
WFLP 2008

Term sequent logic

Michael Gabbay1

http://www.kcl.ac.uk/kis/schools/hums/philosophy/staff/m_gabbay.html

Murdoch J. Gabbay
http://www.gabbay.org.uk

Abstract

We consider a term sequent logic for the lambda-calculus. Term sequents are a judgement form similar to the
logical judgement form of entailment between sentences, but denoting equality or reducibility between terms.
Using term sequents, it is possible to treat lambda-terms almost like logical sentences, and to use proof-theoretic
methods to establish their properties. We prove a cut-elimination result for untyped lambda-calculus and de-
scribe how this generalises the usual confluence result. We give a notion of uniform proof for lambda-terms, and
suggest how this can be viewed as a mixed logic-programming/functional programming framework with the
ability to assume arbitrary reductions. Finally, we discuss related and future work.

Keywords: Cut Elimination, Lambda Calculus, Functional programming, Proof Theory

1 Introduction

Sequent calculi are a general framework for formalising logical consequence rela-
tions and proving their properties. Cut-elimination is key to proving properties
such as consistency, non-triviality (a model exists with more than one element),
non-derivability, completeness for derivation-search algorithms, decidability re-
sults for fragments, and so on. However, these properties do not follow in the
presence of axioms. For example cut-elimination does not directly imply the con-
sistency of an equality axiom like (λx.x)·y ≈ y.

Term sequents generalise sequent calculus; the intuition is

proof-theory for term-formers (as well as for logical connectives, as usual).

Logical consequence becomes a relation not just between sentences, but also be-
tween terms. An advantage this brings is that a term sequent calculus can rep-
resent, without axioms, logics with non-trivial equalities between terms — logics
that would require axioms if formulated using the ‘ordinary’ sequent calculus. Us-
ing term-sequents, an obvious proof-theoretic treatment may be possible where,
using axioms, none is apparent — and the technique of cut-elimination may be
applicable.

1 We acknowledge the support of British Academy grant PDF/2006/509 and grant RYC-2006-002131 at the Poly-
technic University of Madrid.

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

http://www.kcl.ac.uk/kis/schools/hums/philosophy/staff/m_gabbay.html
http://www.kcl.ac.uk/kis/schools/hums/philosophy/staff/m_gabbay.html
http://www.gabbay.org.uk
http://www.gabbay.org.uk

Gabbay and Gabbay

Γ ` x :− x
(Ax:−)

Γ ` Θ :− s Γ ` 〈. . . s . . .〉 :− t

Γ ` 〈. . .Θ . . .〉 :− t
(Cutλ)

Γ ` 〈. . . 〈t1, t2〉 . . .〉 :− t

Γ ` 〈. . . t1·t2 . . .〉 :− t
(·L)

Γ ` Θ1 :− t1 Γ ` Θ2 :− t2

Γ ` 〈Θ1,Θ2〉 :− t1·t2
(·R)

Γ ` Θ :− t1 Γ ` 〈. . . t2 . . .〉 :− t

Γ, t1 t2 ` 〈. . .Θ . . .〉 :− t
(L)

Γ ` t1 :− t2

Γ ` t1 t2,∆
(R)

Γ ` Θ :− t1 Γ ` 〈. . . t2[x/t1] . . .〉 :− t

Γ ` 〈. . . 〈λx.t2,Θ〉 . . .〉 :− t
(λL) Γ ` 〈Θ, x〉 :− t

Γ ` Θ :− λx.t (λR) x not free
in Θ or Γ

Fig. 1: Term sequent rules: λ-calculus

Γ, Ai ` ∆

Γ, A1 ∧ A2 ` ∆
(∧L)

1 ≤ i ≤ 2

Γ ` A1,∆ Γ ` A2,∆

Γ ` A1 ∧ A2,∆
(∧R)

Γ, A[x/t] ` ∆

Γ, ∀x.A ` ∆
(∀L)

Γ ` A,∆
Γ ` ∀x.A,∆ (∀R) x not free

in Γ, ∆

Γ ` A,∆ Γ, B ` ∆

Γ, A⇒ B ` ∆
(⇒L)

Γ, A ` B,∆
Γ ` A⇒ B,∆

(⇒R)

Γ, A ` ∆

Γ ` ¬A,∆ (¬R)
Γ ` A,∆

Γ,¬A ` ∆
(¬L)

Γ ` C,∆ Γ, C ` ∆

Γ ` ∆
(Cut)

Fig. 2: Sentence sequent rules

The specific objective of this paper is to develop a term-sequent style logic and
proof-theory of the (untyped) λ-calculus. We shall prove full cut-elimination and
also exhibit a well-behaved notion of uniform proof. This reconciles, in a novel
way, first-order logic with the λ-calculus, and the computational content of first-
order logic with the computational content of the λ-calculus.

The idea itself of term sequents is novel to this paper and it can be applied
elsewhere (the reader should not get the impression that this is ‘just another way
of doing the λ-calculus!). This is a new, general, methodology. For example the first
author has developed term sequent systems for arithmetic and rational numbers.
Further comments are in the Conclusions.

2 Syntax of the λ-calculus

Definition 2.1 • Define terms t and sentences A by:

t ::= x, y, z, . . . | (t1·t2) | (λx.t)

A ::= t1 t2 | A1 ∧ A2 | A1⇒ A2 | ¬A | ∀x.A

2

Gabbay and Gabbay

(D1)

` t[x/y] :− t[x/y]
Thrm. 3.1

` 〈λx.t, y〉 :− t[x/y]
(λL)

` λx.t :− λy.(t[x/y])
(λR)

` λx.t λy.(t[x/y])
(R)

(D2)

` t[x/y][y/x] :− t
Thrm. 3.1

` 〈λy.(t[x/y]), x〉 :− t
(λL)

` λy.(t[x/y]) :− λx.t
(λR)

` λy.(t[x/y]) λx.t
(R)

(D3)

` t[x/t′] :− t[x/t′]
Thrm. 3.1

` 〈λx.t, t′〉 :− t[x/t′]
(λL)

` (λx.t)·t′ :− t[x/t′]
(·L)

` (λx.t)·t′ t[x/t′]
(R)

(D4)

` t :− t
Thrm. 3.1 ` x :− x

(Ax:−)

` 〈t, x〉 :− t·x
(·L)

` t :− λx.(t·x)
(λR)

` t λx.(t·x)
(R)

Fig. 3: Derivations of αβη-reduction

• Free variables of t and A are defined as usual; for example x is free in x y and
in x·x, and x is not free in ∀x.A and λx.(x·x).

• Also as usual, we take predicates and terms up to α-conversion of bound vari-
ables. We use ≡ to express identity of syntax up to α-conversion.

Definition 2.2 • Define trees by: Θ ::= t | 〈Θ1,Θ2〉.
• If Θ′ is a subtree of Θ then we write Θ as 〈. . .Θ′ . . .〉.

Definition 2.3 A term sequent is a tuple Γ ` Θ :− t where Θ is a tree and t is a
term. A sentence sequent is a pair Γ ` ∆. The derivable sequents of a term sequent
logic are inductively defined by the rules in Figures 1 and 2.

For some example derivations, see Figure 3.

Remark 2.4 As a piece of design of a logic, issues lie in the choice of structure for
a term sequent Γ ` Θ :− t, and of term sequent derivation rules. The challenge is
to find a term sequent structure and rules such that terms and their term-formers
can be decomposed in a syntax-directed manner.

This design issue is familiar from other sequent systems: for example bunched
implications [12] requires a logical context with ‘bunches’; intuitionistic logic typi-
cally has a single sentence on the right whereas classical logic has many sentences;
and so on.

Remark 2.5 An intuition for the rules of Figure 1 is perhaps best obtained by exam-
ining how they contribute to Theorem 3.6, which makes a correspondence between
derivability in our term sequent logic, and αβη-reductions in familiar formulations
of the λ-calculus; it is a kind of soundness and completeness result.

In a term sequent Γ ` Θ :− t, we may see Γ as a set of assumptions, t as a
λ-term and Θ as a rough normal form of a λ-term that reduces to t. Intuitively,
(λL) corresponds to β-reduction; (λR) corresponds to η-expansion; (·L) fixes · as a
symbol for application and (·R) corresponds to a form of congruence.

Remark 2.6 A special case of (λL) is

Γ ` t1 :− t1 Γ ` 〈. . . t2[x/t1] . . .〉 :− t

Γ ` 〈. . . 〈λx.t2, t1〉 . . .〉 :− t

3

Gabbay and Gabbay

which we can write as
Γ ` 〈. . . t2[x/t1] . . .〉 :− t

Γ ` 〈. . . 〈λx.t2, t1〉 . . .〉 :− t

in the light of Theorem 3.1.
Similarly, a special case of (L) may be written:

Γ ` 〈. . . t2 . . .〉 :− t

Γ, t1 t2 ` 〈. . . t1 . . .〉 :− t

These special cases are insufficient for term sequent logic; they fail to yield cut-
elimination in the same way that this special case of (⇒L)

Γ, B ` ∆

Γ, A⇒ B, A ` ∆

fails to yield cut-elimination in propositional logic. For example (A1∧A2)⇒B, A1, A2 `
C is not derivable without (Cut) if only the special case of (⇒L) is used. Similarly,
` 〈λy.y, 〈s, t〉〉 :− s·t requires (Cutλ) if we use only the special case of (λL).

We read Θ = 〈Θ1,Θ2〉 as ‘Θ1 applied to Θ2’. We read Γ ` Θ :− t as: “Γ implies
that the term corresponding to Θ is equal/reduces to t.” So we read Γ ` 〈λx.(y·x), z〉 :− λy.z
as “Γ implies that λx.(y·x) applied to z reduces to λy.z”.

Remark 2.7 Our notation uses three different sorts of bracket, but we promise that
this is harmless.

• Square brackets [] express capture avoiding substitution on terms, this is stan-
dard.

• Round brackets () parse terms, as is standard.
• Angle brackets 〈 〉 parse trees (Definition 2.2), which are part of our term-sequent

form.

Because term sequent derivation rules break apart terms, it can happen that round
brackets ‘become’ angle brackets (e.g. the last three lines of derivation D3 of Fig-
ure 3). This has essentially the same status as conjunctions ‘becoming’ commas in
traditional sequent systems.

Remark 2.8 Manipulation of term sequents and sentence sequents are kept sepa-
rate. Only (R) moves between them. The two cut rules (Cutλ) and (Cut) apply
either to terms in term sequents, or to sentences in sentence sequents. For example
we cannot use our cut rules to make an inference like

A ∧ t1 t2 ` t1 t2 t1 t2 ` t1 :− t2

A ∧ t1 t2 ` t1 :− t2

This separation is necessary and slightly restricts deductive power, for example we
cannot derive that A ∧ t1 t2 ` t1 :− t2, but it simplifies matters.

Remark 2.9 A notion similar to has been investigated under the name aequality,
using the same symbol, and representing a directed equality in a first-order logic

4

Gabbay and Gabbay

[4]. The intuition of here is similar — ‘directed equality’ is much the same thing
as ‘reduction’. Further intuition for is provided by in Theorem 3.6.

3 Derivability

Theorem 3.1 • Γ ` t :− t is derivable, without using (Cutλ), for any t.
• Γ, A ` A,∆ is always derivable.

Proof. The first part is by induction on t. For example, if t≡λx.s then by induc-
tion hypothesis Γ ` s :− s, and so:

Π
Γ ` s :− s

Γ ` 〈λx.s, x〉 :− s
(λL)

Γ ` λ.xs :− λx.s (λR)

The second part follows by (L), (R) and induction on A. 2

Theorem 3.2 x y, y z ` x z λx.t :− λy.(t[x/y]) (if y is not free in t)

` x x λy.(t[x/y]) :− λx.t (if y is not free in t)

0 x :− y (λx.t)·t′ :− t[x/t′]

0 x y t :− λx.(t·x) (if x is not free in t)

Proof. Some derivations can be found within Figures 3 and 4. For D1 and D2
assume y is not free in t, for D4 assume x is not free in t.

0 x :− y and 0 x y follows from the syntax directedness of the derivation
sequent rules. 2 2

We now prove a theorem relating the term sequent treatment of λ-calculus to
familiar treatments of the λ-calculus in terms of αβη-conversion. First we need to
associate a λ-term to every tree.

Definition 3.3 If Θ is a tree then trm(Θ) is a term defined inductively by trm(t)≡t
and trm(〈Θ1,Θ2〉)≡ trm(Θ1)·trm(Θ2).

Lemma 3.4 Γ ` Θ :− trm(Θ)

Proof. The proof is by an easy induction on Θ. 2

Definition 3.5 If t1 and t2 are λ-terms then let t1 �αβη t2 mean that t1 can be
rewritten to t2 by means of α-conversion, β-reduction and η-expansion.

Theorem 3.6 ` Θ :− t if and only if trm(Θ)�αβη t.

Proof. The ‘if’ direction follows by Theorem 3.2 (right column), Lemma 3.4 and
(Cutλ).

2 Actually, the rules are not absolutely syntax directed as Derivation D5 shows. It would be surprising if they
were for there is no general normal form for untyped λ-terms. However, it is clear that no derivation rules can
reduce the overall complexity of a term sequent to containing only atomic terms.

5

Gabbay and Gabbay

(D5)

.... Theorem 3.1

` y·
[
λx.

(
y·(x·x)

)
·λx.

(
y·(x·x)

)]
:− y·

[
λx.

(
y·(x·x)

)
·λx.

(
y·(x·x)

)]
` 〈λx.

(
y·(x·x)

)
, λx.

(
y·(x·x)

)
〉 :− y·

[
λx.

(
y·(x·x)

)
·λx.

(
y·(x·x)

)] (λL)

(D6)

` y :− y
(Ax:−)

x y ` x :− y
(L)

x y, y z ` x :− z
(L)

x y, y z ` x z
(R)

(D7)

` z :− z
(Ax:−)

` 〈λx.x, z〉 :− z
(λL)

y λx.x ` 〈y, z〉 :− z
(L)

y λx.x ` y·z :− z
(·R)

y λx.x ` (y·z) z
(R)

(D8)
y z ` y :− y

(Ax:−)

` y :− y
(Ax:−)

` z :− z
(Ax:−) ` y :− y

(Ax:−)

` 〈z, y〉 :− z·y
(·R)

y z ` 〈y, y〉 :− z·y
(L)

y z ` y·y :− z·y (·L)

y z ` 〈λx.(x·x), y〉 :− z·y
(λL)

y z ` λx.(x·x)·y :− z·y
(·L)

Fig. 4: Example derivations in term sequent λ-calculus

The ‘only if’ direction follows by induction on derivations. For example, sup-
pose the derivation ends with (λR):

Π
Γ ` 〈Θ, x〉 :− t

Γ ` Θ :− λx.t (λR)

Then by the induction hypothesis on Π and Definition 3.3 trm(Θ)·x�αβηt, but then
by congruence λx.(trm(Θ)·x)�αβη λx.t. Thus by η-expansion (and the transitivity
of�αβη) we have that trm(Θ)�αβη λx.t. 2

In Figure 4 we present some complex derivations. We do not necessarily de-
compose λ-terms to normal forms (the λ-calculus is untyped; there may not be
a normal form). Derivation D5 exemplifies how term sequents can handle a λ-
terms that does not reduce to a normal form. Derivation D8 exemplifies that term
sequents are no rewrite system for the λ-calculus in disguise; we derive that a re-
duction holds if y is reducible to z. As discussed in the Introduction, a rewrite
system cannot hypothesise rewrites.

4 Interreducivity and intersubstitutivity

Definition 4.1 Write t! t′ for t t′ ∧ t′ t.

In the light of Definition 4.1 and the rules in Figure 1 we might look at Theo-
rem 3.6 and jump to the conclusion that! is just α-equivalence — but this conclu-
sion is false. In Γ ` Θ :− t and Γ ` ∆ we can assume reductions in Γ; so! holds
or fails to hold in the context of some assumptions, which can assert reductions

6

Gabbay and Gabbay

that are not α-equivalences.
We will show that

Γ ` A[x/t], ∆

Γ, t! t′ ` A[x/t′], ∆

is admissible (Theorem 4.3).

Lemma 4.2 • Γ`t2:−t1 and Γ`〈. . . s[x/t1] . . .〉:−s′ imply Γ`〈. . . s[x/t2] . . .〉:−s′.
• Γ ` t1 :− t2 and Γ ` Θ :− s[x/t1] imply Γ ` Θ :− s[x/t2].

Proof. The first part is by induction on the derivation of Γ ` 〈. . . s[x/t1] . . .〉 :− s′.
There are a number of cases for the final rule of the derivation. We consider some
of them here:

• The case (Ax:−). Then s≡x or, for some y 6≡x, s≡y. In the the first case the result
follows from the assumption that Γ ` t2 :− t1 and (Cutλ), otherwise s[x/t1] ≡
y[x/t1]≡ y[x/t2]≡ s.

We may now assume that s is not atomic. For otherwise, regardless of the final
rule application, s≡ x or s≡ y for some y 6≡ x and the result follows as above.

• The cases where last rule applies to some term other than s[x/t1]. Then the
result follows easily by the induction hypothesis on the shorter derivation of the
premise.

• The cases where the last rule applies to s[x/t1]. Then the result follows again
by the induction hypothesis. For example suppose s ≡ λy.r and is derived by
(λL):

Π1

Γ ` Θ :− r′
Π2

Γ ` 〈. . . r[x/t1][y/r′] . . .〉 :− t

Γ ` 〈. . . 〈λy.r[x/t1],Θ〉 . . .〉 :− t
(λL)

We may suppose that x is not free in r′ and y is not free in t1 and so r[x/t1][y/r′]≡
r[y/r′][x/t1]. Thus Γ ` 〈. . . r[y/r′][x/t1] . . .〉 :− t is the conclusion of Π2. So there
is a derivation Π′2 of Γ ` 〈. . . r[y/r′][x/t2] . . .〉 :− t by induction hypothesis. So
we have that:

Π1

Γ ` Θ :− r′
Π′2

Γ ` 〈. . . r[y/r′][x/t2] . . .〉 :− t

Γ ` 〈. . . 〈λy.r[x/t2],Θ〉 . . .〉 :− t
(λL)

since r[y/r′][x/t1]≡r[x/t1][y/r′]. The remaining possibilities involve little more
complexity.

The second part is proved similarly to the first part, by induction on the derivation
of Γ ` Θ :− s[x/t1].

• The base case, as with the first part, is when Γ ` Θ :− s[x/t1] is derived by (Ax:−)

or when s is atomic. In each subcase the result follows easily by (Cutλ).
For example, if s 6≡ x then we have:

Γ ` Θ :− s[x/t1] Γ ` t1 :− t2

Γ ` Θ :− t2
(Cutλ)

• The remaining cases are uncomplicated.

7

Gabbay and Gabbay

2

Theorem 4.3 • Γ`t1:−t2, Γ`t2:−t1 and Γ ` A[x/t1],∆ imply Γ ` A[x/t2],∆.
• Γ ` A[x/t1],∆ implies Γ, t1 ! t2 ` A[x/t2],∆.

Proof. The first part follows by induction on the derivation of Γ ` A[x/t1],∆. The
base case is where A = s1 s2 and the derivation ends with (R) applied to the
premise Γ ` t1[x/t1] :− t2[x/t1]. The result then follows by Lemma 4.2. The
inductive cases are straightforward.

The second part follows from the first part, (Cutλ) and from the fact that Γ, t1 t2, t2 t1 `
t1 :− t2 and Γ, t1 t2, t2 t1 ` t2 :− t1. 2

So t1 ! t2 functions like a substitutional equality on sentences. See Section 7
for a (weaker) notion of equality corresponding with αβη-equality in a suitable
formal sense.

5 Cut elimination

Cut elimination is proved in two stages: eliminate the term sequent rule (Cutλ),
then eliminate the sentence sequent rule (Cut).

Eliminating (Cutλ) is somewhat simplified compared to the propositional case,
because term sequents lack structural rules like contraction and weakening. First,
some definitions.

5.1 Height and grade of term sequents

Definition 5.1 Define the height of a term sequent in a derivation by:

• A term sequent of the form Γ ` t :− t has height 0.
• The height of any other term sequent (in a derivation) is the sum of the heights

of its premises plus 1.

Call the height of a derivation the height of its final sequent.

The height of a term sequent, therefore, is the size of the derivation tree extending
back as far as the last instances of Γ ` t :− t. We can define something equivalent
for sentence sequents.

Definition 5.2 The grade of a term is the number of occurrences in it of the symbols
· and λ. For example, (λx.(λy.x·y))·z has grade 4.

Definition 5.3 For an instance of (Cutλ)
Γ ` Θ :− s Γ ` 〈. . . s . . .〉 :− t

Γ ` 〈. . .Θ . . .〉 :− t
call s the cut

term, call the grade of the instance the grade of the cut sentence. Call the height of
the instance the height of its conclusion.

5.2 Rank and degree of sentence sequents

Definition 5.4 Define the rank of a sentence sequent in a derivation by:

• The conclusion of (T⊥) or (R) has rank 0.

8

Gabbay and Gabbay

• The rank of any other term sequent (in a derivation) is the sum of the ranks of
its premises plus 1.

The rank of a derivation is the rank of its conclusion.

Definition 5.5 The degree of a sentence is the number of occurrences in it of the
symbols ∧,¬, ∀. For example, ∀x.¬∀y.∃z.(x y ∧ x z) has degree 5.

Definition 5.6 For an instance of (Cut)
Γ ` C,∆ Γ, C ` ∆

Γ ` ∆
call C the cut sentence, call

the degree of the instance the degree of the cut sentence. Call the rank of the in-
stance the rank of its conclusion.

5.3 Cutλ-elimination

We must first prove a lemma on the uniform substitution of variables for terms.

Lemma 5.7 • Γ`Θ:−t implies Γ[x/t′]`Θ[x/t′]:−t[x/t′] with no greater height.
• If Γ ` ∆ then Γ[x/t] ` ∆[x/t],∆′[x/t] with the same rank.

Proof. Both parts follow by induction on the derivation.

• If a derivation of Γ`Θ:−t consists of a single step, then its conclusion is Γ`x:−x
and so Γ[x/t′]`x[x/t′]:−x[x/t′] follows by Theorem 3.1. By the definition of
height, the height of any term sequent of the form Γ`t:−t is 0.

The inductive cases are simple. For example, if the final step of the derivation
is (λL)

Γ ` Θ :− t1 Γ ` 〈. . . t2[y/t1] . . .〉 :− t

Γ ` 〈. . . 〈λy.t2,Θ〉 . . .〉 :− t
(λL)

Then by the induction hypothesis we have derivations of

Γ[x/t′] ` Θ[x/t′] :− t1[x/t′] and Γ[x/t′] ` 〈. . . t2[y/t1][x/t′] . . .〉 :− t[x/t′].

We may assume that y is not free in t′ and so we may write the second of these as
Γ[x/t′] ` 〈. . . t2[x/t′][y/t1[x/t′]] . . .〉 :− t[x/t′]. We can now apply (λL) to obtain
the conclusion that Γ[x/t′] ` 〈. . . 〈λy.t2[x/t′],Θ[x/t′]〉 . . .〉 :− t[x/t′].

• The second part of the theorem follows by a similar induction. For the atomic
case consider a derivation of Γ ` ∆ then concludes with (R)

Γ ` t1 :− t2

Γ ` t1 t2,∆
(R)

then by the first part of this theorem Γ[x/t′] ` t1[x/t′] :− t2[x/t′] is derivable,
and from this we may easily obtain a derivation of Γ[x/t′] ` t1[x/t′] t2[x/t′].
The ranks of both derivations are 0.

The inductive cases are no more complex.
2

Lemma 5.8 If Γ ` Θ :− t then Γ, A ` Θ :− t with no more instances of (Cutλ).

Proof. By a simple induction on the derivation. 2

9

Gabbay and Gabbay

Γ ` t1 :− t1
(Ax:−) Π

Γ ` 〈. . . t1 . . .〉 :− t2

Γ ` 〈. . . t1 . . .〉 :− t2
(Cutλ) 7−→ Π

Γ ` 〈. . . t1 . . .〉 :− t2

Π
Γ ` 〈. . .Θ . . .〉 :− t Γ ` t :− t

(Ax:−)

Γ ` 〈. . .Θ . . .〉 :− t
(Cutλ) 7−→ Π

Γ ` 〈. . .Θ . . .〉 :− t

Π1

Γ ` 〈Θ1, x〉 :− t1

Γ ` Θ1 :− λx.t1
(λR)

Π2
Γ ` Θ2 :− t2

Π3

Γ ` 〈. . . t1[x/t] . . .〉 :− t2

Γ ` 〈. . . 〈λx.t1,Θ2〉 . . .〉 :− t
(λL)

Γ ` 〈. . . 〈Θ1,Θ2〉 . . .〉 :− t2
(Cutλ)

7−→ Π2
Γ ` Θ2 :− t2

Π1[x/t]
Γ ` 〈Θ1, t〉 :− t1[x/t]

Π3

Γ ` 〈. . . t1[x/t] . . .〉 :− t2

Γ ` 〈. . . 〈Θ1, t〉 . . .〉 :− t
(Cutλ)

Γ ` 〈. . . 〈Θ1,Θ2〉 . . .〉 :− t2
(Cutλ)

where Π1[x/t] results from Π1 by replacing x uniformly in it by t (see Lemma 5.7).

Π1
Γ ` Θ1 :− t1

Π2
Γ ` Θ2 :− t2

Γ ` 〈Θ1,Θ2〉 :− t1·t2
(·R)

Π3

Γ ` 〈. . . 〈t1, t2〉 . . .〉 :− t

Γ ` 〈. . . 〈t1·t2〉 . . .〉 :− t
(·L)

Γ ` 〈. . . 〈Θ1,Θ2〉 . . .〉 :− t
(Cutλ)

7−→ Π1
Γ ` Θ1 :− t1

Π2
Γ ` Θ2 :− t2

Π3

Γ ` 〈. . . 〈t1, t2〉 . . .〉 :− t

Γ ` 〈. . . 〈t1,Θ2〉 . . .〉 :− t
(Cutλ)

Γ ` 〈. . . 〈Θ1,Θ2〉 . . .〉 :− tt
(Cutλ)

Fig. 5: Some essential cases for Cutλ-elimination

Theorem 5.9 • If Γ ` Θ :− t is derivable using exactly one instance of (Cutλ) then it is
derivable, with no greater height, using none.

• If Γ ` Θ :− t is derivable then it is derivable without (Cutλ).

Proof.

• The first part is proved by induction on the pair (g, h), lexicographically ordered,
where g is the height and h is the grade of the (Cutλ). As with familiar cut elim-
ination theorems, we permute cuts and eliminate essential cases. The essential
cases and examples of permutation rules are given in Figures 5 and 6, the base
case is given by Lemma 3.1.

10

Gabbay and Gabbay

Π1
Γ ` Θ1 :− t1

Π2

Γ ` 〈. . . t2 . . .〉 :− t

Γ′ ` 〈. . .Θ1 . . .〉 :− t
(L) Π3

Γ′ ` 〈. . . t . . .〉 :− t3

Γ, t1 t2 ` 〈. . . 〈. . .Θ1 . . .〉 . . .〉 :− t3
(Cutλ)

7−→ Π′1
Γ′ ` Θ1 :− t1

Π′2
Γ′ ` 〈. . . t2 . . .〉 :− t

Π3

Γ, t1 t2 ` 〈. . . t . . .〉 :− t3

Γ′ ` 〈. . . 〈. . . t2 . . .〉 . . .〉 :− t3
(Cutλ)

Γ′ ` 〈. . . 〈. . .Θ1 . . .〉 . . .〉 :− t3
(L)

where Γ′ is Γ, t1 t2, and Π′1,Π
′
2 are obtained from Π1,Π2 by weakening with t1 ≈ t2 (see Lemma 5.8)

Π1
Γ ` Θ :− t

Π2

Γ ` 〈. . . t . . .〉 :− t1

Π3

Γ ` 〈. . . t2[x/t1] . . .〉 :− t3

Γ ` 〈. . . 〈λx.t2, 〈. . . t . . .〉〉 . . .〉 :− t3
(λL)

Γ ` 〈. . . 〈λx.t2, 〈. . .Θ . . .〉〉 . . .〉 :− t3
(Cutλ)

7−→

Π
Γ ` Θ :− t

Π2

Γ ` 〈. . . t . . .〉 :− t1

Γ ` 〈. . .Θ1 . . .〉 :− t1
(Cutλ) Π3

Γ ` 〈. . . t2[x/t1] . . .〉 :− t3

Γ ` 〈. . . 〈λx.t2, 〈. . .Θ . . .〉〉 . . .〉 :− t3
(λL)

Fig. 6: Some permutation cases for Cutλ-elimination

In all cases we replace an instance of (Cutλ) with a number of new instances
with lesser heights or degrees, these may be eliminated by the induction hypoth-
esis. The result as a whole is made easier by the fact the the derivation system
contains no ‘exponential’ structural rules such as weakening or contraction (ex-
ponential with regard to their effect on derivation complexity).

• The second part follows from the first by induction on the structure of the deriva-
tion.

2

We must prove that term sequents interact well with sentence sequents.

Theorem 5.10 Γ ` t1 :− t2 and Γ, t1 t2 ` Θ :− t imply Γ ` Θ :− t

Proof. By induction on the height of the derivation that Γ, t1 t2 ` Θ :− t. If the
final rule application is (L) introducing t1 t2 then the result follows by (Cutλ)

and then Theorem 5.9. 3 2

Full cut elimination now follows:

Theorem 5.11 • If Γ ` ∆ is derivable using exactly one instance of (Cut) then it is

3 Since (Cut) is a rule applying only to sentence sequents it cannot feature in the derivations of Γ ` t1 :− t2 and
Γ, t1 t2 ` Θ :− t.

11

Gabbay and Gabbay

derivable using none.
• If Γ ` ∆ is derivable then it is derivable without using (Cut).

Proof.

• The first part is by induction on the pair (d, r), lexicographically ordered, where
d is the degree and r is the rank of the (Cut). The base case is where the cut
formula is of the form t1 t2:

Π1
Γ ` t1 :− t2

Γ ` t1 t2,∆
(R)

Π2

Γ, t1 t2 ` t :− t′

Γ, t1 t2 ` t t′,∆
(R)

Γ ` ∆
(Cut)

7−→

Π1 Π2.... Theorem 5.10

Γ ` t :− t′

Γ ` t t′,∆
(R)

The remaining cases are as for cut elimination on first order logic.
• The second part follows by induction on the derivation.

2

6 Uniform derivations

Definition 6.1 A derivation of a term sequent is uniform if it is (Cutλ) free and for
every term sequent Γ ` Θ :− t in it, if t is not atomic then that sequent is the
conclusion of an instance of a rule applying to t (i.e. (λR) or (·R)).

It is of interest to determine which term sequents are derivable by uniform
derivations. To guarantee that derivations are uniform we need to modify the
term sequent rules, in particular the left rules, and we must tweak our definition
of a tree:

Definition 6.2 Redefine trees by: Θ ::= t | 〈Θ1,Θ2〉 | 〈Θ1; Θ2〉.

The difference between 〈Θ1,Θ2〉 and 〈Θ1; Θ2〉 is purely for bookkeeping, see Re-
mark 6.5.

Definition 6.3 • The modified rule (L−) is rule (L)

Γ ` Θ :− t1 Γ ` 〈. . . t2 . . .〉 :− t

Γ, t1 t2 ` 〈. . .Θ . . .〉 :− t

with an additional restriction that the free variables of (terms appearing in) Θ be
free also in t2 (intuitively, fv(Θ) ⊆ fv(t2)).

• The modified rule (λL−) is

Γ ` Θ :− t1 Γ ` 〈. . . t2[x/t1] . . .〉 :− t

Γ ` 〈. . . 〈λx.t2; Θ〉 . . .〉 :− t
(λL−)

(note the semicolon in the conclusion) with the restriction that the free variables
of Θ be free also in t2[x/t1].

12

Gabbay and Gabbay

• The modified rule (·L−) is

Γ ` 〈. . . 〈t1; t2〉 . . .〉 :− t

Γ ` 〈. . . t1·t2 . . .〉 :− t
(·L−)

(note the semicolon in the premise).
• We add an extra (λR) rule for the case of a semicolon:

Γ ` 〈Θ; x〉 :− t

Γ ` Θ :− λx.t (λR)

(with the restriction that x is not free in Θ or Γ).
• We must also strengthen the rule (Ax:−):

Γ ` t :− t
(Ax+:−)

• The other rules are unchanged. In particular (·R) is not modified so as to intro-
duce 〈Θ1; Θ2〉 on the left, it introduces only 〈Θ1,Θ2〉.

Theorem 6.4 If Γ ` Θ :− t is derivable using the modified term sequent rules of Defini-
tion 6.3, then it is derivable by a uniform derivation.

Proof. By Theorem 5.9 (it remains valid for the modified rules and tweaked tree
structure) we may assume that any derivation of Γ ` Θ :− t is free of (Cutλ). The
proof that such a derivation is uniform is by induction on its height.

Suppose t is not atomic and Γ ` Θ :− t is the conclusion of any rule (?L−) other
than (λR) or (·R). We may assume, by the induction hypothesis, that the derivations
of the premises of (?L−) are uniform. The result follows by the induction hypothesis
and the fact that (λR) or (·R) may be permuted with (?L−).

There are six permutations to consider, the three featuring (λR) are given in
Figure 7. The remaining three cases featuring (·R) are straightforward. 2

Remark 6.5 It is worth noting how the modified left rules are required for Theo-
rem 6.4. In the cases of (L−) and (λL−), the restrictions ensure that they may be
permuted with (λR) as shown in Figure 7. For example, looking at the third per-
mutation of Figure 7 we see that after (λR) is swapped with (L−), we must be sure
that x is not free in Θ (otherwise the instance of (λR) is illegitimate). In the case of
(·L−) the restriction is so that it can always be permuted with (·R).

To see the importance of the modified tree structure (the semicolons) note that
(·R) generates new tree structure on the left of the term sequent. So if any subse-
quent instance of (·L) depends on this structure then it cannot be pushed behind
(·R). The semicolons keep track of the tree structures on the left that depend only
on (λL−), the restriction on (·L−) thus ensures that no instance of (·L−) depends on
a prior instance of (·R).

The restrictions on (L−), (λL−) and (·L−) and the modifications to the tree
structure are sufficient but not necessary for Theorem 6.4. Refinements are for
future research.

13

Gabbay and Gabbay

Π
Γ ` 〈〈. . . 〈t1, t2〉 . . .〉, x〉 :− t

Γ ` 〈. . . 〈t1, t2〉 . . .〉 :− λx.t
(λR)

Γ ` 〈. . . t1·t2 . . .〉 :− λx.t
(·L)

7−→

Π
Γ ` 〈〈. . . 〈t1, t2〉 . . .〉, x〉 :− t

Γ ` 〈. . . t1·t2 . . ., x〉 :− t
(·L)

Γ ` 〈. . . t1·t2 . . .〉 :− λx.t
(λR)

Π1
Γ ` Θ :− t1

Π2

Γ ` 〈〈. . . t2[x/t1] . . .〉, x〉 :− t

Γ ` 〈. . . t2[x/t1] . . .〉 :− λx.t
(λR)

Γ ` 〈. . . 〈λx.t2; Θ〉 . . .〉 :− λx.t
(λL−)

7−→

Π1
Γ ` Θ :− t1

Π2

Γ ` 〈〈. . . t2[x/t1] . . .〉, x〉 :− t

Γ ` 〈〈. . . 〈λx.t2; Θ〉 . . .〉, x〉 :− t
(λL−)

Γ ` 〈. . . t2[x/t1] . . .〉 :− λx.t
(λR)

Π1
Γ ` Θ :− t1

Π2

Γ ` 〈〈. . . t2 . . .〉, x〉 :− t

Γ ` 〈. . . t2 . . .〉 :− λx.t
(λR)

Γ, t1 t2 ` 〈. . .Θ . . .〉 :− λx.t
(L−)

7−→

Π1
Γ ` Θ :− t1

Π2

Γ ` 〈〈. . . t2 . . .〉, x〉 :− t

Γ, t1 t2 ` 〈〈. . .Θ . . .〉, x〉 :− t
(L−)

Γ ` 〈. . . t2 . . .〉 :− λx.t
(λR)

Π1

Γ ` 〈. . . 〈t1; t2〉 . . .〉 :− s1

Π2
Γ ` Θ :− s2

Γ ` 〈〈. . . 〈t1; t2〉 . . .〉,Θ〉 :− s1·s2
(·R)

Γ ` 〈〈. . . 〈t1·t2〉 . . .〉,Θ〉 :− s1·s2
(·L)

7−→

Π1

Γ ` 〈. . . 〈t1; t2〉 . . .〉 :− s1

Γ ` 〈. . . 〈t1·t2〉 . . .〉 :− s1
(·L) Π2

Γ ` Θ :− s2

Γ ` 〈〈. . . 〈t1·t2〉 . . .〉,Θ〉 :− s1·s2
(·R)

Fig. 7: Permutations of left and right rules

Restrictions arise in the notion of uniform derivation because — if we imagine
a logic programming system based on these ideas — we must prevent the user
from running programs that contain certain ‘silly’ reductions. This is not visible in

14

Gabbay and Gabbay

the proof of cut-elimination, which considers the logic as a whole.

Definition 6.1 extends the existing notion of uniform derivation [8] to term se-
quent derivations. A term sequent derivation is uniform if (reading bottom up) we
can always decompose the right part of a term sequent before decomposing the left
parts: i.e. we can decompose the t of Γ ` Θ :− t before we decompose Θ. Com-
pare with the more familiar notion of uniform derivation for sentence sequents ‘a
sentence sequent derivation is uniform when we can decompose the ∆ of Γ ` ∆

before we decompose Γ’.
Term sequent logic combines term sequents with sentence sequents, thus we

consider a derivation uniform when its sentence sequent parts are uniform in the
familiar sense, and its term sequent parts are uniform in the sense of Definition 6.1:

Definition 6.6 A cut-free derivation of a sentence sequent is uniform if it is

(i) for every sentence sequent Γ ` A in it, if A is not atomic the sequent is an
instance of the conclusion of rule applying to A (a right rule).

(ii) every subderivation of a term sequent is uniform in the sense of Definition 6.1.

Theorem 6.7 If Γ ` A is derivable in the single conclusion fragment of the term sequent
calculus (i.e. where ∆ is empty in any sentence sequent), then it is derivable by a uniform
derivation.

Proof. That the first condition on a uniform derivation is met is a well known
result on intuitionistic logic, e.g. see [8]. That the second condition on a uniform
derivation is met is proved by Theorem 6.4. 2

7 λ-Equality

The equality offered by! is strong (it relates relatively few terms). We often want
two λ-terms equal when there is a chain of reductions linking them. To capture this
we extend of term sequents with a new judgement form:

Definition 7.1 An equality term sequent is a tuple Γ ` t1 :: t2 where t1 and t2 are
terms.

We extend the syntax to include a binary atomic predicate ≈ and extend the term
sequent rules by the rules of Figure 8. More precisely.

Definition 7.2 • Define the terms t and sentences A of term sequent logic for λ-
calculus with equality as:

t ::= x, y, z, . . . | (t1·t2) | (λx.t)

A ::= t1 t2 | t1 ≈ t2 | A1 ∧ A2 | A1⇒ A2 | ¬A | ∀x.A

• Write Γ ` t1 :−∗ t2 when there are terms s1, . . . , sn such that s1≡t1, sn≡t2 and
for every si either Γ ` si :− si+1 or Γ ` si+1 :− si. 4

Thus, :−∗ is the transitive-symmetric closure of :−.

4 ≡ is syntactic identity up to α-conversion (Definition 2.1).

15

Gabbay and Gabbay

Γ ` t1 :−∗ t2

Γ ` t1 :: t2
(E) :−∗ defined in

Definition 7.2
Γ ` s1 :: t Γ ` t :: s2

Γ ` s1 :: s2
(CutE)

Γ ` s1 :: t1 Γ ` t2 :: s2

Γ, t1 ≈ t2 ` s1 :: s2
(≈L)

Γ ` t1 :: t2 Γ ` t2 :: t3 . . . Γ ` tn :: tn+1

Γ ` t1 ≈ tn+1,∆
(≈R)

Fig. 8: Rules for λ-equality

• The derivable sequents of term sequent logic with equality are inductively de-
fined by the rules in Figures 1, 2 and 8.

Theorem 7.3 If x does not occur in either argument position of in (any part of) the
sentence A then Γ ` A[x/t],∆ implies Γ, t ≈ s ` A[x/s],∆.

Proof. By induction on the derivation and the fact Γ, t ≈ s ` t :: s is derivable.
For the atomic case suppose that Γ ` A[x/t],∆ is derived by (≈R):

Π1
Γ ` t :: t1 . . .

Πn
Γ ` tn :: tn+1

Γ ` t ≈ tn+1,∆
(≈R)

then we apply (≈L) to the leftmost premise and weaken the remaining ones to
obtain the following derivation:

Γ′ ` s :: t
Π′1

Γ′ ` t :: t1 . . .
Π′n

Γ′ ` tn :: tn+1

Γ ` t ≈ tn+1,∆
(≈R)

Where Γ′ is Γ, s ≈ t and Π′i is obtained from Πi by weakening Γ throughout to Γ′.
The inductive cases are straightforward. 2

Lemma 7.4 If Γ ` t1 :: t2 is derivable then it is derivable without (CutE).

Proof. We eliminate uppermost instances of (CutE) by induction on the lengths of
the segments of the derivations of its premises that contain equality term sequents.

For the atomic case the premises of (CutE) are derived by (E), and the reduction
is straightforward.

Π1
Γ ` s1 :−∗ t
Γ ` s1 :: t

(E)

Π2
Γ ` t :−∗ s2

Γ ` t :: s2
(E)

Γ ` s1 :: s2
(CutE)

7−→
Π1 Π2

Γ ` s1 :−∗ s2

Γ ` s1 :: s2
(E)

For the inductive case it is a simple matter to verify that (CutE) permutes with
(≈L). 2

An analogue of Lemma 5.10 is provable.

Lemma 7.5 Γ ` t1 :: t2 and Γ, t1 ≈ t2 ` s1 :: s2 imply Γ ` s1 :: s2

16

Gabbay and Gabbay

Proof. By induction on the derivation that Γ, t1 ≈ t2 ` s1 :: s2. If the final
rule application is (≈L) introducing t1 ≈ t2 then the result follows by (CutE) and
Lemma 7.4. 2

Theorem 7.6 Theorem 5.11, cut-elimination, extends to term sequent calculus with equal-
ity.

Proof. The proof proceeds similarly to that of Theorem 5.11. We consider here
only an extra atomic case involving ≈:

Π1
Γ ` t1 :: t2

Γ ` t1 ≈ t2,∆
(≈R)

Π2

Γ, t1 ≈ t2 ` t :: t′

Γ, t1 ≈ t2 ` t ≈ t′,∆
(≈R)

Γ ` ∆
(Cut)

7−→

Π1 Π2.... Theorem 7.5

Γ ` t :: t′

Γ ` t ≈ t′,∆
(≈R)

2

Theorem 7.7 ` t1 ≈ t2 if and only if t1=t2, where = is the transitive-symmetric closure
of�αβη.

Proof. By Theorem 7.6 we have that ` t1 ≈ t2 if and only if ` t1 :: t2. Also, by
Lemma 7.4 we have that ` t1 :: t2 if and only if ` t1 :−∗ t2. Finally by Theorem 3.6
we have that ` t1 :−∗ t2 if and only if t1=t2. 2

The reader will have noticed that the confluence of untyped λ-calculus has played
no direct role in the cut-elimination theorems of this paper. It is a matter of further
work to determine the exact relation between the existence of a confluent rewrite
system and the existence of a corresponding term-sequent system satisfying cut-
elimination.

We observe here that the relation seems to be one of proof search. The rule (E)

is not syntax directed, in fact it is a disguised cut rule. Should we wish to search
for a derivation of Γ ` t1 :: t2 we are faced with an undecidable task finding a
sequence of terms t1, s1, . . . , sn, t2 that witness Γ ` t1 :−∗ t2.

But given the confluence of λ-calculus and Theorem 3.6 our task, in the case of
empty Γ, is simplified to searching for a t such that ` t1 :− t and ` t2 :− t. Of
course, in the case of the untyped λ-calculus such a search is still undecidable, but
this may not be the case for interesting subsystems of the λ-calculus such as the
subsystem obtained by using the restricted rules of Definition 6.3. Further study is
required.

8 Conclusions

Related work.
Beeson’s λ-logic [2] has the sentences of first-order logic with equality, and

as term-language the λ-calculus. Our paper is in this spirit. In λ-logic there is
no proof-theory for the term language. This paper gives a proof-theory for the
λ-calculus with the advantage that consistency follows by purely proof-theoretic
means.

17

Gabbay and Gabbay

Rewriting combines computation with logic: computation is expressed by rewrites;
the logical judgement form is simply ‘s rewrites to t’. A literature of rewriting ex-
ists to prove confluence [1] which is comparable in richness and variety to that
on cut-elimination. Also properties comparable to those following cut-elimination
can be deduced from confluence. There are echoes of rewriting in our term logic
for the λ-calculus — asserts a rewrite — yet the judgement form ‘s rewrites to
t’ is weaker than that of a typical logic. Notably, rewrites cannot be made condi-
tional. Thus, cut-elimination for our system is a different and stronger result than
a confluence proof. Conditional rewriting strengthens the judgement form [9], but
‘if y reduces to λx.x then y·z reduces to z’ still cannot be expressed or derived; see
Derivation D7.

Deduction Modulo combines logical derivation with rewriting [6]. However,
rewrites are imposed globally (we fix the rewrites, then do deduction ‘modulo’
those rewrites). Rewrites cannot be hypothesised by a sequent or made condi-
tional. In term sequent logic, term sequents may be made conditional on complex
predicates in the logic, as illustrated by our example derivations.

Deduction modulo is concerned with this issue and has a vocabulary to express
the distinction: deduction modulo rewrite rules are computations, and term sequent
equality is deduction. Enriching deduction modulo with deduction-style rewrites
has been investigated [3]. This is known to be a non-trivial problem not yet fully
resolved. Thus, this research is more general than deduction modulo and should
be of interest to that community. However, term sequents apply to terms whereas
deduction modulo rewrites can rewrite terms to terms, and also rewrite predicates
to predicates. In that sense deduction modulo is more general than this research.

λ-prolog has λ-terms [11], which are typed. Terms are syntactically identified
up to αβη-equivalence and there is an equality up to αβη at every type. This is
different from our system, which distinguishes sentences and terms, uses untyped
terms, and does not syntactically identify terms up to αβη. Still, it may be possible
to make some connections.

The second author is known for studying variables and conditions on variables
[5]. We note that the conditions on uniform proof (Definition 6.3) have to do with
free variables. It is interesting to see conditions on free variables arise in this con-
text.

Future work.
The idea of term sequents is novel. There seems no obstacle to taking the idea

further. ‘Ordinary’ sentence sequents have been used in great variety to study
different logics; a benefit of term sequents may be that they can also be used in
great variety to study different kinds of equality on terms.

For example: Term sequent systems for integer and rational arithmetic will
be studied in future publications. Furthermore, a much more general enquiry is
possible to establish syntactic or semantic criteria on term sequent systems that
guarantee cut-elimination.

The prospect of applying logical techniques to a variety of term systems is an
interesting test of logical techniques: terms are not sentences; how far can we push
logical techniques before they break? Ultimately, this may inform our understand-

18

Gabbay and Gabbay

ing of ‘what is a logic?’ [7].
In this paper we have applied term sequents to build and study a model of

functional programming within first order logic. First order logic itself has a well-
known notion of computation given by uniform proof. The combination of the two
in term sequent logic for the λ-calculus described in our notion of uniform proof,
can be viewed as some kind of rewrite strategy — but currently we do not fully
understand it. Matters are complicated because, as we have mentioned before in
this paper, in term-sequents we can impose assumptions and thus, in effect, dy-
namically permit ‘extra rewrites’. It seems plausible that this could be the outline
of a new and powerful programming environment. We detect shades of rewrit-
ing logic in this [10] but we cannot comment further on any connections. Careful
further study of the system presented in this paper is justified.

References

[1] Franz Baader and Tobias Nipkow, Term rewriting and all that, Cambridge University Press,
Great Britain, 1998.

[2] Michael Beeson, Lambda logic, 2nd Int’l Joint Conf. on Automated Reasoning (IJCAR 2004),
LNCS, vol. 3097, Springer, 2004, pp. 460–474.

[3] Eric Deplagne and Claude Kirchner, Deduction versus computation: the case of induction, AISC
and Calculemus Joint International Conferences, Lecture Notes in Artificial Intelligence,
vol. 2385, Springer, July 2002, pp. 4–6.

[4] Murdoch J. Gabbay and Michael J. Gabbay, a-logic with arrows, Proceedings of WFLP, 2007,
pp. 47–63.

[5] Murdoch J. Gabbay and A. M. Pitts, A New Approach to Abstract Syntax with Variable Binding
(journal version), Formal Aspects of Computing 13 (2001), no. 3–5, 341–363.

[6] Benjamin Werner Gilles Dowek, Arithmetic as a theory modulo, RTA, 2005, pp. 423–437.
[7] Ian Hacking, What is logic?, The Journal of Philosophy 76 (1979), 285–319.
[8] Joshua S. Hodas and Dale Miller, Logic programming in a fragment of intuitionistic linear

logic, Proceedings 6th IEEE Annual Symp. on Logic in Computer Science, Amsterdam, The
Netherlands, 15–18 July 1991, IEEE Computer Society Press, New York, 1991, pp. 32–42.

[9] Stephane Kaplan and Jean-Pierre Jouannaud (eds.), Conditional term rewriting systems,
LNCS, vol. 308, Springer, July 1988.

[10] N. Marti-Oliet and J. Meseguer, Rewriting logic as a logical and semantic framework, ENTCS
(J. Meseguer, ed.), vol. 4, Elsevier Science Publishers, 2000.

[11] Dale Miller, A logic programming language with lambda-abstraction, function variables, and
simple unification, Extensions of Logic Programming 475 (1991), 253–281.

[12] Peter W. O’Hearn and David J. Pym, The logic of bunched implications, Bulletin of Symbolic
Logic 2 (1999), no. 5, 215–244.

19

http://www.gabbay.org.uk/papers.html#alwa
http://www.gabbay.org.uk/papers.html#newaas-jv
http://www.gabbay.org.uk/papers.html#newaas-jv

	Introduction
	Syntax of the -calculus
	Derivability
	Interreducivity and intersubstitutivity
	Cut elimination
	Height and grade of term sequents
	Rank and degree of sentence sequents
	Cut-elimination

	Uniform derivations
	-Equality
	Conclusions
	References

