distinct atoms).
If Z is a finite set of elements then let substitution be pointwise:

Z[a7→x] = {z[a7→x] | z ∈ Z} if Z is a finite set.

This ensures that tuples (z1, z2) = {{z1}, {z1, z2}} satisfy

(z1, z2)[a7→x] = (z1[a 7→x], z2[a7→x]).

The same holds for n-tuples and also, modulo some technical details, for infinite tuples
(Corollary 3.27).

In nominal style we model α-abstraction by taking an α-equivalence class of ‘re-
named variants’ of a set. For example the nominal model of ‘α-abstract the atom a in
(a, b)’, written [a](a, b) (Definition 2.20) is

[a](a, b) = {(a, (a, b)), (c, (c, b)), (d, (d, b)), (e, (e, b)), (f, (f, b)), . . .}.

This is the model of syntax up to α-equivalence presented in [23].
For the reader to understand what follows in this paper, and why the mathematics

will be set up in the way that it will be, it is important to have some intuition of how
this model of abstraction works.

We give another example: [a](a, b, d) (where (z1, z2, z3) is (z1, (z2, z3))) is

[a](a, b, d) = {(a, (a, b, d)), (c, (c, b, d)), (e, (e, b, d)), (f, (f, b, d)), . . .}.

Note that
(d, (d, b)) ∈ [a](a, b) and (d, (d, b, d)) 6∈ [a](a, b, d)

because d does not ‘clash’ with (a, b) but it does ‘clash’ with (a, b, d).
In nominal techniques, when we build equivalence classes of renamed variants like

[a](a, b) and [a](a, b, d) above, we ‘avoid name-clash’.
Now, we want substitution to distribute over abstraction in a capture-avoiding way.

That is,
we want ([a](a, b))[b 7→(b, d)] = [a](a, b, d).

We cannot obtain what we want by operating pointwise on the elements of [a](a, b),
i.e. by letting

Z[a7→x] = {z[a7→x] | z ∈ Z} always

— not just for finite sets Z. For, if we operated pointwise, we would not know not to
put into ([a](a, b))[b 7→(b, d)] the element (d, (d, b))[b 7→(b, d)] = (d, (d, b, d)). Substi-
tution must detect α-equivalence classes and adjust for them by adding or removing
elements with ‘name-clash’.

4

One reason this is a difficult question is that not all sets look like the tame ex-
amples we selected above. Elements may be (amongst many other things) unions of
abstractions

[a](a, b) ∪ [a](a, b, d)

or equivalence classes which represent simultaneous abstraction by more than one atom{
{a, b, c}, {d, b, c}, {e, b, c}, {f, b, c}, . . .
{a, d, c}, {b, d, c}, {e, d, c}, {f, d, c}, . . .
{a, e, c}, {b, e, c}, {d, e, c}, {f, e, c}, . . .

}
— we can think of this as ‘abstract a and b simultaneously in {a, b, c}’ and write it in
an informal notation which we do not make formal as

{a, b}{a, b, c}.

If we apply [c7→(b, d)] to this we want to ‘avoid name-clash’ with b and d, and ‘α-
convert b’, and ‘fill in renamed variants mentioning c’, to obtain the element{

{a, c, (b, d)}, {d, c, (b, d)}, {e, c, (b, d)}, {f, c, (b, d)}, . . .
{a, e, (b, d)}, {c, e, (b, d)}, {f, e, (b, d)}, {g, e, (b, d)}, . . .
{a, e, (b, d)}, {c, e, (b, d)}, {f, e, (b, d)}, {g, e, (b, d)}, . . .

}
which we can write as

{a, c}{a, c, (b, d)}.

This is only a scratch on the surface of the complexity that exists in a model of sets but
it is enough to illustrate our strategy for defining a substitution action. The problem
with the pointwise definition of substitution is correct maintenance of ‘points’ in α-
equivalence classes so:

Given a set X , identify X as a union of some generalised notion of α-
equivalence classes X =

⋃
iXi. Now carry out substitution on the indi-

vidual classes, then put the results together again using sets union.

We can put it another way:

Substitution is pointwise — but the points are not elements, they are (gen-
eralised) α-equivalence classes of elements.

Our generalisation of α-equivalence classes is planes u||A (Subsection 3.3). The set
above is {a, b, c}||{c} which is the equivalence class of all renamed variants of {a, b, c}
under permutations of atoms fixing c (i.e. ‘α-abstract a and b in {a, b, c}).

If we apply [c 7→(b, d)] to this then we obtain {a, c, (b, d)}||{b,d}. Note that this is
the same set as {a, e, (b, d)}||{b,d} and {c, e, (b, d)}||{b,d} — it is part of our model of
α-equivalence on FM sets that we can ‘α-rename abstracted atoms’ freely.

Given these ideas, the only obstacle to defining substitution on FM sets is deciding
how substitution interacts with planes. This is described formally in Subsection 3.4,
with several examples.

5

We mentioned that we give not one but two substitution actions in this paper. The
second substitution action (Section 5), write it z[a7→x]2, is based on the same ideas
but with a twist. Instead of acting on all of z, the second substitution action isolates
the parts of z which are responsible for it containing a (in nominal terminology; those
elements responsible for a ∈ supp(z) being true; see ‘crucial elements’ in Section 4).
The second substitution action acts, in a suitable sense, only on planes involving these
elements. Thus the second substitution action z[a7→x]2 is pointwise but only on points
(generalised α-equivalence classes) that ‘contain a’ in a suitable sense given by crucial
elements. This gives the second substitution action some different, and arguably better,
properties. See Subsection 5.2 for examples and discussion.

2. Fraenkel-Mostowski set theory

2.1. Axioms, permutations, equivariance

The language of FM set theory is first-order logic with two binary predicates = (set
equality) and ∈ (set membership) — just like the language of ZF set theory — and one
constant symbol A called ‘the set of atoms’.

Definition 2.1. The axioms of FM set theory are given in Figure 1.

We use standard definitional extensions of the language of sets:

x = {z | z ∈ x} means ∀y.(∀z.z ∈ x⇔ z ∈ y)⇒ x = y
y = {z ∈ x | φ(z)} means ∀z.z ∈ y ⇔ (z ∈ x ∧ φ(z))
z = {F (y) | y ∈ x} means ∀u.u ∈ z ⇔ ∃y.(F (y) = u ∧ y ∈ x)
z = {x, y} means ∀u.u ∈ z ⇔ (u = x ∨ u = y)
z = {y | ∃y′.(y ∈ y′ ∧ y′ ∈ x)} means ∀y.y ∈ z ⇔ ∃y′.(y ∈ y′ ∧ y′ ∈ x)
z = {y | y ⊆ x} means ∀y.y ∈ z ⇔ ∀y′.(y′ ∈ y ⇒ y′ ∈ x)
∅ ∈ x means ∃z.z ∈ x ∧ z 6∈ A ∧ ∀z′.z′ 6∈ z
y ∪ {z} ∈ x means ∃u.u ∈ x ∧ ∀u′.(u′ ∈ u⇔ u ∈ y ∨ u = z)

In addition Pfin is the finite powerset, and support is described below.
(We mention the intuition of the cumulative hierarchy model of these axioms in

Remark 2.12.)

Remark 2.2. We use the following notational conventions:

• An atom is a set member of A (the set of atoms).

• The permutative convention: a, b, c, . . . range over distinct atoms unless stated
otherwise.

• A,B,C, S, T range over sets of atoms. For example A ⊆ A.

• X,Y, Z, U, V range over elements that are not atoms and may be empty. For
example X might equal ∅ or {a, ∅}, but X cannot equal a.

• x, y, z, u, v range over arbitrary elements.

6

(Sets) ∀x.(∃y.y ∈ x)⇒ x 6∈ A
(Extensionality) ∀x.x 6∈ A⇒ x = {z | z ∈ x}
(Comprehension) ∀x.∃y.y 6∈ A ∧ y = {z ∈ x | φ(z)} (y not free in φ)

(∈-Induction)
(
∀x.(∀y ∈ x.φ(y))⇒ φ(x)

)
⇒ ∀x.φ(x)

(Replacement) ∀x.∃z.z 6∈ A ∧ z = {F (y) | y ∈ x}
(Pairset) ∀x, y.∃z.z = {x, y}
(Union) ∀x.∃z.z 6∈ A ∧ z = {y | ∃y′.(y ∈ y′ ∧ y′ ∈ x)}
(Powerset) ∀x.∃z.z = {y | y ⊆ x}
(Infinity) ∃x.∅ ∈ x ∧ ∀y.y ∈ x⇒ y ∪ {y} ∈ x
(AtmInf) A 6∈ Pfin(A)

(Fresh) ∀x.∃S ∈ Pfin(A).S supports x

Figure 1: Axioms of FM set theory

Definition 2.3. As is standard, we will write 0 = ∅ and i + 1 = i ∪ {i}, and write
N = {0, 1, 2, 3, . . .}.

An atom a ∈ A is ‘empty’, or formally: ∀x.x 6∈ a. However atoms are not equal to
the empty set ∅.

In ZF set theory two empty elements are equal by the axiom of extensionality. In
FM set theory the axiom of extensionality (Extensionality) is weakened so that an
empty element is the empty set ∅— or is an atom.

(AtmInf) insists that there are infinitely many atoms.
Therefore, any element z is either an atom, or it is a set containing nothing but

atoms and (possibly) more sets. For further details see elsewhere [15].

Definition 2.4. Write (a b) for the swapping of a and b. This is the mapping from A
to itself specified by

(a b)(a) = b (a b)(b) = a (a b)(c) = c.

Note that by our permutative naming convention a, b, and c are distinct.
Write ◦ for functional composition. Let π range over functions from A to A gener-

ated by functionally composing finitely many swappings, and call these permutations.
A permutation action is defined by ε-induction [30]:

πX = {πx | x ∈ X}

The permutation action satisfies equivariance. This very useful property is also
very easy to prove. Let φ(x1, . . . , xn) range over predicates in the language of FM set
theory which mention variables in x1, . . . , xn. An n-rary function F (x1, . . . , xn) can
be expressed by a predicate φF (x1, . . . , xn, z) such that for each x1,. . . , xn there is a
unique z making φF true. Then equivariance is the following two properties:

7

Theorem 2.5. φ(x1, . . . , xn)⇔ φ(πx1, . . . , πxn), and
π(F (x1, . . . , xn)) = F (πx1, . . . , πxn)
always hold.

Proof. The first part is by an easy induction on the syntax of φ. We consider just one
case: x ∈ y implies πx ∈ πy follows directly from the fact that πy = {πy′ | y′ ∈ y}.
The reverse implication uses π-1.

The second part, for F , follows using the encoding of functions as predicates.

2.2. Support

Definition 2.6. If A ⊆ A write

fix(A) = {π | ∀a ∈ A.π(a) = a}.

Say that A ⊆ A supports x when

∀π ∈ fix(A).πx = x.

• We write
supp(x) for

⋂
{S | S is finite and supports x}

and call this the support of x. supp(x) is well-defined because (Fresh) insists
that some finite S supporting x must exist.

• We write a#x when a 6∈ supp(x) and read this as a is fresh for x. We may
write a#t1, t2 for ‘a#t1 and a#t2’, and so on.

The notion of support goes back to Fraenkel and Mostowski [29, Chapter 4]. The
application in computer science came later [23, 15].

Remark 2.7. For example:

• supp(∅) = ∅. π∅ = ∅ for all π ∈ fix(∅).

• supp(A) = ∅.
π{a, b, c, . . .} = {π(a), π(b), π(c), . . .} = {a, b, c, d, . . .} for all π ∈ fix(∅).

• supp(a) = {a}. π(a) = a for all π ∈ fix({a}).

• supp({a}) = {a}. π({a}) = {a} for all π ∈ fix({a}).

• supp(A \ {a}) = {a}.
π{b, c, d, . . .} = {π(b), π(c), π(d), . . .} = {b, c, d, . . .} for all π ∈ fix({a}).

• supp({a, b}) = {a, b}. π{a, b}={a, b} for all π∈fix({a, b}).

• supp(A \ {a, b}) = {a, b}.
π{c, d, e, . . .} = {π(c), π(d), π(e), . . .} = {c, d, e, . . .} for all π ∈ fix({a, b}).

8

• supp({a, {a}, {c}, {d}, . . .}) = {a, b}.

π({a,{a},{c},{d}, . . .}) ={π(a),{π(a)},{π(c)},{π(d)}, . . .})
={a,{a},{c},{d}, . . .}

provided that π ∈ fix({a, b}).

Remark 2.8. Ideas from syntax match ideas from FM sets as follows:

• variable symbols matches atoms and

• free variables matches support.

It is possible to take the complement of a set, but not possible to take the complement of
a syntax tree. It is therefore important to realise that sets are more general than syntax,
and in particular that a 6∈ X and a#X are not the same thing. supp(X) measures how
‘conspicuous’ a is in X , either by its set membership or lack of set membership. For
example:

a ∈ A and a#A a 6∈ ∅ and a#∅ a 6∈ a and a∈supp(a)

a ∈ {a} and a∈supp({a}) a 6∈ A\{a} and a∈supp(A\{a})

Remark 2.9. Not every collection has finite support.

• {a, c, e, g, . . .} (the set of ‘every other atom’) is not finitely supported, and is
excluded from the cumulative hierarchy model of Remark 2.12 below. There is
no finite S ⊆ A such that if π ∈ fix(S) then π{a, c, e, g, . . .} = {a, c, e, g, . . .}.

• A set well-ordering atoms ≤ is not finitely supported, and is excluded from the
cumulative hierarchy model of Remark 2.12:

≤= {{a}, {a, b}, {a, b, c}, {a, b, c, d}, . . .}

There is no finite S ⊆ A such that if π ∈ fix(S) then π ≤=≤.

• A set ε choosing from every unordered pair of atoms, an atom (the ‘greater’
one according to ≤ above), is not finitely supported and is excluded from the
cumulative hierarchy model of Remark 2.12:

ε = {{{a, b}, b}, {{a, c}, c} {{a, d}, d}, . . .
{{b, c}, c}, {{b, d}, d} {{b, e}, e}, . . .
. . .}

There is no finite S ⊆ A such that if π ∈ fix(S) then πε = ε.

Theorem 2.10 was the reason Fraenkel-Mostowski set theory was originally created
and studied:

Theorem 2.10. The axiom of choice is inconsistent with the axioms of FM.

9

Proof. Given the examples above it is easy to see that choice functions, and well-
orderings on sets, are not in general finitely supported. For more details see [7]

Remark 2.11. Theorem 2.10 may give the impression that the model of syntax-with-
binding from Fraenkel-Mostowski techniques is inconsistent with the axiom of choice,
but this is not so.

Set theory is untyped. It does no harm to admit the existence of elements that do
not have finite support, so long as we do not try proving results involving freshness
about them, i.e. all the non-trivial results which are the topic of this paper. We work in
Fraenkel-Mostowski sets because it saves us writing ‘if x, y, z, . . . have finite support-
ing sets’ at the start of all our results.

Specifically, if we drop (Fresh) from Figure 1, which asserts that every element
must have finite support, then we obtain another standard set theory; Zermelo-Fraenkel
set theory with atoms. This still satisfies equivariance (Theorem 2.5) because equivari-
ance is a property of any first-order theory with atoms; models of Zermelo-Fraenkel set
theory can contain elements representing well-orderings and choice functions (which
may not have finite support); and all the results in this paper can easily be proven,
subject to a clause ‘provided x, y, z, . . . have a finite supporting set’.

Remark 2.12. (The cumulative hierarchy model) FM is a theory in first-order logic.
As is often the case, we have a clear intuition in mind for a standard model; the cumu-
lative hierarchy model is the collection U defined as follows:

U0 = A
Ui+1 = Ui ∪ {X ⊆ Ui | X has a finite supporting set}

Then U =
⋃
i Ui. The reader can imagine all our constructions taking place in this

model and no harm will come of it.

The cumulative hierarchy of Zermelo-Fraenkel set theory with atoms is obtained
by taking all X instead of only X with finite support, at each stage. That is, the
cumulative hierarchy of ‘well-behaved’ Fraenkel-Mostowski sets naturally embeds in a
larger universe of Zermelo-Fraenkel sets with atoms, containing elements representing
choice functions, well-orderings, and so on — but in which not all elements can be
assigned substitution actions for atoms, and so on, as we shall now construct.

We now prove Theorem 2.13, Theorem 2.14, and Theorem 2.15. These are three
basic results about support, which will be very useful in what follows:

Theorem 2.13. If S and T support x and are finite, then so does S ∩ T .
As a corollary, supp(x) is the unique smallest finite set supporting x.

Proof. The corollary follows by elementary calculations and (Fresh).
Suppose κ fixes S ∩ T pointwise. We must show κx = x.
Write K for {a | κ(a) 6= a}. Choose an injection ι of T \ S into A \ (S ∪ T ∪K)

(we can say ‘ι freshens T \ S’). Let π(a) = ι(a) and π(ι(a)) = a for a ∈ T \ S, and
π(a) = a otherwise. Note that π = π-1. π fixes S pointwise so πx = x. Also π ◦κ ◦ π
fixes T pointwise so (π ◦ κ ◦ π)x = x. We apply π to both sides and simplify and
conclude that κx = x as required.

10

Theorem 2.13 means that the action of π on x depends only on the values of π on
the atoms in supp(x).

Theorem 2.14. S supports x if and only if πS supports πx. As a corollary, πsupp(x) =
supp(πx).

Proof. From Theorem 2.5.

Theorem 2.15. supp(F (x1, . . . , xn)) ⊆ supp(x1) ∪ · · · ∪ supp(xn).

Proof. Suppose S = supp(x1)∪ . . .∪ supp(xn). By Theorem 2.5 πF (x1, . . . , xn) =
F (πx1, . . . , πxn). If π ∈ fix(S) then π ∈ fix(x1) ∩ . . . ∩ fix(xn) and the result
follows.

2.3. Orbits under the permutation action
We introduce a new notion which we will make much use of in what follows:

Definition 2.16. Suppose A ⊆ A. Write

u||A for {πu | π ∈ fix(A)}.

(Recall that fix(A) = {π | ∀a ∈ A.π(a) = a}.) We call u||A a set of renamed variants
of u under permutations fixing atoms in A.

As discussed in Remark 2.8 the idea from syntax of ‘free variables of’ matches
the idea in Fraenkel-Mostowski sets of ‘support’. α-equivalence is how we remove
free variables from terms. Taking equivalence classes is a standard way to abstract
structure using sets. Thus, u||A is a natural sets model of the intuition

“simultaneously α-abstract in u for all atoms not in A.”

This is made formal in Theorem 2.18 and Subsection 2.4.
For example:

{a}||∅ = {a, b, c, d, e, f, . . .}
{a}||{a} = {a}

{b}||{a} = {b, c, d, e, f, . . .}

{a, b}||{a,c} = {{a, b}, {a, d}, {a, e}, {a, f}, . . .}

Lemma 2.17. If π ∈ fix(A) then u||A = (πu)||A.

Proof. u||A is the orbit of u under the action of fix(A). fix(A) is a group. The result
follows.

Note that u||∅ = {πu | all π}.

Theorem 2.18. Suppose A is a finite set of atoms. Then:

1. If supp(u) ⊆ A then supp(u||A) = supp(u).
2. supp(u||A) ⊆ A always.

11

As a corollary,

supp(u) \A 6= ∅ implies supp(u||A) = A.

Proof. 1. If supp(u) ⊆ A then by the definition of support, if π ∈ fix(A) then
πu = u and u||A = {u}. It is easy to verify that supp({u}) = supp(u).

2. Suppose that π ∈ fix(A). We reason using Theorem 2.5 and Lemma 2.17:

π(u||A) = (πu)||πA = (πu)||A = u||A.

By Theorem 2.13 the result follows.

We illustrate why the corollary is ‘obvious’ with an example:

a||{b} = {a, c, d, e, f, . . .} = A \ {b}.

Here supp(a) \ {b} = {a} and supp(A \ {b}) = {b}.
Now for the proof. Suppose that supp(u) \ A 6= ∅. By part 2 of this result

supp(u||A) ⊆ A. We prove the reverse inclusion. We note the following two points:

• Suppose a ∈ A. If a ∈ supp(u) ∩ A then by Theorem 2.14 a ∈ supp(u′) for
all u′ ∈ u||A. If a ∈ A \ supp(u) then by Theorem 2.14 a 6∈ supp(u′) for all
u′ ∈ u||A.

• Suppose a 6∈ A. Since supp(u) \ A 6= ∅ by Theorem 2.14 there exist some
u′ ∈ u||A such that a ∈ supp(u′), and some u′ ∈ u||A such that a 6∈ supp(u′).

Thus, we can recover A from X = u||A using the function

F (X) = {a | (∀x ∈ X.a ∈ supp(x)) ∨ (∀x ∈ X.a 6∈ supp(x))}.

By Theorem 2.15 it follows that supp(A) ⊆ supp(u||A). ButA is finite; by Lemma 2.22
A = supp(A) and so we have A ⊆ supp(u||A) as required.2

2.4. α-abstraction

The model of α-equivalence in FM sets was introduced in [23, 15]. The presenta-
tion here is revised.

Definition 2.19 is the standard Kuratowski implementation of ordered pairs in sets
[30].

Definition 2.19. Write (x, y) for {{x}, {x, y}}.

Definition 2.20. Define the atoms-abstraction by [c]z = (c, z)||supp(z)\{c}.

2This argument is due to an anonymous referee.

12

We can read ‘[c]z’ as the binding action of ‘λc.z’ or ‘∀c.z’, and the sets above
correspond with α-equivalence classes of FM sets. There is no a priori notion of λ-
abstraction or universal quantification in; this is just α-abstraction, on FM sets. So [c]z
is the α-equivalence class of (c, z) where c is abstracted, i.e. where we read (c, z) like
‘λc.z’ or ‘∀c.z’. The avoids atoms in supp(z) \ {c}, thus, supp(z) plays the rôle that
‘the free variable symbols of’ plays in syntax (but generalises it to all sets):

[a]a = {(a, a), (b, b), (c, c), (d, d), (e, e), (f, f), . . .}
[a]{a, b} = {(a, {a, b}), (c, {c, b}), (d, {d, b}), (e, {e, b}), . . .}

[a](A\{a}) = {(a,A\{a}), (b,A\{b}), (c,A\{c}), . . .}
[a](A\{a, b}) = {(a,A\{a, b}), (c,A\{c, b}), (d,A\{d, b}), . . .}

Write Uab for {a} ∪ {{a}, {c}, {d}, {e}, . . .} for any a, b. Then:
[a]Uab = {(a, Uab), (c, Ucb), (d, Udb)(e, Ueb), . . .}
[c]Uab = {(c, Uab), (d, Uab), (e, Uab), . . .}

Definition 2.20 gives a result equal to the original definition of atoms-abstraction
in FM set theory [23]:

Lemma 2.21. [c]z = {(n, (n c)z) | n 6= c ∧ n#z} ∪ {(c, z)}.
As a corollary, if (x, y) ∈ [c]z then supp(y) = (supp(z) \ {c}) ∪ {x}.

Proof. We note that (c, z) ∈ [c]z and also that (n c) ∈ fix(supp(z) \ {c}). By Theo-
rem 2.5 we can calculate that

{(n, (n c)z) | n 6= c ∧ n#z} ∪ {(c, z)} ⊆ [c]z.

Conversely, by Theorem 2.13 if π ∈ fix(supp(z) \ {c}) then πx = (πc c)x and it
follows by an easy calculation that

[c]z ⊆ {(n, (n c)z) | n 6= c ∧ n#z} ∪ {(c, z)}.

For the corollary, by Theorem 2.14 supp((n c)z) = (n c)supp(z) and the result
follows.

Lemma 2.22. • If
⋃
{supp(x) | x ∈ X} is finite then

supp(X) =
⋃
{supp(x) | x ∈ X}.

In particular if X is finite (so that
⋃
{supp(x) | x ∈ X} is a finite union of finite

sets and so is finite) then supp(X) =
⋃
{supp(x) | x ∈ X}.

• supp({x}) = supp(x) and if A ⊆ A is finite then supp(A) = A.

Proof. supp(X) ⊆
⋃
{supp(x) | x ∈ X} always, by Theorem 2.15. We now prove

the reverse inclusion. Suppose that
⋃
{supp(x) | x ∈ X} is finite. Now suppose

a ∈ supp(x) for some x ∈ X . Choose some b such that b#X and b#x′ for every
x′ ∈ X . By Theorem 2.14 supp((b a)x) = (b a)supp(x). Since X has no element y
such that b ∈ supp(y), we know that (b a)X 6= X and by Theorem 2.13 it must be that
a ∈ supp(X).

The second part follows easily.

13

Lemma 2.23. supp((x, y)) = supp(x) ∪ supp(y).

Proof. From Definition 2.19 and Lemma 2.22.

Corollary 2.24. supp([c]z) = supp(z) \ {c}.

Proof. By Lemma 2.23 supp((c, z)) = supp(z)∪{c}. By definition [c]z = (c, z)||supp(z)\{c}.
The result follows by Theorem 2.18.

So for example, we expect (a d)[a]{a, b} = [a]{a, b} since supp({a, b}) = {a, b},
and {a, b}\{a} = {b}, and (a d) ∈ fix({b}). We can verify this by routine calculations:

[a]{a,b} = {(a, {a,b}), (c, {c,b}), (d, {d,b}), (e, {e,b}), . . .}
(a d)[a]{a,b} = {(d, {d,b}), (c, {c,b}), (a, {a,b}), (e, {e,b}), . . .}

Lemma 2.25. supp(X) ⊆
⋃
{supp(x) | x ∈ X} need not necessarily hold if X is not

finite.

Proof. It suffices to give a counterexample; we give two:
supp(A) = ∅ but

⋃
{supp(a) | a ∈ A} = A.

supp(A\{c})={c} but
⋃
{supp(a) | a∈A ∧ a6=c} = A\{c}.

3. The substitution action

We recall our notational convention that a, b, c range over distinct atoms,A,B,C, S, T
range over sets of atoms, lowercase x, y, z, u, v range over all elements, and uppercase
X,Y, Z, U, V range over elements that are not atoms.

3.1. Axioms, pointwise substitution action, syntactic substitution action
Definition 3.1. A substitution action on FM set theory is a function z[a7→x] expressed
in the language of FM set theory (and so satisfying equivariance Theorem 2.5) taking
any z, an atom a, and any x, satisfying:

(α) b#z ⇒ z[a7→x] = ((b a)z)[b 7→x]

(# 7→) a#z ⇒ z[a7→x] = z

(var 7→) a[a7→x] = x

(id 7→) z[a7→a] = z

(abs7→) c#x⇒ ([c]z)[a7→x] = [c](z[a7→x])

Here by our convention x, y, z range over elements of the Fraenkel-Mostowski sets
universe. a, b, and c range over distinct atoms. An equivariance rule from [22] is
omitted here because it is guaranteed by Theorem 2.5.

Remark 3.2. FM set theory supports generalisations of the notions of ‘name’, ‘fresh-
ness’, and ‘abstraction’ which exist in syntax [23]. The author commented on the
potential to extend this apparatus to a notion of substitution [15].

The axioms from Definition 3.1 came later in work with Mathijssen [22]. They are
sound and complete for a model based on capture-avoiding substitution on syntax.

14

The axioms are only properties we require of the construction — our two substitu-
tion actions demonstrate that they specify, but not uniquely, substitution on sets. These
axioms do rule out an ‘obvious’ definition, perhaps the first that we would consider:

Definition 3.3. The pointwise substitution action is defined by

a[a7→x]n = x b[a7→x]n = b Z[a7→x]n = {z[a7→x]n | z ∈ Z}.

Lemma 3.4. Pointwise substitution does not satisfy (α), (# 7→), or (abs7→). There-
fore, it is not a substitution action in the sense of Definition 3.1.

Proof. It suffices to produce counterexamples. We do this for (#7→) and (abs 7→).
We expect that A[a7→1]n = A since a#A. We also expect that ([c]a)[a7→1]n =
[c](a[a 7→1]) since c#1. But:

A[a 7→1]n =(A \ {a}) ∪ {1}

([c]a)[a 7→1]n ={(b, a), (c, a), (d, a), (e, a), . . .}[a 7→1]n

={(b, 1), (c, 1), (d, 1), (e, 1), . . .}

[c](a[a7→1]n) =[c]1

={(a, 1), (b, 1), (c, 1), (d, 1), (e, 1), . . .}.

Here is another attempt:

Definition 3.5. The syntactic substitution action is defined by:

a[a7→x]t = x b[a7→x]t = b Z[a7→x]t = Z (a#Z)

Z[a7→a]t = Z Z[a7→b]t = (b a)Z (b#Z)

([c]z)[a7→x]t = [c](z[a7→x]t) (c#x)

Z[a7→x]t = {z[a7→x]t | z ∈ Z} (Z finite) Z[a7→x]t = ∅ (otherwise).

Theorem 3.6. [a7→x]t is well-defined and satisfies the axioms of substitution.

The proof of this theorem is by easy but uninteresting calculations. Since we are in
any case not happy with [a7→x]t we do not include them.

[a7→x]t reprises a similar definition on abstract syntax trees from the author’s thesis
[15, Definition 10.7.13], and a construction in the same spirit (but using diagrams)
in presheaf categories [14, Definition of substitution by structural recursion, page 6].
[a7→x]t is capture-avoiding substitution — on the subclass of (any model of) FM set
theory that represents abstract syntax trees. On the rest of the FM sets universe the
definition ‘gives up’ and defaults to ∅.

This could be suitable for providing a semantics to a generic substitution function,
and might have applications, for example to generic programming [31, 9]. This is for
future work.

The syntactic substitution action runs into another kind of trouble because of how
it ‘gives up’ on sets that do not represent abstract syntax trees. For example

(A \ {a})[a7→1]t = ∅.

15

If we expand definitions this becomes

{b, c, d, e, f, . . .}[a7→1]t = {}.

Here we write A = {a, b, c, d, e, f, . . .}. Now

([c]a)[a 7→1]t = [c]1.

If we expand definitions this becomes

{(b, a), (c, a), (d, a), (e, a), (f, a), . . .}[a7→1]t =

{(a, 1), (b, 1), (c, 1), (d, 1), (e, 1), (f, 1), . . .}.

Thus (A \ {a})[a7→1]t and ([c]a)[a7→1]t return very different answers — yet both are
equivalence classes of renamed variants in the sense of Definition 2.16. (In the exam-
ples above, the equivalence classes are renamed variants of c and (c, a) respectively.)
For another example:

{((b, b), a), ((c, c), a), ((d, d), a), ((e, e), a), ((f, f), a), . . .}[a7→1]t = ∅.

Compared to [c]a the only difference is to place an ordered pair such as (b, b) in the
first position, instead of just b. The effect on the result of a substitution is dramatic.

Clearly, this is an artefact of the definitions and has no deeper mathematical justifi-
cation. The structures of the two sets

{((b, b), a), ((c, c), a), ((d, d), a), ((e, e), a), ((f, f), a), . . .}
[c]a ={(b, a), (c, a), (d, a), (e, a), (f, a), . . .}

are sufficiently close that we could implement atoms-abstraction just as well using one
as using the other. We expect them to behave in roughly analogous ways with respect
to substitution, and they do not.

This issue is important:

• Equivalence classes of renamed variants are the mechanism by which FM sets
model binding (Definition 2.20).

• They are also part of the mechanism by which a#x differs from ‘a is in the
transitive closure of x’. For example

a ∈ A = a||∅ yet a#A

and
a 6∈ (A \ {a}) = b||{a} but a ∈ supp(A \ {a}).

(See Theorem 2.18 for the necessary results about supp(u||A).)

Therefore, correct interaction of substitution with equivalence classes of renamed vari-
ables is directly relevant to motivation of this paper, which is to define a capture-
avoiding substitution action on models of FM sets.

16

3.2. A short quiz
As we shall see, there is design freedom in building a substitution action. We

motivate this with a short quiz. Some technical definitions will be useful:

Definition 3.7. If A,S ⊆ A are finite then define

A(a 7→S) =

{
(A \ {a}) ∪ S if a ∈ A
A if a 6∈ A.

Lemma 3.8. Any substitution action satisfies that

supp(z[a7→x]) ⊆ supp(z)(a 7→supp(x)).

Proof. By Theorem 2.15

supp(z[a7→x]) ⊆ supp(z) ∪ {a} ∪ supp(x).

Choose some fresh b (so b#z, a, x). By the axiom (α) z[a7→x] = ((b a)z)[b 7→x]. By
Theorem 2.15

supp(((b a)z)[b7→x]) ⊆ supp((b a)z) ∪ {b} ∪ supp(x).

The result follows using Theorem 2.14.

Remark 3.9. [Quiz] Recall from Definition 2.3 that we write 0 = ∅ and i+1 = i∪{i},
and write N = {0, 1, 2, 3, . . .}. Note that supp(i) = ∅ for all i ∈ N.

• Q. What is ((A \ {a}) ∪ N)[a7→1]?

A. A ∪ N.

This makes the minimum change consistent with Lemma 3.8.3

• Q. What is ((A \ {a}) ∪ N)[a7→1]?

A. A ∪ (N \ {1}).

This makes the minimum change consistent with Lemma 3.8 — and we replace
the ‘missing a’ by a ‘missing 1’. Since we are defining substitution on sets,
we should think how substitution behaves on syntax denoting sets: substitution
commutes with logical negation in the syntax of logic, and this is modelled by
replacing ‘missing elements’ by other ‘missing elements’. More on this in Sub-
section 5.2.

In this paper we will not attempt to argue whether one substitution action is bet-
ter than another. We lay down two substitution actions representing two ‘reasonable
extremes’ in the design space.

• The first one, presented immediately, belongs to the first class of substitutions in
Remark 3.9 above.

3supp(A \ {a}) = {a} and supp(A) = ∅.

17

• The second one, presented later beginning with Section 5, belongs to the second
class of substitutions.

It is for future research to study the class of all possible substitution actions. In this
paper we show some of what is possible and give methods by which these possibilities
can be explored.

The reader might be tempted to expect some mathematical ‘lattice of substitutions’
similar perhaps to the ‘lattice of λ-theories’ which Salibra and others have studied [33].
This is just one of the interesting questions invited by the existence of a sets model of
substitution. A moment of reflection shows that the answer is not obvious. Substitution
is a function, not a relation — a λ-theory is a relation on λ-term syntax, so λ-theories
are naturally ordered by inclusion.

3.3. The planes of a set
Definition 3.10. Suppose that A ⊆ A is finite. Call (u,A) a plane in Z when A is a
minimal subset of supp(Z) such that u||A ⊆ Z.

Write plane(Z) for the collection of planes in Z.

It is easy to see that if (u,A) ∈ plane(Z) then u ∈ Z.
Unpacking Definition 3.10, (u,A) is a plane in Z when A ⊆ supp(Z) and u||A ⊆

Z and for all (u′, A′), if A′ ⊆ supp(Z) then

u||A ⊆ u
′||A′ ⊆ Z implies u′||A′ = u||A.

For example:

1. (a, {a}) ∈ plane({a}) and a||{a} = {a} ⊆ {a}.
2. (a, {}) 6∈ plane({a}) because a||{} = A 6⊆ {a}.
3. (a, {a}) 6∈ plane(A) because {a} 6⊆ supp(A) = ∅.
4. (a, {a, b})6∈plane({a}) because a||{a,b} = {a} = a||{a} and {a}6⊆{a, b}.
5. (c, {a}) ∈ plane(A\{a}) and c||{a} = A\{a} ⊆ A\{a}.
6. (a, {}) ∈ plane(A) and a||{} = A ⊆ A.
7. ((c, a), {a}) ∈ plane([c]a) and (c, a)||{a} = {(x, a) | x 6= a} = [c]a ⊆ [c]a.
8. plane({a} ∪ {{a}, {c}, {d}, . . .}) ={(a, {a})} ∪

{({x}, {b}) | x∈A, x6=b}.
a||{a} = {a} ⊆ {a} ∪ {{a}, {c}, {d}, . . .}.
{x}||{b} = {{a}, {c}, {d}, . . .} ⊆ {a} ∪ {{a}, {c}, {d}, . . .}.

Definition 3.11. If S ⊆ A is finite then define

planeS(Z) = {(u,A) ∈ plane(Z) | supp(u) ∩ S ⊆ supp(u) ∩A}.

We should think of planeS(Z) as the planes (u,A) in Z such that the support of u
‘avoids clashes’ with atoms in S, where this is possible. For example

(a, {}) ∈ plane{}(A) but (a, {}) 6∈ plane{a}(A) and

(c, {a}) ∈ plane{b}(A\{a}) but (b, {a}) 6∈ plane{b}(A\{a}).

It will later be useful to know that the planes of Z ‘cover’ Z in a suitable sense:

18

Theorem 3.12. If S ⊆ A is finite then⋃
{u||A | (u,A) ∈ planeS(Z)} = Z.

As a corollary taking S = ∅,
⋃
{u||A | (u,A) ∈ plane(Z)} = Z.

Proof. We prove two set inclusions: The left-to-right inclusion is by construction.
For the right-to-left inclusion, choose any u ∈ Z. Let B = {b1, . . . , bk} be equal to
supp(u) \A and let B′ = {b′1, . . . , b′k} be some set of entirely fresh atoms (so disjoint
from supp(u), A, S, and supp(Z)). Let π = (b1 b

′
1) ◦ . . . ◦ (bk b

′
k).

By Theorem 2.14 we can calculate that

supp(πu) ∩ S = (supp(u) ∩A) ∩ S and
supp(πu) ∩A = supp(u) ∩A.

Therefore supp(πu) ∩ S ⊆ supp(πu) ∩ A. Also (πu)||A = u||A by Lemma 2.17, so
(πu,A) ∈ planeS(Z). Finally we note that u ∈ (πu)||A.

Planes do not just cover a set (Theorem 3.12), they cover its support, all of its
support, and nothing but its support. Compare Lemma 2.25 with Theorem 3.13:

Theorem 3.13. If S ⊆ A is finite then

supp(Z) =
⋃
{A | (u,A) ∈ planeS(Z)}.

Proof. By definition if (u,A) ∈ planeS(Z) then A ⊆ supp(Z). It therefore suffices to
prove that if for all (u,A) ∈ planeS(Z) it is the case that b 6∈ A, then b#Z.

Suppose b 6∈ A for every (u,A) ∈ planeS(Z). Choose any fresh b′#Z, so that
b′ 6∈ A for every (u,A) ∈ planeS(Z). We reason as follows:

(b′ b)Z = (b′ b)
⋃
{(u||A) | (u,A) ∈ planeS(Z)} Theorem 3.12

=
⋃
{(b′ b)(u||A) | (u,A) ∈ planeS(Z)} Definition 2.4

=
⋃
{u||A | (u,A) ∈ plane(Z)} Theorems 2.13 and 2.18

= Z Theorem 3.12

Now b 6∈ supp((b′ b)Z) by Theorem 2.14 and the fact that b′#Z. The result follows.

3.4. Construction of the first substitution action
We can now define the substitution action. We use Theorem 3.12 to view an FM set

Z as a union of planes; the ‘capture-avoiding’ aspect of substitution is easy to manage
on a ‘plane-by-plane basis’. Recall the definition of A(a7→S) from Definition 3.7.

Definition 3.14. Define the substitution action z[a 7→x] and a ‘helper’ function δ(z, a, x)
as follows:

• a[a 7→x] = x.

• b[a7→x] = b.

19

• If Z 6∈ A then

Z[a 7→x] =
⋃
{(u[a7→x])||A(a7→supp(x))\δ(u,a,x) | (u,A) ∈ planesupp(x)∪{a}(Z)}

δ(u, a, x) = (supp(u)(a7→supp(x))) \ supp(u[a7→x]).

We consider some examples.
1. {a}[a7→x]. There is one plane, (a, {a}).

δ(a, a, x) = {a}(a7→supp(x)) \ supp(x) = ∅.
{a}(a7→supp(x)) \ δ(a, a, x) = supp(x) \ ∅ = supp(x)

{a}[a7→x] = a[a7→x]||supp(x) = x||supp(x) = x.

2. (A \ {a})[a7→x]. One plane is (b, {a}) where b#x (the others give the same
result).

δ(b, a, x) = {b}(a7→supp(x)) \ {b} = ∅
{a}(a7→supp(x)) \ ∅ = supp(x)

(A \ {a})[a7→x] = b||supp(x) = A \ supp(x)

3. A[a7→x]. One relevant plane is (b, ∅) where b#x (the others give the same
result).

δ(b, a, x) = ∅ ∅(a7→supp(x)) \ ∅ = ∅
A[a 7→x] = b||∅ = A

4. ([c]a)[a7→x] = {(b, a), (c, a), (d, a), . . .}[a 7→x].
One plane is ((c, a), {a}) where c#x.4
We omit calculations showing that (c, a)[a7→x] = (c, x); for a general result see
Theorem 3.26 after these examples.

δ((c, a), a, x) = {c, a}(a7→supp(x)) \ supp((c, x))

= (supp(x) ∪ {c}) \ (supp(x) ∪ {c}) = ∅
{a}(a7→supp(x)) \ ∅ = supp(x)

([c]a)[a7→x] = (c, x)||supp(x) = [c]x

The other planes give the same result.
5. Ub[a7→{b}] where, for a given b, we write Ub = {a} ∪ {{a}, {c}, {d}, . . .}.

Two planes are a||{a} (a plane for {a}) and {a}||{b} (a plane for {{a}, {c}, {d}, . . .}).
By calculations similar to the examples above, we calculate that

a[a7→{b}] = {b} and
{{a}, {c}, {d}, . . .}[a7→{b}] = {{a}, {c}, {d}, . . .}

and that Ub[a7→{b}] = U where we write

U = {{a}, {b}, {c}, {d}, . . .}.

The other planes give the same results.

4If c ∈ supp(x) then ((c, a), {a}) 6∈ planesupp(x)∪{a}([c]a).

20

6. ([c]Ub)[a7→{b}] = {(c, Ub), (d, Ub), . . .}[a7→{b}].
One plane is ((c, Ub), {a, b}) (the other planes give the same result). Note that
supp(U) = ∅ and supp((c, U)) = {c}, so that

δ((c, Ub), a, {b}) = {a, b, c}(a7→{b}) \ {c} = {b}
{a, b}(a7→{b}) \ {b} = ∅

([c]Ub)[a7→{b}] = (c, U)||∅ = [c]U.

In all other examples δ is equal to ∅. Here, we see how δ is not equal to ∅. This
corrects for the fact that supp(Ub[a7→{b}]) 6= supp(Ub)(a7→{b}).

Remark 3.15. Suppose that A,S ⊆ A are finite. Note that A(a7→S) and A[a7→S] do
not coincide. For example, {a}(a7→{a}) = {a} whereas {a}[a7→{a}] = {{a}}.

Now we show how this construction satisfies the axioms (α), (# 7→), (var 7→),
(id 7→), and (abs7→), and we investigate for what F it satisfies (F 7→).

Theorem 3.16 ((id7→)). z[a7→a] = z.

Proof. We work by ε-induction.
The base cases of z ∈ A are easy:

• a[a7→a] = a.

• b[a 7→a] = b.

Now suppose Z 6∈ A (we adhere to our notational convention and write capital
‘Z’). Suppose the inductive hypothesis of all u ∈ Z. By definition

Z[a7→a] =
⋃
{(u[a7→a])||A(a7→{a})\δ(u,a,a) | (u,A) ∈ plane{a}(Z)}

Suppose (u,A) ∈ plane{a}(Z), so by definition

supp(u) ∩ {a} ⊆ supp(u) ∩A.

By inductive hypothesis u[a7→a] = u, so that supp(u[a7→a]) = supp(u). Then we can
simplify:

A(a7→{a}) \ (supp(u)(a7→{a}) \ supp(u[a7→a]))

= A \ (supp(u) \ supp(u)) = A.

So we have this:

Z[a7→a] =
⋃
{u||A | (u,A) ∈ plane{a}(Z)}

The result follows by Theorem 3.12.

For Theorem 3.21 we need Lemma 3.19, a technical lemma giving a form of
‘capture-avoidance’ result. The proof is detailed, but not very hard.

21

Definition 3.17. If X,Y 6∈ A then define the symmetric difference (the XOR or
exclusive or) of X and Y by:

X ∆ Y = {z | (z ∈ X ∧ z 6∈ Y) ∨ (z 6∈ X ∧ z ∈ Y)}

In words, X ∆ Y means ‘the set of elements in precisely one of X and Y ’.

Lemma 3.18. Fix any u, a finite set of atoms A, and any x. Suppose that π is a
permutation, write

C = {x ∈ A | π(x) 6= x}.
Suppose that C ∩ (supp(x)∪A∪ {a}) = ∅ (so C is fresh for everything except for u).
Then

u[a7→x]||A(a 7→supp(x))\δ(u,a,x) = (πu)[a7→x]||A(a 7→supp(x))\δ(πu,a,x).

Proof. By Theorem 2.13 πx = x. By Theorem 2.5 δ(πu, a, x) = πδ(u, a, x) and so

δ(u, a, x) ∆ δ(πu, a, x) ⊆ C.

We assumed that C∩(A∪supp(x)) = ∅ and by elementary set calculations we deduce
that

A(a7→supp(x)) \ δ(πu, a, x) = A(a7→supp(x)) \ δ(u, a, x).

Also (πu)[a7→x] = π(u[a7→x]) by Theorem 2.5. Therefore

(πu)[a7→x]||A(a7→supp(x))\δ(πu,a,x) = (π(u[a7→x]))||A(a 7→supp(x))\δ(u,a,x).

Theorem 2.18
= (u[a 7→x])||A(a 7→supp(x))\δ(u,a,x)

as required.

Lemma 3.19. Fix Z 6∈ A, a ∈ A, and x. Suppose that B = {b1, . . . , bn} is a finite set
of fresh atoms (so bi#x, Z for 1 ≤ i ≤ n). Then

Z[a7→x] =
⋃
{(u[a7→x])||A(a 7→supp(x))\δ(u,a,x) | (u,A) ∈ planesupp(x)∪{a}∪B(Z)}.

(Notice the B on the far right subscript.)

Proof. By definition

Z[a7→x] =
⋃
{(u[a7→x])||A(a 7→supp(x))\δ(u,a,x) | (u,A) ∈ planesupp(x)∪{a}(Z)}.

Choose any
(u,A) ∈ planesupp(x)∪{a}(Z).

Unpacking definitions this means

(u,A) ∈ plane(Z) and supp(u) ∩ (supp(x) ∪ {a}) ⊆ supp(u) ∩A.

Now choose some fresh b′1, . . . , b′n (so b′i#u,A,B, x, Z for 1 ≤ i ≤ n) and write
B′ = {b′1, . . . , b′n}. Write

π = (b1 b
′
1) ◦ . . . ◦ (bn b

′
n).

We show that

22

1. (πu,A) ∈ plane(Z),
2. supp(πu) ∩ (supp(x) ∪ {a} ∪B) ⊆ supp(πu) ∩A — so that

(πu,A) ∈ planesupp(x)∪{a}∪B(Z)

— and
3. (πu)[a7→x]||A(a 7→supp(x))\δ(πu,a,x) = u[a7→x]||A(a 7→supp(x))\δ(u,a,x).

This will suffice to prove the result.

1. By Theorem 2.5 (πu, πA) ∈ plane(πZ). Now πZ = Z by Theorem 2.13. Also
by construction A ⊆ supp(Z) and B ∩ supp(Z) = ∅ = B′ ∩ supp(Z), so

B ∩A = ∅, B′ ∩A = ∅, and therefore πA = A.

We conclude that (πu,A) ∈ plane(Z) as required.
2. B∩supp(x) = ∅ = B′∩supp(x) so πx = x by Theorem 2.13. By Theorem 2.5

supp(πu) ∩ (supp(πx) ∪ {a}) ⊆ supp(πu) ∩ πA

and we simplify this to

supp(πu) ∩ (supp(x) ∪ {a}) ⊆ supp(πu) ∩A.

But by Theorem 2.14 we know that supp(πu)∩B = ∅ so by further elementary
set calculations we conclude that

supp(πu) ∩ (supp(x) ∪ {a} ∪B) ⊆ supp(πu) ∩A

as required.
3. We use Lemma 3.18. We need only check that

(B ∪B′) ∩ (supp(x) ∪A ∪ {a}) = ∅

and this is by construction.

We use the following technical lemma in Theorem 3.21:

Lemma 3.20. Fix some Z, a, and x. Suppose that

for all b, if b#Z, x then Z[a7→x] ⊆ ((b a)Z)[b 7→x].

Then also

for all b, if b#Z then Z[a 7→x] ⊆ ((b a)Z)[b7→x].

Proof. Choose some fresh c (so c#Z, a, b, c). By assumption

Z[a7→x] = ((c a)Z)[c7→x] ((b a)Z)[b 7→x] = ((c b)(b a)Z)[c7→x].

The result follows by Theorem 2.13.

23

Theorem 3.21 ((α)). Suppose Z 6∈ A. If b#Z then Z[a7→x] ⊆ ((b a)Z)[b 7→x].
As a corollary, for any z if b#z then z[a7→x] = ((b a)z)[b 7→x].

Proof. We first prove the corollary. Suppose that z ∈ A. Then there are three cases:

• a[a 7→x] = x and ((b a)a)[b7→x] = x and x = x.

• b#b is false, so there is nothing to prove for the case of b[a7→x].

• c[a7→x] = c and ((b a)c)[b7→x] = c and c = c.

Now suppose that Z 6∈ A (we adhere to our convention and write capital ‘Z’). Assume
that b#Z implies Z[a7→x] ⊆ ((b a)Z)[b 7→x] for all b, Z, a, x.

Now suppose b#Z. Then Z[a7→x] ⊆ ((b a)Z)[b 7→x]. Also by Theorem 2.14
a#(b a)Z and it follows that ((b a)Z)[b 7→x] ⊆ ((b a)(b a)Z)[a7→x]. Now (b a)(b a)Z =
Z, and the result follows.

For the first part, we work by ε-induction. Suppose Z 6∈ A and suppose b#Z.
By Lemma 3.20 we can also assume b#x. Suppose the inductive hypothesis of every
u ∈ Z. Using the definition of substitution and using Lemma 3.19 for the first equality
(to add a {b} to the subscript on plane; we cannot add {a} to the subscript on plane in
the second equality because we do not know a#x)

Z[a7→x] =
⋃
{(u[a7→x])||A(a7→supp(x))\δ(u,a,x) | (u,A) ∈ planesupp(x)∪{a,b}(Z)}

((b a)Z)[b7→x] =
⋃
{(u′[b 7→x])||A′(b 7→supp(x))\δ(u′,b,x) |

(u′, A′) ∈ planesupp(x)∪{b}((b a)Z)}.

Suppose (u,A) ∈ planesupp(x)∪{a,b}(Z). To prove our set inclusion we just need to
exhibit some (u′, A′) ∈ planesupp(x)∪{b}((b a)Z) such that

u[a 7→x]||A(a7→supp(x))\δ(u,a,x) = u′[b 7→x]||A′(b 7→supp(x))\δ(u′,b,x).

We choose u′ = (b a)u and A′ = (b a)A. Then (u′, A′) ∈ plane((b a)Z) by Theo-
rem 2.5. Also by definition of planesupp(x)∪{a,b}(Z) we know that

supp(u) ∩ (supp(x) ∪ {a, b}) ⊆ supp(u) ∩A.

Now b 6∈ A by construction and b ∈ supp(x) ∪ {a, b}. Therefore b#u. It is now not
hard to use Theorem 2.14 and some elementary set calculations to calculate that

supp(u′) ∩ (supp(x) ∪ {b}) ⊆ supp(u′) ∩A′.

So (u′, A′) ∈ planesupp(x)∪{b}(Z). Since b#u by the inductive hypothesis u′[b7→x] =
u[a7→x].

It remains to show

A(a7→supp(x)) \ δ(u, a, x) = ((b a)A)(b 7→supp(x)) \ δ((b a)u, b, x).

24

Recall that b 6∈ A. Then A(a 7→supp(x)) = ((b a)A)(b7→supp(x)) is easily verified.
Also

δ((b a)u, b, x) = supp((b a)u)(b 7→supp(x)) \ supp(((b a)u)[b 7→x]).

Now supp((b a)u)(b 7→supp(x)) = supp(u)(a7→supp(x)) is easily verified, and it
follows by the inductive hypothesis that ((b a)u)[b7→x], and we are done.

Theorem 3.22 ((# 7→)). If a#z then z[a7→x] = z.

Proof. We work by ε-induction. We start with the base cases:

• a#a is false so there is nothing to prove for a[a 7→x].

• b[a7→x] = b.

Now suppose Z 6∈ A (we adhere to our notational convention and write capital ‘Z’)
and a#Z and suppose the inductive hypothesis of all u ∈ Z. By definition

Z[a7→x] =
⋃
{(u[a 7→x])||A(a 7→supp(x))\δ(u,a,x) | (u,A) ∈ planesupp(x)∪{a}(Z)}.

Consider any (u,A) ∈ planesupp(x)∪{a}(Z). By assumption

supp(u) ∩ (supp(x) ∪ {a}) ⊆ supp(u) ∩A.

By construction a 6∈ A, so a#u and by inductive hypothesis u[a7→x] = u. Now
A(a7→supp(x)) = A, and

δ(u, a, x) = supp(u)(a7→supp(x)) \ supp(u[a7→x]) = supp(u) \ supp(u) = ∅.

So
Z[a7→x] =

⋃
{u||A | (u,A) ∈ planesupp(x)∪{a}(Z)}.

The result follows by Theorem 3.12.

Recall the notion of atoms-abstraction [c]z from Definition 2.20.

Lemma 3.23. plane([c]z) ={((c′, (c′ c)z), supp(z) \ {c}) | c′#z} ∪
{((c, z), supp(z) \ {c})}

Proof. By construction (c, supp(z) \ {c}) ∈ plane([c]z). Also

(c′, (c′ c)z)||supp(z)\{c} = (c, z)||supp(z)\{c} = [c]z

by Lemma 2.17. Therefore ((c′, (c′ c)z), supp(z) \ {c}) ∈ plane([c]z) for each c′#z.
Now take any (c′, z′) ∈ [c]z (by our permutative convention, c′ 6= c). By construc-

tion (c′, z′) = (c′, (c′ c)z) for some c′#z. The result follows.

Theorem 3.24 ((abs 7→)). If c#x then ([c]z)[a7→x] = [c](z[a7→x]).

25

Proof. If a#z then by Theorem 2.15 also a#[c]z and

([c]z)[a7→x] = [c]z and [c](z[a 7→x]) = [c]z

follow by Theorem 3.22. So suppose a ∈ supp(z). By Lemma 3.23

plane([c]z) = {((c′, (c′ c)z), supp(z) \ {c}) | c′#z} ∪ {((c, z), supp(z) \ {c})}.

Using Lemma 3.18 we can calculate that if c′#x then

(c, z[a7→x])||A(a7→supp(x))\δ((c,z),a,x) = (c′, ((c′ c)z)[a 7→x])||A(a 7→supp(x))\δ((c′,(c′ c)z),a,x).

We can also calculate using Theorems 2.13 and 2.5 that if c′#z[a7→x] then

supp(z[a7→x]) \ {c} = (c′ c)(supp(z[a7→x]) \ {c}) = supp((c′ c)(z[a7→x])) \ {c′}.

By Lemma 2.17 we also have

(c, z[a7→x])||supp(z[a 7→x])\{c} = (c′, ((c′ c)z)[a7→x])||supp((c′ c)(z[a 7→x]))\{c′}.

By Theorems 2.5 and 2.13 (c′ c)(z[a 7→x]) = ((c′ c)z)[a7→x]. The definitions now
simplify to this:

[c]z = (c, z)||supp(z)\{c}

([c]z)[a7→x] = (c, z[a7→x])||(supp(z)\{c})(a7→supp(x))\δ((c,z),a,x)

[c](z[a7→x]) = (c, z[a7→x])||supp(z[a7→x])\{c}

So it suffices to verify that

(supp(z) \ {c})(a 7→supp(x)) \ δ((c, z), a, x) = supp(z[a7→x]) \ {c}.

Now δ((c, z), a, x) = (supp(z) ∪ {c})(a 7→supp(x)) \ (supp(z[a7→x]) ∪ {c}) (we
use Lemma 2.23 to calculate the support of a pairset) and the result follows by set
calculations.

Theorem 3.25. Definition 3.14 is equivariant and satisfies (α), (# 7→), (var 7→), (id7→),
and (abs 7→) from Subsection 3.1.

Proof. Equivariance is automatic by Theorem 2.5. (var 7→) is direct from the defi-
nition. Each of (α), (# 7→), (id 7→), and (abs7→) is by one of the theorems proved
above.

3.5. Substitutions on syntax, substitutions commuting
We prove that on sets representing syntax substitution coincides with capture-

avoiding substitution as we might inductively define it. This is Theorem 3.29 and
Corollary 3.31.

Theorem 3.26. If Z 6∈ A and Z is a finite set then Z[a7→x] = {z[a7→x] | z ∈ Z}.

26

Proof. By definition,

Z[a7→x] =
⋃
{(u[a7→x])||A(a 7→supp(x))\δ(u,a,x) | (u,A) ∈ planesupp(x)∪{a}(Z)}

Suppose (u,A) ∈ planesupp(x)∪{a}(Z). Since u||A ⊆ Z and Z is finite, u||A is finite.
It follows by Lemma 2.22 that supp(u) ⊆ A and u||A = {u}.

Now recall that by Lemma 3.8 supp(u[a 7→x]) ⊆ supp(u)(a7→supp(x)), and by
definition

δ(u, a, x) = (supp(u)(a7→supp(x))) \ supp(u[a7→x]).

It follows by set calculations that

supp(u[a7→x]) ⊆ A(a7→supp(x)) \ δ(u, a, x)

and the result follows.

Corollary 3.27. The functions (x, y) = {{x}, {x, y}}, inl(x) = (x, ∅), and inr(x) =
(x, {∅}), all commute with the substitution action.

Let I be any set of elements with empty support, so if i ∈ I then supp(i) = ∅ (an
example is N from Definition 2.3, a non-example is the set of atoms A). Let zi be an
I-indexed collection of elements and write (zi)i∈I = {(i, zi) | i ∈ I}. Then

(zi)i∈I[a 7→x] = (zi[a7→x])i∈I.

Proof. The results for pairing, inl, and inr follow from Theorem 3.26.
The second part follows noting that the planes of (zi)i∈I are precisely (zi, supp(zi))

for i ∈ I, since for all i, j ∈ I if πi = j then i = j.

Definition 3.28. Let Λ be the datatype of abstract syntax defined inductively by

a ∈ A

a ∈ Λ

x, y ∈ Λ

(x, y) ∈ Λ

a ∈ A x ∈ Λ

[a]x ∈ Λ

It is not hard to show that Λ is isomorphic to λ-terms up to α-equivalence [23]; this
is the FM standard construction of abstract-syntax-with-binding, slightly modified (see
Remark 3.30 below). Atoms have zero elements, pairs have two, and abstractions have
infinitely many, so no atom is a pair or an abstraction, and no pair is an abstraction.

Theorem 3.29. If z, x ∈ Λ then z[a7→x] ∈ Λ and z[a 7→x] is equal to what we would
normally call ‘capture-avoiding substitution of x for a in z’.

Proof. We work by induction on Λ.

• a[a7→x] = x and b[a7→x] = b.

• (z1, z2)[a7→x] = (z1[a7→x], z2[a7→x]) by Corollary 3.27.

• ([c]z)[a7→x] = [c](z[a7→x]) providing c#x by Theorem 3.24. It is not hard to
use Lemma 2.23 and Corollary 2.24 to prove that c#x corresponds precisely to
‘c is not free in x’ when x ∈ Λ.

27

Remark 3.30. Theorem 3.29 is generic and works for any datatype of syntax. We
must interpret atoms as themselves and not ‘wrapped up’ in the following sense: our
construction is an isomorphic version of the datatype from [23] given by:

a ∈ A

inl(inl(a)) ∈ Λ

x, y ∈ Λ

inl(inr((x, y))) ∈ Λ

a ∈ A x ∈ Λ

inr([a]x) ∈ Λ

This is not suitable for Theorem 3.29 because atoms are wrapped up in inl(inl(a))
and inl(inl(a))[a7→x] = inl(inl(x)) 6= x. No substitution action can anticipate our
particular implementation of the tree-structure of datatypes; since atoms are a distinct
class of elements in a model of FM set theory it is valid to insert them ‘unwrapped’
into the inductive type as we have done.

At first blush this appears to rule out datatypes with two or more different kinds of
name (type variables, term variables, channel names, locations, and so on), since the
datatypes concerned ‘contain more than one copy of A’. A good solution is to hypothe-
sise many sets of atoms — for example a set of disjoint countably infinite sets of atoms,
and to add to axiom (Fresh) a quantification over all the sets of atoms (that is, to insist
on finite support with respect to each set). This makes no difference to the results in
this paper aside from slightly complicating their presentation; our constructions require
a countably infinite set of atoms; it makes no difference whether other sets of atoms
are also present in the sets universe.

We can prove inductively that the usual commutativity property of substitution
holds. Again, the proof is generic and would work as well for any FM-style datatype
of abstract syntax with binding:

Corollary 3.31. If a#y and x, y, z ∈ Λ then z[a7→x][b 7→y] = z[b 7→y][a7→x[b 7→y]].

Proof. By induction on z.

Theorem 3.29 and Corollary 3.31 seem empirically to be quite robust results. Anal-
ogous results hold also for other structures including coinductive datatypes such as the
datatype of infinite lists L illustrated below, and also for ‘name-generating’ coinductive
datatypes in the style of [16] such as Lng illustrated below:5

x ∈ X l ∈ L

x :: l ∈ L

x ∈ X l ∈ Lng
x :: [a]l ∈ Lng

(We can also specify this as L = X × L and Lng = X × [A]Lng .)

5Lng is based on work in [16]. To see in what sense an element Lng can represent an infinite name-
generating — and infinitely name-generating — coinductive structure, consider the case where X is the set
of finite lists of atoms. We will write 〈〉 for the empty list and 〈x1, . . . , xn〉 for the n-element list with xi

in the ith position for 1 ≤ i ≤ n, and we consider the element which we can then write as:

〈〉 :: [a]〈a〉 :: [b]〈a, b〉 :: [c]〈a, b, c〉 :: [d]〈a, b, c, d〉 :: . . .

We can read this as an accumulator, with a state which is a list of atoms, and which at each step of its
behaviour generates a fresh atom and pushes it onto the tail of its state.

28

Substitution commutes with the operations from which these sets are routinely built
— atoms, tuples (of any size; see the second part of Corollary 3.27), and taking equiv-
alence classes of renamed variants.

Remark 3.32. For less structured sets, substitutions need not commute:

{a, {a}, {c}, {d}, . . .}[a7→{b}][b 7→{c}]
= {{a}, {b}, {c}, {d}, . . .}[b 7→{c}]
= {{a}, {b}, {c}, {d}, . . .}

{a, {a}, {c}, {d}, . . .}[b7→{c}][a7→{{c}}]
= {a, {a}, {b}, {d}, . . .}[a7→{{c}}]
= {{a}, {b}, {{c}}, {d}, . . .}

(The planes of interest here are a||{a}, {a}||{b}, and {a}||{c}.)
Intuitively, {a, {a}, {c}, {d}, . . .} can be read as the predicate ‘is the variable a, or

is {x}where x is a variable other than b’. Standard logics such as first-order logics can-
not express predicates that reflect on their own syntax; intuitively, non-commutativity
of substitution holds on sets that ‘reflect on atoms’ so that the results depend on the or-
der in which those atoms are substituted. We can also approach this proof-theoretically
[18].

An analogous phenomenon appears in work based on categories, treating names
and behaviour in name-passing calculi that require a name-for-name substitution [13].
To model the syntax of the name-passing calculus and to model reasoning on it, a
category in which inequality between names can be determined is required; to model
behaviour, a category in which names can be substituted for other names is required.
These two requirements seem incompatible since deciding inequality between names
does not commute with name-for-name substitution. In [13] a nice solution is discussed
which goes back to [28]: two categories, related by adjoint functors, are used for this
purpose; SetI for a category in which inequality between names can be determined,
and SetF for a category in which names can be substituted for other names; see [13,
Equation 28].6 Since set theory is untyped, the sets for which substitution commutes,
and those for which it does not, all populate the same universe.

4. New properties of FM: a-orbits and crucial elements

To define our next substitution action we have to develop the theory of crucial
elements. Given a set X we will define a set CaX , the a-crucial elements of X , which

6F is the category of finite sets and maps between them. I is the category of finite sets and injections
between them.

It may be worth noting that the name-for-name substitution action modelled in SetF is not quite a special
case of any substitution action based on the work in this paper, even allowing for the different presentations
(categories versus sets). This is because in SetF (and also in SetI), all presheaves are considered and
not only presheaves preserving pullbacks of monos. The ‘preserves pullbacks of monos’ corresponds with
Theorem 2.13 and ensures that ‘every element has a unique least supporting set’. It is this property which
makes possible the ‘sets-based’ presentations characteristic of nominal techniques. See [19] for a further
discussion.

29

measures ‘how far away X is from satisfying a#X’.
For example

• Ca{a} will be equal to {a} and {a} is ‘one a away from satisfying a#{a}’
(because a ∈ {a}).

• Ca(A\{a}) will be equal to {a} and A\{a} is also ‘one a away from satisfying
a#A \ {a}’ (because a 6∈ A \ {a}).

• CaA will be equal to ∅ and A already satisfies a#A (even though a ∈ A).

Remark 4.1. Recall the definition of symmetric difference from Definition 3.17:

X ∆ Y = {z | (z ∈ X ∧ z 6∈ Y) ∨ (z 6∈ X ∧ z ∈ Y)}

We shall show that a#(X ∆ CaX) always (Corollary 4.15). So if CaX intuitively
measures ‘how far away X is from satisfying a#X’, then ∆ is dimension along which
to travel this ‘distance’.

With reference to the examples above, {a} ∆ {a} = ∅, and (A \ {a}) ∆ {a} = A,
and A ∆ ∅ = A, and in all cases a is fresh for the result.

An interesting analogy can be drawn between ∆ and swapping (a b):
Swapping is very much like atoms-renaming [a 7→b]. It is used in FM theory to do

many of the things that are traditionally done using atoms-renaming [23]. An advantage
of swapping is that it is invertible; FM techniques owe much of their convenience to
this property.

∆ is a bit like like sets union
⋃

and a bit like sets subtraction \, and it can be
used to do many of the same things. It is also an invertible operation in the sense that
X ∆ Y ∆ Y = X . This invertibility will prove useful at important points in the proofs
below, for example in Lemma 4.21.

We develop the theory of crucial elements in Subsection 4.2. First, we must discuss
a-orbits:

4.1. a-orbits
If a ∈ A and any u, write

|u|a for the set u||supp(u)\{a}.

Call |u|a the a-orbit of u.
For example:

|a|a = A |b|a = {b}

|{a, b}|a = {{a, b}, {c, b}, {d, b}, . . .} |{a, b}|b = {{a, b}, {a, c}, {a, d}, . . .}.

To prove Theorem 4.5 below we need some easy technical lemmas:

Lemma 4.2. 1. If a#u then |u|a = {u}.
2. If ¬a#u then |u|a is an infinite set.

30

Proof. 1. Suppose a#u. Then |u|a = u||supp(u) and the result follows by the defi-
nition of || and by Theorem 2.13.

2. Suppose ¬a#u. By Theorem 2.14 for c, c′#u it is the case that supp((c a)u) 6=
supp((c′ a)u), so that (c a)u 6= (c′ a)u. The result follows.

Lemma 4.3. If ¬a#u and b#u then |u|a = |(b a)u|b. As a corollary, a#(|u|a).

Proof. The first part is by Theorem 2.5 (a proof by calculations is also easy). For the
second part, by Theorem 2.14 we can calculate that a#(b a)u. Then the result follows
by Theorem 2.15.

Lemma 4.4. If S is a finite set of atoms such that ¬a#S and b#S then (b a)S =
S[a7→b].

Proof. The permutation action is pointwise, so (b a)S = {(b a)x | x ∈ S}. The result
follows by Lemma 2.22 and easy calculations.

The main technical result on a-orbits is this:

Theorem 4.5. Suppose ¬(a#u) and ¬(a#u′). Then precisely one of the following
three possibilities holds:

1. |u|a ∩ |u′|a is empty.
2. |u|a ∩ |u′|a is a singleton.

In this case all of the following hold:

• supp(u) \ supp(u′) = {b} for some b#u′.

• supp(u′) \ supp(u) = {b′} for some b′#u.

• |u|a ∩ |u′|a = {(b a)u′}.
• |u|a ∩ |u′|a = {(b′ a)u}.

3. |u|a = |u′|a and u = u′.

Proof. If |u|a ∩ |u′|a = ∅ then we are done. So suppose that z ∈ |u|a ∩ |u′|a.
By definition

|u|a = {(n a)u | n = a ∨ n#u} and |u′|a = {(n′ a)u′ | n′ = a ∨ n′#u′}.

Here and for the rest of this proof, n and n′ range over all atoms (and may be equal to
a or each other).

Then z = (n a)u and z = (n′ a)u′ for some n and n′, for which there are several
possibilities:

• If n = a and n′ = a then u = u′ and we fall into the third case.

• n = a and n′ 6= a is impossible because a ∈ supp(u) and by Theorem 2.14
a 6∈ supp((n′ a)u′).

• Similarly if n 6= a and n′ = a.

31

• Suppose that n 6= a and n′ 6= a and n = n′. Then u = u′ and we fall into the
third case.

• Suppose that n 6= a and n′ 6= a and n 6= n′. We have supposed that (n a)u =
(n′ a)u′, recall that n#u and n′#u′. By Theorem 2.14

(n a)supp(u) = (n′ a)supp(u′).

Using Lemma 4.4 we can calculate that this can only happen if

supp(u) \ supp(u′) = {n′} and supp(u′) \ supp(u) = {n}.

We now verify by easy calculations that we fall into the second case.

For example:

• |a|a ∩ |(a, b)|a = ∅.

• |(a, b)|a ∩ |(c, a)|a = {(c, b)} = {(b a)(c, a)}.

• |(a, b)|a ∩ |(a, b)|a = |(a, b)|a.

Corollary 4.6. Suppose ¬(a#u) and ¬(a′#u′). Then precisely one of the following
holds:

1. |u|a ∩ |u′|a′ is empty.
2. u = u′ and |u|a ∩ |u|a′ = {u}.
3. u 6= u′ and |u|a ∩ |u′|a′ is a singleton.

In this case all of the following hold:

• supp(u) \ supp(u′) = {b, a} for some b#u′.

• supp(u′) \ supp(u) = {b, a′} for some b#u.

• |u|a ∩ |u′|a′ = {(b a′)u′}.
• |u|a ∩ |u′|a = {(b a)u}.

4. |u|a = |u′|a′ , a′#u, and u = (a a′)u′.

Proof. Choose some fresh c (so c#a, a′, u, u′). By Theorem 2.14 ¬(c#(c a)u) and
¬(c#(c a′)u′). Also by Lemma 4.3 we know that

|u|a = |(c a)u|c and |u′|a′ = |(c a′)u′|c.

Using Theorem 4.5 we calculate that there are three possibilities:

1. |u|a ∩ |u′|a′ is empty.
2. |u|a ∩ |u′|a′ is a singleton {z}.

In this case (here n and n′ range over all atoms, and in particular may be equal
to a, a′, c, or each other):

• supp((c a)u) \ supp((c a′)u′) = {n} for some n#(c a′)u′.

• supp((c′ a′)u′) \ supp((c a)u) = {n′} for some n′#(c a)u.

32

• |u|a ∩ |u′|a′ = {(n c)(c a′)u′}.
• |u|a ∩ |u′|a′ = {(n′ c)(c a)u}.

Now we must consider some further possibilities:

• Suppose n = a′. Then we can use Lemma 4.4 to calculate it must be
that supp(u′) = supp(u), and so that n′ = a. Therefore u = u′ and
|u|a ∩ |u′|a′ = {u}.

• The case n′ = a is similar.

• Suppose n 6= a′ and n′ 6= a. Then:

– Using Lemma 4.4 and our assumption that a ∈ supp(u) we know that
supp(u) \ supp(u′) = {n, c}. (It easily follows that u 6= u′.)

– Using Lemma 4.4 and our assumption that a′ ∈ supp(u′) we know
that supp(u′) \ supp(u) = {n′, c}.

– By Theorem 2.13 and our assumption that c#u′ we know that |u|a ∩
|u′|a′ = {(n a′)u′}.

– By Theorem 2.13 and our assumption that c#u we know that |u|a ∩
|u′|a′ = {(n′ a)u}.

3. |u|a = |u′|a′ and (c a)u = (c a′)u′. By Theorem 2.14 and our assumption that
c#u, u′ we deduce that a′#u. By Theorem 2.13 and Theorem 2.5 we further
deduce that u = (c a)(c a′)u′ = (a a′)u′ as required.

We need a new definition and a technical lemma before we prove Theorem 4.9:
We call A ⊆ A cofinite when A \A is finite.

Lemma 4.7. If S ⊆ A is cofinite then supp(S) = A \ S.

Proof. By Theorem 2.15 we know that supp(A\S) ⊆ supp(S). By the same Theorem
we know that supp(S) ⊆ supp(A \ S). The result follows by Lemma 2.22.

The following result is a well-known property of FM set theory [23]:

Lemma 4.8. A ∈ P(A) is either finite or cofinite, and not both.

Proof. We know that supp(A) exists and is finite by Theorem 2.13. So πA = A for any
π ∈ fix(supp(A)). It follows by an easy calculation that A is either finite or cofinite.
A cannot be both finite and cofinite, because (AtmInf) insists that A be infinite.

Theorem 4.9. Suppose ¬a#u and U ⊆ |u|a. a#U if and only if

• U is finite and u 6∈ U , or

• U is cofinite and u ∈ U .

Proof. Let S = {n | (n a)u ∈ |u|a} (here n ranges over all atoms, and may equal
a). Choose some fresh c (so c#S, u, U). S is either finite or cofinite by Lemma 4.8.
By Lemma 2.22 if S is finite then supp(S) = S. By Lemma 4.7 if S is cofinite then
supp(S) = A \ S.

Now we just consider the possibilities:

33

• Suppose S is finite and a 6∈ S. Then u 6∈ U .

Also using Theorem 2.13 and the fact that c#u we have:

(c a)U = {(c a)(n a)u | n ∈ S}
= {(n c)(c a)u | n ∈ S}
= {(n a)u | n ∈ S}
= U.

It follows that a#U .

• Suppose S is finite and a ∈ S. Then u ∈ U .

By similar reasoning we deduce that (c a)U = (U\{u}) ∪ {(c a)u}. Now we
assumed that ¬a#u so by Theorem 2.14 we know that u 6= (c a)u. It follows
that ¬a#U .

• The cases for U cofinite are similar.

4.2. Crucial elements

∆ is defined in Definition 3.17. The following properties are easy to prove —

• X ∆ X = ∅.

• X ∆ ∅ = X .

• X ∆ Y = Y ∆ X .

• (X ∆ Y) ∆ Z = X ∆ (Y ∆ Z).

— we use them without comment henceforth.

Lemma 4.10. (b a)(X ∆ Y) = ((b a)X) ∆ ((b a)Y), and if a#X and a#Y then
a#X ∆ Y .

Proof. By Theorems 2.5 and 2.15.

Definition 4.11. Call u a-crucial for X when

• ¬a#u.

• ¬(a#(|u|a ∩X)).

Write u εa X when u is a-crucial for X .

Remark 4.12. In nominal techniques it is known that an element can be as important
by its absence from a set, as by its inclusion in that set. For example it is the ‘missing
a’ in A \ {a} that is responsible for supp(A \ {a}) = {a}.

Note that it is not necessarily the case that if u εa X then u ∈ X . For example,

a εa A \ {a}.

34

u εa X is a measure of whether u is ‘conspicuous’ inX , at least as far as a ∈ supp(X)
is concerned — either by its absence or its presence. We make this measure by looking
at whether u is in, or is not in, the intersection of its own a-orbit with X .

For example: the a-orbit of a is A, and a is conspicuously absent from A ∩ (A \
{a}) = A \ {a}, so a εa A \ {a}.

Write
CaX for {x | x εa X}.

Theorem 4.13. a#X if and only if for every u, if ¬a#u then a#(X ∩ |u|a).

Proof. Suppose a#X . Consider some u such that ¬a#u and write U = X ∩ |u|a. We
use part 2 of Theorem 4.9:

• Suppose U is finite and u ∈ U . Choose some b such that (b a)u 6∈ U and
b#X . We observe that (b a)X 6= X , which by Theorem 2.13 contradicts our
assumption that a#X and b#X . So u 6∈ U and therefore a#U .

• Suppose U is cofinite and u 6∈ U . We choose some b such that (b a)u ∈ U and
b#X , and reason similarly.

Now suppose a#(X ∩ |u|a) for every u such that ¬(a#u). Choose any b#X . We
can calculate that X =

⋃
{X ∩ |u|a | ¬(a#u)} and so

(b a)X =
⋃
{(b a)(X ∩ |u|a) | ¬(a#u)}

=
⋃
{X ∩ |u|a | ¬(a#u)} = X

Recall from Remark 4.1 that we mentioned that CaX is a measure of ‘how far X
is away from satisfying a#X’. Corollary 4.14 makes that formal:

Corollary 4.14. a#X if and only if CaX = ∅.

Proof. Suppose a#X . By Theorem 4.13 we know that a#(X ∩ |u|a) for every u such
that ¬(a#u). It follows that CaX = ∅.

Conversely suppose that CaX = ∅. This means that if ¬a#u then a#(X ∩ |u|a).
It follows by Theorem 4.13 that a#X .

As a matter of convenient notation, write

X − a for X ∆ CaX.

Corollary 4.15. supp(X − a) ⊆ supp(X) \ {a}.

Proof. There are two parts to this result: we show that a#(X − a) always, and that if
b#X then b#(X − a).

For the first part, by Theorem 4.13 it suffices to show that for every u such that
¬(a#u) it is the case that:

• If (X − a) ∩ |u|a is finite then u 6∈ (X − a) ∩ |u|a.

35

• If (X − a) ∩ |u|a is cofinite then u ∈ (X − a) ∩ |u|a.

Now (X − a) ∩ |u|a is finite or cofinite if and only if X ∩ |u|a is finite or cofinite
respectively, since by construction CaX ∩ |u|a never has more than one element.

Also note that if ¬(a#u) then u ∈ X − a if and only if u 6∈ X . This suffices to
prove the first part.

For the second part, suppose that b#X . Then b#CaX by Theorem 2.15, and so
b#(X − a) by the same theorem.

Note that supp(X−a) need not be equal to supp(X)\{a} in general. For example
take X = {(a, b)}; then CaX = X and X − a = ∅.

4.3. Operations on sets of crucial elements

Lemma 4.16. A ∩ (X ∆ Y) = (A ∩X) ∆ (A ∩ Y).

Proof. By easy calculations.

Lemma 4.17. Ca(X ∆ Y) = (CaX) ∆ (CaY).

Proof. Pick any u such that ¬a#u. So for any Z, u ∈ CaZ if and only if ¬a#(|u|a ∩
Z).

Write A = |u|a ∩X and B = |u|a ∩ Y . By Lemma 4.16 we can simplify:

• u ∈ Ca(X ∆ Y) when ¬a#A ∆ B.

• u ∈ CaX when ¬a#A.

• u ∈ CaY when ¬a#B.

The result now follows reasoning by cases on whether A and B are finite, using part 2
of Theorem 4.9.

Support is not preserved under taking unions in general. For example supp(A) = ∅
and supp({a}) = supp(A \ {a}) = {a}, so it is not the case that supp(X ∪ Y)
is related in any useful way to supp(X) ∪ supp(Y). Lemma 4.17 identifies ∆ as a
way of combining sets which is similar to sets union, but which interacts nicely with
support.

Likewise, it is not in general the case that a#X if and only if a#x for all x ∈ X .
Corollary 4.14 identifies x εa X , or equivalently x ∈ CaX , as a notion of membership
which is similar to sets membership, but which interacts nicely with support.

Lemma 4.18. If U ⊆ CaZ then CaU = U .
In particular Ca(CaZ) = CaZ.

Proof. By the construction of Ca and by Theorem 4.5 we know that U ∩ |u|a ⊆ {u}.
Since u ∈ CaZ we know that ¬a#u.

Suppose u ∈ U . By Lemma 2.22 ¬a#{u} and so u ∈ CaU .
Suppose u ∈ CaU . Then ¬a#(U ∩ |u|a) and so U ∩ |u|a = ∅ is impossible and

U ∩ |u|a = {u}. Therefore u ∈ U .

36

The following lemma connects the permutation action with crucial elements:

Lemma 4.19. If b#Z then (b a)Z = (Z − a) ∆ (b a)CaZ.

Proof. By elementary calculations Z = (Z − a) ∆ CaZ so by Lemma 4.10

(b a)Z = (b a)(Z − a) ∆ (b a)CaZ.

By Corollary 4.15 we know a#(Z − a) and b#(Z − a). By Theorem 2.13 we know
(b a)(Z − a) = Z − a. The result follows.

It is useful to note a non-result.

Lemma 4.20. • It is not necessarily the case that Ca(X ∩ Y) = CaX ∩ CaY .

• Likewise it is not necessarily the case that Ca(X ∪ Y) = CaX ∪ CaY .

Proof. • Ca(A ∩ {a}) = {a} but CaA ∩ Ca{a} = ∅ ∩ {a} = ∅.

• Ca((A \ {a}) ∪ {a}) = ∅ but Ca(A \ {a}) = {a} and Ca({a}) = {a}.

However, we do have the following useful ‘pointwise’ property in the case that sets
are finite:

Lemma 4.21. If X is a finite set then CaX =
⋃
{x ∈ X | ¬a#x}.

Proof. Take u such that ¬a#u. Then u ∈ CaX if and only if ¬a#(|u|a ∩ X). By
Lemma 2.22 we know that ¬a#(|u|a ∩X) if and only if ¬a#x for some x ∈ X such
that ¬a#x. The result follows.

Corollary 4.22. If X is a finite set then CaX is a finite set.

Proof. By Lemma 4.21 CaX = {x ∈ X | ¬a#x}. So CaX ⊆ X and in particular
CaX is finite.

The converse to Corollary 4.22 does not hold. For example N (the natural numbers
implemented in set theory e.g. as {∅, {∅}, {∅, {∅}}, . . .}) and A satisfy CaN = CaA =
∅, but they are not finite sets.

5. A second substitution action, using crucial elements

We now define a second substitution action. By shameless abuse of notation we
shall use the same notation as we did for the first: [a7→x].

Where there is any danger of ambiguity we write the substitution action of Defini-
tion 3.14 as [a7→x]1 and the substitution action of Definition 5.1 below as [a7→x]2. All
unannotated uses of the notation [a7→x] in this section, refer to Definition 5.1 below.

The second substitution action gives the second possible answer to the quiz in Re-
mark 3.9. For example

{a}[a7→1] = {1} and a#(A ∪ N),

37

and
((A \ {a}) ∪ N)[a7→1]2 = A ∪ (N \ {1}).

Here we see that a ‘missing a’ is replaced by a ‘missing 1’. This behaviour is symmetric
between ‘missing’ and ‘not missing’;

(A \ {a})[a7→1]2 = A ∪ {1}.

Here a ‘missing a’ is replaced by a ‘missing missing 1’!
Intuitively, imagine sets as collections of binary switches describing what is and

what is not an element of the set; the second substitution action flips these switches
between ‘on’ and ‘off’. More on this in Subsection 6.1.

5.1. Definition and properties

We recall our notational conventions:

• x, y, z, u, v range over arbitrary elements.

• X,Y, Z, U, V range over elements that are not atoms (i.e. ‘sets’).

• a, b, c, a′, . . . range permutatively over atoms (so a 6= a′ and a 6= b).

• A,B,C, S, T range over sets of atoms.

Definition 5.1. Suppose x is any element. Define the substitution action [a 7→x] by:

• a[a7→x] = x.

• b[a7→x] = b.

• If Z 6∈ A then

Z[a7→x] = (Z − a) ∆
⋃
{(u[a7→x])||A(a 7→supp(x))\δ(u,a,x) |

(u,A) ∈ planesupp(x)∪{a}(CaZ)}
δ(u, a, x) = (supp(u)(a7→supp(x))) \ supp(u[a7→x]).

Lemma 5.2. Suppose that B = {b1, . . . , bn} is a finite set of atoms and suppose that
bi#x, Z for 1 ≤ i ≤ n. Then

Z[a7→x] = (Z − a) ∆
⋃
{(u[a7→x])||A(a 7→supp(u))\δ(u,a,x) |

(u,A) ∈ planesupp(x)∪{a}∪B(CaZ)}.

Proof. By the same method as the proof of Lemma 3.19.

Theorem 5.3 ((id7→)). z[a7→a] = z.

Proof. We work by ε-induction.
The base cases of z ∈ A are easy:

38

• a[a7→a] = a.

• b[a7→a] = c.

Now suppose Z 6∈ A (we adhere to our notational convention and write capital
‘Z’). Then using Lemma 5.2 we have:

Z[a7→a] = (Z − a) ∆
⋃
{(u[a7→a])||A(a7→a)\δ(u,a,a) |

(u,A) ∈ plane{a}(CaZ)}

By reasoning similar to that in Theorem 3.16 we can deduce that⋃
{(u[a7→a])||A(a7→a)\δ(u,a,a) | (u,A) ∈ plane{a}(CaZ)} = CaZ.

The result follows.

Theorem 5.4 ((α)). If b#z, a then z[a7→x] = ((b a)z)[b 7→x].

Proof. We work by ε-induction.
The base cases of z ∈ A are easy:

• a[a7→x] = x = ((b a)a)[a7→x] by definition.

• b#b is false so there is nothing to prove for the case b[a7→x].

• c[a7→x] = c = ((b a)c)[a7→x] by definition.

Now suppose Z 6∈ A (we adhere to our notational convention and write capital
‘Z’). We expand the definition of ((b a)Z)[b7→x]:

((b a)Z)[b 7→x] = ((b a)Z ∆ Cb(b a)Z) ∆
⋃
{(u′[b 7→x])||A′(b 7→x)\δ(u′,b,x) |

(u′, A′) ∈ planesupp(x)∪{b}(Cb(b a)Z)}

By Corollary 4.15 we know that

a#((b a)Z ∆ Cb(b a)Z) and b#((b a)Z ∆ Cb(b a)Z).

By Theorems 2.5 and 2.13 we deduce that

((b a)Z ∆ Cb(b a)Z) = Z − a.

So it would suffice if we show that⋃
{(u′[b 7→x])||A′(b 7→x)\δ(u′,b,x) | (u

′, A′) ∈ planesupp(x)∪{b}(Cb(b a)Z)} =⋃
{(u[a7→x])||A(a7→supp(x))\δ(u,b,x) | (u,A) ∈ planesupp(x)∪{a}(CaZ)}

The proof of this is almost identical to the proof of Theorem 3.21.

Theorem 5.5 ((#7→)). If a#z then z[a7→x] = z.

39

Proof. We work by ε-induction. We start with the base cases:

• a#a is false so there is nothing to prove for a[a7→x]. We need not check that
a[a7→x] = a, because it is not the case that a#a.

• b[a7→x] = b by definition.

Now suppose Z 6∈ A (we adhere to our notational convention and write capital
‘Z’). The result now follows easily expanding definitions, noting that CaZ = ∅ by
Corollary 4.14.

To prove Theorem 5.10 below we need a number of technical results:

Lemma 5.6. If ¬a#z and ¬c#z then Ca|z|c = |z|c.

Proof. Suppose that u ∈ Ca|z|c. We want to show that u ∈ |z|c. By construction
¬a#u and ¬a#(|u|a ∩ |z|c). By Corollary 4.6 precisely one of the following holds:

1. |u|a ∩ |z|c = ∅.
It is a fact that a#∅ so we can discount this option.

2. u = z and |u|a ∩ |z|c = {u}.
Then u ∈ |z|c.

3. u 6= z and |u|a ∩ |z|c is a singleton.
Then supp(z) \ supp(u) = {b, a} for some b#u and |z|c ∩ |u|a = {(b a)u} =
{(b c)z}. But this is not possible because a#(b a)u and also ¬a#(b c)z by
Theorem 2.14.

4. |u|a = |z|c.
This is impossible because by construction |z|c contains infinitely many v such
that ¬a#v, but |u|a contains only one; we use Theorem 2.14.

Now suppose that u ∈ |z|c. So either u = z or for some b#z it is the case that
u = (b c)z. We want to show that u ∈ Ca|z|c.

Suppose u = z. Since ¬a#z it suffices to also show that ¬a#|z|a ∩ |z|c. By
Corollary 4.6 we know that |z|a ∩ |z|c = {z} and by Lemma 2.22 we know ¬a#{z}
so we are done.

Suppose u = (b c)z for some b#z. By Theorem 2.14 we know ¬a#u so it suffices
to show that¬a#(|u|a∩|z|c). We consider the various possibilities in Corollary 4.6 and
see that it must be that |u|a ∩ |z|c = {u}. The result follows again using Lemma 2.22.

Lemma 5.7. If a#z and ¬c#z then Ca|z|c = ∅.

Proof. By Theorem 2.15 and Corollary 4.14.

Like [a7→t]1 from Definition 3.14, [a7→t]2 is pointwise on finite sets:

Lemma 5.8. If Z is a finite set then

Z[a7→x] = {z[a7→x] | z ∈ Z}.

40

Proof. Unpacking definitions,

Z[a7→x] = (Z − a) ∆
⋃
{(u[a 7→x])||A(a 7→supp(x))\δ(u,a,x) |

(u,A) ∈ planesupp(x)∪{a}(CaZ)}.

By Lemma 4.21 Z − a = {u | u ∈ Z, a#u}, and by Theorem 5.5

Z − a = {u[a7→x] | u ∈ Z, a#u}.

By reasoning similar to that in the proof of Theorem 3.26,⋃
{(u[a7→x])||A(a 7→supp(x))\δ(u,a,x) | (u,A) ∈ planesupp(x)∪{a}(CaZ)} =

{u[a7→x] | u ∈ Z, ¬a#u}.

The result follows.

Corollary 5.9. (z, z′)[a7→x] = (z[a7→x], z′[a7→x]).

Proof. By two uses of Lemma 5.8.

Theorem 5.10 ((abs 7→)). If c#x then ([c]z)[a7→x] = [c](z[a7→x]).

Proof. If a#z then by Theorem 2.15 also a#[c]z and

([c]z)[a7→x] = [c]z and [c](z[a 7→x]) = [c]z

follow by Theorem 5.5. So suppose a ∈ supp(z). We unpack definitions:

([c]z)[a7→x] = ([c]z − a) ∆
⋃
{(u[a 7→x])||A(a 7→supp(x))\δ(u,a,x) |

(u,A) ∈ planesupp(x)∪{a}(Ca([c]z))}.

By Lemma 5.6 Ca[c]z = [c]z and so ([c]z − a) = ∅ and we simplify ([c]z)[a7→x] to:⋃
{(u[a7→x])||A(a 7→supp(x))\δ(u,a,x) | (u,A) ∈ planesupp(x)∪{a}([c]z)}.

The result now follows by reasoning similar to that in the proof of Theorem 3.24.

Theorem 5.11. Definition 5.1 is equivariant and satisfies (α), (#7→), (var 7→), (id 7→),
and (abs 7→) from Subsection 3.1.

Proof. Equivariance is automatic by Theorem 2.5. (var 7→) is direct from the defi-
nition. Each of (α), (# 7→), (id 7→), and (abs 7→) is by one of the theorems proved
above.

Theorem 5.12. If z, x ∈ Λ then z[a7→x] ∈ Λ and z[a 7→x] is equal to what we would
normally call ‘capture-avoiding substitution of x for a in z’.

Proof. By an easy induction similar to the proof of Theorem 3.29.

Corollary 5.13. If a#y and x, y, z ∈ Λ then z[a7→x][b 7→y] = z[b 7→y][a7→x[b 7→y]].

Proof. By induction on z.

Like Theorem 3.29 and Corollary 3.31, Theorem 5.12 and Corollary 5.13 are generic
and work for any datatype of syntax implemented in FM set theory.

41

5.2. Scope-extrusion and hereditarily finite crucial sets

Scope-extrusion is an expression used to describe how binders can sometimes in-
crease (‘extrude’) their scope over a connective — usually up to some notion of equiv-
alence, usually subject to a freshness side-condition on free variables. Examples in-
clude behaviour displayed by π-calculus name-restriction and first-order logic univer-
sal quantification:

P | νa.Q is equivalent with νa.(P | Q) if a not free in P
φ⇒ ∀a.ψ is equivalent with ∀a.(φ⇒ ψ) if a not free in φ

[a7→x]2 satisfies a form of scope-extrusion with respect to ∆ and subject to a nominal
freshness side-conditions. With the results we have so far, the proof is easy:

Theorem 5.14. Suppose a ∈ A and Z 6∈ A and Z ′ 6∈ A.
If a#Z then

(Z ∆ Z ′)[a7→x] = Z ∆ (Z ′[a 7→x]).

Proof. Recall thatCaZ = ∅ by Corollary 4.14. We unpack definitions using Lemma 4.17,

(Z ∆ Z ′)[a7→x] = Z ∆ (Z ′ − a) ∆
⋃
{(u[a7→x])||A(a7→supp(x))\δ(u,a,x) |

(u,A) ∈ planesupp(x)∪{a}(CaZ
′)},

and this is precisely equal to Z ∆ (Z ′[a7→x]) as required.

Remark 5.15. The condition that Z 6∈ A and Z ′ 6∈ A on Theorem 5.14 excludes the
case that ∆ is undefined (see Definition 3.17). There seems no plausible way to extend
∆ to atoms so that Theorem 5.14 makes sense. The problem case is when Z 6∈ A
and Z ′ = a. If we let Z ∆ a = Z (because a is empty; it has no set elements) then
(Z ∆ a)[a7→x] = Z, which is not in general equal to Z ∆ x. If we let Z ∆ a = a (just
to see what happens) then (Z ∆ a)[a7→x] = x, which is again not in general equal to
Z ∆ x. Similarly if we let Z ∆ a = ∅.

The question itself may be misguided: Z ∆ Z ′ is the symmetric difference of Z
and Z ′ and so is all about the elements of Z and Z ′. Atoms are not determined by
their extension; they have no elements but are not equal to the empty set. Thus, ∆
(an extensional creature) applied to atoms (intensional creatures) is a mild category
(‘typing’) error. For this reason, we let ∆ be undefined in Definition 3.17 and leave the
side-conditions in Theorem 5.14.

Remark 5.16. Scope-extrusion is familiar from syntax. It is nice to see it reproduced
for ∆. Scope-extrusion for ∆ has a broader meaning. To understand why, we recall
some of the research context of this work.

Recall our second answer in the quiz in Remark 3.9, which discussed substituting
a ‘missing a’ for a ‘missing 1’.

‘Nominal techniques’ were introduced by the author with Pitts in [23], emerging
from Fraenkel-Mostowski sets. One of their distinctive features was the use of permu-
tations — bijective renamings of names (modelled in FM sets by atoms) — to handle

42

α-equivalence. A benefit of permutation is that they move around ‘missing atoms’. For
example

(b a)(A \ {a}) = A \ {b}

— the ‘missing a’ has been replaced by a ‘missing b’.7

From this we can take a lesson that a conspicuous absence of an element can be as
important as its presence.

Corollary 5.17 makes formal a sense in which scope-extrusion (Theorem 5.14)
gives the second substitution action the same kind of behaviour with respect to ‘missing
elements’.

Corollary 5.17. Suppose that V is a set such that a#V . Suppose also that P ⊆ V .8

Then (V \ P)[a7→x] = V ∆ (P [a7→x]).

Proof. We rewrite V \P as V ∆ P . The result follows by Theorems 5.14 and 5.5.

The substitution action [a7→t]2, like [a7→t]1, is not necessarily pointwise on infinite
sets:

Lemma 5.18. It is not necessarily the case that if z ∈ Z then z[a 7→x] ∈ Z[a7→x].

Proof. It suffices to provide a counterexample. a[a7→∅] = ∅ and A[a7→∅] = A by
Theorem 5.5. We note that ∅ 6∈ A[a7→∅].

Definition 5.19. Call Z finite crucial when CaZ is finite for all atoms a. As a matter
of convention call a ∈ A finite crucial as well.

We can use Theorem 5.14, along with the notion of finite crucial sets, to obtain an
elementary characterisation of the substitution action on a broad class of sets:

Theorem 5.20. If Z is finite crucial then Z[a7→x] = (Z−a) ∆ {z[a7→x] | z ∈ CaZ}.

Proof. By Theorem 5.14

Z[a7→x] = (Z − a) ∆ (CaZ)[a7→x].

We use Lemma 5.8.

Lemma 5.21. 1. If Z is finite crucial then so is CaZ.
2. If X and Y are finite crucial then so is X ∆ Y .
3. If Z is finite crucial then so is Z − a.

Proof. 1. Ca(CaZ) = CaZ by Lemma 4.18, and this is finite.
2. By Lemma 4.17 and some easy calculations on sets.
3. By the first two parts.

Definition 5.22. Define the class of hereditarily finite crucial sets inductively by:

7This particular fact enters into the axioms for substitution via (id7→) in Definition 3.1.
8Note that a#P need not necessarily hold. For example {a} ⊆ A.

43

• a ∈ A is hereditarily finite crucial.

• Z is hereditarily finite crucial if Z is finite crucial and every z ∈ Z is hereditarily
finite crucial.

The following technical properties will be useful soon:

Lemma 5.23. 1. Any finite set is finite crucial.
2. A finite set is hereditarily finite crucial if all of its elements are.
3. If X and Y are hereditarily finite crucial then so is X ∆ Y .
4. If Z is hereditarily finite crucial then so is CaZ.
5. If Z is hereditarily finite crucial then so is Z − a.

Proof. 1. By Corollary 4.22.
2. By the first part and from the inductive definition of hereditarily finite crucial.
3. Using part 2 of Lemma 5.21 and the fact that X ∆ Y ⊆ X ∪ Y .
4. Suppose Z is hereditarily finite crucial. Then by part 1 of Lemma 5.21 CaZ

is finite crucial, so it suffices to show that all its elements are hereditarily finite
crucial.
Take any z ∈ CaZ. By definition, either z ∈ Z or that there is some b#z such
that (b a)z ∈ Z. If z ∈ Z then z is hereditarily finite crucial by our assumption
that Z is hereditarily finite crucial. Otherwise (b a)z ∈ Z and so (b a)z ∈ Z is
hereditarily finite crucial. By Theorem 2.5 it follows that z is hereditarily finite
crucial.

5. The result follows by parts 3 and 4.

Corollary 5.24. If z and x are hereditarily finite crucial then z[a 7→x] is hereditarily
finite crucial.

Proof. We reason by ε-induction. First we consider the base cases:

• a[a 7→x] = x. We assumed x is hereditarily finite and the result follows.

• b[a7→x] = b. By definition b is hereditarily finite crucial and the result follows.

Now suppose Z 6∈ A. We can rewrite Z as (Z − a) ∆ CaZ. By assumption CaZ
is finite, by Corollary 4.15 also a#(Z − a). By Theorem 5.20 also

Z[a 7→x] = (Z − a) ∆ {z[a7→x] | z ∈ CaZ}.

By parts 2 and 3 of Lemma 5.23 it now suffices to show that
z[a7→x] is hereditarily finite crucial for each z ∈ CaZ. This follows by the induc-

tive hypothesis (and Theorem 2.5; we do not know that z ∈ Z but πz ∈ Z for some π
and that is enough).

Theorem 5.25. If z, x, and y are hereditarily finite crucial and if a#y, then

z[a7→x][b 7→y] = z[b 7→y][a7→x[b 7→y]].

Proof. We work by ε-induction. The base cases are easy:

44

• a[a7→x][b 7→y] = x[b 7→y] = a[b 7→y][a7→x[b 7→y]].

• b[a7→x][b7→y] = y = b[b 7→y][a7→x[b 7→y]].

• c[a7→x][b 7→y] = c = c[b 7→y][a7→x[b 7→y]].

Now suppose Z 6∈ A. We can rewrite Z using Lemma 4.17 to

Z = (Z − a) ∆ CaZ

= ((Z − a)− b) ∆ Cb(Z ∆ CaZ) ∆ CaZ

= ((Z − a)− b) ∆ CbZ ∆ CbCaZ ∆ CaZ.

By Corollary 4.15 b#(Z−a)−b and a#(Z−a)−b. Therefore by scope-extrusion
Theorem 5.14 we can write:

Z[a 7→x][b 7→y] = ((Z − a)− b) ∆ {z[a7→x][b 7→y] | z ∈ CbZ ∆ CbCaZ ∆ CaZ}.

It is a fact of the definitions that for each z ∈ CbZ ∆ CbCaZ ∆ CaZ there is some
permutation π such that πz ∈ Z. We use Theorem 2.5 and the inductive hypothesis:

Z[a7→x][b7→y] = ((Z−a)−b) ∆ {z[b7→y][a7→x[b 7→y]] | z ∈ CbZ ∆ CbCaZ ∆ CaZ}.

We now reverse our previous reasoning to obtain the result.

Hereditarily finite crucial sets z generalise syntax trees. They need not be finite,
but for each atom they do have only finitely many elements ‘responsible’ for that atom
being in supp(z).

6. Summary, related work, and conclusions

Our substitution actions were discovered in a set theory known for the better part of
a century [7, 40]. The substitution arises spontaneously; there is nothing in the axioms
of FM set theory to suggest that a substitution action should be possible. Even after the
author and Pitts re-discovered Fraenkel-Mostowski set theory and applied it to syntax-
with-binding [23], the substitution action remained hidden. This is good; it suggests
that we have not built into our model the behaviour we want. ‘Substitution’ arises as
a mathematical operation derived naturally from the basic foundational assumptions
determined by the axioms of Fraenkel-Mostowski set theory. This is an interesting
contribution for set theory, computer science, and their intersection.

We see three broad avenues for future work: to look at how substitution interacts
with ‘objects of behaviour’, by this we mean sets representing for example traces of
actions in process calculi; with graphs of functions represented as sets; and with equiv-
alence classes of syntax quotiented for example by αβ-equivalence. We did consider
this in a little more detail at the end of Subsection 6.1. Preliminary investigations,
not written up in this paper, suggest that the techniques presented in this paper can
be applied in all three cases above, modulo some technical adaptations to the specific
domain. This paper provides the technical basis for investigating these, and we hope
other applications, in future work.

45

6.1. Summary of the two substitution actions
In Subsection 1.1 we sketched the design issues involved in defining a substitution

action on a sets universe. [a7→x]1 and [a7→x]2 both do the following to Z: they decom-
pose Z into component planes, calculate substitution component-wise, and combine
the results.

There may even be other notions of decomposition other than the planes used in this
paper, but what is certain is that not every decomposition is suitable. For example A =
{a}∪ (A \ {a}) but we do not want to base a substitution action on this decomposition
since a#A but ¬a#{a} and ¬a#(A \ {a}).

Care goes into the design of the expression A(a7→supp(x)) \ δ(u, a, x) in Defini-
tion 3.14. This ‘intelligently adjusts ||-orbits’ for changes in support caused by substitu-
tion on representatives — part of the mechanism of getting generalised α-equivalence
classes right — and it describes the interaction of substitution with planes. Other
choices may also be possible here.

The design of [a7→x]2 introduces CaZ, the a-crucial elements of Z. In a certain
sense this only substitutes on those elements ‘responsible’ for ¬a#Z (if any). It is
more complex but has somewhat better properties; notably it satisfies scope-extrusion
Theorem 5.14, treats ‘missing elements’ and set-subtraction in an elegant way (Corol-
lary 5.17), and interacts well with hereditarily finite crucial sets (Theorem 5.25).

On ‘easy sets’ the two substitution actions that we have defined coincide (Theo-
rems 3.29 and 5.12). The important differences are in the treatment of ‘missing ele-
ments’. For example (recall that Ca(A \ {a}) = {a}):

(A \ {a})[a7→∅]1 = A
(A \ {a})[a7→∅]2 = A ∪ {∅}

(A \ {a})[a7→(a, a)]1 = A
(A \ {a})[a7→(a, a)]2 = A ∪ {(a, a)}

On (sets modelling) syntax the behaviour is as we expect:

(a, ∅)[a7→∅]1 = (∅, ∅)
(a, ∅)[a7→∅]2 = (∅, ∅)

(a, b)[a7→b]1 = (b, b)
(a, b)[a7→b]2 = (b, b)

Behaviour may become counterintuitive, if we base our intuitions only on the behaviour
for syntax and then extend these intuitions to the universe of sets:

((A\{a})∪{∅})[a7→∅]1 = A∪{∅}
((A\{a})∪{∅})[a7→∅]2 = A

((A\{a})∪{(a, a)})[a7→(a, a)]1 = A∪{(a, a)}
((A\{a})∪{(a, a)})[a7→(a, a)]2 = A

{a, ∅}[a7→∅]1 = {∅}
{a, ∅}[a7→∅]2 = ∅

{a, b}[a7→b]1 = {b}
{a, b}[a7→b]2 = ∅

We conclude by asking: what other technical demands can we make of a substitu-
tion action?

• What sets have most general unifiers (what is the theory of ‘set unification’)?

• What is the computational content of an element z considered as the function x
maps to z[a7→x]?

• Can we provide a denotational semantics for first-order rewriting [39]?

46

• Can we model the λ-calculus [4], the π-calculus [34] and its related name-
passing calculi, or first-order predicate logic [27], using a substitution action
to directly model substitution?

• It may be possible to model first-order logic by mapping sentences P, Q . . ., open
or closed, to subsets of an FM set U representing the universe of discourse;
variables x, y . . . of a first-order language map to the set A of atoms; if a first-
order sentence P is assigned the set y ⊆ U as its semantic denotation, then the
sentence ∀xP has as its denotation the set

⋂
u{y[a 7→u] | u ∈ U}.

This is more than just a translation of the syntactic substitution-for-all-terms op-
eration into another language, for [a7→u] represents an operation directly on the
sets universe which can be constructed from the axioms of FM sets.

6.2. Related work
The axioms for substitution in this paper are taken from [22]. This paper continues

that work by showing how the Fraenkel-Mostowski sets universe can be made a model
of those axioms; in some sense which it may be possible to make formal in future work,
it is a largest possible model.

Higher-order logic uses substitution to reflect function application in syntax [42].
Substitution does not exist in denotation, and neither do variables.

Calculi of explicit substitutions analyse the structure of carrying out a substitution,
but to our knowledge they are purely operational systems without denotation [32].

Aczel’s ‘generalised set theory’ [2] and ‘universes with parameters’ [3] model vari-
able symbols (Aczel calls them parameters) as atoms in a ZFA-like set theory. How-
ever, Aczel imposes all the structure he needs as specific axioms on names. What
Aczel does with his sets is also very different; it concerns coinductive structures and
non-wellfounded set theory [1] as a semantics for behaviour. Aczel’s substitution ac-
tion is such that Z[a 7→x] = {z′[a7→x] | z′ ∈ Z} always, like the pointwise substitution
action [a7→x]n from Definition 3.3.

CIAO Prolog [25, Extra-logical predicates] and a-logic [18] include a predicate
var(x) which is true of x when x is a variable symbol. It is used to implement shallow
embeddings of programming languages — for more details see [25]. The functional
programming language CURRY [26] has similar constructs. The designers of these
languages struggle to bring current denotational methods to bear on these constructs,
because they put variables in the denotation, just as we have done. Making a connection
with our work is current research.

Fine [12] has undertaken a philosophical axiomatic investigation of dependency
between objects. For example, z and 2 ∗ z are ‘arbitrary numbers’ but they are also
connected. A formal connection might be established with our constructions if we take
substitution to give a notion of ‘correlation’ between sets; for example if z[a7→x] = z′,
or z[a 7→x] = z′[a7→x], then z and z′ are ‘correlated’.

Nominal terms [41] come equipped with a substitution action, but this is for context
variables and is not capture-avoiding. It should not be confused with the capture-
avoiding substitution action for atoms of this paper.

Other axioms for substitution exist; for example in work by Salibra [37], by Beeson
[5], by Crabbé [10], and by Feldmann [11]. The axioms of Crabbé and Feldmann are

47

not of capture-avoiding substitution; the axioms of Salibra and Beeson are. Salibra is
interested in models but his models are abstract (he does universal algebra). Beeson is
interested in theorem-proving. The axioms of Salibra and Beeson for substitution are
embedded in larger theories of Turing-complete computation based on the λ-calculus,
which gives their treatment a very different flavour from ours. Feldman’s axioms are
based on a concrete model using environments (functions mapping variables to de-
notational objects) which is very different from our model which is based on a set
theory (a far larger construction) and in which variables inhabit the denotation. Fiore,
Plotkin, and Turi consider substitution in [14]. The models they build use presheaf cat-
egories not dissimilar to the category of nominal sets from [23] (there, we called them
‘FM-sets’). Modulo inessential differences, the ‘definition of substitution by structural
recursion’ on pages 6 to 7 of that paper corresponds with the substitution by structural
recursion in [24], while the treatment of ‘substitution algebras’ on page 7 corresponds
with our axiomatisation in nominal algebra of capture-avoiding substitution [22].9

Schmidt-Schauß and Siekmann introduce unification algebra [38] and Williams in-
troduces instantiation theory [43]. The idea is to free the theory of unification from
(the shackles of) syntax. An axiomatic approach is taken to substitution. The work is
‘bespoke’ in the sense that the specification of the model includes a specification of
the object of study; substitution, instantiation, and unification. In this paper we do not
consider unification but we do extract substitution from an independent structure (the
axioms of set theory).

6.3. The rôle of Fraenkel-Mostowski sets

We will conclude with some words on our use of Fraenkel-Mostowski sets.
The substitution actions we build in Definitions 3.14 and 5.1 rely on having a col-

lection Z whose elements have a substitution action; in that case, we can define sub-
stitution actions on Z as well. So we can read our substitution actions informally as
follows:

Given a collection of elements with a substitution action, the collection of
finitely supported subsets of that collection (the ‘finitely supported power-
set’) also has a substitution action — and in at least two different ways!

So this is not quite about Fraenkel-Mostowski set theory; it is about sets with a sub-
stitution action, their finitely supported powersets, and ways to extend the substitution
action from the base set to its set of finitely supported powersets.

The cumulative hierarchy model is built from the set of atoms, taking finitely sup-
ported powersets transfinitely (Remark 2.12). Thus, defining our substitution action on
a cumulative hierarchy model lets us get on with studying a substitution action, without
having first to express a theory of ‘sets with a substitution action’.

9From the point of view of [14, 22] the existence of multiple substitution actions on a model of Fraenkel-
Mostowski sets, as exhibited in this paper, corresponds with the observation that the underlying set of a
substitution algebra as specified in [14], or of a substitution set as specified in [22], may support two or more
distinct substitution actions.

48

This is convenient, but there is more to our design choice than convenience. It is
an empirical observation that most interesting mathematical structures — probably, all
the ones we normally consider — can be modelled by taking powersets and using sets
comprehension to whittle down the resulting structures to something representing what
we want. Powersets are a foundation for mathematics.

Our substitution actions act on every mathematical structure that we can model
using powersets. This concrete model is not universal in a categorical sense; it is
universal in the sense that it operates on mathematical universes and everything that
can be built within them. That is something new and unexpected.

We illustrate this with a possible application. Our substitution actions make the
atoms-concretion function from [23] into a total function by substituting for the ab-
stracted atom; [a]z concreted at x is z[a 7→x].10 This happens automatically, because
the Gabbay-Pitts atoms-abstraction can be modelled using powersets.

References

[1] Peter Aczel. Non-wellfounded Set Theory. Number 14 in CSLI lecture notes.
CSLI, 1988.

[2] Peter Aczel. Generalised set theory. CSLI lecture notes, 1(58):1–17, 1996.

[3] Peter Aczel and Rachel Lunnon. Universes and parameters. CSLI lecture notes,
2:3–24, 1991.

[4] H. P. Barendregt. The Lambda Calculus: its Syntax and Semantics (revised ed.).
North-Holland, 1984.

[5] Michael Beeson. Lambda logic. In Second International Joint Conference on
Automated Reasoning (IJCAR 2004), volume 3097 of Lecture Notes in Computer
Science, pages 460–474. Springer, 2004.

[6] Nick Benton and Benjamin Leperchey. Relational reasoning in a nominal seman-
tics for storage. In Proc. of the 7th Int’l Conf. on Typed Lambda Calculi and
Applications (TLCA), volume 3461 of Lecture Notes in Computer Science, pages
86–101, 2005.

[7] Norbert Brunner. 75 years of independence proofs by Fraenkel-Mostowski per-
mutation models. Mathematica Japonica, 43:177–199, 1996.

[8] James Cheney and Christian Urban. Alpha-prolog: A logic programming lan-
guage with names, binding and alpha-equivalence. In Bart Demoen and Vladimir
Lifschitz, editors, Proc. of the 20th Int’l Conf. on Logic Programming (ICLP
2004), number 3132 in Lecture Notes in Computer Science, pages 269–283.
Springer, 2004.

10Thanks to Andrew Pitts for this observation.

49

[9] D. Clarke, R. Hinze, J. Jeuring, A. oh, and J. de Wit. The generic haskell user’s
guide. Technical Report UU-CS-2001-26, November 2001.

[10] M. Crabbé. On the notion of substitution. Logic Journal of the IGPL, 12 n.2:111–
124, 2004.

[11] Norman Feldman. Axiomatization of polynomial substitution algebras. Journal
of Symbolic Logic, 47(3):481–492, 1982.

[12] Kit Fine. Reasoning with Arbitrary Objects. Blackwell, 1985.

[13] Marcelo Fiore and Daniele Turi. Semantics of name and value passing. In Proc.
16th LICS Conf., pages 93–104. IEEE, Computer Society Press, 2001.

[14] Marcelo P. Fiore, Gordon D. Plotkin, and Daniele Turi. Abstract syntax and
variable binding. In LICS ’99: 14th Annual Symposium on Logic in Computer
Science, pages 193–202. IEEE, 1999.

[15] Murdoch J. Gabbay. A Theory of Inductive Definitions with alpha-Equivalence.
PhD thesis, Cambridge, UK, 2000.

[16] Murdoch J. Gabbay. The pi-calculus in FM. In Fairouz Kamareddine, editor,
Thirty-five years of Automath, volume 28 of Kluwer applied logic series, pages
247–269. Kluwer, November 2003.

[17] Murdoch J. Gabbay. A General Mathematics of Names. Information and Com-
putation, 205(7):982–1011, July 2007.

[18] Murdoch J. Gabbay and Michael J. Gabbay. a-logic. In We Will Show Them:
Essays in Honour of Dov Gabbay, volume 1. College Publications, 2005.

[19] Murdoch J. Gabbay and Martin Hofmann. Nominal renaming sets. In LPAR’08,
2008.

[20] Murdoch J. Gabbay and Aad Mathijssen. Capture-avoiding Substitution as a
Nominal Algebra. In ICTAC 2006: Theoretical Aspects of Computing, volume
4281 of Lecture Notes in Computer Science, pages 198–212, 2006.

[21] Murdoch J. Gabbay and Aad Mathijssen. One-and-a-halfth-order logic. In PPDP
’06: Proc. of the 8th ACM SIGPLAN symposium on Principles and Practice of
Declarative Programming, pages 189–200. ACM, 2006.

[22] Murdoch J. Gabbay and Aad Mathijssen. Capture-Avoiding Substitution as a
Nominal Algebra. Formal Aspects of Computing, 20(4-5):451–479, January
2008.

[23] Murdoch J. Gabbay and A. M. Pitts. A New Approach to Abstract Syntax with
Variable Binding (journal version). Formal Aspects of Computing, 13(3–5):341–
363, 2001.

50

http://www.gabbay.org.uk/papers.html#thesis
http://www.gabbay.org.uk/papers.html#picfm
http://www.gabbay.org.uk/papers.html#genmn
http://www.gabbay.org.uk/papers.html#alog
http://www.gabbay.org.uk/papers.html#nomrs
http://www.gabbay.org.uk/papers.html#capasn
http://www.gabbay.org.uk/papers.html#capasn
http://www.gabbay.org.uk/papers.html#oneaah
http://www.gabbay.org.uk/papers.html#capasn-jv
http://www.gabbay.org.uk/papers.html#capasn-jv
http://www.gabbay.org.uk/papers.html#newaas-jv
http://www.gabbay.org.uk/papers.html#newaas-jv

[24] Murdoch J. Gabbay and Andrew M. Pitts. A New Approach to Abstract Syntax
Involving Binders. In 14th Annual Symposium on Logic in Computer Science,
pages 214–224. IEEE Computer Society Press, 1999.

[25] CLIP group. CIAO Prolog documentation project.
http://www.ciaohome.org.

[26] Michael Hanus, Sergio Antoy, Herbert Kuchen, Francisco J. López-Fraguas,
Wolfgang Lux, Juan José Moreno-Navarro, and Frank Steiner. Curry: An in-
tegrated functional logic language. 2003.

[27] Wilfrid Hodges. Elementary predicate logic. In D.M. Gabbay and F. Guenthner,
editors, Handbook of Philosophical Logic, 2nd Edition, volume 1, pages 1–131.
Kluwer, 2001.

[28] Martin Hofmann. Semantical analysis of higher-order abstract syntax. In 14th
Annual Symposium on Logic in Computer Science, pages 204–213. IEEE, 1999.

[29] Thomas Jech. Set theory. In Edward N. Zalta, editor, The Stanford Encyclopedia
of Philosophy. Fall 2002.

[30] P. T. Johnstone. Notes on logic and set theory. Cambridge University Press, 1987.

[31] Ralf Lämmel and Simon Peyton Jones. Scrap your boilerplate: a practical design
pattern for generic programming. In TLDI, pages 26–37. ACM, 2003.

[32] Pierre Lescanne. From lambda-sigma to lambda-upsilon: a journey through cal-
culi of explicit substitutions. In POPL, pages 60–69. ACM, 1994.

[33] S. Lusin and A. Salibra. The lattice of lambda theories. Journal of Logic and
Computation, 14 n.3:373–394, 2004.

[34] Robin Milner, Joachim Parrow, and David Walker. A calculus of mobile pro-
cesses, II. Information and Computation, 100(1):41–77, 1992.

[35] A. M. Pitts. Nominal logic, a first order theory of names and binding. Information
and Computation, 186(2):165–193, 2003.

[36] A. M. Pitts and Murdoch J. Gabbay. A metalanguage for programming with
bound names modulo renaming. In MPC2000, volume 1837 of Lecture Notes in
Computer Science, pages 230–255. Springer, 2000.

[37] Antonino Salibra. On the algebraic models of lambda calculus. Theoretical Com-
puter Science, 249(1):197–240, 2000.

[38] Manfred Schmidt-Schauß and Jörg Siekmann. Unification algebras: An ax-
iomatic approach to unification, equation solving and constraint solving. Tech-
nical Report SEKI-report SR-88-09, FB Informatik, Universität Kaiserslautern,
1988.

51

http://www.gabbay.org.uk/papers.html#newaas
http://www.gabbay.org.uk/papers.html#newaas

[39] Terese. Term Rewriting Systems. Number 55 in Cambridge Tracts in Theoretical
Computer Science. Cambridge University Press, 2003.

[40] J. Truss. Permutations and the axiom of choice. In H.D.Macpherson R.Kaye,
editor, Automorphisms of first order structures, pages 131–152. OUP, 1994.

[41] Christian Urban, Andrew M. Pitts, and Murdoch J. Gabbay. Nominal Unification.
Theoretical Computer Science, 323(1–3):473–497, 2004.

[42] Johan van Benthem. Higher-order logic. In Handbook of Philosophical Logic,
2nd Edition, volume 1, pages 189–244. Kluwer, 2001.

[43] James Williams. Instantiation theory. Technical Report M-90-04, The Mitre
Corporation, 1990.

52

http://www.gabbay.org.uk/papers.html#nomu-jv

	Introduction
	Design issues

	Fraenkel-Mostowski set theory
	Axioms, permutations, equivariance
	Support
	Orbits under the permutation action
	-abstraction

	The substitution action
	Axioms, pointwise substitution action, syntactic substitution action
	A short quiz
	The planes of a set
	Construction of the first substitution action
	Substitutions on syntax, substitutions commuting

	New properties of FM: a-orbits and crucial elements
	a-orbits
	Crucial elements
	Operations on sets of crucial elements

	A second substitution action, using crucial elements
	Definition and properties
	Scope-extrusion and hereditarily finite crucial sets

	Summary, related work, and conclusions
	Summary of the two substitution actions
	Related work
	The rôle of Fraenkel-Mostowski sets

