
Substitution for Fraenkel-Mostowski foundations
Murdoch J. Gabbay1 and Michael J. Gabbay2

Abstract. A fundamental and unanalysed logical concept is substi-
tution. This seemingly innocuous operation — substituting a variable
for a term or valuating a variable to an element of a domain — is
hard to characterise other than by concrete constructions. It is widely
viewed as a technicality to be dispensed with on the way to study-
ing other things. Discussions of computer science foundations, and
of the philosophy of logic, have largely ignored it.

We show that Fraenkel-Mostowski set theory gives a model of
variables and substitution as constructions on sets. Thus models of
variables and substitution are exhibited as constructions in a foun-
dational universe, just like models of arithmetic (the ordinals) and
other mathematical entities. The door is open for classes of denota-
tions in which variables, substitution, and evaluations are constructed
directly in sets and studied independently of syntax, in ways which
would previously have not been possible.

1 Introduction

Computer science evolved out of the study of logic and the founda-
tions of mathematics of the late 19th and early 20th centuries. Part
of the motivation for that study was to devise a framework to explain
mathematical knowledge, as can clearly by seen in the work of Got-
tlob Frege [10, 11]. Frege’s development of predicate calculus was,
amongst other things, intended to explain the content of statements
about ‘an arbitrary number’ without positing some special entity that
is an arbitrary-number. In terms of the modern predicate calculus,
the solution was that a statement about an arbitrary number has the
form of an open or universally quantified sentence. So: the content of
A(x) or ∀x.A(x) is given by the contents of A(x)[x/t] for all t that
denote elements of a certain domain.

This approach leaves unexplained the phenomenon of the substi-
tution of x for a term. Substitution is not trivial: substitutions may
occur within other substitutions and when a substitution is carried
out, variables must be renamed to ensure that no unwanted bindings
result. Therefore the explanation of knowledge of generic mathemat-
ical statements in terms of substitutions just changes the issue to the
explanation of knowledge about substitution. We might ask again
what exactly we know when we know that A(x)[x/t] for any t.

In fact, attempts to formalise the theory of substitution show that
the ‘explanation’ in terms of substitutions just makes matters worse.
The complexity of the knowledge needing an explanation has in-
creased, if the content of A(x) has been given in terms of the
more complex A(x)[x/t]. “What is the content of the arbitrary t in
A(x)[x/t]?” we may ask — an answer in terms of the even more
complex A(x)[x/y][y/t] is of no help.

1 http://www.gabbay.org.uk
2 michael.gabbay(at)kcl.ac.uk, Michael Gabbay gratefully ac-

knowledges the support of the British Academy under grant PDF/2006/509.

We find no relief in replacing talk of substitution with talk of val-
uations: this merely translates the problem into a different language;
the content of ∀x.A(x) is given in terms of valuations A(x)〈x7→d〉
for all d — but what is a valuation, and what do we know when we
know the generic statement that, say A(x)〈x7→d〉 = > for all valua-
tions on x?

This problem is not confined to the philosophical question of the
content of an open or universally quantified statement. All formal
languages used to express functions and computations, and reasoning
about functions and computations, refer to substitution of variables
for terms or to the resolution of a variable to a value. An account of
the content of substitution and valuation would therefore shed light
on functions and computation.

But are we misguided, or asking for too much, when we ask for
an explanation of substitution? After all, the syntax of a formal lan-
guage is impossible to formulate without using schematic variables
and substitution. Research into computer science cannot get off the
ground without, at least, some recourse to formal syntax. This sug-
gests that we must be satisfied to take substitution as an unanalysable
primitive — we must either take substitution as a purely formal syn-
tactic manipulation, or accept that the only possible explanation of
substitution on the syntax of one formal language must be in terms of
substitution in another ‘meta’ formal language (the so-called Higher-
Order Abstract Syntax approach [19]). In either case, we must give
up on trying to provide a foundational theory to account for substitu-
tion independently of formal syntax.

In this paper we shall show that, on the contrary, there is an inde-
pendent foundation that can interpret the action of substitution and
valuation. This foundation is called Fraenkel-Mostowski set theory.3

Fraenkel-Mostowski set theory [6, 22] (FM set theory) was origi-
nally developed to prove the independence of the axiom of Choice
from the other axioms of Zermelo-Fraenkel set theory. It was re-
discovered and used by the first author and Pitts to model abstract
syntax with binding [16]. An advantage of modelling syntax in a
model of FM set theory is that datatypes of syntax quotiented by α-
equivalence can be modelled inductively (rather than as quotients by
α-equivalence of syntax-without-binding). This is because FM set

3 We know of no set-theoretic foundational account of substitution in the
literature, besides this paper. However, there have been many attempts to
axiomatise the properties that such an account should have.

Fine [9] has axiomatised ‘arbitrary objects’, especially investigation of de-
pendency between arbitrary objects; the intuition is that both x and 2 ∗ x
are arbitrary objects, but they are correlated. It remains to be seen whether a
model of FM set theory can be considered as a model of Fine’s axioms.
Aczel’s ‘generalised set theory’ [3] and ‘universes with parameters’ [4] model
variable symbols (Aczel calls them parameters) as atoms in a ZFA-like
set theory. The resemblance ends there; Aczel imposes all the structure he
needs as explicit axioms on names, and the substitution action is not capture-
avoiding, which is one of the most difficult technical aspects of the work in
this paper. The application is also quite different; Aczel investigates coin-
ductive structures and non-wellfounded set theory [2] as a semantics for be-
haviour.

http://www.gabbay.org.uk

theory delivers a model of variable symbols and α-abstraction [16]
— these feature in this paper as atoms (Subsection 2) and atoms-
abstraction (Subsection 2.4).

Unlike HOAS [19] there is no problem with ‘exotic terms’; also
more functions, such as α-inequality, may be expressed; finally, and
there is no need in FM for levels of carefully-constrained meta-
language. Unlike de Bruijn indexes [8] the reasoning and program-
ming principles of syntax-with-binding in FM are natural and cor-
respond very closely to informal practice. Seven years of research,
culminating in an implementation of these ideas in Isabelle [23] have
demonstrated the practical potential of this technique.

What makes this all take off is that the model of variable sym-
bols and α-abstraction provided by FM set theory is applicable to
all sets, including those modelling functions, predicates, domains,
games, and so on. They can be applied to denotations other than sets
modelling syntax. Since the introduction of these ideas [16] there
now exist programming languages [21, 7], logics [20, 14], models of
storage [5], and semantics of references using game theory [1] — re-
search continues and the work all uses the model of variable symbols
and α-abstraction which emerges from FM set theory.

However we usually are interested in variable symbols and α-
abstraction because we want a capture-avoiding substitution action.
In this paper we demonstrate that the variable symbols in models of
FM set theory admit a substitution action defined as an operation be-
tween arbitrary sets. We also show that this substitution action avoids
capture with α-abstraction. In short, any model of FM set theory is
also a model of something that looks like ‘substitution’ in formal
syntax, but which is valid for all sets.

We envisage denotations using FM set theory in which variables
and open terms are explained directly as sets — without needing val-
uations — and substitution in syntax is explained directly as substi-
tution on sets.

2 Fraenkel-Mostowski set theory

2.1 Axioms, permutations, equivariance

The language of FM set theory is first-order logic with binary pred-
icates = (set equality) and ∈ (set membership) — like the language
of ZF set theory — and one constant symbol A for ‘the set of atoms’.

Definition 1. The axioms of FM set theory are given in Figure 1.

In Figure 1 we use standard definitional extensions of the language
of sets. Pfin(A) is the finite powerset of A (the set of finite subsets of
A). ‘S supports x’ is described in Definition 4. The standard cumu-
lative hierarchy model of these axioms is described in Remark 8.

We will use some notational conventions in the rest of this paper:

• An atom is a set member of A (the set of atoms).
• The permutative convention: a, b, c, . . . range over distinct atoms

unless stated otherwise.
• A, B, C, S, T range over sets of atoms. For example A ⊆ A.
• X, Y, Z, U, V range over elements that are not atoms and may

be empty. For example X might equal ∅ or {a, ∅}, but X cannot
equal a.

• x, y, z, u, v range over arbitrary elements.

Remark 2. An atom a ∈ A is ‘empty’ (∀x.x 6∈ a) but not equal to ∅.
(Extensionality) is weakened so that an empty element is equal
to ∅, or is an atom.

Note that (AtmInf) insists that there are infinitely many atoms.

2.2 Atoms, equivariance and support
Write (a b) for the swapping function from atoms to atoms:

(a b)(a) = b (a b)(b) = a (a b)(c) = c.

By our permutative convention, a, b, and c are distinct.
Let π range over functions generated by composing finitely many

swappings, call these functions permutations. Write ◦ for functional
composition and π-1 for the inverse of π, which is also a permutation.
The action of permutations extends to all sets by ε-induction [18]:

πX = {πx | x ∈ X}.

Let φ(x1, . . . , xn) range over predicates in the language of FM
set theory that mention variables in x1, . . . , xn. An n-rary func-
tion F (x1, . . . , xn) can be expressed by an n+1-ary predicate
φF (x1, . . . , xn, z) such that for each x1,. . . , xn there is a unique z
making φF true. Then equivariance is the following two properties:

Theorem 3. φ(x1, . . . , xn) ⇔ φ(πx1, . . . , πxn), and
π(F (x1, . . . , xn)) = F (πx1, . . . , πxn)
always hold.

Proof. The first part is by an easy induction on the syntax of φ. We
consider just one case: x ∈ y implies πx ∈ πy follows directly from
the fact that πy = {πy′ | y′ ∈ y}. The reverse implication uses π-1.

The second part follows using the standard encoding of an n-ary
function as an n+1-ary predicate.

Equivariance (Theorem 3) holds because atoms have no internal
set structure. It is a useful source of one-line proofs [14, 12]; we
shall exploit that in this paper. Equivariance is also a sense in which
atoms are ‘abstract’: if we pick some sets, containing some specific
atoms, and prove a property of them, then that property is as true of
the sets with the atoms permuted; the identity of atoms only matters
up to permutations.

2.3 Support
Definition 4. If S ⊆ A write fix(S) = {π | ∀a ∈ A.π(a) = a}.
Say that S ⊆ A supports x when ∀π ∈ fix(A).πx = x.
Define supp(x) the support of x by:

supp(x) =
\
{S | S is finite, S supports x}.

supp(x) always exists in FM set theory because (Fresh) insists
that a finite S supporting x exists. Write a#x when a 6∈ supp(x).
Read this ‘a is fresh for x’. We may write a#t1, t2 for ‘a#t1 and
a#t2’, and so on.

Remark 5. For example:

• supp(∅) = ∅. π∅ = ∅ for all π ∈ fix(∅).
• supp(A) = ∅.

π{a, b, c, . . .} = {π(a), π(b), π(c), . . .} = {a, b, c, d, . . .} for
all π ∈ fix(∅).

• supp(a) = {a}. π(a) = a for all π ∈ fix({a}).
• supp({a}) = {a}. π({a}) = {a} for all π ∈ fix({a}).
• supp(A \ {a}) = {a}.

π{b, c, d, . . .} = {π(b), π(c), π(d), . . .} = {b, c, d, . . .} for all
π ∈ fix({a}).

• supp({a, b}) = {a, b}. π{a, b}={a, b} for all π∈fix({a, b}).

(Sets) ∀x.(∃y.y ∈ x) ⇒ x 6∈ A (Extensionality) ∀x.x 6∈ A ⇒ x = {z | z ∈ x}
(Comprehension) ∀x.∃y.y 6∈ A ∧ y = {z ∈ x | φ(z)} (y not free in φ) (ε-Induction)

`
∀x.(∀y ∈ x.φ(y)) ⇒ φ(x)

´
⇒ ∀x.φ(x)

(Replacement) ∀x.∃z.z 6∈ A ∧ z = {F (y) | y ∈ x} (Pairset) ∀x, y.∃z.z = {x, y}
(Union) ∀x.∃z.z 6∈ A ∧ z = {y | ∃y′.(y ∈ y′ ∧ y′ ∈ x)} (Powerset) ∀x.∃z.z = {y | y ⊆ x}

(Infinity) ∃x.∅ ∈ x ∧ ∀y.y ∈ x ⇒ y ∪ {y} ∈ x (AtmInf) A 6∈ Pfin(A) (Fresh) ∀x.∃S ∈ Pfin(A).S supports x

Figure 1. Axioms of FM set theory

• supp(A \ {a, b}) = {a, b}.
π{c, d, e, . . .} = {π(c), π(d), π(e), . . .} = {c, d, e, . . .} for all
π ∈ fix({a, b}).

• supp({a, {a}, {c}, {d}, . . .}) = {a, b}.

π({a,{a},{c},{d}, . . .}) ={π(a),{π(a)},{π(c)},{π(d)}, . . .})
={a,{a},{c},{d}, . . .}

provided that π ∈ fix({a, b}).

Remark 6. Ideas from syntax match ideas from FM sets as follows:
variable symbols matches atoms and free variables matches support.
Of course, it is possible to take the complement of a set, but not pos-
sible to take the complement of a syntax tree. It is therefore important
to understand that sets are more general than syntax, and in particu-
lar that a 6∈ X and a#X are not the same thing. supp(x) measures
how ‘conspicuous’ a is in x, either by its set-membership or lack of
set membership. For example:

a ∈ A and a#A a 6∈ ∅ and a#∅ a 6∈ a and a∈supp(a)

a ∈ {a} and a∈supp({a}) a 6∈ A\{a} and a∈supp(A\{a})

Remark 7. Not every collection has finite support. {a, c, e, g, . . .}
(the set of ‘every other atom’) is not finitely supported, and
is excluded from the cumulative hierarchy model of Remark 8
below. There is no finite S ⊆ A such that if π ∈ fix(S) then
π{a, c, e, g, . . .} = {a, c, e, g, . . .}.

Remark 8. FM is a theory in first-order logic. As is often the case,
we have a clear intuition in mind for a standard model; the cumulative
hierarchy model is the collection U defined as follows:

U0 = A
Ui+1 = Ui ∪ {X ⊆ Ui | X has a finite supporting set}

ThenU =
S

i Ui. The reader can imagine all our constructions taking
place in this model and no harm will come of it.

Theorem 9. If S and T support x and are finite, then so does S∩T .
As a corollary, supp(x) is the unique smallest set supporting x.

Proof. The corollary follows by calculations and by (Fresh).
Suppose κ fixes S ∩ T pointwise. We must show κx = x.
Write K for {a | κ(a) 6= a}. Choose an injection ι of T \ S into

A \ (S ∪ T ∪K) (we can say ‘ι freshens T \ S’). Let π(a) = ι(a)
and π(ι(a)) = a for a ∈ T \ S, and π(a) = a otherwise. Note
that π ◦ π = Id, so π = π-1. π fixes S pointwise so πx = x. Also
π ◦ κ ◦ π fixes T pointwise so (π ◦ κ ◦ π)x = x. We apply π to both
sides and simplify and conclude that κx = x as required.

Theorem 9 says πx depends only on the values of π on atoms in
supp(x). Support goes back to Fraenkel and Mostowski [17, Chapter
4]; applications in computer science followed later [16, 12].

Theorem 10. S supports x if and only if πS supports πx. As a
corollary, πsupp(x) = supp(πx).

Proof. From Theorem 3.

A calculation cannot ‘create support’ not in its inputs:

Theorem 11. supp(F (x1, . . . , xn)) ⊆ supp(x1)∪· · ·∪supp(xn).

Proof. If π ∈ fix(
S

supp(xi)) then π ∈
T

fix(xi). By Theorem 3
πF (x1, . . . , xn) = F (πx1, . . . , πxn). The result follows.

2.4 α-abstraction in models of FM set theory
Substitution is interesting and hard to characterise because of its in-
teraction with α-equivalence, itself deceptively complex. For exam-
ple, we distinguish x and y in Px and Py but not in ∀x.Px and
∀y.Py. We now show how to α-abstract an atom a in a set x. With
sets, it is standard to abstract by taking an equivalence class. For ex-
ample the concept ‘even number’ can be modelled as the collection of
even numbers. Intuitively Definition 12 defines an equivalence class
resulting from renaming atoms not in A, and thus α-abstracts over
atoms in supp(x)\A. This is then exploited in Definition 16.

Definition 12. Suppose A ⊆ A. Write

u||A for {πu | π ∈ fix(A)}.

(Recall that fix(A) = {π | ∀a ∈ A.π(a) = a}.) For example:

{a}||∅ = {a, b, c, d, e, f, . . .} {a}||{a} = {a}

{b}||{a} = {b, c, d, e, f, . . .}

{a, b}||{a,c} = {{a, b}, {a, d}, {a, e}, {a, f}, . . .}

Since fix(A) is a group we have:

Lemma 13. If π ∈ fix(A) then u||A = (πu)||A.

In words: u||A is an equivalence class of sets which are equal ‘up
to renaming atoms not in A’.

Theorem 14. Suppose A is a finite set of atoms. Then:

• If supp(u) ⊆ A then supp(u||A) = supp(u).
• supp(u||A) ⊆ A always.

As a corollary, if supp(u) \A 6= ∅ then supp(u||A) = A.

Proof. • If supp(u) ⊆ A then u||A = {u}. For example,
supp(a||{a}) = supp({a}) = {a} and supp(a) = a.

• If supp(u) ⊆ A then we use the first part. If there is some
a ∈ supp(u) \A then the result follows by an easy calculation
illustrated by the following example:

a||{b} = {a, c, d, e, f, . . .} = A \ {b}.

The corollary follows.

Definition 15. Write (x, y) for {{x}, {x, y}} (a set implementation
of ordered pairs [18]).

Definition 16. Let atoms abstraction be [c]z = (c, z)||supp(z)\{c}.

Intuitively [c]z is an α-equivalence class of (c, z) where c is ab-
stracted, i.e. where we read (c, z) like ‘λc.z’ or ‘∀c.z’:

[a]a = {(a, a), (b, b), (c, c), (d, d), (e, e), (f, f), . . .}
[a]{a, b} = {(a, {a, b}), (c, {c, b}), (d, {d, b}), (e, {e, b}), . . .}

[a](A\{a}) = {(a, A\{a}), (b, A\{b}), (c, A\{c}), . . .}
[a](A\{a, b}) = {(a, A\{a, b}), (c, A\{c, b}), (d, A\{d, b}), . . .}

Write Uab for {a} ∪ {{a}, {c}, {d}, {e}, . . .} for any a, b. Then:

[a]Uab = {(a, Uab), (c, Ucb), (d, Udb)(e, Ueb), . . .}
[c]Uab = {(c, Uab), (d, Uab), (e, Uab), . . .}

We can read ‘[a]x’ as the binding action of ‘λa.x’ or ‘∀a.x’,
and the sets above corresond with α-equivalence classes of FM sets.
There is no a priori notion of λ-abstraction or universal quantifica-
tion in [a]x; this is just α-abstraction, on FM sets.

Definition 16 agrees with the definition of [c]z from [16]:

Lemma 17. [c]z = {(x, (x c)z) | x ∈ A, x 6= c, x#z}∪ {(c, z)}.

2.5 Further properties of support, finite sets, and
α-abstraction

Lemma 18. 1. supp(X) =
S
{supp(x) | x ∈ X} if X is finite.

2. supp({x}) = supp(x) and if A ⊆ A is finite then supp(A) = A.
3. supp((x, y)) = supp(x) ∪ supp(y).

Proof. If X is finite then supp(X) ⊆
S
{supp(x) | x ∈ X} fol-

lows by Theorem 11.
Now suppose a ∈ supp(x) for some x ∈ X . Choose some b

such that b#X and b#x′ for every x′ ∈ X . By Theorem 10
supp((b a)x) = (b a)supp(x). Since X has no element y such that
b ∈ supp(y), we know that (b a)X 6= X and by Theorem 9 it must
be that a ∈ supp(X).

The second part is immediate; the third is by Definition 15.

Theorem 19. supp([c]z) = supp(z) \ {c}.

Proof. By part 3 of Lemma 18 supp((c, z)) = supp(z) ∪ {c}.
By definition [c]z = (c, z)||supp(z)\{c}. The result follows by Theo-
rem 14.

Thus we expect (a d)[a]{a, b} = [a]{a, b}:

[a]{a,b} = {(a,{a,b}), (c,{c,b}), (d,{d,b}), (e,{e,b}), . . .}
(a d)[a]{a,b} = {(d,{d,b}), (c,{c,b}), (a,{a,b}), (e,{e,b}), . . .}

Lemma 20. supp(X) ⊆
S
{supp(x) | x ∈ X} need not necessar-

ily hold if X is not finite.

Proof. It suffices to give a counterexample; we give two:
supp(A) = ∅ but

S
{supp(a) | a ∈ A} = A.

supp(A\{c})={c} but
S
{supp(a) | a∈A ∧ a 6=c} = A\{c}.

3 The substitution action
We now turn to defining an operation on sets that matches the syn-
tactic operation of substitution. It must interact correctly with the
α-abstraction of Definition 16.

Recall that a, b, c range over distinct atoms, A, B, C, S, T range
over sets of atoms, x, y, z, u, v range over all elements, and
X, Y, Z, U, V range over elements that are not atoms.

3.1 Axioms, naı̈ve substitution action
Definition 21. A substitution action on FM set theory is a func-
tion z[a 7→x] expressed in the language of FM set theory taking an
element z, an atom a, and an element x, and returning an element
which we write as z[a 7→x], satisfying:

(α) b#z ⇒ z[a 7→x] = ((b a)z)[b 7→x]

(# 7→) a#z ⇒ z[a 7→x] = z

(var 7→) a[a 7→x] = x

(id 7→) z[a 7→a] = z

(abs7→) c#x ⇒ ([c]z)[a 7→x] = [c](z[a 7→x])

If we read a#x as ‘a is not free in x’ and z[a 7→x] as ‘substitute
x for a in z’ then, clearly, the axioms of Definition 21 are sound for
the standard syntactic model. In [13] they are also proved complete.4

FM set theory has notions of ‘name’ and ‘free in’, and ‘abstrac-
tion’. We can therefore try to build a function which models ‘capture-
avoiding substitution’ in the sense made precise by the axioms of
Definition 21.

Definition 22 is probably what we might first consider:

Definition 22. Define the naı̈ve substitution action by

a[a 7→x]n = x b[a 7→x]n = b Z[a 7→x]n = {z[a 7→x]n | z ∈ Z}.

Write 0 = ∅ and i + 1 = i ∪ {i}, and write N = {0, 1, 2, 3, . . .}.

Lemma 23. Naı̈ve substitution does not satisfy (α), (# 7→), or
(abs7→), and so is not a substitution action in the sense of Defi-
nition 21.

Proof. It suffices to give counterexamples. We do this for (# 7→) and
(abs7→). We expect that A[a 7→1]n = A since a#A. We also expect
that ([c]a)[a 7→1]n = [c](a[a 7→1]) since c#1. But:

A[a 7→1]n =(A \ {a}) ∪ {1}

([c]a)[a 7→1]n ={(b, a), (c, a), (d, a), (e, a), . . .}[a 7→1]n

={(b, 1), (c, 1), (d, 1), (e, 1), . . .}

[c](a[a 7→1]n) =[c]1

={(a, 1), (b, 1), (c, 1), (d, 1), (e, 1), . . .}.

The naı̈ve substitution action does not take into account that sub-
stitutions should be capture avoiding and does not interact property
with the FM treatment of abstraction. We need a more subtle substi-
tution action that ‘unpacks’ an FM set to discern the ‘free’ atoms and
equate the ‘bound’ atoms. The basic units of such an unpacking are
the planes defined in Definition 24.

3.2 The planes of a set
Definition 24. If A ⊆ A is finite call (u, A) a plane in Z when

• u||A ⊆ Z and A ⊆ supp(Z), and
• u||A is maximal in that for all u′||A′ ⊆ Z where A′ ⊆ supp(Z),

u||A ⊆ u′||A′ implies u′||A′ = u||A.

4 An equivariance rule from [13] is omitted here because it is guaranteed by
Theorem 3. Instead of (id7→) we use a rule (ren7→) in [13]. A proof that
the two formulations are equivalent is not hard (and was observed by an
anonymous referee of [13]). The proof is included in a recent work pending
publication.

Write plane(Z) for the collection of planes in Z.

(u, A) is a plane in Z when A is a least subset of supp(Z) such
that u||A ⊆ Z. For example:

1. (a, {a}) ∈ plane({a}) and a||{a} = {a} ⊆ {a}.
2. (a, {}) 6∈ plane({a}) because a||{} = A 6⊆ {a}.
3. (a, {a}) 6∈ plane(A) because {a} 6⊆ supp(A) = ∅.
4. (a, {a, b})6∈plane({a}) because a||{a,b} = {a} = a||{a} and

{a}6⊆{a, b}.
5. (c, {a}) ∈ plane(A\{a}) and c||{a} = A\{a} ⊆ A\{a}.
6. (a, {}) ∈ plane(A) and a||{} = A ⊆ A.
7. ((c, a), {a}) ∈ plane([c]a) and (c, a)||{a} = {(x, a) | x 6= a} =

[c]a ⊆ [c]a.
8. plane({a} ∪ {{a}, {c}, {d}, . . .}) ={(a, {a})} ∪

{({x}, {b}) | x∈A, x6=b}.
a||{a} = {a} ⊆ {a} ∪ {{a}, {c}, {d}, . . .}.
{x}||{b} = {{a}, {c}, {d}, . . .} ⊆ {a} ∪ {{a}, {c}, {d}, . . .}.

Definition 25. If S ⊆ A is finite then define

planeS(Z) = {(u, A) ∈ plane(Z) | supp(u)∩S ⊆ supp(u)∩A}.

We should think of planeS(Z) as the planes (u, A) in Z such that
supp(u) ‘avoids name-clashes’ with S. For example

(a, {}) ∈ plane{}(A) but (a, {}) 6∈ plane{a}(A) and

(c, {a}) ∈ plane{b}(A\{a}) but (b, {a}) 6∈ plane{b}(A\{a}).

The planes of Z ‘cover’ Z in the following sense:

Lemma 26. If S ⊆ A is finite then[
{u||A | (u, A) ∈ planeS(Z)} = Z.

As a corollary taking S = ∅,
S
{u||A | (u, A) ∈ plane(Z)} = Z.

Proof. We prove two set inclusions: The left-to-right inclusion
is by construction. For the right-to-left inclusion, choose any
u ∈ Z. Let B = {b1, . . . , bk} be equal to supp(u) \A and let
B′ = {b′1, . . . , b′k} be some set of entirely fresh atoms (so disjoint
from supp(u), A, S, and supp(Z)). Let π = (b1 b′1) ◦ . . . ◦ (bk b′k).

By Theorem 10 we can calculate that

supp(πu) ∩ S = (supp(u) ∩A) ∩ S and

supp(πu) ∩A = supp(u) ∩A.

Therefore supp(πu) ∩ S ⊆ supp(πu) ∩ A. Also (πu)||A = u||A
by Lemma 13, so (πu, A) ∈ planeS(Z). Finally we note that u ∈
(πu)||A.

3.3 The substitution action, with examples
We can now define the substitution action. We use Lemma 26 to view
an FM set Z as a union of planes; the ‘capture-avoiding’ aspect of
substitution is easy to manage on a ‘plane-by-plane basis’.

Definition 27. If A, S ⊆ A are finite then define

A(a 7→S) =

(
(A \ {a}) ∪ S if a ∈ A

A if a 6∈ A.

Definition 28. Define the substitution action z[a 7→x] and a
‘helper’ function δ(z, a, x) as follows:

• a[a 7→x] = x and b[a 7→x] = b, and
• if Z 6∈ A then

Z[a 7→x] =
[˘

(u[a 7→x])||A(a7→supp(x))\δ(u,a,x) |

(u, A) ∈ planesupp(x)∪{a}(Z)
¯

δ(u, a, x) = (supp(u)(a 7→supp(x))) \ supp(u[a 7→x]).

We consider some examples.

1. {a}[a 7→x]. There is one plane, (a, {a}).

δ(a, a, x) = {a}(a 7→supp(x)) \ supp(x) = ∅.
{a}(a 7→supp(x)) \ δ(a, a, x) = supp(x) \ ∅ = supp(x)

{a}[a 7→x] = a[a 7→x]||supp(x) = x||supp(x) = x.

2. (A \ {a})[a 7→x]. One plane is (b, {a}) where b#x (the others
give the same result).

δ(b, a, x) = {b}(a 7→supp(x)) \ {b} = ∅
{a}(a 7→supp(x)) \ ∅ = supp(x)

(A \ {a})[a 7→x] = b||supp(x) = A \ supp(x)

3. A[a 7→x]. One relevant plane is (b, ∅) where b#x (the others
give the same result).

δ(b, a, x) = ∅ ∅(a 7→supp(x)) \ ∅ = ∅
A[a 7→x] = b||∅ = A

4. ([c]a)[a 7→x] = {(b, a), (c, a), (d, a), . . .}[a 7→x].
One plane is ((c, a), {a}) where c#x (if c ∈ supp(x) then
((c, a), {a}) 6∈ planesupp(x)∪{a}([c]a)).
We omit calculations showing that (c, a)[a 7→x] = (c, x); for a
general result see Theorem 32 after these examples.

δ((c, a), a, x) = {c, a}(a 7→supp(x)) \ supp((c, x))

= (supp(x) ∪ {c}) \ (supp(x) ∪ {c}) = ∅
{a}(a 7→supp(x)) \ ∅ = supp(x)

([c]a)[a 7→x] = (c, x)||supp(x) = [c]x

The other planes give the same result.
5. Ub[a 7→{b}] where Ub = {a} ∪ {{a}, {c}, {d}, . . .} for each b.

Two planes are a||{a} (a plane for {a}) and {a}||{b} (a plane for
{{a}, {c}, {d}, . . .}).
By calculations similar to the examples above, we calculate that

a[a 7→{b}] = {b} and

{{a}, {c}, {d}, . . .}[a 7→{b}] = {{a}, {c}, {d}, . . .}

and that Ub[a 7→{b}] = U where we write

U = {{a}, {b}, {c}, {d}, . . .}.

The other planes give the same results.
6. ([c]Ub)[a 7→{b}] = {(c, Ub), (d, Ub), . . .}[a 7→{b}].

One plane is ((c, Ub), {a, b}) (the other planes give the same re-
sult). Note that supp(U) = ∅ and supp((c, U)) = {c}, so that

δ((c, Ub), a, {b}) = {a, b, c}(a 7→{b}) \ {c} = {b}
{a, b}(a 7→{b}) \ {b} = ∅

([c]Ub)[a 7→{b}] = (c, U)||∅ = [c]U.

In all other examples δ is equal to ∅. Here, we see how δ is not
equal to ∅. This corrects for the fact that supp(Ub[a 7→{b}]) 6=
supp(Ub)(a 7→{b}).

Remark 29. Suppose that A, S ⊆ A are finite. Note that A(a 7→S)
and A[a 7→S] do not coincide. For example, {a}(a 7→{a}) = {a}
whereas {a}[a 7→{a}] = {{a}}.

Lemma 30. supp(z[a 7→x]) ⊆ supp(z)(a 7→supp(x)).

Proof. By Theorem 11 supp(z[a 7→x]) ⊆ supp(z)∪{a}∪supp(x).
Choose some fresh b (so b#z, a, x). By the axiom (α) z[a 7→x] =

((b a)z)[b 7→x]. By Theorem 11

supp(((b a)z)[b 7→x]) ⊆ supp((b a)z) ∪ {b} ∪ supp(x).

The result follows using Theorem 10.

Lemma 31. supp(z[a 7→x]) ⊇ supp(z)(a 7→supp(x)) need not
necessarily hold.

Proof. A counterexample is Ub[a 7→{b}] above.

In the terminology of Definition 22, the substitution action is naı̈ve
on finite sets:

Theorem 32. If Z 6∈ A and Z is finite then Z[a 7→x] = {z[a 7→x] |
z ∈ Z}.

Proof. By definition,

Z[a 7→x] =
[
{(u[a 7→x])||A(a7→supp(x))\δ(u,a,x) |

(u, A) ∈ planesupp(x)∪{a}(Z)}

Suppose (u, A) ∈ planesupp(x)∪{a}(Z). Since u||A ⊆ Z and Z is
finite, u||A is finite. It follows by part 1 of Lemma 18 that supp(u) ⊆
A and u||A = {u}.

By Lemma 30 supp(u[a 7→x]) ⊆ supp(u)(a 7→supp(x)), so

δ(u, a, x) = (supp(u)(a 7→supp(x))) \ supp(u[a 7→x]).

It follows by set calculations that

supp(u[a 7→x]) ⊆ A(a 7→supp(x)) \ δ(u, a, x)

and the result follows.

3.4 The substitution action is a substitution action
We now sketch how substitution satisfies (α), (# 7→), (var 7→),
(id 7→), and (abs7→), from Definition 21.

Theorem 33 is a useful technical result:

Theorem 33. b#Z if and only if for all (u, A) ∈ plane(Z) it is the
case that b 6∈ A.

As a corollary supp(Z) =
S
{A | (u, A) ∈ plane(Z)}.

We may use this result in a slightly different form where we write
b 6∈ A instead of b#A; by part 2 of Lemma 18 these are equivalent.

Proof. By definition if (u, A) ∈ plane(Z) then A ⊆ supp(Z). The
left-to-right implication follows.

Now suppose that b#A for every (u, A) ∈ plane(Z). Choose any
fresh b′#Z. By the first part of this result, b′#A for every (u, A) ∈
plane(Z). Using part 1 of Lemma 26 we reason as follows:

(b′ b)Z = (b′ b)
S
{(u||A) | (u, A) ∈ plane(Z)}

=
S
{(b′ b)(u||A) | (u, A) ∈ plane(Z)}

Theorem 9
=

S
{u||A | (u, A) ∈ plane(Z)}

= Z

Now b 6∈ supp((b′ b)Z) by Theorem 10 and the fact that b′#Z. The
result follows.

For Theorem 36 we need a technical ‘capture-avoidance’ result:

Lemma 34. Suppose that Z 6∈ A, a ∈ A, and x is any element.
Suppose that B = {b1, . . . , bn} is a finite set of fresh atoms (so

bi#x, Z for 1 ≤ i ≤ n). Then

Z[a 7→x] =
[
{(u[a 7→x])||A(a7→supp(x))\δ(u,a,x) |

(u, A) ∈ planesupp(x)∪{a}∪B(Z)}.

Notice the B on the far right subscript.

Proof. A routine calculation demonstrates that if (u, A) ∈ plane(Z)
and supp(u) ‘clashes’ with atoms in B, then we can find a π ∈
fix(A) such that supp(πu) does not ‘clash’ with atoms in B; by
Lemma 13 the result follows using Lemma 26.

Lemma 35. If (for all b, if b#z, x then z[a 7→x] = ((b a)z)[b 7→x]),
then also (for all b, if b#z then z[a 7→x] = ((b a)z)[b 7→x]).

Proof. Choose fresh c (so c#z; also c#a, b since by our permutative
convention c, a, b are distinct atoms). By assumption

z[a 7→x] = ((c a)z)[c7→x] ((b a)z)[b 7→x] = ((c b)(b a)z)[c7→x].

The result follows by Theorem 9.

Theorem 36 ((α)). Z[a 7→x] ⊆ ((b a)Z)[b 7→x] if b#Z.
As a corollary, for any z if b#z then z[a 7→x] = ((b a)z)[b 7→x].

Proof. We first prove the corollary. Suppose b#z; there are two
cases depending on whether z ∈ A:

• Suppose z ∈ A. Then there are three subcases:

(i) z = a. z[a 7→x] = a[a 7→x] = x = ((b a)a)[b 7→x] = x.

(ii) z = b. This contradicts b#z so there is nothing to prove.

(iii) z = c (where c 6∈ {a, b}). c[a 7→x] = c = ((b a)c)[b 7→x].

• Suppose Z 6∈ A. By the first part, Z[a 7→x] ⊆ ((b a)Z)[b 7→x].
Also by Theorem 10 a#(b a)Z and it follows that
((b a)Z)[b 7→x] ⊆ ((b a)(b a)Z)[a 7→x]. The result follows,
since (b a)(b a)Z = Z.

We now prove by ε-induction that Z[a 7→x] ⊆ ((b a)Z)[b 7→x].
Suppose Z 6∈ A and b#Z. By Lemma 35 we can assume b#x.

Suppose the inductive hypothesis of every u ∈ Z. We unpack the
definition of substitution, using Lemma 34 to add a {b} to the sub-
script on plane in the first equality (we cannot add {a} to the sub-
script on plane in the second equality because we do not know a#x):

Z[a 7→x] =
[
{(u[a 7→x])||A(a7→supp(x))\δ(u,a,x) |

(u, A) ∈ planesupp(x)∪{a,b}(Z)}

((b a)Z)[b 7→x] =
[
{(u′[b 7→x])||A′(b7→supp(x))\δ(u′,b,x) |

(u′, A′) ∈ planesupp(x)∪{b}((b a)Z)}

Suppose (u, A) ∈ planesupp(x)∪{a,b}(Z). To prove our set inclusion
we exhibit (u′, A′) ∈ planesupp(x)∪{b}((b a)Z) such that

u[a 7→x]||A(a7→supp(x))\δ(u,a,x) = u′[b 7→x]||A′(b7→supp(x))\δ(u′,b,x).

We choose u′ = (b a)u and A′ = (b a)A. By Theorem 3
we have (u′, A′) ∈ plane((b a)Z). Also by definition of
planesupp(x)∪{a,b}(Z) we know that

supp(u) ∩ (supp(x) ∪ {a, b}) ⊆ supp(u) ∩A.

Now b 6∈ A by Theorem 33 and b ∈ supp(x) ∪ {a, b}. Therefore
b#u. It is now not hard to use Theorem 10 and some elementary
set calculations to calculate that

supp(u′) ∩ (supp(x) ∪ {b}) ⊆ supp(u′) ∩A′.

So (u′, A′) ∈ planesupp(x)∪{b}(Z). Also since b#u by the inductive
hypothesis u′[b 7→x] = u[a 7→x].

It remains to show

A(a 7→supp(x))\δ(u, a, x) = ((b a)A)(b 7→supp(x))\δ((b a)u, b, x).

Recall that b 6∈ A. Then A(a 7→supp(x)) = ((b a)A)(b 7→supp(x))
is easily verified. Also

δ((b a)u, b, x) = supp((b a)u)(b 7→supp(x))\supp(((b a)u)[b 7→x]).

Now supp((b a)u)(b 7→supp(x)) = supp(u)(a 7→supp(x)) is eas-
ily verified, and supp(((b a)u)[b 7→x]) = supp(u[a 7→x]) follows by
the inductive hypothesis. The result follows.

Theorem 37 ((# 7→)). For all a ∈ A, if a#z then z[a 7→x] = z.

Proof. We work by ε-induction. The interesting case is when Z 6∈ A
(we adhere to our convention and write capital Z) and a#Z. Suppose
the inductive hypothesis of all u ∈ Z. By definition

Z[a 7→x] =
[
{(u[a 7→x])||A(a7→supp(x))\δ(u,a,x) |

(u, A) ∈ planesupp(x)∪{a}(Z)}.

For any (u, A) ∈ planesupp(x)∪{a}(Z) by assumption

supp(u) ∩ (supp(x) ∪ {a}) ⊆ supp(u) ∩A.

By Theorem 33 a#A, so a#u and by inductive hypothesis
u[a 7→x] = u. Now A(a 7→supp(x)) = A, and

δ(u, a, x) =supp(u)(a 7→supp(x)) \ supp(u[a 7→x])

=supp(u) \ supp(u) = ∅ and

Z[a 7→x] =
[
{u||A | (u, A) ∈ planesupp(x)∪{a}(Z)}.

The result follows by part 2 of Lemma 26.

Theorem 38 ((abs7→)). If c#x then ([c]z)[a 7→x] = [c](z[a 7→x]).

Proof. If a#z then by Theorem 11 also a#[c]z and

([c]z)[a 7→x] = [c]z and [c](z[a 7→x]) = [c]z

follow by Theorem 37. So suppose a ∈ supp(z). We sketch the rest
of the proof: It is a fact that

((c, z), supp(z) \ {c}) ∈ plane([c]z).

The other planes add nothing to the final result. So

[c]z = (c, z)||supp(z)\{c}

([c]z)[a 7→x] = (c, z[a 7→x])||(supp(z)\{c})(a7→supp(x))\δ((c,z),a,x)

[c](z[a 7→x]) = (c, z[a 7→x])||supp(z[a7→x])\{c}.

It suffices to verify that

(supp(z)\{c})(a 7→supp(x))\δ((c, z), a, x) = supp(z[a 7→x])\{c}.

Now

δ((c, z), a, x) = (supp(z)∪{c})(a 7→supp(x))\(supp(z[a 7→x])∪{c})

(we use part 3 of Lemma 18 to calculate the support of a pairset).
The result follows by set calculations.

Theorem 39 ((id 7→)). z[a 7→a] = z.

Proof. By an easy inductive argument which we sketch. The inter-
esting case is of Z 6∈ A where we suppose u[a 7→a] = u for all u ∈ Z
(we adhere to our convention and write capital Z). By definition

Z[a 7→a] =
[
{(u[a 7→a])||A(a7→{a})\δ(u,a,a) | (u, A)∈plane{a}(Z)}.

This easily simplifies using the inductive hypothesis to

Z[a 7→a] =
[
{u||A | (u, A) ∈ plane{a}(Z)}

and we use Lemma 26.

Theorem 40. Definition 28 is equivariant and satisfies (α), (# 7→),
(var 7→), (id 7→), and (abs7→) from Subsection 3.1.

Proof. Equivariance is automatic by Theorem 3. (var 7→) is direct
from the definition. Each of (α), (# 7→), (id 7→), and (abs7→) is by
one of the theorems proved above.

3.5 Substitution and abstract syntax
As a sanity check we prove that our substitution action extends the
substitution on syntax, if we express syntax in a model of FM set
theory as outlined in previous work [15]. In other words: our sub-
stitution action coincides with our expectations of what substitution
does to syntax, in a sense which we make precise in Theorem 43.

Definition 41. Let Λ be inductively defined by:

a ∈ A

a ∈ Λ

x, y ∈ Λ

(x, y) ∈ Λ

a ∈ A x ∈ Λ

[a]x ∈ Λ

Lemma 42. Λ is isomorphic to λ-terms up to α-equivalence.

Proof. This is the FM standard construction of abstract-syntax-with-
binding [16] slightly modified (see Remark 44 below).

Theorem 43. If z, x ∈ Λ then z[a 7→x] ∈ Λ and z[a 7→x] is equal to
what we usually call ‘capture-avoiding substitution of x for a in z’.

Proof. We work by induction on Λ.

• a[a 7→x] = x and b[a 7→x] = b.
• (z1, z2)[a 7→x] = (z1[a 7→x], z2[a 7→x]) from Definition 15 and

Theorem 32.
• ([c]z)[a 7→x] = [c](z[a 7→x]) providing c#x by Theorem 38. It is

not hard to use part 3 of Lemma 18 and Theorem 19 to prove that
c#x corresponds precisely to ‘c is not free in x’ when x ∈ Λ.

Define inl(x) = (x, 0) and inr(x) = (x, 1).

Remark 44. Theorem 43 works generically for any datatype of
syntax-with-binding. Note that we must interpret atoms as them-
selves and not ‘wrapped up’: our construction is an isomorphic ver-
sion of the datatype from [16] given by:

a ∈ A

inl(inl(a)) ∈ Λ

x, y ∈ Λ

inl(inr((x, y))) ∈ Λ

a ∈ A x ∈ Λ

inr([a]x) ∈ Λ

This is not suitable for Theorem 43 because atoms are wrapped up
in inl(inl(a)) and inl(inl(a))[a 7→x] = inl(inl(x)) 6= x. There is
no canonical implementation of the tree-structure of datatypes —
the FM substitution action cannot ‘guess’ which implementation we
chose for inl and inr.

Atoms are a distinct class of elements in a model of FM set theory
so it does not harm to insert them ‘unwrapped’ into Λ.

3.6 Commuting substitutions
It is routine to prove the usual commutativity property of substitu-
tions. The proof is generic and would work for any datatype:

Corollary 45. If a#y and x, y, z ∈ Λ then

z[a 7→x][b 7→y] = z[b 7→y][a 7→x[b 7→y]].

Proof. By induction on z. Only the base case is interesting:

a[a 7→x][b 7→y] = x[b 7→y] = a[b 7→y][a 7→x[b 7→y]].

For more complex sets substitutions need not commute. That is:

Lemma 46. There exist z, a, x, b, y such that a#y and
z[a 7→x][b 7→y] 6= z[b 7→y][a 7→x[b 7→y]].

Proof. {a, {a}, {c}, {d}, . . .}[a 7→{b}][b 7→{c}]
= {{a}, {b}, {c}, {d}, . . .}[b 7→{c}]
= {{a}, {b}, {c}, {d}, . . .}

{a, {a}, {c}, {d}, . . .}[b 7→{c}][a 7→{{c}}]
= {a, {a}, {b}, {d}, . . .}[a 7→{{c}}]
= {{a}, {b}, {{c}}, {d}, . . .}

(The planes of interest here are a||{a}, {a}||{b}, and {a}||{c}.)

Intuitively, {a, {a}, {c}, {d}, . . .} can be read as the predicate ‘is
the variable a, or is {x} where x is a variable other than c’; see
the Conclusions. Predicates which reflect on their own variables can-
not be expressed in standard logics such as first-order logics; non-
commutativity of substitution only holds on sets which intuitively
‘reflect on atoms’ in which case the results obtained may depend on
the order in which those atoms are substituted.

4 Conclusions
We have exhibited substitution as an operation in models of FM set
theory, with the same status as ‘the graph of a function’, ‘ordered
pairs’, ‘ordinals’, and other basic concepts of mathematics. The foun-
dations of computer science are not set in stone, and by paying atten-
tion to them, new insights can be gained.

From the philosophical point of view the FM universe provides
a basis by which we can obtain a semantics for formal languages
where the structure of denotations matches the structure of syntax
very closely, also for open terms. In the case that the denotations are
of formal syntax, the two coincide as exemplified in Section 3.5.

Since our intention here is to the lay the foundations provided by
FM set theory, a full semantic treatment of first order logic is beyond
the scope of this paper. However we can hint at how it works. An FM
model of first order logic maps the sentences P, Q . . . of first order
logic, open or closed, into subsets of an FM set U representing the
universe of discourse. The model also maps the variables x, y . . . of
a first order language into the set A of atoms. Now, if a first order
sentence P is assigned the set y ⊆ U as its semantic denotation, then
the sentence ∀xP has as its denotation the set

T
{y[a 7→u] | u ∈ U}.

This is more than just a translation of the syntactic substitution-for-
all-terms operation into another language, for [a 7→u] represents a
particular set theoretic operation constructable from the axioms of
FM set theory.

Future work is to use the substitution action above as the basis of
semantics for formal languages essential to philosophy and computer
science — first-order logic and the λ-calculus are two candidates. It
is also possible to investigate ‘rewriting on sets’; starting with inves-
tigating the unifiers of two sets.

REFERENCES
[1] S. Abramsky, D. R. Ghica, A. S. Murawski, C.-H. L. Ong, and I. D. B.

Stark, ‘Nominal games and full abstraction for the nu-calculus’, in
LICS, pp. 150–159. IEEE, (2004).

[2] Peter Aczel, Non-wellfounded Set Theory, number 14 in CSLI lecture
notes, CSLI, 1988.

[3] Peter Aczel, ‘Generalised set theory’, CSLI lecture notes, 1(58), 1–17,
(1996).

[4] Peter Aczel and Rachel Lunnon, ‘Universes and parameters’, CSLI lec-
ture notes, 2, 3–24, (1991).

[5] Nick Benton and Benjamin Leperchey, ‘Relational reasoning in a nom-
inal semantics for storage.’, in Proc. of the 7th Int’l Conf. on Typed
Lambda Calculi and Applications (TLCA), volume 3461 of LNCS, pp.
86–101, (2005).

[6] N. Brunner. 75 years of independence proofs by Fraenkel-Mostowski
permutation models, 1996.

[7] James Cheney and Christian Urban, ‘Alpha-prolog: A logic program-
ming language with names, binding and alpha-equivalence’, in Proc.
of the 20th Int’l Conf. on Logic Programming (ICLP 2004), eds., Bart
Demoen and Vladimir Lifschitz, number 3132 in LNCS, pp. 269–283.
Springer-Verlag, (2004).

[8] N. G. de Bruijn, ‘Lambda calculus notation with nameless dummies,
a tool for automatic formula manipulation, with application to the
Church-Rosser theorem’, Indagationes Mathematicae, 5(34), 381–392,
(1972).

[9] Kit Fine, Reasoning with Arbitrary Objects, Blackwell, 1985.
[10] Gottlob Frege, The Foundations of Arithmetic, Blackwell, Oxford,

1953. Translated by J. L. Austin.
[11] Gottlob Frege, ‘Begriffsschrift, eine der Arithmetischen Nachgebildete

Formelsprache des Reinen Denkens’, in From Frege to Gödel: A Source
Book in Mathematical Logic, 1879-1931, ed., J. van Heijenoort, Har-
vard University Press, (2002). Translated by S. Bauer-Mengelberg as
‘Concept Script, a formal language of pure thought modelled upon that
of arithmetic’.

[12] Murdoch J. Gabbay, A Theory of Inductive Definitions with alpha-
Equivalence, Ph.D. dissertation, Cambridge, UK, 2000.

[13] Murdoch J. Gabbay and Aad Mathijssen, ‘Capture-avoiding substi-
tution as a nominal algebra’, Formal Aspects of Computing, (2008).
Available online.

[14] Murdoch J. Gabbay and Aad Mathijssen, ‘One-and-a-halfth-order
logic’, Journal of Logic and Computation, (2008). Available online.

[15] Murdoch J. Gabbay and A. M. Pitts, ‘A new approach to abstract syntax
involving binders’, in 14th Annual Symposium on Logic in Computer
Science, pp. 214–224. IEEE Computer Society Press, (1999).

[16] Murdoch J. Gabbay and A. M. Pitts, ‘A new approach to abstract syntax
with variable binding’, Formal Aspects of Computing, 13(3–5), 341–
363, (2001).

[17] Thomas Jech, ‘Set theory’, in The Stanford Encyclopedia of Philoso-
phy, ed., Edward N. Zalta, (Fall 2002).

[18] P. T. Johnstone, Notes on logic and set theory, Cambridge University
Press, 1987.

[19] D. Miller, ‘Abstract syntax for variable binders: An overview’, Lecture
Notes in Articial Intelligence, 1861, 239–253, (July 2000).

[20] A. M. Pitts, ‘Nominal logic, a first order theory of names and binding’,
Information and Computation, 186(2), 165–193, (2003).

[21] A. M. Pitts and Murdoch J. Gabbay, ‘A metalanguage for program-
ming with bound names modulo renaming’, in Proceedings of the 5th
international conference on the Mathematics of Program Construction
(MPC2000), eds., R. Backhouse and J. N. Oliveira, volume 1837 of
LNCS, pp. 230–255. Springer, (July 2000).

[22] J. Truss, ‘Permutations and the axiom of choice’, in Automorphisms
of first order structures, ed., H.D.Macpherson R.Kaye, 131–152, OUP,
(1994).

[23] Christian Urban and Christine Tasson, ‘Nominal techniques in Is-
abelle/HOL’, in CADE 2005, volume 3632 of Lecture Notes in Artificial
Intelligence, pp. 38–53, (2005).

	Introduction
	Fraenkel-Mostowski set theory
	Axioms, permutations, equivariance
	Atoms, equivariance and support
	Support
	-abstraction in models of FM set theory
	Further properties of support, finite sets, and -abstraction

	The substitution action
	Axioms, naïve substitution action
	The planes of a set
	The substitution action, with examples
	The substitution action is a substitution action
	Substitution and abstract syntax
	Commuting substitutions

	Conclusions

