
A Theory of Inductive Definitions

With α-equivalence:

Semantics, Implementation, Programming Language.

A PhD thesis by Murdoch J. Gabbay, 10 August 2000.

DPMMS and Trinity College,

Cambridge University, England.

2

This document was compiled from LATEX source on 10 August 2000.

Copies will be printed, bound, and submitted for the title of PhD in Math-

ematics from Cambridge University, England. Other copies will be passed

to those interested. Those interested are invited to write to me at Trinity

College, Cambridge, or e-mail m.j.gabbay@dpmms.cam.ac.uk.

I remind the reader that my examiners may well suggest corrections to

this document so it need not necessarily be the final version of my thesis. If

the reader is wondering, DPMMS stands for the “Department of Pure Maths

and Mathematical Statistics”.

Other work published on this field is [66] and [18]. See also the homepage

of Andrew Pitts, [68].

c© Copyright Murdoch J. Gabbay, August 2000.

FOR THE LAYMAN: If you are not a layman I would not read this; the same things

are said better in §1. Otherwise, and if you want to know what this pamphlet is about,

read on. When we calculate, the representation we choose for the objects we calculate

with makes a big difference. E.g. consider numbers; 1, 2, 3, Arithmetic using roman

numerals is much harder than in base ten. There are many other representations, all

good for different purposes; computers do base two better than base ten so microchips do

binary arithmetic.

Numbers are a powerful tool. Another such tool is language (imagine this thesis

without it). How do we represent sentences of a language? We can use a pen to write

just as we can use our fingers with base ten. How about computers? Current theories of

syntax on computers have problems. The reader might take the obvious inspiration from

word processors and suggest representing sentences as strings of ASCII characters, but

this is kludgy because it does not allow immediate access to the grammatical structure of

the sentence (just as roman numerals do not seem in practice to allow immediate access to

the arithmetic structure of numbers). There are many better representations, but all seem

to suffer from problems with what I shall call, without explanation ‘variable binding’.

I present a new theory which allows us to represent languages with variable binding.

In fact the presentation of the theory is 60 pages at most. The rest of this document tries

to show that it works.

So: why is this thesis interesting? Considering how much we humans use languages,

anything that lets computers (and us humans) manipulate them better is a Good Thing.

3

To Jim and Andrew,

and to Cambridge,

where anyone can learn anything.

4

Contents

Chapter I. Introduction 9

1. First words 10

2. Thanks 12

3. Aims and target group 12

4. FreshML, first pass 13

5. A brief resumé of . . . 21

5.1. . . . FM-logic 21

5.2. . . . FM-sets 22

6. Overview of thesis 23

Chapter II. Semantics: FM set theory 25

7. Introduction 26

8. ZFA set theory 26

8.1. Axioms of ZFA 26

8.2. Semantics of syntax in ZFA 32

9. Elementary FM set theory 34

9.1. Axioms of FM 34

9.2. Support and # 35

9.3. Calculating Supp for particular sets 37

9.4. The N-quantifier 40

9.5. Atom-abstraction 44

9.6. Abstraction sets 49

10. Datatypes in FM 56

10.1. Introduction 56

10.2. Initial algebras for binding signatures 61

10.3. Iteration 65

10.4. Induction 69

10.5. Adequacy 71

10.6. Taking Stock 75

10.7. Everything for free 76

11. Questions 82

11.1. Name-for-name substitution 82

11.2. Significance of ‘for free’ 83
5

6

11.3. Restricted set of permutations 84

11.4. FM and AC 85

11.5. Consistency of FM 86

12. Inductive reasoning in FM 89

12.1. The syntax of FMLtiny 89

12.2. Inductive reasoning on the syntax of FMLtiny 91

12.3. Typing of FMLtiny 93

12.4. Type uniqueness 94

12.5. What FM gives us 96

12.6. Evaluation of FMLtiny 96

13. More set theory 98

13.1. Advanced theory of Supp 98

13.2. Theory of finite sets 99

Chapter III. Implementation: Isabelle/FM 101

14. Introduction 102

15. Isabelle/ZFQA 105

15.1. Axioms and Constants of Isabelle/ZFQA 105

15.2. Discussion of Atm quine 107

15.3. Discussion of Pair def 111

15.4. Discussion of foundation 112

15.5. Further discussion of foundation 114

16. Isabelle/FM 119

16.1. The theory of Isabelle/FM 120

16.2. New BOTTOM 120

16.3. New Prelim 123

16.4. New Atm 123

16.5. New Newfor 123

16.6. New Perm 124

16.7. New NEW 128

16.8. New DISJ 129

16.9. New Abs 132

16.10. New ABST 135

16.11. The theory of finite sets 136

17. Automation and Perm 136

18. Alternative approaches 139

18.1. Meta-level types of atoms 139

18.2. Restrict permutation to types of atoms only 141

7

18.3. Extend permutation to function types 142

19. The λ-calculus in Isabelle 144

19.1. Term.ML 144

19.2. Discussion of Term.ML 148

19.3. Conclusion 153

20. Future work: Releasing Isabelle/FM as a tool 153

Chapter IV. Programming Language: FreshML 157

21. Introduction 158

22. Syntax 161

22.1. Definition 161

22.2. Discussion 165

23. Apartness judgements 167

23.1. Definition 167

23.2. Discussion 176

24. Typing Judgements 178

24.1. Definition 178

24.2. Discussion 185

25. Evaluation 186

26. Bisimulation and Contextual Equivalence 190

26.1. Basic Definitions 190

26.2. The Relation ⊳ctx 192

26.3. The Equivalence ≡se and the Relation ≤kl 194

26.4. The Relation ⊳ 195

26.5. The Relation ⊳◦ 200

26.6. Pause for Breath 202

26.7. The Relation ⊳∗ 203

27. Proof of ⊳◦=⊳∗ and hence ⊳◦ congruence 206

28. Proof of ⊳◦=⊳ctx 217

29. The Sanity Clause, proved 221

30. Questions 221

30.1. ML-style evaluation? 221

30.2. Combine typing and apartness? 222

30.3. Incorporate apartness into types? 222

30.4. Define # ‘co-inductively’? 223

31. FreshML and automation 223

Chapter V. Conclusions 227

8

32. Commentary on FM 228

32.1. FM’s great problem: inaccessible 228

32.2. Usefulness of FM 229

32.3. FM not panacea 230

33. Other approaches and the literature 231

33.1. De Bruijn 231

33.2. HOAS 233

33.3. Combinators 238

33.4. Name-carrying terms 238

33.5. McKinna and Pollack 240

33.6. Fiore, Plotkin and Turi 241

33.7. The axiomatic approach 242

34. Accomplishments of this thesis 243

35. Future work 244

List of Figures 245

Bibliography 247

Chapter I

Introduction

1. First words

This thesis is about inductive structures with α-conversion.

By ‘inductive structures’ I mean the whole ensemble of (co)inductively de-

fined sets1, datatypes, and (co)inductive reasoning on them.

Inductive structures are ubiquitous, part of the basic toolkit of modern com-

puter science. We see them in the abstract syntax of formal languages of all kinds,

models of computer circuits ([48], the gates plug circuits together to form new cir-

cuits just like term-formers plug terms together to form new terms), constructive

theories of finite sets (see [59, §2.9.2, p.58]), datatypes in programming languages,

lists, queues and natural numbers in mathematical theory, evaluation and tran-

sition relations in operational semantics, typing judgements on formal languages,

labelled transition systems in process algebras, theories of bisimulation, and so

on. Inductive structures have even been made the basis of an underlying universe

in CIC (the Calculus of Inductive Constructions, [9],[77]), with great success.

Why do we do this? Because it is useful. If we have an inductively defined

set we have a set with a well-defined inductive reasoning principle, one which

furthermore is easily generated on a computer in an automated manner. There

are many different flavours but the basic recipe is the same: structural induction,

pattern-matching, primitive recursion, recursion, coinduction, and so on.

Given this, is it not surprising that the world has continued turning while

datatypes of abstract syntax, and thus all inductively defined structures arising

from them, are not particularly amenable to inductive treatment? I discuss how

this is so in §4 below.

In this document I present a novel solution to the problem of abstract syntax

with variable binding. The solution, which I shall henceforth call ‘FM’, seems

to offer significant advantages in simplicity and power over currently existing tech-

nology.

Before I get into maths, I make a few general comments about this docu-

ment.

1. Provenance of the material. My thesis is the product of three years working with

Andrew Pitts [68] in the Computer Laboratory of Cambridge University. It is

divided into five parts of which Chapter I and Chapter V are the introduction

and conclusion. Chapter II, Chapter III and Chapter IV are devoted respectively

to the ‘semantics’, ‘implementation’ and ‘programming language’ of the title.

1When I write ‘sets’ I mean “sets or whatever fulfills the same function in the reader’s

favourite universe”.

1. First words 1.1 11

Pitts and I developed the material presented in Chapter II and

Chapter IV together, I was entirely on my own in Chapter III. Roughly

speaking, these three sections took me a year each.

2. Notation. I have typeset new definitions and other pertinent information in bold

font. Read this: To make it a little easier to find equations (some of which are

named, not numbered) I have labelled references to them with the page on which

the equation appears: (Fresh)35, (204)205. Similarly for footnotes and figures:

ft.211,
2 Fig.226.

I found LATEX3 had trouble typesetting references to lemmas, theorems and

the like. They were too long and caused line overruns. So I shortened them.

Thus R14.6 means ‘Remark 14.6’. Similarly ‘L’ means ‘Lemma’ as in L8.1.4, ‘T’

means ‘Theorem’ as in T21.9, ‘C’ means ‘Corollary’ as in C9.2.9, and ‘N’ means

‘Notation’ as in N9.2.8. ‘Fig.’, ‘p’ and ‘ft’ stand for ‘Figure’, ‘page’ and ‘footnote’

respectively.

All of theorems, corollaries, lemmas, remarks, and so on—for this paragraph

call them all ‘theorems’—are numbered consecutively within subsections as ‘Sec-

tion.Subsection.Theorem Number’; thus T3.14.15 is the fifteenth theorem of the

fourteenth subsection of section three. Sections are numbered consecutively not

within chapters. Before the first subsection of a section LATEX deems the subsec-

tion number to be zero (and if there is no subsection in a section, the subsection

number is zero throughout it). In this case the zero is dropped; thus T3.14 denotes

the fourteenth theorem of section three, which does not occur in a subsection.

3. Abuses of grammar and language.

Remark 1.1. I have used the ‘remark’ environment (e.g. R1.1) to number

important paragraphs so I can refer to them later. In this I may have abused

English, since my ‘remarks’ are not necessarily ‘asides’. In reflection of this grand

stature and to make scoping clear, I typeset a symbol at the end, like this: 3

4. Underlying universe. I shall mostly use sets and a little bit of category theory

to develop the ‘FM idea’—thus Chapter II introduces a set theory and interprets

datatypes of syntax with binding as initial algebras in the corresponding category

of sets. This is merely because I found the simplest presentation to be as sets

and I do want my presentation to be simple. No mathematical or ideological

commitment is implied. E.g. a dependently typed version of FM is an obvious

target for future work (§35).

2 Hello world.
3 Thank you to the designers of LATEX.

12 §3 3. Aims and target group

2. Thanks

The two heroes of the drama which has been my PhD studies are without doubt

Jim Roseblade and Andrew Pitts. Jim taught me ring theory as an undergraduate

and has been not only a gracious teacher and friend over the past seven years, but

also very useful. He put me in touch with Andrew Pitts. Without Jim, what the

reader has before them would most probably not exist. For that and a great deal

more, I thank him.

Andrew has been my teacher for the past three years, and he has been a good

one. I am a demanding student and I have imposed on him more than I had a

‘right’ to. He never complained, on the contrary, his attention has been positively

lavish. When I told him how I appreciated this he accepted the thanks but pointed

out that he is unusually interested in the material of this thesis and therefore gave

it particular attention. I think this need not change my gratitude in the slightest.

Other people who have taken significant time and trouble over me are: Martin

Hyland for getting me the PhD position and keeping my set theory honest. Larry

Paulson whose matter-of-fact willingness to help, when he could, has sometimes

verged on the surreal (Larry also sent me style and LATEX files which were useful

producing this document). Tobias Nipkow for a very pleasant and informative

correspondence including but not limited to Isabelle. John Harrison and Konrad

Slind for discussing HOL and theorem-proving systems with me. Randy Pollack

for our discussions on LEGO and my implementation. Tom Forster for discussing

set theory with me. All these people deserve respect for their knowledge, and I

thank them for sharing it with me. But they also displayed an interest for my

work which did as much good for my soul as the knowledge they imparted did for

this document. To these people and some others I have not named, thank you.

I would also like to thank—again—Andrew Pitts, Larry Paulson, Tobias Nip-

kow and Martin Hyland, this time for reading and commenting on sections of the

thesis. I have considered all and acted on nearly all their suggestions. I hope they

will not hold the difference against me.

3. Aims and target group

I have invented something new. Above all this document must be a thesis

presenting this novel work for a PhD degree, but I have tried also to accommodate

the following design aims:

1. I want to disseminate knowledge of my invention in the hope that people will use

it. I have tried to keep things readable.

4. FreshML, first pass §4 13

2. My target group is computer scientists, not necessarily theoretically inclined.

Thus I assume familiarity with functional programming languages, in particular

ML ([57], [54]). I do not assume knowledge of set theory4, category theory, or

any other underlying universe except where this is absolutely necessary.

3. Working against this is the fact that as a PhD thesis this document is expected

to include for future reference the details of proofs too malignant to inflict upon

the readerships of journals.

4. FreshML, first pass

This section tries to put the rest of the thesis in context by showing what the

general ideas and problems are, and informally describing the kind of solution FM

proposes.

In Chapter IV we design an ML-like programming language FreshML with fa-

cilities for handling datatypes of abstract syntax with variable binding.5 FreshML

is designed using FM set theory, described in Chapter II. Here I motivate both

by discussing the problems they address. Other solutions include de Bruijn in-

dices and Higher Order Abstract Syntax (HOAS) but a discussion of them would

disturb the flow of the development and has its own section §33.

Consider two datatypes:

datatype Nat = ZERO of unit

| SUCC of Nat;

datatype oNat = oZERO of unit

| oONE of unit

| oSUCC of oNat;

Observe that Nat and ONat have identical semantics N, the set of natural numbers.6

If their semantics are identical, what’s the difference between them? It lies in

the programs we can write, or put another way the functions we can define out

of them. For example it is a little harder to define λx .x + 1 on oNat than it is on

Nat:

4Beyond the basic idea of a set as a collection of objects axiomatised in some first-order

language. See [39] and [40].
5Note that FreshML is designed to be easy to prove things about, in particular T21.9. It

is not designed necessarily to be easy to program in. A real programming language (also called

‘FreshML’) is future work under development, see [66].
6 Of course the semantics of programming languages are far more complicated than that but

it is irrelevant here.

The reader may also prefer to think in terms of, say, categories rather than sets. This makes

no odds here, and since I shall go on to construct a set theory (Chapter II) I choose to think in

sets. There is some discussion of presheaf models of this work in [18, §6], I do not expand on

that work in this thesis.

14 4.2 4. FreshML, first pass

fun add1 x = SUCC(x);

fun oadd1 (oZERO()) = (oONE())

| oadd1 (oONE()) = (oSUCC(oZERO()))

| oadd1 (oSUCC x) = (oSUCC (oadd1 x));

On the other hand, it’s a little harder (barely) to define the predicate “is even”

on Nat:
fun iseven (ZERO()) = true

| iseven (SUCC(ZERO())) = false

| iseven (SUCC(SUCC(x))) = iseven(x);

fun oiseven (oZERO()) = true

| oiseven (oONE()) = false

| oiseven (oSUCC(x)) = oiseven(x);

When we design programs to manipulate datatypes our first design choice is the

datatype’s structure. A good one makes programs easy to write. A bad one can

make them almost impossible.

We now try to construct the syntax of the untyped λ-calculus.

Definition 4.2 (lam1). We declare in our informal language:

datatype lam1 = Var1 of Nat

| App1 of lam1 * lam1

| Lam1 of Nat * lam1;

So (semi-formal) typing rules for forming values are:

V:Nat

Var1(V):lam1

V1:lam1 V2:lam1

App1(V1,V2):lam1

V1:Nat V2:lam1

Lam1(V1,V2):lam1
.(1)

Can we define substitution subst1:lam1*Nat*lam1->lam1, which given argu-

ments t2,x,t1’ calculates the syntax obtained by substituting t2 for x in t1’?

fun subst1 (t,x,Var1(y)) = if x=y then t else (Var1 y)

| subst1 (t,x,App1(s1,s2)) = App1(subst1(t,x,s1),subst1(t,x,s2))

| subst1 (t,x,Lam1(y,s)) =

if (x=y) then Lam1(y,s) else UNKNOWN ;

The problem, and it is a familiar one, is variable capture. In the third clause

we cannot blindly replace every x in s by t because it may be that there are

occurrences of y in t that would be wrongly ‘captured’ by the outermost binder

Lam1(y,-). Let us consider an example of this in abstract terms:

[y/x](λy .x) 6= λy .y

So what is [y/x]λy .x? The traditional response is

“[y/x]λy .x is equal to λy ′.y where y ′ is any variable symbol that

isn’t equal to y .”

4. FreshML, first pass 4.3 15

This should give us pause for thought for two reasons. Firstly we’re having trouble

defining the substitution function on our datatype lam1. Maybe we somehow have

the wrong datatype. Secondly, do we really not care what y ′ is? If so evaluation

is nondeterministic.

We now abandon our pseudo-programming-language and consider just the

underlying semantics of the datatypes in question. As commented in ft.613 we

ignore the complexities of real programming languages and consider a very simple

semantics in sets. The semantics of lam1 is therefore a set which we shall write

lam1 = µX .Var1 of N | App1 of X × X | Lam1 of N × X .(2)

This is notation for the set built up using only the rules

x ∈ N

Var1(x) ∈ lam1

t1, t2 ∈ lam1

App1(t1, t2) ∈ lam1

x ∈ N, t ∈ lam1

Lam1(x , t) ∈ lam1
.(3)

Remark 4.3 (Choice of semantics). We have a fairly free choice for Var1,

App1 and Lam1 so long as they are injective and pairwise disjoint on the set-

universe, meaning that (for example) App1(x , y) 6= Lam1(u, t) for all sets x , y , u

and t . Reasonable choices would be Inl(−), Inr(Inl(−,−)) and Inr(Inr(−,−))

where λx .Inl(x) and λx .Inr(x) are left and right injection functions into set dis-

joint sum implemented perhaps as λx .(x , ∅) and λx .(x , {∅}). We go into no more

detail on the matter. We construct such sets in §10.2. 3

Remark 4.4. We now have two objects associated to a term t:lam1:

1. The syntax of the term itself, t, which for this document is an abstract

syntax tree in a computer or other external universe.

2. Its semantics in the set lam1, written [[t]] or just t.

There is a third object floating around which I shall call the denotation of t. We

build our datatypes to reflect in a formal framework entities taken from nature. In

the case of lam1 we are trying to capture the untyped λ-calculus, so the denotation

of Lam1(a,Var1(a)) is the function λa.a living “in nature”. 3

We shall adhere to the following convention:

Notation 4.5 (Syntax and Semantics). We use typewriter font for syn-

tax like lam1 and App1(Var1(a),Var1(a)). We write their set-theoretic seman-

tics/implementations [[lam1]] or lam1.

In summary, we have syntax written Lam1(a,Var(a)), semantics written

Lam1(a,Var1(a)), and denotation written λa.a.

Remark 4.6 (Terminology confusing). The standard terminology for these

three objects can be confusing. The denotational object containing λa.a and

16 4.7 4. FreshML, first pass

λa.λb.a, in other words the untyped λ-calculus, is routinely called “the syntax of

the untyped λ-calculus”. It is completely different from the syntax of terms of

the datatype lam1. To complete the confusion, the set lam1 is often referred to

as a “set of syntax”. But really the same situation exists with, say, the number

two, which exists as (at least) three things: arithmetic expression 2 (syntax), set

{∅, {∅}} (semantics), and the number 2 (denotation). 3

Remark 4.7 (Proper semantics). When we say we should quotient lam1 by

α-equivalence, we mean:

“The proper semantics for the syntax of the λ-calculus with variable

binding is (a set isomorphic to) lam1/=α, where lam1 is the set

constructed in (3)15 and =α is α-equivalence on it.”

3

The semantics of lam1 is not lam1/=α, it is lam1. This is one reason we have

trouble defining substitution on it. We need a datatype with semantics lam1/=α.

But also remember the example of Nat and oNat: it is certainly necessary that the

semantics of our datatype be isomorphic to lam1/=α, but in addition it must be

defined with an inductive structure that allows us to write the programs we wish

to write.

Many realisations of such datatypes exist in the literature, see §33. As

promised at the beginning of the section we concentrate on FreshML here.

The solution we propose is this: we introduce into the language a new ‘type of

atoms’ written Atm. It has no term-formers so all values of type Atm are variables

x. The intended semantics [[Atm]] is an infinite set of distinct symbols with no

internal structure which we shall usually write A. They are meant to represent

variable symbols but to avoid confusion with the variable symbols of the overlying

language we call them atoms. We let ourselves compare atoms for equality and

make Atm an equality type so we have the term-forming rule

x,y:Atm t1,t2:Atm*Atm-->T

if x=y then t1(x,y) else t2(x,y) :T
.

Now we introduce a type former “abstraction type of X” written [Atm]X. The

rule for forming terms of type [Atm]X is

a:Atm x:X

a.x:[Atm]X
.(4)

The intended semantics of a.t is “[[t]] with the atom [[a]] bound”, the intended

semantics of [Atm]X is “the set of a.t for a:Atm and t:X”. Whatever these really

are, we write them a.t and [A]X so that [[a.t]] = a.t and [[[Atm]X]] = [A]X .

4. FreshML, first pass 4.8 17

Consider what this means for the type [Atm]Atm. Terms of it are pairs (a,b)

written a.b. Their semantics are more subtle. Suppose a,b and c are variables

of type Atm representing pairwise distinct atoms in [[Atm]] , write them a, b and c.

Then a.a is supposed to be a with a bound, so it is equal to b.b and c.c. a.c is

c with a bound. Because a 6= c and b 6= c this is equal to b.c but not equal to

c.c. This behaviour is precisely that of λ-terms, where λa.a, λb.b and λc.c are

all equal up to α-equivalence, and distinct from λa.c and λb.c, which are equal.

Now consider another version of a datatype for the λ-calculus:

Definition 4.8 (lam2). We declare in our informal language:

datatype lam2 = Var2 of Atm

| App2 of lam2 * lam2

| Lam2 of [Atm]lam2;

(We shall repeat this rigorously in D10.3.4.) So (semi-formal) typing rules for

values of this type are

V:Atm

Var1(V):lam2

V1:lam2 V2:lam2

App1(V1,V2):lam2

V:[Atm]lam2

Lam2(V):lam2
.(5)

Remark 4.9 (Values of lam2). Comparing (1)14 and (5)17 we see the differ-

ence is in Lam1 and Lam2. It makes little difference to the syntax of the language:

values of type [Atm]lam2 are by (4)16 precisely a.V for V:lam2. The values of lam2

are in 1-1 correspondence with those of lam1, we just write Lam2(a.t) instead of

Lam1(a,t). The semantics are different. Equalities like a.a = b.b mean that lam2

‘quotients itself’ by α-equivalence as it is built (cf. D10.3.4). 3

Remark 4.10 (Sanity of semantics). Since the semantics of Lam2(a.a) and

Lam2(b.b) are equal we expect them to be contextually equivalent. Our language

is unformalised so we cannot pursue this question further here. We return to it in

Chapter IV and in particular T21.9. 3

Instead, let us consider some examples of how we can use the apparatus we

have already assembled to write some programs.

fun eval2 (Lam2(t’)) = Lam2(t’)

| eval2 (App2(t1,t2)) =

case (eval2(t1)) of Lam2(s’) => eval2(subst2(t2,s’));

val eval2 = fn : lam2->lam2

Here variables of abstraction type have names tagged with a ’ for easy identifica-

tion. This code says

1. An abstraction Lam2(t’) evaluates to itself.

18 4.11 4. FreshML, first pass

2. To evaluate App2(t1,t2), evaluate t1. If it does not evaluate to an abstrac-

tion Lam2(s’) raise an exception. If it does, substitute t2 for the distin-

guished bound variable of s’ and proceed with evaluation.

So subst2:lam2*[Atm]lam2->lam2 should have semantics a function that substitutes

a term for the distinguished bound atom of an atom-abstracted term.

Recall the typing of subst1 as lam1*Nat*lam1. That function carries out

capture-avoiding substitution t for a in s. We could formulate a function

subst2’:lam2*Atm*lam2 along similar lines, but since we now have abstraction

types we might as well use them.

We can implement subst2 as follows:

Definition 4.11. We declare a function subst2 in our informal language as

follows:

fun subst2 (t,a.(Var2 b)) = Var2(b)

| subst2 (t,a.(Var2 a)) = t

| subst2 (t,a.(App2 s1 s2)) = App2(subst2(t,a,s1),subst2(t,a,s2))

| subst2 (t,a.(Lam2 b.s)) = Lam2(b.subst2(t,a,s));

val subst2 = fn : lam2*[Atm]lam2 -> lam2

This declaration brings us to the question of patterns of abstraction type.

They are of the form

p ::= x | Con~p | a.p.

It is usual to only allow linear patterns (patterns such that each variable symbol

x appears at most once) so as not to make all types equality types by the back

door, e.g. consider this false polymorphic declaration:

FALSE fun eqfun (x,x) => true

| eqfun (x,y) => false;

We now relax this restriction and admit nonlinear patterns on the condition that

the nonlinear variables are typed as Atm. Since Atm is intended to be an equality

type is this not a problem.

Remark 4.12 (Freshness). We also place a ‘freshness’ or ‘newness’ con-

dition on the a in the pattern a.p. We can think of it as meaning

“When inventing a name for a bound atom, we may as well choose

a completely fresh one. So when we pattern-match some atom-

abstraction against a.p we can assume a is not free in anything else

in the context at the time we choose it.”

3

4. FreshML, first pass 4.13 19

This is reminiscent of Barendregt’s ‘variable convention’, see [1]. He is working

in ZF and instructs the reader to assume that names of bound and free names

of variables are distinct. The idea there being, as here, that “we might as well”.

However, the slogan above is more than just a convention because it occurs in

the rigorous context of a new set theory. We make the idea of “choose a fresh

atom” rigorous via the Nquantifier in §9.4. See also R12.3.2, which restates R4.12

rigorously. We shall also see a mechanism allowing programmers to explicitly insist

that an atom be chosen fresh in FM (fresh a. t , see C9.6.7) and later in FreshML

(fresh a in t , see §22.1).7

We can now read subst2 as follows: the name of the variable for which to

substitute t is passed to subst2 bound and therefore nameless. The pattern-

matching at abstraction types in each clause in the definition of subst2 creates a

new name a for this bound variable. Then the clauses read:

1. The ‘freshness’ condition (R4.12) means that a and b can be assumed

nonequal, so return Var2(b).

2. If a is the variable under Var2, output t.

3. Substitution distributes over application.

4. Choose an entirely new name for the other bound variable b, take the

resulting inner term t and substitute in it for a as shown.

Compare lam2, subst2 and eval2 above with the corresponding definitions

term, subst bound and betaapply, see Fig.120, which are at the heart of Isabelle98-

1. term is a λ-calculus but implemented in de Bruijn style and not the näıve

datatype of lam1. It is also a typed and with some bells and whistles so the

comparison between it and lam1 or lam2 is not direct. Nevertheless, the definition

of subst bound requires three ancillary functions where subst2 is defined directly.

Remark 4.13 (FM sets). We are now ready to construct an underlying uni-

verse within which to give all this a rigorous semantics. We shall call it FM set

theory (cf. Item 4 on p.11). It contains a set of atoms A intended to model the

type of atoms Atm (see p.16) along with axioms to make sense of the abstraction

types [Atm]X (see p.16). And there will be more, such as a new term-former fresh

(C9.6.7) and a new quantifier N(D9.4.2). 3

Remark 4.14 (Name-carrying, nameless, nameful). I shall refer to a treat-

ment of syntax as ‘name-carrying’ when we deal with terms containing names

of bound variables. Thus for example in D4.2 we build a set of syntax lam1 of

7In our paper [66] Pitts and I discuss the design of an ML-like language similar to this one

in much more detail. There we use linear patterns and a system of ‘guards’ on them to achieve

more-or-less the same effect as the nonlinear patterns and freshness condition (R4.12) used here.

20 §4 4. FreshML, first pass

datatype term =
Const of string * typ

| Free of string * typ
| Var of indexname * typ
| Bound of int
| Abs of string*typ*term
| op $ of term*term;

...
(*increments a term’s non-local bound variables
required when moving a term within abstractions

inc is increment for bound variables
lev is level at which a bound variable is considered ’loose’*)

fun incr_bv (inc, lev, u as Bound i) = if i>=lev then Bound(i+inc) else u
| incr_bv (inc, lev, Abs(a,T,body)) =

Abs(a, T, incr_bv(inc,lev+1,body))
| incr_bv (inc, lev, f$t) =

incr_bv(inc,lev,f) $ incr_bv(inc,lev,t)
| incr_bv (inc, lev, u) = u;

fun incr_boundvars 0 t = t
| incr_boundvars inc t = incr_bv(inc,0,t);

...
(*Substitute arguments for loose bound variables.
Beta-reduction of arg(n-1)...arg0 into t replacing (Bound i) with (argi).
Note that for ((%x y. c) a b), the bound vars in c are x=1 and y=0

and the appropriate call is subst_bounds([b,a], c) .
Loose bound variables >=n are reduced by "n" to

compensate for the disappearance of lambdas.
*)
...
(*Special case: one argument*)
fun subst_bound (arg, t) : term =
let fun subst (t as Bound i, lev) =

if i<lev then t (*var is locally bound*)
else if i=lev then incr_boundvars lev arg

else Bound(i-1) (*loose: change it*)
| subst (Abs(a,T,body), lev) = Abs(a, T, subst(body,lev+1))
| subst (f$t, lev) = subst(f,lev) $ subst(t,lev)
| subst (t,lev) = t

in subst (t,0) end;

(*beta-reduce if possible, else form application*)
fun betapply (Abs(_,_,t), u) = subst_bound (u,t)
| betapply (f,u) = f$u;

Figure 1. Substitution in Isabelle98-1/Pure

the λ-calculus and interpret the abstraction type as Nat*X or Atm*X. That was

a name-carrying representation. Things can get a little ambiguous: we might

class lam1/=α (R4.7) as name-carrying even though terms are quotiented by α-

equivalence. The reason is that the structure of the quotient set forces us to take

representatives most of the time we want to prove anything useful.

Because FM datatypes of syntax are up to α-equivalence and do not contain

the names of bound variables, I shall call them ‘nameless’ or (of course) ‘FM’.

5. A brief resumé of . . . §5.1 21

This is accurate but misleading because FM allows us to give bound variables

names at will. We saw this for example in the last clause of D4.11 where we

invent the name b for a bound variable in an abstraction b.s. I shall call this

‘ZF-style’ or, following a suggestion by Pitts, ‘nameful’ reasoning. Thus the

slogan is

FM has nameless terms but permits nameful reasoning on them.

We continue this discussion after we develop FM, see R12.1.3 and later on R32.1.3.

The first concrete illustration of the slogan above is in R12.4.1.

Of course, the original nameful reasoning arises when the datatype is of (stan-

dard ZF) name-carrying terms like lam1 (D4.2), cf. §33.4. 3

5. A brief resumé of . . .

This section is not an overview of the thesis as such, for that see §6 below.

I have informally discussed what this thesis is about in §4. Now, in this section,

I try to give my reader some idea of what the rigorous mathematics to follow looks

like without said reader having to read said rigorous mathematics in full.8

5.1. . . . FM-logic. FM-logic is First Order predicate Logic (FOL)—not a

particular FOL though I assume my FOL to be classical and typed—augmented

to facilitate reasoning about syntax with binding. FM-logic is extended with one

or more types of atoms, write one of them A (D8.1.1) as an example. Types of

atoms are intended to represent variable symbols in the underlying syntax. We

may need many of them because the underlying language may have many types

of variables (type variables, term variables, even sets of constant symbols, etc, see

R16.1.2.).

FM-logic is also augmented with a quantifier N(D9.4.2), used as follows:

Na ∈ A. φ(a).

The reading of this is “for all/some new atom(s) a, φ(a) holds”. ‘All’ will be called

the ‘universal ’ reading of N. ‘Some’ will be called the ‘existential ’ reading

of N(T9.4.6, R9.4.10).

Note that ‘new’ and ‘fresh’ are used synonymously. So we shall also read the

formula above as “for all/some fresh atom(s)”.

By the universal reading we have that Ndistributes over conjunction. By the

existential reading we have that Ndistributes over disjunction. Combining the two

readings we have that Neven commutes with negation and therefore implication.

8Though that would be jolly nice.

22 §5.2 5. A brief resumé of . . .

Thus Ncommutes freely with the propositional part of FOL (C9.4.5, C9.4.11). N

interacts less trivially with the predicate part of FOL (R9.4.12).

Nseems to be unique to FM, I am not aware of it or anything like it in other

approaches to syntax with binding—the notable exception being Pollack’s work

(§33.5), in which the spirit of Nis very visible. It is mostly through Nthat FM

gains its particular ‘personality’. Nreally is astonishingly well-behaved, and as a

direct result of that the treatment of binding in FM comes out particularly clean

and easy.

The down-side to Nis that, being unique to FM, the reader will not recognise

it. Some people take this as a threat; “the simple things were discovered long

ago, so if I don’t recognise it, it’s complicated”. This is not the case, this thesis

is elementary mathematics. Technical in places, as it must be, but elementary

nonetheless.

5.2. . . . FM-sets. It is FM set theory constructed in Chapter II which gives

and FM-logic a rigorous semantics (as assertions about FM sets). In particular

of course Nhas a semantics which ‘justifies’ it and puts it in the context of a

variety of set-operators, including a permutation action (D8.1.8) and Supp and

(N9.2.4).

FM set theory has abstraction types [A]X (D9.6.1). They play the same

rôle as Plotkin’s δ (§33.6), X in de Bruijn, A × X in name-carrying (R4.14)

representations, and A → X or X → X in HOAS. [A]X has one term-former a.t

(D9.5.1) which takes a term t and atom a and creates a term t∗ = a.t which is

t with the name of the variable symbol a ‘bound’. It genuinely is bound in the

sense that, for one simple example a.a, b.b ∈ [A]A are identical sets. Throughout

this document we label abstractions with a star as in “x∗ = a.x ∈ [A]X ” (N9.5.3).

FM also provides a destructor @ (D9.5.14) which takes an abstraction t∗ and an

atom a and returns t∗@a, which is the term obtained by giving the bound variable

in t∗ the name a.

[A]X displays particularly nice algebraic properties similar to (and inherited

from) those of N. It commutes (up to set-isomorphism) with product X × Y ,

disjoint sum X + Y and function types X → Y (C9.6.9).

At this point everything comes together and we build quite an extensive theory

of datatypes-with-binding in FM sets (§10). The datatypes obtained have nameless

terms because of the way [A]X destroys the name of abstracted atoms. However,

we can obtain ordinary-looking inductive principles (e.g. (45)68) by using Nand

@ to choose new names for the bound atoms and thus manipulate these nameless

6. Overview of thesis §6 23

terms as if bound variables did have names. The good behaviour of Nmakes it

work.

Incidentally, we can move Nfrom FM-logic to FM-programming. We introduce

a term-former fresh used as fresh a. f (a) (C9.6.7). This invents a new name a

and uses it to calculate f (a). The choice of a is supposed to be arbitrary so we

insist for fresh a. f (a) to be well-formed that x be bound in f (x). Nand fresh

are connected by (32)52.

In the course of this thesis we actually devote a lot of attention to this nascent

programming language. An informal discussion is in §4. The various term-formers

are given rigorous (and sometimes technical) set-theoretic semantics throughout

Chapter II some of which I have just referenced. We also see many examples of

programs in §22.2 and §24.2. Of course all of Chapter IV is devoted to a particular

programming language FreshML.

I discuss inductive reasoning in FM in a relatively nontechnical but still rig-

orous way in §12.

6. Overview of thesis

I conclude Chapter I with an ‘overview of the thesis’. This section is nothing

more than a systematic annotated table of contents.

In §4 I discuss the problem this thesis addresses and introduce an informal

ML-like language designed to motivate the rest of the document. In §5 I resumé

a few of the more technical details of the solution. Finally, in this section, I give

an overview of the thesis, section by section.

In Chapter II I introduce FM set theory. It is based on an underlying set theory

ZFA (see §8) extended with an extra axiom (Fresh)35 which turns ZFA into FM

(see §9). In §10 I discuss datatypes of syntax with binding by constructing a

rigorous framework for declaring and building them in FM. In §11 I pause to

ask a few questions about why I did things in the way I did. In §12 I return

to the theme of datatypes and use §10 to build a datatype for a (deliberately)

trivial programming language. I then use it as a concrete example with which to

illustrate inductive reasoning on datatypes with binding. Finally in §13 I tie up a

few loose ends.

In Chapter III I discuss my Isabelle implementation of FM sets, Isabelle/FM.

In its gross structure Isabelle/FM mirrors FM set theory. It is constructed as

Isabelle/ZFQA (§15) extended with an extra axiom to full Isabelle/FM (§16).

The two sections are very different because the first concerns re-engineering an

existing theory, and the second constructing one from scratch. In §17 I discuss

one or two simple ideas which helped me control and efficiently use the Isabelle

24 §6 6. Overview of thesis

system. In §18 I discuss some ideas that did not work, and why. In §19 I discuss

one of my attempts to use Isabelle/FM to declare a real datatype with binding

and how well it worked. In §20 I summarise the snags remaining in Isabelle/FM

and explain how to eliminate them.

Chapter IV concerns the design of a programming language with datatype

declarations and associated term-formers and destructors allowing programming

with syntax with binding. A design of an industrial strength ready-to-use language

is not given, that is a topic of future research. Instead I introduce a much simpler

language FreshML, designed to be amenable to a rigorous theoretical analysis

and in particular a proof of a technical correctness result T21.9. The syntax is

defined in §22.1 and some reasonably nontrivial programs expressed using it in

§22.2. Typing judgements are developed in §23 and §24. A big-step evaluation

judgement is introduced in §25. This all lays the groundwork for §26, §27 and

§28, which between them define notions of operational and contextual equivalence

and prove them equal. Note that §26.6 gives an overview of the whole proof from

about one-third of the way in. After all that, it is easy in §29 to restate and prove

our correctness result. §30 records the reasons for some of my design decisions

and §31 discusses how all of Chapter IV could (and should) be automated using

Isabelle/FM.

Chapter V reviews some of the problems of FM (§32), compares FM to other

approaches to syntax with binding (§33), describes what I see as the main accom-

plishments of my thesis (§34), and concludes with a ‘to do’ list (§35).

Chapter II

Semantics: FM set theory

∀x , y . x ∈ y → y 6∈ A(Sets)

∀x , y 6∈ A. (∀z . z ∈ x ↔ z ∈ y) → x = y(Extensionality)

∀x . ∃y 6∈ A. ∀z . z ∈ y ↔ (z ∈ x ∧ φ) (y not free in φ)(Collection)

(∀x . (∀y ∈ x . [y/x]φ) → φ) → ∀x . φ(∈-Induction)

∀x . ∃z . ∀y . y ∈ z ↔ ∃x ′. (x ′ ∈ x ∧ y = F (x ′))(Replacement)

∀x , y . ∃z . x ∈ z ∧ y ∈ z(Pairset)

∀x . ∃y . ∀z . z ∈ y ↔ (∃w ∈ x . z ∈ w)(Union)

∀x . ∃y . ∀z . z ∈ y ↔ ∀w ∈ z . w ∈ x(Powerset)

∃x . ∃y . y ∈ x ∧ ∀y ∈ x . ∃w ∈ x . y ∈ w(Infinity)

A 6∈ powfin(A)(AtmInf)

F any function-class, φ any predicate defined in the logic of ZFA.

Figure 2. D8.1.1 - Axioms of ZFA

7. Introduction

FM set theory is similar to ZF set theory except in so far as it is different9,

which is not terribly far. It will in due course provide semantics for all the phe-

nomena discussed in §4. The underlying logic of FM set theory is identical to that

of ZFA, ZF set theory with atoms10, so we start with that.

8. ZFA set theory

8.1. Axioms of ZFA.

Definition 8.1.1 (ZFA). The underlying logic of ZFA is the usual first-order

logic with equality. Its signature contains just a binary predicate set membership

∈ and a constant symbol A. The axioms of ZFA are presented in Fig.226.

Notation 8.1.2 (∈-related elements). We may write “x is ∈-related to y”

meaning ‘x ∈ y’.

Of the rules in Fig.226 only (AtmInf)26 is unusual.

9The basis of mathematics is the tautology.
10See the index of [72] under ‘individuals’. If that work did not introduce atoms, it discusses

them as if they were new.

8.1. Axioms of ZFA 8.1.4 27

Notation 8.1.3. powfin(X) is the set of finite subsets of X defined by induc-

tion using two rules

∅ ∈ powfin(X) and U ∈ powfin(X) ∧ x ∈ X ⇒ U ∪ {x} ∈ powfin(X).

Throughout this document the meaning of “x is a finite set” is precisely “x ∈

powfin(x)”. This is in fact equivalent in ZFA and later in FM to “x is in bijective

correspondence with a subset of the natural numbers”, proof omitted. These issues

are important because FM set theory (§9) lacks AC (§11.4).

So (AtmInf)26 insists that A is not in its own own set of finite subsets.11

Otherwise the theory is standard.12 A clearly corresponds to the ‘type of atoms’

Atm mentioned on p.16. Here are some of its properties:

Lemma 8.1.4 (Atoms empty). Atoms a ∈ A have no ∈-related elements;

they are empty. There is a unique empty set which is not an atom. This is

the empty set ∅.

Proof. From the axioms of Fig.226.

Remark 8.1.5 (Atoms are sets). Some distinguish two classes in the under-

lying model: ‘Atoms’ which are elements of A, and ‘Sets’, which are everything

else. I disapprove. In this document all elements of the underlying model of a

set theory are ‘sets’, including elements of A which are also called ‘atoms’. Thus

atoms are sets. 3

Notation 8.1.6 (VZFA). Write VZFA for the ZFA universe over which vari-

ables in ZFA logic range when functions and predicates are given semantics on

a particular model. I shall write VZFA even when no such semantics is in sight

because the notation is useful. For example, we can now write “x ∈ VZFA” for “x

a set” and F : VZFA → VZFA for a function-class from ZFA sets to ZFA sets.13

11Why not use an axiom insisting that A ∼= N? It is inconsistent with FM. See §11.4.
12Readers not familiar with the methods of set theory may be disturbed by the use of function

symbols like powfin in (AtmInf)26, since in D8.1.1 we claimed the signature contains only ∈ and

A—no powfin. It is standard to introduce extra symbols so long as they are defined entirely in

terms of existing ones—so they are macros/syntactic sugar or at least conservative extensions to

the theory. We should be at least peripherally aware of the precise nature of the language we are

using so that we can prove metatheoretic results by induction on its structure, e.g. equivariance

in T8.1.10. Cf. R16.1.1.
13The point being e.g. in the second case that we actually mean a binary predicate PF (x , y)

in the logic of ZFA giving the graph of F , but if the reader can obtain a model of VZFA (somewhere

in some external universe), there really will be an associated external function F : VZFA → VZFA

arising from the predicate.

28 8.1.7 8. ZFA set theory

The following remark sketches some pure set theory which the reader can safely

ignore if he or she wishes.

Remark 8.1.7 (ZFA from the inside). Using the axioms of ZFA we can con-

struct a function-class V : Ordinals → VZFA such that

V (α) =
(⋃

γ∈α

pow(V (γ))
)
∪ A.

This is the cumulative hierarchy inside ZFA. We can also prove the proposition

∀x . ∃α ∈ Ordinals. x ∈ V (α).

Thus VZFA is provably equal to the class
⋃

V (α) constructed using ZFA on it and

in that sense we can say

“A model VZFA of ZFA looks like a standard cumulative hierarchy

from within ZFA.”

This hereby entitles the reader to do the same. V (α) is usually called the αth

stage of the cumulative hierarchy and written Vα. 3

We shall do a similar thing when we consider FM, see R9.1.7.

Definition 8.1.8 (ΣA). Call the set of permutations of A by the name

ΣA ∈ VZFA. We can extend the action to all sets in a standard way by distributing

π ∈ ΣA over the ∈-structure of sets. The principle of ∈-induction in ZFA ensures

this definition is sensible:

π·a = π(a) ∈ A a ∈ A as π on A

π·∅ = ∅

π·x =
{
π·y

∣
∣ y ∈ x

}
Distribute over ∈-structure otherwise.

(The second clause is subsumed by the third.) We shall see in due course that we

shall mostly be concerned with the case π a transposition (a b).

Notation 8.1.9. For ~x = (x1, . . . , xn) write π·~x for (π·x1, . . . , π·xn).

This is a fundamental property of ZFA:

Theorem 8.1.10 (Equivariance). For any φ in the logic of ZFA14 with free

variables ~x and for π ∈ ΣA (D8.1.8),

φ(~x) ⇐⇒ φ(π·~x)(6)

is provable in ZFA.

14 . . . or the logic of FM, see the comment in bold font below and T9.1.6.

8.1. Axioms of ZFA 8.1.11 29

Informal proof. From the construction of the permutation action D8.1.8

we can prove that π·A = A and for all u, v , u ∈ v ⇐⇒ π·u ∈ π·v . Because the

action is permutative and therefore injective we can prove π·u = π·v ⇐⇒ u = v .

This covers all the symbols of the language of ZFA that take arguments. We now

argue by induction on the syntax of the language that for each φ we could produce

a proof of (6)28.

This is a ‘meta-result’; it is not and cannot be proved in the logic of ZFA because

it works by induction on that logic’s syntax. Its validity is mostly independent of

the particular axioms of the set theory; it is a property of the language and will

still hold when we add an axiom and turn ZFA into FM (T9.1.6).

Notation 8.1.11. For a predicate λ~x .φ(~x) : Vn
ZFA → booleans write π·φ for

the predicate λ~x .φ(π·~x) constructed syntactically as φ[π·xi/xi]. In this notation

equivariance is

“(π·φ ⇐⇒ φ) is provable in ZFA for all φ.”(7)

Function-classes f are modelled by predicates φf describing the graph of f , so

that

φf (~x , y) ⇐⇒ (y = f (~x)).

The permutation action on φf translates into an action on (the graph of) the

function as follows (f is unary for simplicity):

(8) f = λx , y .φf (x , y)
π

7−→ λx , y .φf (π·x , π·y)
def
= π·f

that is, (π·f)(π·x) = π·(f (x)).

By equivariance (T8.1.10) φf (x , y) ⇐⇒ φf (π·x , π·y) and so we have

π·f = f .(9)

We can combine (9)29 with (8)29 to obtain:

Lemma 8.1.12 (Equivariance of functions). For a function symbol F with

arguments ~x defined in the language of ZFA and introduced into its theory the

discussion above tells us π commutes with F:

π·(F (~x)) = F (π·~x).(10)

30 8.1.13 8. ZFA set theory

If F is parameterised15 this becomes

π·(F~z (~x)) = Fπ·~z (π·~x).(11)

We call this equivariance of functions.

Proof. Rewriting (8)29 with ~x ′ = π−1·~x gives us

(π·f)(~x ′) = π·f (π−1·~x ′).

We now apply (9)29, take σ = π−1 and obtain the result (10)29 for σ.

This situation arises rather frequently because we often introduce defined func-

tion symbols into the theory (i.e. ∅, powfin, ∩,
⋃

, and so on).

Remark 8.1.13 (Commutativity results). A plethora of commutativity or

equivariance results for function-classes (and predicates) come from L8.1.12. In

the last clause the predicate φ has free variables at most x .

π·(Inl(x)) = Inl(π·x) π·(Inr(x)) = Inr(π·x)

π·(x , y) = (π·x , π·y) π·∅ = ∅

π·(powfin(x)) = powfin(π·x) π·
{
x ∈ X

∣
∣ φ(x)

}
=

{
x ∈ π·X

∣
∣ φ(x)

}
.

For any binary predicate R (such as ∈, = or later #, see N9.2.4),

x R y ⇐⇒ (a b)·x R (a b)·y .(12)

Furthermore, because (a b)·(a b)·x = x

x R (a b)·y ⇐⇒ (a b)·x R y .(13)

3

These results are extremely useful for proofs by direct calculation, e.g. L13.1.1.

In Isabelle/FM and Isabelle/ZFQA almost all proofs are by direct calculation and

these results are at the core of the development. See R16.6.3.

Now one mark of good mathematics is when the same result reappears in

different contexts. We have discussed function-classes, but permutation acts on

VZFA and on function-sets within it. This action agrees with class-action, as we

now show.

Notation 8.1.14. For x ∈ VZFA a set we say x is equivariant when ∀π ∈

ΣA. π·x = x (cf. N9.2.8).

15Parameters are often left implicit, so in theory there is scope for error applying this result.

In practice this seems not to be a problem. For example ⊳
∗ (D26.7.1) has quite a complicated

definition but it is crystal clear (at least to me, I hope the reader will agree) that it is not

parameterised.

8.1. Axioms of ZFA 8.1.15 31

Lemma 8.1.15. For f ∈ VZFA a function-set, π ∈ ΣA acts on it as a set

(D8.1.8). Then π·f is itself a function-set and

(π·f)x = π−1(f (π·x)) or equivalently f (x) = (π·f)(π·x).(14)

In the case that f is equivariant (N8.1.14) this simplifies to a ‘commutativity

property’

π·(f (x)) = f (π·x)

—just as for function-classes.

Proof. I could write both a concrete and an abstract proof. I favour the

first because it shows what really happens to the sets and the second to show the

higher truth of the result. Both points of view are important. I hope the reader

will excuse me if I include both. In future I shall not.

1 • One way of doing it. The standard implementation of f is its graph

f =
{
(x , y)

∣
∣ y = f (x)

}
.

The π action on sets distributes over ∈ and maps to another graph

π·f =
{
(π·x , π·y)

∣
∣ y = f (x)

}
.

When we unpack this (writing x ′ = π−1.x) we obtain

(π·f)x ′ = π·(f (π−1.x ′)).

Here it is not necessarily the case that π·f = f any more than π·x = x for sets

in general but if f is equivariant (N8.1.14) then

π·(f (x)) = f (π·x).

2 • Another way of doing it. The discussion above depended on the implementa-

tion of f as a graph and is in that sense not a general result. Another argument

is more attractive and more general. We consider only unary functions for sim-

plicity. Let φ be a predicate in the language of ZFA

φ(f , x , y) = “f is a unary function” ∧ f (x) = y .

Suppose for some f , x , y , φ is true. Equivariance tells us that

φ(π·f , π·x , π·y) = “π·f is a function” ∧ (π·f)(π·x) = π·y .

So permutation acts16 on a set-function f such that

(π·f)x = π(f (π−1x)).

16Independently of the particular implementation of functions in the set-theory.

32 §8.2 8. ZFA set theory

If it happens that f is equivariant as a set this becomes

π·(f (x)) = f (π·x).

8.2. Semantics of syntax in ZFA.

Remark 8.2.1 (Visualise permutation). By R8.1.7 we can picture sets as

trees whose leaves are labelled with x ∈ A ∪ {∅}. ΣA acts on sets by acting

on the labels A ∪ {∅} (where π·∅ = ∅). 3

Recall the set lam1 constructed somewhat informally in (3)15. It gave seman-

tics to the datatype lam1 (D4.2) representing λ-terms. We did not have A then.

It is convenient to reimplement using it.

Definition 8.2.2 (lam3). We declare in our informal language:

datatype lam3 = Var3 of Atm

| App3 of lam3 * lam3

| Lam3 of Atm * lam3;

Definition 8.2.3 (lam3). A semantics for this datatype, the set of syntax

for the datatype lam3, is the set lam3 built up using the rules

x ∈ A

Var3(x) ∈ lam3

t1, t2 ∈ lam3

App3(t1, t2) ∈ lam3

x ∈ A, t ∈ lam3

Lam3(x , t) ∈ lam3
.

Notation 8.2.4 (Semantic terms). 1. We call a term t:X a syntactic

term or term and X a type.

2. We call a set in its semantics t ∈ X a term or semantic term and X a

set of syntax.

So lam3 is a set of syntax for the λ-calculus not up to α-equivalence.

We can take Var3, App3 and Lam3 to be Inl(−), Inr(Inl(−)) and

Inr(Inr(−)) (cf. R4.3).

Recall from R4.4 that a term t is assumed to be an abstract syntax tree. Using

R8.2.1 to imagine sets as trees, Var3 etc. bolt their arguments together with

unique ∈-structure that emulate the syntactic labels on the nodes of t. Variable

names, i.e. atoms, occur on the leaves of both set and abstract syntax trees. The

permutation action on semantic terms relabels these leaves, just as it does in the

abstract syntax. The commutativity results of R8.1.13 prove this rigorously.

However, the permutation action acts on all sets, whether they represent ab-

stract syntax or not. Thus we have a general theory of ‘renaming variable names in

sets’ independent of any particular syntax and crucially, not defined by induction

8.2. Semantics of syntax in ZFA 8.2.5 33

on the terms of a particular datatype. Any theorems we prove about permutation

immediately become theorems about abstract syntax—whatever the datatype.

Now consider α-equivalence on the set of syntax lam3. Here are three notions

of variable-renaming for elements t of lam3, where a, a ′ ∈ A:

[a ′/a]t capture-avoiding substitution of a ′ for all free occurrences of a in t .

{a ′/a}t textual substitution of a ′ for all free occurrences of a in t .

(a ′ a)·t interchange of all occurrences (be they free, bound, or binding) of a and a ′

in t .

The third version may be unfamiliar but it is more basic than the other two for

two reasons:

1. We need not know which constructors of lam3 are binders to define it.

2. Nevertheless we can use it to define α-conversion, as the following result

shows (cf. [22, p 36], which uses {a ′/a}(−) in place of (a ′ a)·(−) for the

same purpose).

Theorem 8.2.5. Recall that α-conversion, =α, is usually defined as the least

congruence on Λ that identifies Lam3(a, t) with Lam3(a ′, [a ′/a]t). Then =α

coincides with the binary relation ∼ on lam3 inductively generated by the following

rules:

Var3(a) ∼ Var3(a)
t1 ∼ t ′1 t2 ∼ t ′2

App3(t1, t2) ∼ App3(t ′1, t
′
2)

(c a)·t ∼ (c b)·t ′

Lam3(a, t) ∼ Lam3(b, t ′)

if c does not

occur in t , t ′.
(15)

Proof. It is not hard to see that (b a)·(−) preserves =α and hence that =α

is closed under the axioms and rules defining ∼. Therefore ∼ is contained in =α.

We prove the converse by showing ∼ is a congruence relating Lam3(a, t) to

Lam3(b, [b/a]t ′). This follows from two facts: if c does not occur in t then

(c a)·t ∼ [c/a]t , and the permutation action (a1 a2)·(−) preserves ∼ (by an ap-

propriate case of R8.1.13).

We see ∼ redefined in a different context (using N) in D26.3.1.

We can define ‘permute variable names’ on a particular datatype or the set-

universe using ∈-induction. In T8.2.5 we defined α-equivalence on a particular

datatype. Can we translate this too on the set-universe?

Remark 8.2.6 (Synthetic). We call a translation of a syntactic concept to the

semantic universe ‘synthetic’. So permutation is a synthetic notion of renaming

of variables. In §9 below we shall define synthetic notions of “free variable symbols

34 §9.1 9. Elementary FM set theory

of a set”, “α-equivalence of two sets”, “variable-symbol abstraction in a set”, “pick

a fresh variable name”, and so on.

The advantage of a synthetic version of a notion is that we can prove results

about it which will hold for all its concrete realisations on particular datatypes.

This is nice in theory, useful in practice, and wonderful in automation. 3

9. Elementary FM set theory

9.1. Axioms of FM. Till now our set of permutations has been ΣA (D8.1.8).

We now concentrate on a restricted permutation set FA:

Definition 9.1.1 (FA). Write FA for the subgroup of ΣA (D8.1.8) generated

by the transpositions (a b), for a, b ∈ A. Of course FA inherits the ΣA action

on the universe.

Definition 9.1.2 (Φ). Consider Φ(U , x) as defined in Fig.335. For U ⊆ A

we read Φ(U , x) as “U supports x”.

We can read the meaning of this definition as

“If U ⊆ A and x is any set then “U supports x” when for all per-

mutations π ∈ FA, if π fixes U pointwise then π fixes x .”

Remark 9.1.3 (Finite Support). So (Fresh)35 asserts that sets have at least

one finite set supporting them. The slogan is:

All sets are of finite support.

We call this the finite support property of FM. 3

ZFA does not have the finite support property. A subset of A which is neither

finite nor cofinite does not have finite support. We do not discuss this further, but

the reader is referred to L9.4.3. There we show that such subsets do not exist in

FM. They cannot, (Fresh)35 outlaws them.

An obvious question is why we cut down to FA from ΣA when we define

support. FA is much easier to work with and it makes no difference in the end,

see §11.3.

Remark 9.1.4 (Reformulate Φ). Since FA is generated by transpositions we

can reformulate Φ as

Φ(U , x) ⇐⇒ ∀a, b ∈ A \ U . (a b)·x = x .

3

Note that Φ(A, x). Does this mean that all sets are trivially finitely supported?

No, because A is infinite by (AtmInf)26. But we now add precisely this as an axiom

(Fresh)35. This turns ZFA into FM.

9.1. Axioms of FM 9.1.5 35

∀x . ∃U ∈ powfin(A). Φ(U , x)(Fresh)

where

Φ(U , x)
def
= ∀π ∈ FA.

(

∀u ∈ U . π·u = u
)

=⇒ π·x = x .(16)

An alternative form of Φ (see R9.1.4) is

Φ(U , x) ⇐⇒ ∀a, b ∈ A \ U . (a b)·x = x .

Figure 3. D9.1.5 - Axioms of FM

Definition 9.1.5 (FM set theory). We described ZFA in §8.1 and axioma-

tised it in Fig.226. FM is the extension of ZFA by one axiom (Fresh)35 given in

Fig.335.

Theorem 9.1.6 (Equivariance of FM). The language of FM is identical to

that of ZFA and all equivariance results (e.g. T8.1.10 and L8.1.12) remain valid.

Remark 9.1.7 (FM from inside). As we did for ZFA in R8.1.7 we can build

a function-class V : Ordinals → VFM taking α to the αth stage of the cumulative

hierarchy Vα, this time in VFM. We can also prove in FM that VFM =
⋃

Vα. This

entitles the reader to imagine a model VFM of FM to be a standard cumulative

hierarchy, at least while we reason inside FM. As in R8.1.7 I shall use the notation

VFM even when no such model is in sight, for notational convenience.

In §11.5 we shall do something more subtle. We shall take a particular VZFA

and build a cumulative hierarchy inside it, using a slightly different powerset

function than pow (see L11.5.11 and surrounding text). This hierarchy will not

be the whole universe VZFA, nor is it a model of ZFA—but it is a model of FM.

That will prove relative consistency of FM wrt ZFA. 3

9.2. Support and #. R9.1.3 states that all sets in VFM have finite support.

In fact they have a unique smallest supporting set:

Theorem 9.2.1 (Support). For x ∈ VFM there is a unique smallest (finite)

set Supp(x) ∈ powfinA such that Φ(Supp(x), x) (see (16)35 in Fig.335), which we

call the support of x .

Proof. By (Fresh)35 some finite X ⊆ A such that Φ(X , x) exists. By L9.2.2

below, Supp(x) is the smallest set below X such that Φ(Supp(x), x).

36 9.2.3 9. Elementary FM set theory

Lemma 9.2.2 (Infimum property of finite supporting sets).

∀U ,V ∈ powfin(A). Φ(U , x) ∧ Φ(V , x) =⇒ Φ(U ∩ V , x).

Proof. In this proof x is understood so we write Φ(X , x) as Φ(X). We

need only consider transpositions (a b) because they generate FA. We show for

a, b 6∈ U ∩ V that (a b)·x = x . There are various cases to consider.

1. Suppose a 6∈ U ∧ b 6∈ U . By assumption, (a b)·x = x .

2. Suppose a 6∈ V ∧ b 6∈ V . By assumption, (a b)·x = x .

3. Suppose a 6∈ U ∧ b 6∈ V . Since U and V are finite and by (AtmInf)26 A is

not, we can pick some c ∈ A such that c /∈ U and c /∈ V and a 6= c 6= b.

By previous cases we know that (c a)·x = x and (c b)·x = x , and so that

(a b)·x = (a b)·(c b)·x
(17)36
= (c b)·(a c)·x = x ,

as required.

4. Suppose a 6∈ V ∧ b 6∈ U . Similar to the previous case.

The proof above uses the following elementary technical lemma about trans-

position actions:

Lemma 9.2.3 (Technical Lemma). For all a, b, c, d ∈ A,

(a b)·(c d) = (c d)·((c d)·a (c d)·b).(17)

Similarly,

(a b)·(c d) = ((a b)·c (a b)·d)·(c d).(18)

Proof. Omitted.

This is the terribly important Isabelle/ZFQA result Perm commute, see §16.6.

Notation 9.2.4 (Support and Apartness). By T9.2.1 we can construct a

function-class

Supp : VFM −→ powfin(A)

x 7−→ Supp(x).

We read Supp(x) as “the support of x”. In addition we write

a#x
def
= a 6∈ Supp(x)

and say “a is apart from x”. These judgements will collectively be called “apart-

ness judgements”.17

17cf. D23.1.6 where we build a syntactic approximation to this relation. There we shall

sometimes find it convenient to write apartness judgements x#a instead of a#x .

9.2. Support and # 9.2.5 37

The following is a trivial corollary of (AtmInf)26 (A infinite) and the construc-

tion of Supp:

Corollary 9.2.5. For all sets x there is a cofinite A ⊆ A such that for all

a ∈ A, a 6∈ Supp(x).

Having introduced these function/predicate-classes we can immediately de-

duce:

Lemma 9.2.6. By L8.1.12 we extend R8.1.13 with

(a b)·Supp(X) = Supp((a b)·X) and n#x ⇐⇒ (a b)·n#(a b)·x .

Lemma 9.2.7 (Properties of #). 1. If a, b#x then (a b)·x = x .

2. If a#x and ¬(b#x) then (a b)·x 6= x .

3. If (a b)·x 6= x then at least one of ¬(a#x) or ¬(b#x).

Proof. 1. Supp(x) supports x ; Φ(Supp(x), x). When we unpack the

definition of Φ in D9.1.2 we obtain the desired result.

2. By L9.2.6 above if b ∈ Supp(x) and a 6∈ Supp(x) then certainly

Supp((a b)·x) 6= Supp(x)—and so (a b)·x 6= x .

3. Contrapositive of Item 1.

Notation 9.2.8 (Equivariant sets). We say X is an equivariant set when

Supp(X) = ∅, or put another way when a#X for all a ∈ A.

This notion of equivariance coincides precisely with that of N8.1.14:

Corollary 9.2.9. A set x is equivariant if and only if for all π ∈ FA, π·x = x .

In particular this holds if and only if for all a, b ∈ A, (a b)·x = x .

Proof. We unfold the definition of Φ(∅, x) in D9.1.2 and use the fact that FA

is generated by transpositions.

Remark 9.2.10. Supp is a synthetic (R8.2.6) version of “free variable sym-

bols of” and a#x is a synthetic version of “not in the free variables of”; a 6∈ FV(x).

We work through the details in (19)39 and state it as a general result in L10.7.7.

3

9.3. Calculating Supp for particular sets. It is useful to calculate Supp

for specific sets. Recall the reformulation of Φ in R9.1.4 as

∀a, b 6∈ U . (a b)·x = x .

(We implicitly type a, b, c,n, . . . as atoms in A.)

Recall also from §9.2 that Supp(x) is the unique smallest set such that

Φ(Supp(x), x). So the following proof-methods suggest themselves:

38 9.3.1 9. Elementary FM set theory

Remark 9.3.1 (Two proof methods). • From minimality of Supp, if

Φ(V , x) for V ∈ powfin(A) then Supp(x) ⊆ (V). To show therefore that

a 6∈ Supp(x) we need only exhibit V ∈ powfin(A) such that a 6∈ V and for

all b, b ′ 6∈ V , (b b ′)·x = x .

• From Item 3 of L9.2.7 if (a b)·x 6= x then either a or b is in the support of

x . Therefore, to show a ∈ Supp(x) it suffices to exhibit some b 6∈ Supp(x)

such that (a b)·x 6= x .

3

We can now calculate Supp(U) for U ∈ powfin(A).

Lemma 9.3.2.

U ∈ powfin(A) =⇒ Supp(U) = U .

Proof. Clearly Φ(U ,U) so by the first proof-method of R9.3.1 Supp(U) ⊆

U . Now for the reverse inclusion. Suppose a ∈ U , b 6∈ U . Then b 6∈ Supp(U) ⊆

U and clearly (a b)·U 6= U . Hence by the second proof-method U ⊆ Supp(U).

As an immediate corollary we have

Corollary 9.3.3.

Supp(Supp(x)) = Supp(x) and Supp({a}) = Supp(a).

Now suppose f : Vn
FM → VFM is a function-class defined in the language of FM.

Then equivariance (L8.1.12) tells us that

(a b)·f (x1, . . . , xn) = f ((a b)·x1, . . . , (a b)·xn).

Suppose Φ(V , xi) for all xi . The above commutativity result then implies that

Φ(V , f (~x)). By the first proof-method we have

Lemma 9.3.4 (No increase of support).

Supp(f (x1, . . . , xn)) ⊆
⋃

xi

Supp(xi).

In the case n = 1 this simplifies to

Supp(f (x)) ⊆ Supp(x).

We can read this as “support cannot increase”. Beware! If g is a function-set

it need not be equivariant. In this case the appropriate result is Supp(g(x)) ⊆

Supp(g) ∪ Supp(x). We can see this holds by taking f to be application f =

λg , x .g(x) in L9.3.4.

The relation between support and an injective function-class is of particular

interest because semantics of term-formers for datatypes are of this type.

9.3. Calculating Supp for particular sets 9.3.5 39

Lemma 9.3.5 (Conservation of Support). Let f be a function-class as in

L9.3.4 which is also injective. Then

Supp(f (x1, . . . , xn)) =
⋃

xi

Supp(xi).

Proof. We consider n = 1 only, the general case is similar. Write x for x1.

By L9.3.4 Supp(f (x)) ⊆ Supp(x).

For Supp(x) ⊆ Supp(f (x)) we use the second proof-method of R9.3.1. If

Supp(x) = ∅ then Supp(x) ⊆ Supp(f (x)). So suppose we have a ∈ Supp(x).

Pick some b 6∈ Supp(x). Clearly

Supp(x) 6= (b a)·Supp(x)
L9.2.6
= Supp((b a)·x)

and so

x 6= (b a)·x
f injective

=⇒ f (x) 6= (b a)·f (x).

Recall that b 6∈ Supp(x) and Supp(f (x)) ⊆ Supp(x). So b 6∈ Supp(f (x)). By

the second proof-method above we obtain a ∈ Supp(f (x)). We have proved

a ∈ Supp(x) =⇒ a ∈ Supp(f (x)),

and this gives us the reverse inclusion as required.

If f is not injective anything can happen.18 E.g. take f = λx .∅ so

Supp(f (x)) = ∅ by L9.3.2.

Lemma 9.3.6 (Supp of atoms). For a ∈ A, Supp(a) = {a}. In particular

for a, b ∈ A, b#a ⇐⇒ b 6= a.

Proof. For the first part combine L9.3.5 and L9.3.2 with f = λx . {x}. For

the second, unfold the definition of # (N9.2.4).

At the end of §9.2 I claimed that Supp provided a synthetic version of the

‘free variables of’ function FV on syntax. We have only built the semantics lam3

for lam3 so let us try it out. Using the lemmas above we can prove by induction on

the structure of semantic terms in lam3 that the support of t ∈ lam3 is precisely

the set of atoms appearing in it.

Supp(Var3(a)) = {a} Supp(App3(t1, t2)) = Supp(t1) ∪ Supp(t2)

Supp(Lam3(a, t)) = {a} ∪ Supp(t)
(19)

The only problem seems to be with the last fact. Surely it should read

Supp(t) \ {a}? No, this is correct. In Lam3(a,t), a is free in a syntactic sense;

Lam3(a,Var3(a)) and Lam3(b,Var3(b)) are not equal. We may define equivalence

18Within the limits set by L9.3.4.

40 9.3.7 9. Elementary FM set theory

relations that equate them and functions that satisfy f(Lam3(a,t))=f(t)-{a}, and

we may write f as FV, but that is a different matter.

Remark 9.3.7 (Cynicism). The cynical reader may be inclined to ask “so

what’s the use, seeing as the free-variables function is technically correct but not

the one we’re interested in?”. The answer is that FM set theory will continue to

deliver the goods (culminating in D10.7.2 and the subsequent development), but

we have to advance one step at a time. 3

Supp has many more nice properties. Some of them are discussed in §13.

9.4. The N-quantifier. We now show that FM has a notion of “φ(~z , a) where

a is fresh for ~z” which we have already seen in our construction of α-equivalence

∼ on lam3 in (15)33.

Notation 9.4.1 (Cofiniteness). X ⊆ Y is a cofinite subset of Y when Y \

X is finite. For a set X we define pow cof(X) to be the set of cofinite subsets of

X .

This is the ‘freshness’ quantifier promised at the beginning of this subsection.

We shall call it the Nquantifier, read “the new quantifier”.

Definition 9.4.2 (The Nquantifier). For φ a predicate in the logic of FM,

we define

Na. φ
def
=

{
a ∈ A

∣
∣ φ

}
∈ pow cof(A).(20)

We can read this definition as

“[New atom a, φ(a)] holds precisely when the set of a ∈ A such that

φ(a) holds is cofinite.”

The reader is warned that he or she will see Na. φ(a) written not only as “for

new a, φ(a)” but also as “for fresh a, φ(a)”. We use the two terminologies

synonymously.

This new quantifier is of great significance and has very nice logical properties.

The following technical lemma is the key to developing them. It generalises L9.3.2.

Lemma 9.4.3 (Support of subsets of A). If U ⊆ A then either

U = Supp(U) or U = A \ Supp(U).

Note that in view of the fact that Supp(U) is always finite (N9.2.4), the two cases

above occur when U is finite and cofinite respectively.

Proof. By N9.2.4 we know U ⊆ A has some Supp(U) such that

Φ(Supp(U),U) (D9.1.2). Suppose

a ∈ A \ Supp(U) and b ∈ Supp(U).

9.4. The N-quantifier 9.4.4 41

Since Supp((a b)·U)
L9.2.6
= (a b)·Supp(U) 6= Supp(U) we know (a b)·U 6= U .

So

either a ∈ U ∧ b 6∈ U or a 6∈ U ∧ b ∈ U .

We treat only the first alternative, the proof for the second is similar. So a ∈

A \ Supp(U), a ∈ U and b 6∈ U . Since a ∈ U we can use equivariance of ∈ to

deduce

∀a ′ ∈ A \ Supp(U). (a ′ a)·a ∈ (a ′ a)·U .

Now a, a ′ 6∈ Supp(U) so (a ′ a)·U = U (L9.2.7). It follows that this equation is

∀a ′ ∈ A \ Supp(U). a ′ ∈ U i.e. A \ Supp(U) ⊆ U .

We can rewrite this to U ⊆ Supp(U). Since Φ(U ,U) and Supp(U) is the

smallest set such that Φ(U ,Supp(U)) it follows that U = Supp(U).

The proof proceeds from the other alternative in a similar manner and shows

that Supp(U) = A \ U .

Corollary 9.4.4 (Subsets of A). All subsets of A are either finite or cofinite.

If U ⊆ A is finite then Supp(U) = U . If U ⊆ A is cofinite then Supp(U) = A\U .

Proof. By L9.4.3, if U ⊆ A then U = Supp(U) or A \ U = Supp(U). But

Supp(U) is always finite (N9.2.4) so the result follows.

Corollary 9.4.5 (Nwell-behaved). By C9.4.4 pow cofA is an ultrafilter and

so Na. φ commutes with conjunction, disjunction, implication and negation, as

well as preserving top ⊤ and bottom ⊥.

Thus Na. ⊤ = ⊤, Na. (¬φ) ⇐⇒ ¬ Na. φ, and so on.

Theorem 9.4.6. For any formula φ and list of distinct variables ~x in the

language of FM, consider the following formulae.

∀a ∈ A. a#~x =⇒ φ(21)

Na. φ(22)

∃a ∈ A. a#~x ∧ φ(23)

where a#~x is shorthand for
∧

x∈~x a#x . Then in FM,

(21)41 =⇒ (22)41 =⇒ (23)41,

and if the free variables of φ are contained in {~x , a}, then (23)41 =⇒ (21)41 so

the three formulae are provably equivalent in FM.

42 9.4.7 9. Elementary FM set theory

Proof. (21)41 =⇒ (22)41 is clear, since φ is finite, so ~x is finite, so

⋃ {
Supp(x)

∣
∣ x ∈ ~x

}
is finite.

It follows given (21)41 that
{
a ∈ A

∣
∣ φ

}
is in pow cof(A) as required.

(22)41 =⇒ (23)41 is even easier. A is infinite by (AtmInf)26. By as-

sumption
{
a ∈ A

∣
∣ φ

}
is in pow cof(A) and by the finite support property so is

{
a ∈ A

∣
∣ a#~x

}
. So (23)41 follows.

(23)41 =⇒ (21)41 follows by equivariance (T9.1.6). Suppose

∃a ∈ A. a#~x ∧ φ(a, ~x).

Let a be the a in question.19 Then equivariance dictates that

∀a ′ ∈ A. a ′#~x =⇒ a ′#~x ∧ φ(a ′, ~x),

which simplifies to (21)41 as required.

Remark 9.4.7 (. . . furthermore). Using the notation of T9.4.6, we can add

dummy variable dependencies ~z , so for φ(~x , a) a predicate with free variables

included in ~x , a,

∀a ∈ A. a#~x ∧ a#~z =⇒ φ(24)

Na. φ(25)

∃a ∈ A. a#~x ∧ a#~z ∧ φ(26)

3

The following result is central. It wraps up the characteristic ∀-∃ duality of N

in a convenient package.

Lemma 9.4.8 (Pick a new a). In particular, when faced by Na. φ(~x , a), if we

fix ~x we can pick a new a ′ apart from ~x and also any other finite collection ~z and

we know

(Na. φ(~x , a)) ⇐⇒ φ(~x , a ′).

Note that in the rest of this document I may not bother to give a and a ′ distinct

names.

Proof. Suppose Na. φ(~x , a). We can universally expand Nusing (24)42. By

(AtmInf)26 A is infinite and by T9.2.1 the combined supports of ~x ,~z are finite.

19 We can’t add a constant a and appropriate axiom to the signature because that would

destroy equivariance. So we add a variable symbol and appropriate axiom instead. Actually, this

point is rather important.

9.4. The N-quantifier 9.4.9 43

Recall from N9.2.4 that a#x ⇐⇒ a 6∈ Supp(x), so we can choose some particular

a ′#~x ,~z and state

φ(~x , a ′)

as required.

Conversely, if we know φ(~x , a ′) and a ′#~x (and possibly some other ~z), we may

use the existential expansions of N, (26)42 or (23)41, to deduce Na. φ(~x , a).

Corollary 9.4.9. If φ does not depend on a then
(

Na. φ
)

⇐⇒ φ.

Proof. A corollary of L9.4.8.

Remark 9.4.10. Thanks to T9.4.6, R9.4.7 and L9.4.8 we can read Nas

• “For all new a, . . . ” ,

• “For all but finitely many a, . . . ”, or

• “For some new a, . . . ”

as we please, where ‘new’ means “is apart from (N9.2.4) the free variables of the

formula in the scope of the quantifier”. Note that in due course the terminol-

ogy ‘fresh’ will also appear in a slightly different context, and can be considered

synonymous with ‘new’. 3

Corollary 9.4.11 (Nbetter-behaved). Continuing C9.4.5, it follows from

the discussion above that Ncan extend its scope arbitrarily over conjunction and

disjunction, etc (so long as no variables are accidentally captured, of course). E.g.

ψ(~x) ∧ Na. φ(~x , a) ⇐⇒ Na.
(
ψ(~x) ∧ φ(~x , a)

)

ψ(~x) ∨ Na. φ(~x , a) ⇐⇒ Na.
(
ψ(~x) ∨ φ(~x , a)

)
.

Here I have (used R9.4.7 and) bulked out the variable dependencies of φ and ψ to

some common superset ~x .

Remark 9.4.12 (Binding under N). Consider a predicate

Na. ∀x . φ(a, x).

Note that inside φ we cannot assume a#x because x is not free in the scope of

the N-quantifier. Similarly for ∃. T9.4.6 does give us formulae like

∀x . Na. φ(a, x) ⇐⇒ Na. ∀x . a#x → φ(a, x)

∃x . Na. φ(a, x) ⇐⇒ Na. ∃x . a#x ∧ φ(a, x).

3

44 9.4.13 9. Elementary FM set theory

Recall the terminology ‘synthetic’ introduced in R8.2.6. The N-quantifier is a

synthetic “pick a fresh variable name”. Unlike Supp and permutation this concept

does not correspond to any universally agreed entity in the world of syntax and

programming languages. Its effects are usually obtained through something like a

choice function (cf. §11.4) for pow cof(A):

f : pow cof(A) → A such that ∀U . f (U) ∈ U .(NOT IN FM)

Note that f is not a function-set in FM, that is the point! It can live quite happily

in ZFA (§8) acting perhaps on the model of FM in ZFA (HFS, see §11.5).

We can use Nto construct a synthetic version of α-equivalence. For sets x , y

let (x , y) denote the pair-set. We observe in passing that by L8.1.12 we know

(a b)·(x , y) = ((a b)·x , (a b)·y).

Definition 9.4.13 (∼). Let ∼ be the following relation-class on A × FM:

(a, x) ∼ (b, y)
def
⇔ Nc. (c a)·x = (c b)·y .

Lemma 9.4.14. ∼ is reflexive, symmetric and transitive and hence an equiv-

alence relation.

Proof. Reflexivity and symmetry are trivial. For transitivity, suppose

(a, x) ∼ (b, y) ∼ (c, z). Then
(

Nn. (n a)·x = (n b)·y
)

∧
(

Nn. (n b)·y = (n c)·z
)

.

C9.4.5 tells us that Ncommutes with conjunction so

Nn.
(
(n a)·x = (n b)·y = (n c)·z

)

and so (a, x) ∼ (c, z) as required.

We proved that ∼ coincides with traditional α-equivalence for lam3 in T8.2.5.

Now that we have N(15)33 is superseded by

Nc. (c a)·t ∼ (c b)·t ′

Lam3(a, t) ∼ Lam3(b, t ′)
.

9.5. Atom-abstraction. Recall the definition of ∼ in D9.4.13 and the asso-

ciated (standard) notation (x , y) for pairs.

Definition 9.5.1 (A-abstraction). For a ∈ A write the ∼-equivalence class

of (a, x) as a.x and call it the A-abstraction (read “atom-abstraction” or just

“abstraction”), of x by a. This defines a new function-class

A × VFM −→ VFM

a, x 7−→ a.x .

9.5. Atom-abstraction 9.5.2 45

Lemma 9.5.2. For a ∈ A and x any set, the class a.x is a set.

Proof. a.x is a subclass of

A ×
{
(b a)·x

∣
∣ b ∈ A

}
,

which is a set. By collection a.x is a set.

Notation 9.5.3 (Class of abstractions). Write AbsClass for the class of A-

abstractions, i.e. the sets satisfying ψ(x) where

ψ(x∗) = ∃a ∈ A, x . x∗ = a.x .

We shall usually name variable symbols intended to range over AbsClass

x∗, y∗, z∗, . . . unless we are thinking of them as functions f , see L9.5.4.

Lemma 9.5.4 (Abstractions functions). f ∈ AbsClass is a function-set.

Proof. It suffices to show that for all a ∈ A, if (a, x) ∼ (a, x ′) then x ′ =

x ′. Suppose for this paragraph we know this. Then know f is a function-class

with domain A ∈ VFM. Replacement tells us Codom(f) ∈ VFM and since f ⊆

Dom(f)×Codom(f) ∈ VFM, separation tells us f ∈ VFM and we have the result.

So suppose (a, x) ∼ (a, x ′). We unfold D9.4.13 and obtain

Nc. (c a)·x = (c a)·x ′.

By L9.4.8 we can choose c′#a, x , x ′ such that

(c′ a)·x = (c′ a)·x ′.

But of course permutations are bijections so x = x ′ as required.

Remark 9.5.5 (Understanding a.x). Together D9.4.13 and L9.5.4 allow us

to view an abstraction in two ways:

1. As a(n equivalence-class of) pair(s): “a.x is like (a, x) but with the identity

of a hidden.” This is reminiscent of ‘abstraction as information hiding’ like

that for abstract data types in [55]).

2. As a function: “a.x is a function that takes a variable name and substitutes

it in the ‘hole’ as appropriate.” This is reminiscent of HOAS (cf. §33.2).

3

We already know from L9.3.4 and L9.3.6 that Supp(a.x) ⊆ {a} ∪ Supp(x).

More is true:

Lemma 9.5.6 (Support destruction). For a ∈ A and x ∈ FM,

a#a.x .

46 9.5.7 9. Elementary FM set theory

Proof. By the technical result L9.5.7 that follows, this amounts to proving

Nb. (b a)·(a.x) = a.x .

We use L9.4.8 to pick b ′#a, x and use equivariance to simplify this to

(b ′.(b ′ a)·x) = a.x .

Unpack the definition of ∼ (D9.4.13). It now suffices to prove

Nc. (c b ′)·(b ′ a)·x = (c a)·x so by L9.4.8 we pick c′ such that

c′#a, b ′, x ∧ (c′ b ′)·(b ′ a)·x = (c′ a)·x .

c′#b ′, a, x amounts (L9.3.6) to c′ 6= b ′, a and c′#x . We can now apply L9.2.3 to

deduce

(c′ a) = (b ′ a)·((b ′ a)·c′ (b ′ a)·b ′) = (c′ b ′)·(b ′ a)

and hence obtain the result.

The following technical lemma, used in the preceding proof, adds one more

(rather useful) proof-method to the two described in R9.3.1. In the proofs of

L9.5.4 and L9.5.6 I used L9.4.8, we could do the same here but it seems nicer to

go back to T9.4.6 and bring out the ∀-∃ duality of Ndirectly:

Lemma 9.5.7 (Extra proof-method for #).

a#x ⇐⇒ Nb. (b a)·x = x

Proof. By (21)41 reduce RHS to ∀b#a, x . (b a)·x = x . Then LHS implies

RHS from Property 1 of L9.2.7.

By (23)41 reduce RHS to ∃b#a, x . (b a)·x = x . Then RHS implies LHS from

Property 3 of L9.2.7.

Remark 9.5.8 (Different development). In fact we can take L9.5.7 as the

definition of # and define Supp(x)
def
=

{
a ∈ A

∣
∣ ¬(a#x)

}
. We do this in Isa-

belle/FM, see §16.8 and R16.8.4). 3

Corollary 9.5.9 (Support of A-abstraction).

Supp(a.x) = Supp(x) \ {a}

Proof. By L9.5.6 and the comment which precedes it.

This answers R9.3.7:

9.5. Atom-abstraction 9.5.10 47

Remark 9.5.10 (Is Supp equal to FV?). Recall that we imagine a.x to be

“x with one bound variable”. C9.5.9 is a strong hint that we should imagine

Supp(x) to be “the free atoms (variables) of x”. We shall make this rigorous in

L10.7.7. 3

It is useful to have a more concrete characterisation of abstractions. The

following corresponds precisely to a result first found useful in Isabelle/FM (see

§16.9 and the discussion of Abs twiddle on p.134).

Lemma 9.5.11 (Concrete version of abstractions). Write

a.′x =
{
(b, (b a)·x)

∣
∣ b = a ∨ b#x

}
.(27)

Then a.′x = a.x .

Proof. Left-to-right inclusion. Observe that (a, x) ∈ a.x (reflexivity of ∼ in

L9.4.14). Now C9.5.9 tells us Supp(a.x) = Supp(x) \ {a} and combined with

L9.2.7 we know

b#x =⇒ (b a)·(a.x) = a.x .

(Repeated use of) R8.1.13 yields

(b, (b a)·x) = (b a)·(a, x) ∈ (b a)·a.x = a.x .

Therefore, for b = a and for b#x , (b, (b a)·x) ∈ a.x and therefore

a.′x ⊆ a.x .

Right-to-left inclusion and equality. Suppose (b, (b a)·x) ∈ a.′x for b = a ∨

b#x . We want to show (b, y) ∈ a.x , which amounts to showing that

Nc. (c a)·x = (c b)·(b a)·x .

Strip Nby choosing some c#a, x , b by L9.4.8. Now if b = a there is nothing to

prove because (a a)·x = x and we know as in the previous half of the proof that

(a, x) ∈ a.x . So we may safely assume b 6= a, which amounts by L9.3.6 to b#a,

and also b#x . Now (c b)·(b a)·x = (c a)·(c b) by (18)36. But c, b#x so by Item 1

of L9.2.7 we have (c b)·x = x . Therefore we must show

Nc. (c a)·x = (c a)·x .

This is trivial (case ⊤ of C9.4.5).

The following corresponds to Abs twiddle in Isabelle/FM, see R16.9.2 and the

preceding discussion starting p.134. It has a few useful corollaries:

Corollary 9.5.12 (Equality test). a.x = b.y precisely when [b#x or b = a]

and y = (b a)·x .

48 9.5.13 9. Elementary FM set theory

Corollary 9.5.13 (Domain of x∗ ∈ AbsClass). Let x∗ ∈ AbsClass be an ab-

straction. Then x∗ is a function-set with domain precisely A \ Supp(x∗).

Proof. By L9.5.4, x∗ is a function-set. By N9.5.3 x∗ = a.x for some a, x . By

L9.5.11 it is a partial function with domain precisely Supp(x) \ {a}, which by

C9.5.9 is equal to
{
n ∈ A

∣
∣ n#x∗

}
.

We can extract a new function-class from C9.5.13:

Definition 9.5.14 (Concretion). If f is an A-abstraction and b#f we write

f @b for the result of applying f as a function to b. We call this the “concretion

of f at b”.

Lemma 9.5.15 (Calculate @). (a.x)@b = (b a)·x for b 6∈ Supp(x) \ {a}.

Proof. Read directly off (27)47 in L9.5.11.

This lemma has a form of dual:

Lemma 9.5.16. For x∗ ∈ AbsClass (N9.5.3) an abstraction and a#x∗,

a.(x∗@a) = x∗.

Proof. Since x∗ ∈ AbsClass we know x∗ = b.y for some b, y . By C9.5.9,

Item 1 of L9.2.7, and L8.1.12 for abstraction, b.y = a.(a b)·y . So WLOG we can

take b = a. By L9.5.15 we know x∗@a = (a a)·y = y . This gives us the result.

This result has two useful corollaries:

Corollary 9.5.17. For x∗ ∈ AbsClass an abstraction and a ∈ A,

(∃x . x∗ = a.x) ⇐⇒ a#x∗.

Proof. For the R-L implication we can use L9.5.16 and take x = x∗@a.

Conversely we use L9.5.6 or the later C9.5.9.

Corollary 9.5.18. For x∗, y∗ ∈ AbsClass abstractions

(Nc. x∗@c = y∗@c) =⇒ x∗ = y∗.

Proof. Suppose Nc. x∗@c = y∗@c. Then

Nc. c.(x∗@c) = c.(y∗@c).

By L9.5.16 we have

Nc. x∗ = y∗

and therefore by C9.4.9 that x∗ = y∗ as required.20

20The reader might wonder what the Nquantifier is doing; we do not seem to morally use

it. But we do: it guarantees that c#x∗, y∗ so that the concretions x∗@c and y∗@c exist (D9.5.14

and C9.5.13).

9.6. Abstraction sets §9.6 49

It is clear from C9.5.9 that atom-abstraction is a synthetic version of the

abstraction term-former a.t first suggested in (4)16. Now, perhaps for the first

time, FM pays a convincing dividend. Concretion @ is clearly a synthetic version

of the destructor for the abstraction term-former in (4)16, call it @, and we can

work back to deduce a good typing rule for it. It would look something like this:

x’:[Atm]X a:Atm a#x’

x’@a:X
(28)

where a#x’ is a syntactic version of #. We need this condition so that x ′ = [[x’]]

is defined at a = [[a]] . So notice that our underlying set theory will mean that we

cannot concrete an abstraction at a if a occurs free in it (specifically see 9.5.17).

The underlying reason is that abstraction and concretion are implemented us-

ing permutations (b a) (D9.5.1 and L9.5.15) and not name-for-name substitution

[b/a]. Cf. §11.1.

It remains to construct the abstraction-set function-class corresponding to the

abstraction-type [Atm]X for which a.t was a term-former.

9.6. Abstraction sets.

Definition 9.6.1 (Abstraction sets). For a set X we define the abstraction

set or abstraction type of X to be

[A]X
def
=

{
a.x

∣
∣ a ∈ A ∧ x ∈ X ∧ a#X

}
.(29)

[A]X is intended to capture the idea of

“Elements x ∈ X with one distinguished abstracted (bound) atom

(variable name).”

We can use T9.4.6 and R9.4.12 to rewrite this definition as

[A]X =
{
x ′

∣
∣ Na. ∃x ∈ X . x ′ = a.x

}
.(30)

Looking at (4)16, the following false definition seems plausible:

[A]
′

X
def
=

{
a.x

∣
∣ a ∈ A ∧ x ∈ X

}
.(FALSE)

The problem is, we want [A]X to provide a semantics for the type [Atm]X and in

particular for the typing rules (4)16 and (28)49. Both [A]X and [A]
′

X satisfy the

former rule but only [A]X satisfies the latter. We provide a lemma for [A]X and

a counterexample for [A]
′

X .

Lemma 9.6.2 ([A](−) OK). [A](−) satisfies (28)49, i.e. for all X ,

∀x∗ ∈ [A]X , a ∈ A. a#x∗ =⇒ x∗@a ∈ X(31)

50 9.6.3 9. Elementary FM set theory

Proof. Suppose a ∈ A, x∗ ∈ [A]X and a#x∗. We use (30)49 to deduce that

for b#a, x∗,X and some y ∈ X , x∗ = b.y . Then by L9.5.15,

x∗@a = (b.y)@a = (a b)·y .

Now y ∈ X and a, b#X so

(a b)·y
equivariance, (12)30

∈ (a b)·X
Point 1, L9.2.7

= X .

Lemma 9.6.3 ([A]
′

(−) not OK). [A]
′

X is unsuitable to model [Atm]X because

it does not satisfy (31)49.

Proof. By counterexample. Take X = {a}. Then

[A]
′

{a} =
{
b.a

∣
∣ b ∈ A

}
.

C9.5.12 tells us this is a two-element set which we can informally write {a.a, b.a}.

Suppose b ∈ A and b#X = {a}. Then b 6= a and therefore b 6∈ X , but (a.a)@b =

b.

Incidentally, [A] {a} is (by C9.5.12 and writing informally) the singleton {b.a}.

Remark 9.6.4. These questions are academic because ‘normal’ types such as

Nat, Atm and lam3 have equivariant semantics for which [A]X and [A]
′

X coincide

because Supp(X) = ∅ in that case. In fact (4)16 is simplistic and valid only

in an equivariant typing system (i.e. such that the denotations of all types are

equivariant). With dependent types like (x:Atm)(x~=a) we must reconsider the

intro-rule. FM pays another dividend. 3

The following result is not needed in the subsequent development, but it ties

up the discussion of [A]X as a set quite nicely:

Theorem 9.6.5. For a set X and a#X ,

X ∼=
{
x∗ ∈ [A]X

∣
∣ a#x∗

}
.

Proof. The function λx∗ ∈ [A]X .x∗@a maps to X by L9.6.2. By construction

(see (29)49) λx ∈ X .(a.x) maps to [A]X . We use L9.5.15 and L9.5.16 to show

that together they are two halves of a bijection.

We conclude this section by analysing the function-sets out of [A]X . This will

be useful when we extend [A](−) to a functor on SetsFM (D10.1.1) in L10.1.5.

9.6. Abstraction sets 9.6.6 51

Theorem 9.6.6 (Functions out of abstraction sets). There is a surjection

onto functions f̄ : [A]X → Y from functions f : A×X → Y such that φ(f) where

φ is defined by

φ(f)
def
= Na. ∀x ∈ X . a#f (a, x).

In addition there is a bijection between equivariant (N9.2.8) f̄ : [A]X → Y and

equivariant f : A × X → Y such that φ(f).

Note that by T9.4.6 we can read φ(f) as

∀a ∈ A, x ∈ X . a#X =⇒ a#f (a, x).

Proof. To f : A × X → Y such that φ(f) we associate the function

f̄ : [A]X → Y ∪ {∅}

x∗ 7→ ιy . Na. y = f (a, x∗@a)

Here ι is a unique choice function that returns the unique x such that ψ(x) if

this exists and ∅ otherwise. See R11.4.3.

We must show that f̄ maps to Y , not just Y ∪{∅}, i.e. for all x∗ ∈ [A]X there

exists unique y such that Na. y = f (a, x∗@a).

Existence. Choose a#f , x∗ and take y = f (a, x∗@a). Observe from φ(f) we

know a#y . We must verify

Nb. y = f (b, x∗@b) equivalent by T9.4.6 to

∃b. (b#f , x∗, y) ∧ y = f (b, x∗@b),

So choose b = a.

Uniqueness. Suppose y , y ′ ∈ Y satisfy

(
Na. y = f (a, x∗@a)

)
∧

(
Na. y ′ = f (a, x∗@a)

)
.

By C9.4.5 Ndistributes over ∧ and so

Na. y = f (a, x∗@a) = y ′.

We can now use L9.4.8 to choose some appropriate a#y , f , y ′, and deduce y = y ′

as required.

Conversely, to f : [A]X → Y associate

f̂ : A × X → Y

(a, x) 7→ f (a.x).

52 9.6.7 9. Elementary FM set theory

For the surjection it suffices to show
¯̂
f = f . We know

¯̂
f (x∗) is that unique

y such that

Na. y = f̂ (a, x∗@a) ⇐⇒ Na. y = f (a.x∗@a)
L9.5.16
⇐⇒ y = f (x∗).

But then y = f (x∗) as required.

For the bijection, it suffices to show that f̄1 and f̂2 are equivariant if f1 and

f2 are, and that ˆ̄f = f . Equivariance follows by L9.3.4 (no increase of support).

Suppose now that f is equivariant. ˆ̄f (a, x) equals f̄ (a.x), which is that unique y

such that

Nb. y = f (b, (a.x)@b)
L9.5.15
⇐⇒ Nb. y = f (b, (b a)·x)

Use L9.4.8 to choose fresh b#f , a, x , y . Since Supp(f) = ∅, φ(f) implies that for

any a, a#f (a, x). Thus

f (a, x)
L9.2.7
= (b a)·f (a, x)

equivr . L8.1.12
= f (b, (b a)·x) = y ,

as required.

Corollary 9.6.7 (fresh). There is a surjection from partial functions

f : A −→ Y such that Na. a#f (a) to elements f̄ ∈ Y ,

and a bijection between equivariant f such that Na. a#f (a) and equivariant ele-

ments of Y .

When we write fresh a. f (a) we say this is a “legal use of fresh” to mean

that Na. a#f (a) (so fresh a. f (a) is well-defined).

We write f̄ as

fresh a. f (a).

Very usefully, fresh a. f (a) satisfies the following characteristic equality:21

(32) Na.
(

f (a) = fresh b. f (b)
)

or use L9.4.8 to pick new a ′, and f (a ′) = fresh b. f (b).

Proof. In T9.6.6 above set X = 1 = {∅} so A×X ∼= A, and model partiality

by taking Y = Y ′ + {∅}. The results follow by working out the implications of

this in the proof of T9.6.6.

We can read fresh a. f as

21 . . . given in two flavours. In Part 1 of the proof of C9.6.9 I explicitly convert the first

flavour into the second, see (33)54. Sometimes I favour the first, for complete rigour about what

a ′ is new for (everything free in the scope of the fresh/ Nbinder, at least), sometimes I prefer

the second, for convenience.

9.6. Abstraction sets 9.6.8 53

“Pick a new a and calculate f (a). It doesn’t matter which a we

choose because a#f (a).”

fresh is an object-level version of the meta-level N-quantifier. It shares many

of its nice properties. For example:

Lemma 9.6.8 (fresh well-behaved). For function-sets f : A → X and

g : A → Y ,

fresh a. (f a, ga) = (fresh a. f a, fresh a. ga)

fresh a. Inl(f a) = Inl(fresh a. f a)

fresh a. Inr(f a) = Inr(fresh a. f a)

In the case that X = A → B and Y = B → C,

fresh a. (f (a) ◦ g(a)) = (fresh a. f (a)) ◦ (fresh a. g(a))

Proof. Consider only the last case, the others are similar. By (32)52 we have

Na.
(

f (a) ◦ g(a) = fresh b. (f (b) ◦ g(b))
)

∧

Na.
(

f (a) = fresh b. f (b)) ∧ Na. (g(a) = fresh b. g(b)
)

.

Ndistributes over conjunction (C9.4.5) so this implies

Na.
(

fresh b. (f (b) ◦ g(b)) = f (a) ◦ g(a) = fresh b. f (b) ◦ fresh b. g(b)
)

Now we can convert Nto an existential quantifier and pick an appropriate new a

(L9.4.8). We then throw away the middle part of the equality and obtain just

fresh b. (f (b) ◦ g(b)) = fresh b. f (b) ◦ fresh b. g(b)

as required.

fresh has many more nice properties, we explore one other in L9.6.10.

[A]X is well-behaved too:

Corollary 9.6.9. [A](−) is remarkably well-behaved:

[A](X × Y) ∼= [A]X × [A]Y

[A](X + Y) ∼= [A]X + [A]Y

[A](X → Y) ∼= [A]X → [A]Y

Proof. In the first case the bijection is given by

F = fresh a. (a.πX (z∗@a), a.πY (z∗@a)) : [A](X × Y) −→ [A]X × [A]Y

G = fresh a. (a.(x∗@a, y∗@a)) : [A]X × [A]Y −→ [A](X × Y).

54 §9.6 9. Elementary FM set theory

(where πX and πY are projection functions from X ×Y to X and Y respectively).

The second case is similar. I omit the proofs and move on the the third bijection.

The fact that the third bijection exists is really very nice, let me seize the

moment and point out just how excellently the equational theory of FM turns

out. The bijection is given by

F : [A](X → Y) −→ ([A]X → [A]Y)

f∗ 7−→ λx∗ : [A]X .fresh a. [a.(f∗@a)(x∗@a)]

G : ([A]X → [A]Y) −→ [A](X → Y)

g 7−→ fresh a. [a.
(

λx : X .g(a.x)@a
)

].

We now prove that F (G(g)) = g and G(F (f∗)) = f∗. I shall do so in a very

equational style.

1 • We prove that F (G(g)) and g are extensionally equal, i.e. for all x∗ ∈ [A]X

LHS = F (G(g))(x∗) = g(x∗) = RHS ,

by expanding the definitions of F and G and simplifying. First we expand F and

G on the LHS:

LHS = fresh a. a.(G(g)@a)(x∗@a)

= fresh a. a.((
(

fresh b. b.
(
λx : X .g(b.x)@b

))

@a)(x∗@a))

We now apply (for demonstration purposes, the first flavour of) the characteristic

equality of fresh (32)52 twice, and deduce

(33) Na ′, b ′. fresh a. a.((
(

fresh b. b.
(
λx : X .g(b.x)@b

))

@a)(x∗@a)) =

a ′.((
(

b ′.
(
λx : X .g(b ′.x)@b

))

@a)(x∗@a ′))

We use L9.4.8 to choose new a ′, b ′ such that a ′#b ′ (and so a ′ 6= b ′ and b ′#a ′,

see L9.3.6), and also a ′, b ′#X , g , x∗ and indeed a ′, b ′ apart from anything else we

wish. We know

fresh a. a.((
(

fresh b. b.
(
λx : X .g(b.x)@b

))

@a)(x∗@a)) =

a ′.((
(

b ′.
(
λx : X .g(b ′.x)@b ′

))

@a ′)(x∗@a ′))

9.6. Abstraction sets §9.6 55

Now we have something we can simplify.
(

b ′.
(
λx : X .g(b ′.x)@b ′

))

@a ′

(n.x)@m=(n m)·x , L9.5.15
= (b ′ a ′)·λx : X .g(b ′.x)@b ′

equivariance, L8.1.12
= λx : (b ′ a ′)·X .((b ′ a ′)·g)(a ′.x)@a ′

a′,b′#X ,g, L9.2.7
= λx : X .g(a ′.x)@a ′.

So we can simplify the LHS as

a ′.((λx : X .g(a ′.x)@a ′)(x∗@a ′))

β-reduction
= a ′.(g(a ′.(x∗@a ′))@a ′))

a.(x∗@a)=x∗, L9.5.16
= a ′.

(
(g(x∗))@a ′

)

a.(x∗@a)=x∗, L9.5.16
= g(x∗),

so as required LHS = RHS .

2 • We prove that G(F (f∗)) = f∗. By C9.5.18 it suffices to show that for new c,

G(F (f∗))@c = f∗@c, that is,

Nc. ∀x ∈ X .
(

(GF (f∗)@c)(x) = (f∗@c)(x)
)

.

So let us use L9.4.8 to choose new c#f∗,X ,Y and anything else we want, and

let us pick some x ∈ X (note we choose x after c so we do not know c#x). We

want to prove

LHS = (GF (f∗)@c)(x) = (f∗@c)(x) = RHS .

As before we expand the LHS and obtain

LHS =

((fresh a. [a.
(

λx : X .
[(

λx∗ : [A]X .fresh b. [b.(f∗@b)(x∗@b)]
)

(a.x)
]
@a

)

])@c)(x)

Now there is an instructive complication. We might like to, as in the

previous case, eliminate fresh using (32)52 and L9.4.8 to replace a, b by a ′, b ′. We

can do so for a but not for b; it is under the scope of λx∗ :[A]X .stuff , which means

that for each different x∗ we would need to choose a different fresh b ′. Since x∗ is

not fixed within the λ-abstraction, we cannot pick a particular b ′. However, we

can eliminate fresha and β-reduce
[(

λx∗ :[A]X .fresh b. [b.(f∗@b)(x∗@b)]
)

(a ′.x)
]
,

and finally use L9.5.15 to obtain

LHS = ([a ′.
(

λx : X .[fresh b. b.(f∗@b)((b a ′)·x)]@a
)

]@c)(x).

56 9.6.10 10. Datatypes in FM

Now we can reduce (a ′.T)@c to (c a ′)·T using L9.5.15;

LHS = ((c a ′)·
(

λx : X .[fresh b. b.(f∗@b)((b a ′)·x)]@a
)

)(x).

and then pull the permutation in using equivariance L8.1.12. Bear in mind that

a ′, c#X , f∗ so by L9.2.7 (c a ′)·X = X and (c a ′)·f∗ = f∗. We obtain

LHS = (
(

λx : X .[fresh b. b.(f∗@b)((b c)·x)]@c
)

)(x).

We now β-reduce to obtain

LHS = (fresh b. b.(f∗@b)((b c)·x))@c.

Now we can eliminate freshb for b ′#c, x , f∗,X , . . . and simplify using L9.5.15 to

obtain

LHS = (b ′ c)·((f∗@b ′)((b ′ c)·x)).

We now use equivariance L8.1.12 and the fact that (b ′ c)·(b ′ c) = Id to obtain

LHS = (f∗@c)(x)) = RHS

as required.

We can encapsulate the result which is not true in the ‘instructive complica-

tion’ in case 2 of C9.6.9 above in a lemma extending L9.6.8:

Lemma 9.6.10 (fresh better-behaved). For f (a, ~x , y) and t(b, a, ~x) terms

with free variables contained in (the sets of pairwise distinct variables) a, y , ~x and

b, a, ~x (so in particular b is not in the free variables of f), we have

f (a, ~x , fresh b. (t(b, a, ~x))) = fresh b. f (a, ~x , t(b, a, ~x)).

Proof. By using (32)52 like in Case 1 of C9.6.9, details omitted.

L9.6.8 was not applicable before because t was of the form t(b, a, ~x , y) where y

occurred bound by λy in f . It is an important result although we do not apply it

much in this document. It is used in (52)69.

10. Datatypes in FM

10.1. Introduction. In this section we develop a framework for declaring a

class of datatypes with variable binding and constructing FM-sets of syntax for

them.

Henceforth we shall be less meticulous about N8.2.4 and may refer to “sets of

syntax” as “syntax”, to “semantic terms” as “terms”, etc.

The idea of datatypes as initial algebras goes back to [20]. It is a useful way

of thinking which is now standard. The set-theoretic universe VFM corresponds

10.1. Introduction 10.1.1 57

naturally to a category of FM-sets SetsFM defined below in D10.1.1. Since it is

convenient to develop datatypes in a category-theoretic context, we continue the

development of FM set theory treating VFM as a category SetsFM.

Recall the theory of categories C, see for example [43, §I, p.7] and [3, Vol

I,Def 1.2.1]. We write the collection of objects of C as Obj(C) and the collection

of arrows from X to Y as C(X ,Y).

Definition 10.1.1 (SetsFM). We introduce a category of FM-sets, writ-

ten SetsFM. Objects of SetsFM are the FM-sets VFM. The arrows from X to

Y are the set-functions f : X → Y ∈ VFM:

Obj(SetsFM) = VFM and SetsFM(X ,Y) =
{
f ∈ VFM

∣
∣ f : X → Y

}
.

We shall adhere to the convention of N4.5 of writing syntax blah and the

corresponding SetsFM-semantics as [[blah]] or blah. We also follow the convention

of naming variables of abstraction type with starred names as in x∗, or primed

names x’ in typewriter font.

Definition 10.1.2 (Basic types, strings, variables). We introduce a set of

basic type symbols written BTypeSymb,

BTypeSymb
def
= {U, N, A} ,

and a set of basic types written BType

BType
def
= {U, N, A} .

Here U = {∗} is a unit set with one element ∗ and U is intended to represent some

unit type with one element *. It is useful to define a function

β : BTypeSymb −→ BType

U, N, A 7−→ U, N, A respectively.
(34)

We introduce a set of strings str ∈ Strings, which we assume for the sake

of argument consist of ASCII text strings such as Var2 and Lam3. Finally, we

hypothesise an infinite collection of binding signature variables X ,Y ,Z , . . . ∈

BindVar.

Definition 10.1.3 (Binding signatures). The grammar of Fig.458 defines

Binding signatures.22

We have developed no theory yet, but here are a few binding signatures we

might like to write:

22The idea is from [17, §2, p.5].

58 10.1.4 10. Datatypes in FM

NX ::= nil | [A]nX x N | C x N

BX ::= nil | (str of NX) + BX .

n ∈ N,C ∈ BTypeSymb,X ∈ BindVar

Brackets may be dropped where convenient.

Figure 4. D10.1.3 - Binding Signatures

1. The untyped λ-calculus not up to α-equivalence.

MX
def
= Var of A + App of X x X + Lam of A x X .

2. The untyped λ-calculus up to α-equivalence.

LX
def
= Var of A + App of X x X + Lam of [A]X .

3. Terms of a simple π-calculus up to α-equivalence (see for example [7, §2,

p.4] or the original [53, Part I, p.10]).

(35) PX
def
= Zero of U + Out of A x A x X + In of A x [A]X +

Silent of X + Nu of [A]X + Par of X x X + Sum of X x X +

Match of A x A x X + Mismatch of A x A x X .

Clearly binding signatures are designed to allow us to build sets of syntax in FM,

we shall do this in §10.2.

The standard development of algebras in categories demands that we associate

to BX a functor SetsFM → SetsFM. We abuse notation and write it λX .BX . As

our notation suggests λX .BX will be ‘bolted together’ out of disjoint sum, product,

and n-ary abstraction sets, see D10.1.3. First we must develop the theory.

Notation 10.1.4 ([A]nX). We write

[A]nX as shorthand for

n times
︷ ︸︸ ︷

[A][A] . . . [A](X)

and A
n as shorthand for

n times
︷ ︸︸ ︷

A × A . . . × A .

The functorial actions of disjoint sum + and product × are derived from the

VFM function-classes in a standard way given in Fig.559. The functorial action of

[A](−) is also given and proved well-defined and functorial in the following lemma:

10.1. Introduction 10.1.5 59

× : SetsFM × SetsFM → SetsFM

X ,Y 7→ (X ,Y)

f : X → X ′, g : Y → Y ′ 7→ f × g
def
= λ(x , y).(f (x), g(y))

: X × Y → X ′ × Y ′.

+: SetsFM × SetsFM → SetsFM

X ,Y 7→ X + Y

f : X → X ′, g : Y → Y ′ 7→ f + g
def
= λz .







Inl(f (z ′)) z = Inl(z ′)

Inr(g(z ′)) z = Inr(z ′)

: X + Y → X ′ + Y ′

[A](−) : SetsFM → SetsFM

X 7→ [A]X

f : X → Y 7→ [A]f
def
= λx∗.fresh a. (a.f (x∗@a))

: [A]X → [A]Y .

We have dropped typing conditions in λ-terms for clarity (e.g. in the last clause

λx∗.fresh . . . should read λx∗ ∈ [A]X .fresh . . .).

fresh is introduced in C9.6.7.

Figure 5. Functorial action of ×, + and [A](−)

Lemma 10.1.5 ([A](−) functor). We can extend [A](−) : VFM → VFM to a

functor on SetsFM defined as in Fig.559.

Proof. To verify this is a functor we must show four things:

• a#
(
λa.a.f (x∗@a)

)
=⇒ a#a.f (x∗@a)

But a#a.f (x∗@a) always (L9.5.6). Thus, the fresh in Fig.559 is legal

(C9.6.7).

• f ∈ SetsFM(X ,Y) =⇒ [A]f ∈ SetsFM([A]X , [A]Y)

We just have to show that a.f (x∗@a) ∈ [A]Y , i.e. that f (x∗@a) ∈ Y . But

this is certainly the case if x∗@a is well-defined and in X , i.e. if a#x∗ ∈

[A]X . But this holds because a was chosen fresh for all variables outside

the scope of fresh a. a.f (x∗@a), which include x∗,X .

60 10.1.6 10. Datatypes in FM

ΦN : NX 7→ λX .NX nil 7→ λX .1

[A]nX x NX 7→ λX . [A]nX × ΦN (NX)(X)

C x NX 7→ λX . β(C) × Φ(NX)(X)

ΦB : BX 7→ λX .BX nil 7→ λX .∅

(str of NX) + BX 7→ λX .ΦN (NX)(X) + ΦB (BX)(X)

See N10.2.1 for λX .∅ and λX .1. See (34)57 for the definition for β used in β(C)

above.

Figure 6. D10.1.6 - Functor associated to a binding signature

• [A]idX = id[A]X

Unpack the definition of the functorial action and of fresh (C9.6.7).

• [A](f ◦ g) = [A]f ◦ [A]g

Unpack the definition of the functorial action, use the fact that Ndistributes

over logical connectives (C9.4.5), simplify with L9.5.15.

We are now in a position to associate to a binding signature BX an endofunctor

on SetsFM.

Definition 10.1.6 (Functor associated to BX). To BX a binding signature

(D10.1.3) associate an endofunctor λX .BX : SetsFM → SetsFM defined by in-

duction on the structure of NX and BX as shown in Fig.660.

Warning! We employ the shorthand given in N10.1.7.

Notation 10.1.7 (Shorthand). For Z a set we may write B(Z) for

(λX .BX)(Z) and N (Z) for (λX .NX)(Z).

The construction of λX .BX means it is full of leading 1× and 0+. We shall

drop them for convenience. We shall also write [A]0(X) and [A]0(X) as X , [A]1(X)

as [A]X , and [A]1X as [A]X .

So, to choose an entirely random example, the functor associated to

BX = Var3 of A + (App3 of X x X + (Lam3 of [A]X))

has an action on objects given by

X 7−→ 0 + (1 × A + (1 × (X × X) + 1 × [A]1X)).

10.2. Initial algebras for binding signatures §10.2 61

written in shorthand as (something like)

X 7−→ A + X × X + [A]X .

The syntax captured by BX is more general than it first appears: BX does

not allow a single binder to capture two arguments as in [A](X × Y), or a choice

of argument as in [A](X + Y). But C9.6.9 tells us that [A](−) distributes over ×

and +, so this should not matter. The only issue is whether out intuition agrees

that binding should display this behaviour. We just consider [A](X × Y). This is

intended to model

“Elements x ∈ X and y ∈ Y with one common distinguished bound

variable”.

Of course we can give this distinguished bound variable a different name in x and

y if we wish using α-conversion, so this should indeed be equivalent to

“Elements x ∈ X with a distinguished bound variable and y ∈ Y

with a distinguished bound variable”.

10.2. Initial algebras for binding signatures.

Notation 10.2.1. Write End(SetsFM) for the category of endofunctors

and natural transformations of SetsFM expressible in the language of

FM. Thus functors and natural transformations in End(SetsFM) are assumed

given by (possibly parameterised) function-classes in the language of FM.

End(SetsFM) has an initial object 0, which is λX .∅ the constant functor

taking objects to ∅ and arrows to the empty function ∅ : ∅ → ∅. It has a terminal

object 1 which is λX .1 the constant functor taking objects to {∅} = 1 and arrows

to the singleton function {(1, 1)} : 1 → 1.

So λX .BX are elements of End(SetsFM). We now consider a subcategory of

End(SetsFM) which has some attractive properties and then show that λX .BX

is in this subcategory (and enjoys its properties).

Notation 10.2.2. We call F ∈ End(SetsFM) pre-syntactic when

1. F maps inclusions to inclusions and inclusion maps to inclusion maps.

That is, if X ⊆ Y and →֒X ,Y∈ SetsFM(X ,Y) denotes the inclusion map

then F (X) ⊆ F (Y) and F (→֒X ,Y) =→֒FX ,FY .

2. F preserves unions of countably ascending chains. That is, for h some

function-set out of N such that a ≤ b implies h(a) ⊆ h(b),

F (
⋃

n∈N

h(n)) =
⋃

n∈N

F (h(n)).

62 10.2.3 10. Datatypes in FM

Write PreSyn for the full subcategory of End(SetsFM) with objects the pre-

syntactic endofunctors.

Definition 10.2.3 (F -algebras). Recall that for a category C and an endo-

functor F on C the category of F -algebras Alg(F) is the following category:

Objects f , g ∈ Obj(Alg(F)) are arrows F (X)
f - X and F (Y)

g- Y for

X ,Y ∈ Obj(C). Arrows h ∈ Alg(F)(f , g) are arrows h ∈ C(X ,Y) such that the

following square commutes

F (X)
f - X

F (Y)

F (h)

?

g
- Y

h

?

The standard definition of an abstract datatype described by BX is the (un-

derlying set of the) initial object of Alg(λX .BX).23

This motivates us to prove the following general theorem, adapted from [60,

§2,§3]:

Theorem 10.2.4. If F ∈ PreSyn then Alg(F) has an initial object the iden-

tity function idinit(F) on a set init(F) such that F (init(F)) = init(F). Further-

more the set init(F) is equal to
⋃

n∈N
F n(∅).24

Proof. To save space we jump the gun a little and write

init(F) for
⋃

n∈N

F n(∅).

How do we know this really is an initial algebra and fixedpoint of F?

Property 1 guarantees that init(F) is a colimit of the diagram

∅ ⊂ - F (∅)
F (→֒)- F 2(∅)

F2(→֒)- F 3(∅) . . .(36)

with cone the trivial subset inclusion functions.

Property 2 guarantees that init(F) is itself a fixedpoint of F .

23Initial objects are unique only up to isomorphism. This is not an issue, we shall treat

initial objects as ‘morally unique’.
24The paranoid reader might worry how we know that the class

⋃

n∈N
Fn(∅) is a set. F

restricted to Nat is clearly a function-set (proof omitted), we can now apply (Replacement)26 and

take
⋃

. Let us not worry about this issue.

10.2. Initial algebras for binding signatures 10.2.5 63

Now take X and some f : F (X) → X . Observe ∅ ⊆ X so there is an arrow,

call it ι : ∅ →֒ X . We can use all this to build another cone over (36)62, into X :

∅ ⊂ - F (∅)
F (→֒)- F 2(∅)

F 2(→֒)- F 3(∅) . . .

X

ι

?

∩

¾ f
F (X)

F (ι)

?

∩

¾F (f)
F 2(X)

F 2(ι)

?

∩

¾F
2(f)

F 3(X)

F 3(ι)

?

∩

. . .

(37)

So there is a unique f̄ : init(t) → X such that the colimit diagram commutes.

This is equivalent to the initial algebra property:

F (init(F)) === init(F)

F (X)

F (f̄)

?

f
- X

∃!f̄

?

Now we set about proving C10.2.7 ([A](−) is pre-syntactic).

Lemma 10.2.5 ([A](−) monotone). [A](−) satisfies N10.2.2 property 1:

[A](−) is monotone and

[A](→֒X ,Y) = →֒[A]X ,[A]Y .

Proof. For the first part we must show

X ⊆ Y =⇒ [A]X ⊆ [A]Y .

We unpack the definition of [A](−) using the rewritten version of (30)49. Suppose

X ⊆ Y . We must show

{
x ′

∣
∣ Na. ∃x ∈ X . x ′ = a.x

}
⊆

{
x ′

∣
∣ Na. ∃x ∈ Y . x ′ = a.x

}

Since X ⊆ Y we know

Na.
(

∃x ∈ X . x ′ = a.x =⇒ ∃x ∈ Y . x ′ = a.x
)

.

From C9.4.5 we know that Ndistributes over implication and hence that

Na.
(
∃x ∈ X . x ′ = a.x

)
=⇒ Na.

(
∃x ∈ Y . x ′ = a.x

)
,

and this gives us monotonicity.

For the second part, we unpack the functorial action on an inclusion map. Let

f : X → Y be the inclusion map →֒X ,Y . Then from L10.1.5,

[A]f = fresh a. λx∗.(a.f (x∗@a))
L9.5.16

= fresh a. λx∗.x∗.

64 10.2.6 10. Datatypes in FM

From the definition C9.6.7 we see fresh a. λx∗.x∗ is just the inclusion λx∗.x∗, as

required.

Corollary 10.2.6. [A](−) satisfies N10.2.2 property 2: for h some function-

set out of N such that a ≤ b implies h(a) ⊆ h(b),

[A]
⋃

n∈N

h(n) =
⋃

n∈N

[A]h(n).

Proof. Monotonicity (L10.2.5) gives us one half of the inclusion
⋃

n∈N

[A]h(n) ⊆ [A](
⋃

n∈N

(h(n)))

because for each m, h(m) ⊆
⋃

n∈N
h(n).

Now suppose x∗ ∈
⋃

n∈N
[A]h(n). h is a function-set and has finite support

so choose a ∈ A with a#h, x∗. By C9.5.17 there exists an x such that x∗ = a.x .

Also, there exists an m ∈ N such that x∗ ∈ F (m). But then

a.x ∈ [A]h(i)
monotonicity

⊆ [A]
⋃

n∈N

h(n).

and this gives us the reverse inclusion

[A]
⋃

n∈N

h(n) ⊆
⋃

n∈N

[A]h(n).

Corollary 10.2.7. [A](−) is pre-syntactic.

Proof. From L10.2.5 and C10.2.6, which show that [A]1(−) satisfies the two

conditions of N10.2.2.

We conclude this subsection by showing that for a binding signature BX

(D10.1.3), the endofunctor associated to it λX .BX (D10.1.6) is pre-syntactic

(N10.2.2).

Lemma 10.2.8. For all sets C , the constant functors λX .C that take objects

to C and arrows to the identity on C are in PreSyn.

Proof. We verify the conditions of N10.2.2 individually.

Lemma 10.2.9. PreSyn has finite products and finite sums.

Proof. For the first part it suffices to verify that the initial object 0 = λx .∅

is pre-syntactic, and that for F ,G ∈ PreSyn their product in End(SetsFM)

(which is λX ,Y .FX × FY) is pre-syntactic. Proof omitted.

For the second part it suffices to verify that the terminal object 1 =

λx .1 (N10.2.1) is pre-syntactic, and that for F ,G ∈ PreSyn, their sum in

End(SetsFM) (which is λX ,Y .FX + FY) is pre-syntactic. Proof omitted.

10.2. Initial algebras for binding signatures 10.2.10 65

Lemma 10.2.10. PreSyn is closed under functor-composition: if F ,G ∈

PreSyn then F ◦ G ∈ PreSyn.

Proof. We inspect the two conditions of N10.2.2 individually and see they

are preserved by functor-composition.

Lemma 10.2.11. [A]n(−) ∈ PreSyn.

Proof. A corollary of C10.2.7 and L10.2.10.

Corollary 10.2.12. For any binding signature BX (D10.1.3), the associated

endofunctor λX .B(X) (D10.1.6) is pre-syntactic (N10.2.2).

Proof. λX .BX is inductively generated using operations under which, as we

have just proved, PreSyn is closed.

Definition 10.2.13 (Datatypes). C10.2.12 and T10.2.4 imply λX .BX has an

initial object for all BX (D10.1.3). Since the initial object we construct is the iden-

tity function on an underlying set we identify the initial object with its underlying

set (and shall not distinguish the two from now on), and write it

µX .BX or just B.(38)

Recall from T10.2.4 that

B =
⋃

n∈N

Bn(∅).(39)

(Here we use the shorthand of N10.1.7 and write Bn(∅) for (λX .BX)n(∅).)

We shall briefly work through a small example of a set built using a particular

binding signature in §10.3 below. In D10.3.2 and R10.3.3 we shall consider what

a typical element of some B looks like as a set.

10.3. Iteration. We shall use the notation of N10.1.7 and D10.2.13 mostly

without comment.

The universal property of B = µX .BX gives rise directly (and in a standard

way) to an iterative scheme for defining functions out of it. Suppose

BX = N 1
X + . . . + N k

X .

Then a function f : B(Z) → Z is equivalent to k functions

fi : N i(Z) → Z i = 1, . . . , k

66 10.3.1 10. Datatypes in FM

and by initiality of B, for each such k -tuple there exists a unique f̄ : B → Z such

that the following diagram commutes:

B(B) =========== B

B(Z)

B(f̄)

?

f1 + . . . + fk
- Z

f̄

?

i.e. f̄ = (f1 + . . . + fk) ◦ B(f̄).(40)

The nonstandard part is that the N i
X may now contain [A]nX . T9.6.6 and C9.6.7

characterise all functions out of [A]X but in practice—as in the latter half of this

subsection—we find ourselves mostly concerned with ‘normal’ functions f : X → Y

lifted using the using the functorial action of [A](−) (L10.1.5) to [A]f : [A]X →

[A]Y .

Notation 10.3.1 (Injections). A typical BX is BX = str1 of N 1
X + . . . +

strk of N k
X . We write the injection functions from N i(B) to B as

stri : N i(B) −→ B.

Write the injection into the i-th component of a k-fold disjoint sum

Ini
def
= Inl(Inri−1) : Xi →֒ X1 + (X2 + (. . . + Xn) . . .).

So in fact stri = Ini and (using N10.1.7)

B(X) = In1(N
1(X)) + . . . + Ink (N

k (X))(41)

For those who appreciate maths you can see, touch and taste, we combine

(39)65 and (41)66 to characterise the t such that there exists a binding signature

BX with t ∈ B:

Definition 10.3.2 (Syntactic Sets). Let the set of pre-syntactic sets

PreStx be generated by the following inductive rules (expressed in BNF grammar

style, but this is sets, not syntax):

ps ::= c | Ini(ps) | (ps, ps) | a.ps i ∈ N, c ∈
⋃

BType(PreStx)

We define the class of syntactic sets Stx (a subset of PreStx) in a similar style

as follows:

s ::= Ini(f) i ∈ N

f ::= (t , f) | (c, f) c ∈
⋃

BType

t ::= ~a.s

(Stx)

(The notation Ini is introduced in N10.3.1. BType is defined in D10.1.2.

Nested abstractions ~a.s are defined in N10.5.1.)

10.3. Iteration 10.3.3 67

Remark 10.3.3 (Typical t ∈ B). An informal reading of D10.3.2 is that t ∈

B is of the form

Ini(t
′) = Inl(Inrn(t ′))

where t ′ ∈ N i(B) is of the form

(~a1.s1, c, a, (~a2.s2, (. . . ~am .sm) . . .)

for si itself of the form of t . Here c is some constant in a type T ∈ BType and

a is a similar constant for the special case of A. 3

We could now try defining some general algorithm for manufacturing iterative

schemes out of a BX . I choose not to. I propose it would be more enlightening to

work through a small example, so we devote the rest of the subsection to working

out the iterative scheme for the untyped λ-calculus.

Recall the binding signature for the λ-calculus up to α-equivalence given on

p.57:

Definition 10.3.4 (λ-terms).

(42) LX
def
= Var of A + App of X x X + Lam of [A]X so in this case

Var(L) = In1(A), App(L) = In2(L× L), and Lam(L) = In3([A]L).

This implements in FM the datatype lam2 declared informally in D4.8. So L

is the set inductively constructed by the three rules

a ∈ A

Var(a) ∈ L

x1 ∈ L x2 ∈ L

App(x1, x2) ∈ L

x∗ ∈ [A]L

Lam(x∗) ∈ L
.(43)

These visibly correspond to the three rules of (5)17 and as promised terms ‘quo-

tient’ themselves by α-equivalence because of the binding-like behaviour of the

abstraction-set.

To obtain the iterative scheme for L we consult (40)66 and see it splits into

the following three diagrams:

A
Var - L

A

id

?

fVar

- Z

S̄

?

L × L
App- L

Z × Z

f̄ × f̄

?

fApp

- Z

f̄

?

[A]L
Lam- L

[A]Z

[A] f̄

?

fLam

- Z

f̄

?

68 §10.3 10. Datatypes in FM

which together express the following predicate in the language of FM:

∀Z . ∀fVar : A → Z , fApp : Z × Z , fLam : [A]Z → Z .

∃!f̄ : L → Z .

∀x ∈ A. f̄ (Var(x)) = fVar(x) ∧

∀t1, t2 ∈ L. f̄ (App(t1, t2)) = fApp(f̄ (t1), f̄ (t2)) ∧

∀t∗ ∈ [A]L. f̄ (Lam(t∗)) = fLam(freshn.n.f̄ (t∗@n))

(44)

The final clause is direct from the functorial action of [A](−) in L10.1.5. There is

one more manipulation we could carry out if we wished. We could apply (32)52

to rewrite the last clause and obtain

∀Z . ∀fVar : A → Z , fApp : Z × Z , fLam : [A]Z → Z .

∃!f̄ : L → Z .

∀x ∈ A. f̄ (Var(x)) = fVar(x) ∧

∀t1, t2 ∈ L. f̄ (App(t1, t2)) = fApp(f̄ (t1), f̄ (t2)) ∧

∀t∗ ∈ [A]L. Nn. f̄ (Lam(t∗)) = fLam(n.f̄ (t∗@n)).

(45)

After D4.8 we declared a function subst2 on lam2. We can now iteratively

define a substitution function subst on L. For t ∈ L, a ∈ A let subst(t , a)
def
= S̄

where S : L(L) → L is defined by the three functions

SVar : A → L

b 7→







Var(b) b 6= a

t b = a

SApp : L × L → L

s1, s2 7→ App(s1, s2)

SLam : [A]L → L

s∗ 7→ Lam(s∗).

(46)

So SApp = App and SLam = Lam, but SVar is something new. By its definition S̄

fits in a diagram like (40)66, so SVar,SApp and SLam make the following diagrams

commute:

A
Var - L

A

id

?

SVar

- L

S̄

?

L × L
App- L

L × L

S̄ × S̄

?

App
- L

S̄

?

[A]L
Lam- L

[A]L

[A]S̄

?

Lam
- L

S̄

?

10.4. Induction §10.4 69

Accordingly, or just using the iterative scheme (44)68 directly, we deduce that S̄

satisfies the following iterative equations:

S̄ (Var(a)) =







Var(b) b 6= a

t b = a
, S̄ (App(s1, s2)) = App(S̄ s1, S̄ s2) and(47)

S̄ (Lam(s∗)) = Lam(fresh b. (b.S̄ (s∗@b))) or using (32)52(48)

Nb.
(

S̄ (Lam(s∗)) = Lam(b.S̄ (s∗@b))
)

(49)

Since b is chosen fresh it does not occur in t and is not equal to a: the rule for

Lam is just the rule for substitution

subst(t , a,Lam(b.s)) = Lam(b.(subst(t , a, s)))

from D4.11.

10.4. Induction. Now let us derive a principle of logical induction for L, the

datatype constructed in §10.3 above. We continue the notation of that subsection

and in particular the commuting diagram (40)66. Consider the special case Z = B

where B is the (any) two-element set of truth values {⊤,⊥} ∈ VFM in the FM

universe, say ⊤ = {∅} and ⊥ = ∅. Note that ⊤ and ⊥ are equivariant; a#⊤,⊥

for all a ∈ A (N9.2.8).

We define f : B(B) = A + B × B + [A]B −→ B as follows:

fAtm(x) = ⊤

fApp(b1, b2) = b1 ∧ b2

fLam(b∗) = fresh a. b∗@a

(50)

Since b∗@a ∈ B and n#⊤,⊥ for all n ∈ A we know this is a legal use of fresh

(C9.6.7).

Direct from (44)68 we obtain

∃!f̄ : L → B.

∀x ∈ A. f̄ (Var(x)) = fVar(x) = ⊤ ∧

∀t1, t2 ∈ L. f̄ (App(t1, t2)) =
(
f̄ (t1) ∧ f̄ (t2)

)
∧

∀t∗ ∈ [A]L. f̄ (Lam(t∗)) = fresh a.
(
freshn.n.f̄ (t∗@n)

)
@a

(51)

This last clause looks complicated but it simplifies. I shall work through the

details of how, though I fear that by doing so I risk making something easy look

hard. The main flow of discussion resumes at (53)70 (and culminates in (55)71).

We can apply L9.6.10 to the last clause of (51)69.

fresh a.
(
freshn.n.f̄ (t∗@n)

)
@a = fresh a. freshn. (n.f̄ (t∗@n))@a,(52)

70 10.4.1 10. Datatypes in FM

and use L9.5.15.

fresh a. freshn. (n.f̄ (t∗@n))@a =

fresh a. freshn. (((a n)·f̄)(((a n)·t∗)@a))

But f̄ , t∗ are free under the scope of the fresh so we may assume (technically by

(32)52) that a,n#f̄ , t∗. By L9.2.7 we know

fresh a. freshn. (((a n)·f̄)(((a n)·t∗)@a)) = fresh a. freshn. (f̄ (t∗@a)).

the freshn. is dummy (use (32)52) and we have

fresh a.
(
freshn.n.f̄ (t∗@n)

)
@a = fresh a. f̄ (t∗@a).

We can now rewrite (51)69 as follows:

∃!f̄ : L → B. Φ(f)

Φ(f̄)
def
= ∀x ∈ A. f̄ (Var(x)) = ⊤ ∧

∀t1, t2 ∈ L. f̄ (App(t1, t2)) =
(
f̄ (t1) ∧ f̄ (t2)

)
∧

∀t∗ ∈ [A]L. f̄ (Lam(t∗)) = fresh a. f̄ (t∗@a)

(53)

Observe that Φ(λx .⊤) so by uniqueness of f̄ above,

f̄ = λx .⊤.(54)

This observation is the core of an inductive principle for L. Now for a little more

theory.

Lemma 10.4.1 (fresh and N). For φ : X → B a predicate-set in VFM,

(fresh a. φ(a)) = ⊤ ⇐⇒ Na. (φ(a) = ⊤)

Proof. Since a#⊤,⊥ the LHS is a legal use of fresh and well-defined. The

proof itself is by (32)52.

We anticipated the following notation when we wrote “b1 ∧ b2” in (50)69 and

“f̄ (t1) ∧ f̄ (t2)” in (53)70.

Notation 10.4.2. For φ : X → B, φ(x) is not a predicate but a set—one of ⊤

or ⊥—in VFM. Nevertheless we may abuse notation and write ‘φ(x)’, read “φ(x)

holds”, to mean the predicate “φ(x) = ⊤” and similarly ‘¬φ(x)’ for the predicate

“φ(x) = ⊥”.

In this notation the statement of L10.4.1 above becomes

fresh a. φ(a) ⇐⇒ Na. φ(a).

10.5. Adequacy §10.5 71

and we can combine (53)70 and (54)70 to see that (51)69 gives a normal-looking

inductive principle:

∀φ : L → B.
(

∀x ∈ A. φ(Var(x)) ∧

∀t1, t2 ∈ L. φ(t1) ∧ φ(t2) ⇒ φ(App(t1, t2)) ∧

∀t∗ ∈ [A]L. Na. φ(t∗@a) ⇒ φ(Lam(t∗))
)

=⇒ ∀x ∈ L. φ(x)

(55)

10.5. Adequacy. Recall the examples of binding signatures on p.57. As

promised they now have associated initial algebras. In the first two cases they

rigorously construct a set of syntax for datatypes declared in our informal pro-

gramming language in §4. Recall that the boldface notation B for initial algebras

of BX was introduced in D10.2.13.

• The untyped λ-calculus not up to α-equivalence.

MX
def
= Var of A + App of X x X + Lam of A x X .

The set M is lam3, the set of syntax for the datatype lam3 (see D8.2.3 and

D8.2.2 respectively).

• The untyped λ-calculus up to α-equivalence.

LX
def
= Var of A + App of X x X + Lam of [A]X .

The set L is the set of syntax for lam2 (see D4.8).

• Terms of a simple π-calculus up to α-equivalence.

(56) PX
def
= Zero of U + Out of A x A x X + In of A x [A]X +

Silent of X + Nu of [A]X + Par of X x X + Sum of X x X +

Match of A x A x X + Mismatch of A x A x X .

This may look quite good, but the question is

“How do we know the sets M,L,P really are what we said they are,

i.e. syntax possibly up to α-equivalence?”

We need an adequacy result relating sets of syntax built ‘näıvely’ with A × (−)

to those built using [A](−).

Notation 10.5.1 (Shorthand). Let ~a = (a1, . . . , an) be a list of atoms of

length n and x ∈ X . We continue N10.1.7 and write ~a.x for

a1.(. . . (an .x) . . .) ∈ [A]nX ,

and x@~a for

(. . . (x@a1) . . .@an).

72 10.5.2 10. Datatypes in FM

We also write

N~a. φ(~a, ~x) for Na1. Na2. . . . Nan . φ(~a, ~x),

and

fresh~a. f for fresh a1. fresh a2. . . . fresh an . f .

For the compound Nand fresh quantifiers the ordering of ~a does not logically

matter and the ai may be assumed distinct (proof omitted). It may occur that ~a

is the empty list. In that case ~a.x denotes x , and similarly for Nand fresh.

Definition 10.5.2 (Näıve signatures). We relate to a binding signature BX

(D10.1.3) a näıve signature B ′
X obtained from BX by “replacing every [A]n(−)

by An x (−)” (N10.1.4). The näıve signature gives rise to a näıve datatype

µX .B ′
X (or just B′, see (38)65).

For example for MX ,LX as above, MX = L′
X . A rigorous inductive definition

of the map BX 7→ B ′
X is easy but I hope not needed.

Definition 10.5.3 (Canonical α(BX)). Associated to binding signatures BX

we build a canonical function

α(BX) : Z ∈ Obj(SetsFM) 7−→ α(BX)(Z) : B ′(Z) → B(Z),

by induction on NX and BX as shown in Fig.773.
25

Lemma 10.5.4. α(BX)(Z) as constructed in Fig.773 really is a function

B ′(Z) → B(Z), and α(NX)(Z) really is a function from N ′(Z) → N (Z).

Proof. By induction on the syntax of BX and NX , details omitted.

Corollary 10.5.5. In particular

α(BX)(B) : B ′(B) −→ B(B) = B,

so α(BX)(B) is a B ′
X -algebra (D10.2.3).

Now fix BX and write

α
def
= α(BX)(B).

We now show that ᾱ (§10.3) generates an equivalence relation on the näıve

datatype that is recognizable as α-equivalence. The only real difficulty is not

ᾱ itself but the fact that there is no conveniently available general account of

α-equivalence with which to compare it, besides itself!

25Recall that Obj(SetsFM) is the FM sets VFM and SetsFM(B ′(Z),B(Z)) is the collection

of function-sets from B ′(Z) to B(Z).

10.5. Adequacy 10.5.6 73

α(nil)(Z) = λx ∈ 1.∗

: U → U

α([A]nX x NX)(Z) = (λ~a, x ∈ Z .~a.x) × α(NX)(Z)

: (An × X) × Dom(α(NX)(Z)) →

[A]nX × Rng(α(NX)(Z))

α(C x NX)(Z) = (λx ∈ C .x) × α(NX)(Z)

: C × Dom(α(NX)(Z)) → C × Rng(α(NX)(Z))

α(nil)(Z) = λx ∈ ∅.∅

: ∅ → ∅

α((str of NX) + BX) = α(NX)(Z) + α(BX)(Z)

: Dom(α(NX)(Z)) × Dom(α(BX)(Z)) →

Rng(α(NX)(Z)) × Rng(α(BX)(Z))

The action of × and + on functions is described in Fig.559.

Figure 7. D10.5.3 - Scheme for canonical α out of näıve datatype

By the initial algebra property of the näıve datatype B′ (‘näıve datatype’

D10.5.2, ‘initial algebra’ D10.2.13), there is a unique ᾱ : B′ → B such that the

following diagram commutes:

B ′(B′) ====== B′

B ′(B)

B ′(ᾱ)

?

α
- B

ᾱ

?

(57)

Notation 10.5.6 (Ker(f)). For f : A → B a set-function recall that the ker-

nel of f written Ker(f), is an equivalence class on A. As a relation we write it

≈f and define it by

a ≈f b
def
⇔ f (a) = f (b)

From the commuting square (57)73 above, Ker(ᾱ) is the smallest congru-

ence on B′ containing Ker(α). So what is Ker(α)? It is the identity except

on N (X) for NX = [A]nX a clause in in BX . There N ′
X = An x X and on

74 10.5.7 10. Datatypes in FM

N ′(X) = A
n × X ,

(~a, x) ≈α (~b, y) ⇐⇒ ~a.x = ~b.y .(58)

Lemma 10.5.7. Let BX be a binding signature and α = α(BX)(B) as above

(D10.5.3). As discussed Ker(ᾱ) is the smallest congruence containing ≈α (see

(58)74). Then we claim this is precisely what we would normally call α-equivalence

on B.

Sketch proof. Unpack abstractions ~a.x as equivalence-classes (D9.5.1) and

observe that ~a.x = ~b.y precisely when for N~c (see N10.5.1),

(~c ~a)·x = (~c ~b)·y

(for an appropriate definition of (~x ~y) as (x1 y1)· . . . ·(xn yn), given that all el-

ements occuring in both lists are pairwise distinct). Then observe that name-

permutation and name-substitution for c a new name coincide for syntax, and

hence that this condition is precisely

[~c/~a]x = [~c/~b]y .

This brings us back to a more traditional construction of α-equivalence.

We have seen this before in T8.2.5 in the special case of näıve binding signature

for the untyped λ-calculus. We have the following result:

Theorem 10.5.8 (Adequacy of FM syntax). For any binding signature BX

and corresponding näıve signature B ′
X (D10.5.2), the datatypes B′ and B are

related by

B′/ ≈ᾱ
∼= B

where ≈ᾱ is α-equivalence on the näıve datatype of terms.

Proof. From the results above.

We have now given a “general account of α-equivalence”. This means

“Binding signatures BX are a framework within which we can declare

and construct a nontrivial class of syntax in FM. Given a BX we can

automatically generates α-equivalence on the corresponding näıve

datatype B ′
X for free.”

10.6. Taking Stock §10.7 75

10.6. Taking Stock. Now α-equivalence is no mystery to me or to the

reader. Given a specific grammar we know precisely what it should be on the

datatype of näıve terms (D10.5.2), and we can define it quite rigorously—on a

case-by-case basis. §10.5 presented a general recipe (based on FM) which could

be used, say, as the underlying theory of an automated procedure for constructing

datatypes up to α-equivalence. I know of at least two contexts where we would

want to do this:

1. Design and implementation of programming languages intended for manip-

ulating syntax.

2. Theorem-proving environments (such as Isabelle, Chapter III).

We can program general procedures and operations involving α-equivalence once-

and-for-all to be instantiated as the user declares new datatypes. Similarly, we

can prove theorems about α-equivalence once-and-for-all to be instantiated for

particular binding signatures.

I know Isabelle best, so let us imagine an extended datatypes package (see

[59, §2.8 p47]) that takes a binding signature and returns, say,

1. The datatype (D10.2.13).

2. An [iterative/recursive] [proof/function] scheme on it (§10.3).

3. A corresponding näıve datatype with an associated “α-equivalence” map

onto the binding datatype plus useful theorems and results—perhaps to

model pretty-printing and parsing (T10.5.8).

We can easily imagine a corresponding package for a programming language.

This is not earth-shattering. The first two points on the list above are already

ubiquitous among theorem-proving environments and virtually universal in pro-

gramming languages. To my knowledge the third item is not usually provided (it

certainly does not exist in Isabelle)—but there is no reason it should not be. The

datatypes-up-to-binding would have to be implemented in ZF, perhaps using de

Bruijn (§33.1), but it is feasible.

FM scores in this third point because it has the N-quantifier and the fresh-

term former (D9.4.2 and C9.6.7), which enable us to express these programs and

theorems in an easy and natural manner.26

26Cf. oNat on p.13. Examples permeate the text. For informal examples see D4.8 and

D4.11. The mathematics leading up to T10.5.8 is clean and slick, in ZF that would be absolutely

impossible. See also §22.2. For a moment of particular drama see R23.1.13.

76 10.7.1 10. Datatypes in FM

φ(nil) = λx ∈ 1.∅

: U → powfin(A)

φ([A]nX x NX) = λx ∈ [A]npowfin(A), y ∈ Dom(φ(NX)).
(
fresh~a. (x@~a) \ ~a

)
∪ φ(NX)(y)

: [A]npowfin(A) × Dom(φ(NX)) → powfin(A)

φ(C x NX) = λx ∈ β(C), y ∈ Dom(φ(NX)).Supp(x) ∪ φ(NX)(y)

: β(C) × Dom(φ(NX)) → powfin(A)

φ(nil) = λx ∈ ∅.∅

: ∅ → powfin(A)

φ((str of NX) + BX) =

{

φ(NX)(z) Inl(z)

φ(BX)(z) Inr(z)

: Dom(φ(NX)) + Dom(φ(BX)) → powfin(A)

X \ ~a defined in N10.7.1, β(C) defined in (34)57.

Syntactic Construction

fv : PreStx −→ powfin(A)

z 7−→







Supp(z) z ∈
⋃

BType

fv(x) z = Ini(x)

fv(x) ∪ fv(y) z = (x , y)

freshn. fv(f @n) \ {n} z = f ∈ AbsClass

Ini defined in N10.3.1.

Synthetic Construction

Figure 8. D10.7.2 - Free Variables FV For Free

10.7. Everything for free. In this subsection we demonstrate FM set the-

ory and FM binding signatures by constructing some ubiquitous classes of func-

tions on datatypes. This could conceivably be the underlying theory of a datatypes

package for an automated proof environment or a programming language.

Notation 10.7.1. For ~a a list of sets and X a set, we write

X \ ~a
def
=

{
x ∈ X

∣
∣ x does not occur in ~a

}

10.7. Everything for free 10.7.3 77

Definition 10.7.2 (FV for free). To binding signatures BX (D10.1.3) we in-

ductively define an associated map φ(BX) : B(powfin(A)) → powfin(A) in Fig.876.

By L10.7.4 below, powfin(A) is (the underlying set) of a BX -algebra and gives

rise to a function (§10.3) φ(BX) : B → powfin(A) which we write FV and call

“the free variables function”.

We also construct fv by ∈-induction on PreStx (D10.3.2) as shown in Fig.876.

The use of fresh in Fig.876 is legal by following lemma:

Lemma 10.7.3. 1. X ∈ powfin(A) ∧ a ∈ A =⇒ a#X \ {a}.

2. X ∈ pow cof(A) ∧ a ∈ A =⇒ ¬(a#X \ {a}).

Proof. Direct from C9.4.4 (recall that b#Y ⇔ b 6∈ Supp(Y) by N9.2.4).

Recall the notation of D10.1.6.

Lemma 10.7.4. φ(BX) is a λX .BX -algebra over powfin(A). That is, for all

binding signatures BX ,

φ(BX) : B(powfin(A)) −→ powfin(A).

Proof. By induction on the syntax of BX .

Lemma 10.7.5. For any BX , FV is the iteratively defined function we would

normally write to construct the free variables function out of t ∈ B.

Proof. By observing that the iterative definition of FV on any particular B

coincides with our expected notion of ‘free variables’. We just need L9.3.6 to tell

us Supp(a) = {a} for a ∈ A.

This purely syntactic notion coincides with a visibly corresponding function

on PreStx:

Lemma 10.7.6. For any BX , FV defined on B coincides with fv.

Proof. Observe by comparing Fig.979 with R10.3.3 that the iterative defini-

tion of FV on B precisely coincides with the inductive definition of fv.

fv itself coincides with Supp on its domain of definition PreStx.

Lemma 10.7.7. fv coincides with Supp.

Proof. By induction on PreStx. The details of the induction depend on our

particular realisation of syntax (Ini , (−,−) as function-classes on VFM).

A more elegant though less rigorous proof is this: any realisation of syntax

must use injective disjoint functions (see R4.3), which conserve support by L9.3.5.

So an induction on any appropriate PreStx set must work.

78 10.7.8 10. Datatypes in FM

This is not merely satisfying, it is useful. We now have no less than three proof-

methods for FV: iteration, ∈-induction on fv, and theorems about Supp. In the

language of R8.2.6, fv and Supp are synthetic versions of FV.

Definition 10.7.8 (Closed Terms for Free). For BX a binding signature let

the closed terms of B, written Closed(B), be the set

Closed(B)
def
=

{
x ∈ B

∣
∣ FV(x) = ∅

}
.

The following lemma would be useful in a theorem-proving environment for

porting results about free variables directly from Supp, so we do not even have

to consider binding signatures.

Lemma 10.7.9.

Closed(B) =
{
x ∈ B

∣
∣ Supp(x) = ∅

}

Proof. Trivial by L10.7.7.

Definition 10.7.10 (Name-for-Name for Free). For BX a binding signature

(D10.1.3) and a, b ∈ A we inductively define

η(BX) : B(B) → B(B) = B

in Fig.979. Just as in D10.7.2 this gives rise to a map η(BX) : B → B which we

write [b/a] and call “the name-for-name substitution function”.

Just as Supp is defined on the universe and fv is defined on PreStx and

both coincide with each other and coincide with FV for particular datatypes (see

R8.2.6), so we can define functions [[b/a]] ′ on the universe and [[b/a]] on PreStx

(D10.3.2) that coincide with [b/a]:

Definition 10.7.11 (Synthetic Version). The function [[b/a]] is defined by ∈-

induction on PreStx as in Fig.979.

Lemma 10.7.12. For any binding signature BX , the functions [[b/a]] and

[b/a] coincide on B.

Proof. Fix a binding signature BX and its initial datatype B. We work by

induction on B with inductive hypothesis

[b/a]t = [[b/a]] t .

Now we do not know what BX is but we know any t is of the form

fresh ~a1, . . . , ~an . Ini(~a1.s1, . . . , ~an .sn).

10.7. Everything for free §10.7 79

η(nil) = λx ∈ U.x

: U → U

η([A]nX x NX) = λx ∈ [A]nX × Dom(η(NX)).x

: [A]nX × Dom(η(NX)) → [A]nX × Dom(η(NX))

η(C x NX) ,C 6= A = λx ∈ β(C) × Dom(η(NX)).x

: β(C) × Dom(η(NX)) → C × Dom(η(NX))

η(A x NX) = λx ∈ A, y ∈ Dom(η(NX)).







(x , y) x 6= a

(b, y) x = a

: A × Dom(η(NX)) → A × Dom(η(NX))

η(nil) = λx ∈ ∅.∅

: ∅ → ∅

η((str of NX) + BX) =







Inl(η(NX)(z)) Inl(z)

Inr(η(BX)(z)) Inr(z)

: Dom(η(NX)) + Dom(η(BX)) →

Dom(η(NX)) + Dom(η(BX))

β(C) defined in (34)57.

Syntactic Construction

[[b/a]] : PreStx −→ PreStx

z 7−→







b z = a ∈ A

z z ∈ A, z 6= a

Ini([[b/a]] x) z = Ini(x)

([[b/a]] x , [[b/a]] y) z = (x , y)

freshn.n.[[b/a]] (f @n) z = f ∈ AbsClass

Ini defined in N10.3.1.

Synthetic Construction

Figure 9. D10.7.10 - Name-for-Name Substitution [b/a] For Free

80 §10.7 10. Datatypes in FM

Here we use N10.5.1 to write ~ai .. The ~ai are finite lists of variables of type A

which are chosen fresh. By induction hypothesis we also know

N~ai . [b/a]si = [[b/a]] si

(see N10.5.1). Now if [[b/a]] and [b/a] act on t in the same way given that they

act the same way on the si , we are done. So we refer to Fig.979 and see that both

functions satisfy

t
f

7−→ (~a1.f (s1), . . . , ~an .f (sn)).

We consider [[b/a]] and omit the case [b/a] (which is very fiddly, we use L10.1.5).

Write f = [[b/a]] . From Fig.979 we see

f (t) = (f (~a1.s1), . . . , f (~an .sn)).

Now the ~ai were chosen fresh for f , t so by Fig.979 we can pull f inside the ab-

straction and we are done.

We can now prove theorems about [b/a] either by iteration on B or ∈-induction

on PreStx.

[b/a] is defined for particular datatypes and [[b/a]] is defined on PreStx. The

obvious definition of a function on the entire universe, we wrote it [[b/a]] ′, is this:

[[b/a]] ′x
def
=







{
[[b/a]] ′y

∣
∣ y ∈ x

}
x 6∈ A

x x 6= a, x ∈ A

b x = b

(59)

This is wrong, it does not coincide with [b/a] and [[b/a]] defined above. The

problem is discussed in §11.1.

Now the last item on our list is “substitution for free”. It is much harder to

inductively construct some σ by induction on BX in the style of Fig.876 or Fig.979

because the parameter t ∈ B depends on a particular BX : if we consider the

clause for η(A × NX) in Fig.979 we might imagine a corresponding

σ(A x NX) = λx ∈ A, y ∈ Dom(η(NX)).







(x , y) x 6= a

(t , y) a

: A × Dom(σ(NX)) → A × Dom(σ(NX))

—but this is nonsense. Firstly, t 6∈ A. Secondly we cannot replace A ×

Dom(σ(NX)) on the right by B×Dom(σ(NX)) because (t , y) will in due course

be wrapped in Ini by the final clause for σ(str of NX + BX).27

27Incidentally, ᾱ in p.72 can have no synthetic counterpart since different binding signatures

can share a common näıve signature.

10.7. Everything for free 10.7.13 81

[t/a] : PreStx −→ PreStx

z 7−→







t z = Ini(a)

Ini([t/a]z)) z = Ini(x), x 6= a

([t/a]x , [t/a]y) z = (x , y)

freshn.n.[t/a](f @n) z = f ∈ AbsClass

PreStx defined in D10.3.2.

Figure 10. D10.7.13 - Substitution [t/a] For Free

For the sake of argument, let us just take the synthetic version as primitive

and carry on.

Definition 10.7.13 (Substitution for free). For t a set and a ∈ A we define

a function-class written

[t/a] : PreStx −→ PreStx

as in Fig.1081.

There are many results about this function we might like to have. We only

consider one, which is useful in §12.6. The reader will easily recognise this as a

standard result:

Lemma 10.7.14. For x , t ∈ PreStx and a ∈ A

a#t =⇒ a#[t/a]s.

Proof. By induction on s ∈ PreStx using the inductive structure of PreStx

in D10.3.2.

See D12.6.2 for a brief continuation of this development.

Lemma 10.7.15. For a binding signature of the form

BX = (str1 of N1) + . . . (strk of Nk)

such that each Ni is either equal to A or does not mention the symbol A at all, and

for b ∈ A and s, t ∈ B, [t/b]s is in B and is precisely what we understand by

‘substitution of t for b in s’.

Proof. Similar to the proof of L10.7.12.

82 §11.1 11. Questions

The syntactic condition on BX makes sure it is of a form for which we can sensibly

talk about substitution. For example the result makes no sense for PX defined in

(56)71.
28

An interesting question is how we might extend substitution [t/a] to a function

on the universe just as Supp (N9.2.4) extends fv (D10.7.2). We may get some

useful mileage out of a suitably modified version of (61)83 but like that equation,

this is an idea for future work. In the meantime we have more than enough to

automate a lot of standard syntactic functions, and have shown how we might do

others if necessary.

11. Questions

11.1. Name-for-name substitution. Rather than (b a) why not base FM

on name-for-name substitution [b/a] (see (59)80, there it is written [[b/a]] ′):

[b/a]x
def
=







{
[b/a]y

∣
∣ y ∈ x

}
x 6∈ A

x x 6= a, x ∈ A

b x = b

(60)

Recall from T8.2.5 that α-equivalence =α on syntax is usually defined in terms

of a “name-for-name substitution” operator usually written [b/a]. We hinted in

T8.2.5 and then proved in some generality in T10.5.8 that we can just as well

construct =α using the permutation action of FM set theory. But given that

tradition uses [b/a], is it possible to carry out a programme of extending ZFA to

FM’ where FM’ is like FM only based on [b/a] instead of (b a)?

The obvious approach is to duplicate the development of N, Supp and #

based on [b/a]. So we have

N
′a. φ(a, ~x)

def
=

{
a ∈ A

∣
∣ φ(a, ~x)

}
∈ pow cof(A).(N

′)

28Incidentally, we see a related issue in [49, Cor 11.3, p.128 and §11.1,§14] in HOAS. One

form of HOAS binding is to interpret it by a function space like X → X . We get name-for-term

substitution ‘for free’—but on the other hand we have to have name-for-term substitution for

free. In the case of the π-calculus (the example in [49] is ‘Dynamic Logic’ in Chapter 7) this is

not what we need.

This problem does not arise in FM. We do have ‘name-for-term’ substitution for free on the

datatype of processes, because [t/a] (D10.7.13) is defined on all of PreStx. However, nothing

says the sets so obtained must be in our datatype or in any other way significant, and in the case

of terms of the π-calculus as declared in the binding signature on (35)58, they are not.

11.2. Significance of ‘for free’ §11.2 83

This is identical to (20)40 and we proceed. It is simplest to use the alternative

characterisation of # in terms of Ngiven in R9.5.8. #′ is defined by

(#′,Supp′) a#′x ⇐⇒ Nb. [b/a]x = x and

Supp′(x) =
{
a ∈ A

∣
∣ ¬(a#′

A)
}

.

But observe that

[b/a]A = A \ {a} 6= A.

In fact for all a ∈ A, ¬(a#′
A) and so Supp′(A) = A 6∈ powfin(A). Disaster! We

lose the finite support property and therefore T9.4.6. This theorem is more-or-less

the heart of FM, without it we have nothing.

Let us labour the point a little. Consider ∼ and a.x (D9.4.13 and D9.5.1)

reformulated:

(a, x)∼′(b, y)
def
⇔ N

′c. [c/a]x = [c/b]y(∼′)

Take x = y = A. Then (a, A)∼′(b, A) precisely when a = b. a.′x is the ∼′-

equivalence class of (a, x), so a.′A = {(a, A)}.

Consider this more sophisticated alternative to [b/a]:

[b/a]′x
def
=







{
[b/a]′y

∣
∣ y ∈ x

}
a ∈ Supp(x), x 6∈ A

x a 6∈ Supp(x)

x x 6= a, x ∈ A

b x = b

(61)

This is no good for building FM from scratch because it uses Supp, but it does

satisfy [b/a]′A = A and does coincide with the iterative [b/a] and ∈-recursive

[[b/a]] of D10.7.10. I invite the reader to imagine automating this definition and

using it as the basis for a general theory of name-for-name substitution without

syntax. I leave an investigation of this to future work.

11.2. Significance of ‘for free’. We spent §10.7 and all of §11 until now

(we change the subject after this subsection) building various versions of well-

known syntactic operations. We considered systematic inductive definitions out

of datatypes, inductive definitions on a useful class of sets PreStx (D10.3.2) which

coincide with the datatype definitions for all datatypes, and also pure set-function

classes defined on the entire universe which coincide with the previous two where

they are defined.

Sometimes, we even defined these function classes two or three times in differ-

ent contexts, for example FV, fv and Supp (proved identical on their domains

84 §11.3 11. Questions

in L10.7.6 and L10.7.7). I have said why but it bears repeating: when we de-

fine a function by induction on a datatype our only method of proof is inductive

reasoning on the structure of that datatype. This is a hassle for at least two rea-

sons. First, the datatype may be complex. Second, with each new datatype we

must prove our theorems again using its new inductive principle. i.e. We may

have proved FV(λx .t) = FV(t) \ {x} for one λ-calculus, but if we define another

calculus, or start work on the π-calculus, we have to prove the result all over again.

If we have automated the construction of a class of functions across datatypes

and proved once-and-for-all that they coincide with some function-class defined

on the set-universe (as we did for FV in §10.7, equating it with Supp), we can

reason just by the properties of the function-class.

This is excellent news, especially for those using theorem-proving environ-

ments.

11.3. Restricted set of permutations. When we constructed FM set the-

ory in §9.1 we introduced the notion of ‘supporting set’. We defined ‘U ⊆ A

supports x ’ in Fig.335 to mean Φ(U , x) where

Φ(U , x)
def
= ∀π ∈ FA.

(

∀u ∈ U . π·u = u
)

=⇒ π·x = x .(62)

Recall that ΣA is the full set of permutations on A and FA is the restricted set

generated by the transpositions.

Why did we restrict to FA and does it make a difference? Well, FA is generated

by transpositions and for ΣA this is not necessarily true. If we build support using

FA we can effectively assume all permutations are transpositions. If the reader

examines Chapter II he or she will see that we do just this. Using FA is the

‘elementary’ option and it makes our lives easier.

The extra axiom that turns FM into ZFA is (Fresh)35, which insists that all

sets x have some finite supporting set (and hence, by T9.2.1, have a least finite

supporting set Supp(x)). In particular, the π ∈ ΣA ⊆ VFM must have finite

support, so ΣA in FM is smaller than in ZFA. In fact FA and ΣA are provably

equal in FM (proof omitted). So using FA does not actually make any difference

once we are in FM.

But what about building the theory from scratch? Suppose we use ΣA in

(62)84 to build a Φ′

Φ′(U , x)
def
= ∀π ∈ ΣA.

(

∀u ∈ U . π·u = u
)

=⇒ π·x = x ,(63)

a corresponding (Fresh)35’, and hence a theory FM′. Then:

1. Because ΣA = FA in FM, any model of FM is a model of FM’. This gives

us a relative consistency result.

11.4. FM and AC §11.4 85

2. Φ′(U , x) implies Φ(U , x) provably in FM’ and so (Fresh)35’ implies

(Fresh)35 provably in FM’.

3. We can duplicate the entire development of support based on Φ only in FM’

and can be certain that it all makes sense from the previous two points.

We conclude by duplicating the proof that ΣA = FA.

4. Therefore ΣA and FA are provably equal in FM’, so

Φ(U , x) ⇐⇒ Φ′(U , x)

is provable in FM’. So FM and FM’ are identical logical theories.

I find this rather amusing. If we do not restrict to FA, we can prove that we could

have by pretending that we had.

11.4. FM and AC. Does (Fresh)35 contradict the axiom of choice AC? Yes:

Theorem 11.4.1 ((Fresh)35 implies ¬AC). There is no function-set

ξ : powfin(A) −→ A

such that

∀A ∈ powfin(A). A 6= ∅ =⇒ ξ(A) ∈ A.

Proof. ξ ∈ VFM is a set and therefore has finite support. Choose a, b#ξ such

that a 6= b and set A = {a, b}. WLOG assume ξ(A) = a. Clearly (a b)·A = A.

Also by L9.2.7 (a b)·ξ = ξ. By (14)31 and the above we know

b = (a b)·(ξ(A)) = ξ((a b)·A) = ξ(A) = a.

This contradicts the choice a 6= b.

This should not surprise us; FM is named after Fraenkel and Mostowski, who

devised ZFA in the ’20s and ’30s and used their ‘permutation models of set theory’

to prove the independence of the Axiom of Choice (AC) from the other axioms

of ZFA (and three decades later Cohen proved the harder result of independence

of AC from set theory without atoms (ZF), via his celebrated forcing method;

see [38, Section 6] for a brief survey). Here, we have turned their constructions to

an entirely new end.

Remark 11.4.2 (FM → ¬AC). Quite often, careful formulations of the defi-

nition of capture-avoiding substitution use a choice function for picking out fresh

variables, e.g. [75, Section 2]. The vague feeling that such concrete choices should

be irrelevant crystallises here into the fact that such choice functions are incon-

sistent as we have just shown in T11.4.1.

In particular Hilbert’s choice operator εx .φ cannot be added to FM because

it can be used to build choice functions. Proof assistants based on set theory or

86 11.4.3 11. Questions

higher order logic often use ε to provide anonymous notations for terms defined

by formulas (see [41, Section 2.1]). 3

Remark 11.4.3 (ι OK). A unique choice or definite description opera-

tor ι is consistent with FM (proof omitted). For φ~z a predicate on VFM in the

logic of FM (possibly with parameters in ~z)

∃!y . φ~z (y) =⇒ ∀y .
(

φ~z (y) ⇒ ιx .φ~z (x) = y
)

,

i.e. ιx .φ~z (x) is the unique y such that φ if such a unique y exists.

Isabelle/FM inherits one from Isabelle/ZF (it is called The, see [59]). Because

Isabelle functions have to be total The returns ∅ in the case that a unique y does not

exist. I use ι in the proof of T9.6.6 and find it convenient to adopt this influence

in the paper proof and let ι return ∅ when no unique choice exists (traditionally

we might leave it undefined). Cf. R15.2.4 and R16.1.3. 3

11.5. Consistency of FM. This subsection is conducted in ZFA set

theory. Suppose ZFA is consistent. Choose some particular model VZFA (cf.

R8.1.7).

In this section we use ZFA to construct a subclass of VZFA which satisfies the

FM axioms. This proves relative consistency of FM wrt ZFA.

Definition 11.5.1. Let the class of hereditarily finitely supported sets

in ZFA be written HFS and defined by

HFS(x)
def
= ∃U ∈ powfin(A). Φ(x ,U) ∧ ∀y ∈ x . HFS(y).

Recall that Φ(x ,U) means “U supports x”, see D9.1.2. In accordance with

standard practice we shall abuse ∈ and write x ∈ HFS for HFS(x).

Remark 11.5.2. We immediately have the following proof-method for

HFS:

x ∈ HFS precisely when x is finitely supported and for all y ∈ x ,

y ∈ HFS.

We shall use it often, usually without referencing this remark explicitly. 3

Corollary 11.5.3 (Downwards ∈-closed). R11.5.2 has the useful corollary

that HFS is downwards ∈-closed: x ∈ HFS and y ∈ x implies y ∈ HFS.

Lemma 11.5.4. If f is a VZFA function-class on x1, . . . , xn (and no other

variables) and each xi is finitely supported then f (x1, . . . , xn) is finitely supported.

Proof. The proof is really just the proof of L9.3.4. ZFA is equivariant so by

L8.1.12

(a b)·f (x1, . . . , xn) = f ((a b)·x1, . . . , (a b)·xn).

11.5. Consistency of FM 11.5.5 87

We assume each xi is finitely supported so let Ui ∈ powfin(A) support it. Then

from this commutativity equation above it is clear that U =
⋃

i Ui supports

f (x1, . . . , xn). Of course U is finite so we are done.

Definition 11.5.5. Define a new function-class on ZFA as

pow fs : VZFA −→ VZFA

x 7−→
{
y ⊆ x

∣
∣ y finitely supported

}(64)

Lemma 11.5.6. pow fs restricted to HFS maps to HFS. i.e.

x ∈ HFS =⇒ pow fs(x) ∈ HFS.

Proof. We use R11.5.2. Suppose x ∈ HFS. Then x is finitely supported and

all z ∈ x are in HFS. But if y ⊆ x is finitely supported then all z in y are in x

and so in HFS and hence y ∈ HFS. We have just proved that all y ∈ pow fs(x)

are in HFS and L11.5.4 says pow fs(x) is finitely supported, so again by R11.5.2

we know pow fs(x) ∈ HFS as required.

Corollary 11.5.7. From L11.5.6 it immediately follows that if x ∈ HFS then

pow fs(x) =
{
y ⊆ x

∣
∣ y ∈ HFS

}
.

Lemma 11.5.8. a ∈ A is supported by {a} and is empty, A is supported by

∅ and has atoms as elements, so

a ∈ HFS and A ∈ HFS.

Theorem 11.5.9. The class HFS ⊆ VZFA contains A and is closed under all

the rules of FM set theory for the ZFA interpretations of A and ∈. Thus HFS is

a model of FM set theory in VZFA.

Proof. We verify HFS contains A and is closed under the rules of Fig.226

and Fig.335.

For the reader not familiar with such proofs, the general idea is “if you put

HFS in, you get HFS out”, hence the word ‘closed’ in the statement of the

result. Thus, variables and parameters will usually range over HFS, not VZFA.

However—and this can cause confusion—when we use ZFA function-classes to

build sets which we then prove are in HFS , e.g.
⋃

, any universally or existentially

quantified variables in the ZFA function-classes’ definition range over VZFA.

For a concrete example consider (Powerset)26. The statement “HFS is closed

under (Powerset)26” actually means

∀x ∈ HFS. ∃y ∈ HFS. ∀z ∈ HFS. z ∈ y ↔ ∀w ∈ z . w ∈ x(65)

—so in principle a proof of this from ZFA axioms is complicated by the possibility

that might be z ∈ VZFA with z 6∈ HFS such that, say, z ∈ y but not ∀w ∈ z . w ∈

88 §11.5 11. Questions

x . However because HFS is downwards ∈-closed (C11.5.3) this cannot happen.

pow(x), the ZFA powerset function-class, does not satisfy (65)87, we use pow fs(x)

(D11.5.5) instead.

I shall not go through these details in the rest of the proof.

1. A ∈ HFS by L11.5.8.

2. HFS is closed under (Fresh)35 by construction.

3. HFS is closed under (Sets)26, (Extensionality)26, (AtmInf)26. Follow using

C11.5.3.

4. HFS is closed under (Infinity)26. N ∈ VZFA is equivariant (N9.2.8, ‘equivariant’

means ‘has empty support’) and hereditarily equivariant for the obvious meaning

of this terminology by analogy with D11.5.1. A set with empty support certainly

has finite support, so N ∈ HFS, and this validates (Infinity)26 of HFS .

5. HFS is closed under (Union)26. Suppose x ∈ HFS. Then x is finitely sup-

ported and all y ∈ x are in HFS. So all z ∈ y for y ∈ x are in HFS. By L11.5.4
⋃

(x) is finitely supported. All z ∈
⋃

(x) are in HFS by our previous observation.

Thus
⋃

(x) ∈ HFS.

6. HFS is closed under (Pairset)26. The standard pairset function in VZFA is

x , y 7→ (x , y) = {{x , y} , {x}}. Suppose x , y ∈ HFS. Then x , y are finitely

supported. By L11.5.4 so are (x , y), {x} and {x , y}.29 So {x} , {x , y} are in

HFS. Now (x , y) = {{x , y} , {x}} so (x , y) ∈ HFS.

7. HFS is closed under (Powerset)26. By L11.5.6, C11.5.7, and (65)87 above.

8. HFS is closed under (Collection)26. For φ a predicate let f be the function-class

on VZFA taking x to
{
y ∈ x

∣
∣ φ(y)

}
. If φ is parameterised we fix the parameters

and assume them to be in HFS and therefore finitely supported.30 Suppose

x ∈ HFS. Then every y ∈ x is in HFS and x is finitely supported. L11.5.4

implies that f (x) is finitely supported. Furthermore as already observed, y ∈ f (x)

is in x and so in HFS. Therefore f (x) ∈ HFS.

9. HFS is closed under (Replacement)26. Let F be a function-class from HFS

to HFS. As in the case of (Collection)26 if it is parameterised we assume the

parameters are in HFS. For x ∈ HFS every y ∈ x is in HFS. By assumption

29We don’t need L11.5.4 to see this. If U supports x (Φ(U , x)) and V supports y (Φ(V , y))

then from D9.1.2 it is evident that Φ(U ∪ V , z) for z = (x , y), {x} , {x , y}.
30Recall from the beginning of the proof that we’re trying to prove “HFS is closed under

(Collection)26”, so we assume all free variables and parameters range over HFS and prove what

we get out is also in HFS.

11.5. Consistency of FM 11.5.10 89

F (y) ∈ HFS. By L11.5.4 the VZFA set
{
F (y)

∣
∣ y ∈ x

}
is finitely supported.

Therefore it is in HFS.

10. HFS satisfies (∈-Induction)26. By L11.5.11 below HFS is equal to the cu-

mulative hierarchy MFM (D11.5.10 below) built up in ZFA from A using pow fs

((64)87). Such a cumulative hierarchy clearly satisfies ∈-induction.

This concludes the proof.

Definition 11.5.10. Write MFM ⊆ VZFA for the cumulative hierarchy built

up from A using pow fs instead of pow. ‘M’ stands for ‘model’.

Lemma 11.5.11. MFM = HFS.

Proof. A ∈ HFS and as proved in Case 7 above, HFS is closed under pow fs .

Thus MFM is a subclass of HFS.

Conversely we must show that HFS ⊆ MFM. This is proved by ZFA ∈-

induction on VZFA with inductive hypothesis

φ(x)
def
=

(
x ∈ HFS → x ∈ MFM

)
.

The proof is elementary but omitted.

Corollary 11.5.12. FM set theory is consistent wrt ZFA set theory.

Proof. A corollary of T11.5.9. Given a model VZFA of ZFA, HFS = MFM ⊆

VZFA provides a model of FM.

12. Inductive reasoning in FM

Now we change direction and consider a simple but prototypical case study of

inductive reasoning on inductively defined sets with α-equivalence.

Chapter IV contains a long proof of an interesting result (T21.9) about a

programming language FreshML. The proof is in FM; the datatype of terms of

FreshML is defined up to α-equivalence using the tools of §10 and reasoning is

carried out in the theory of FM, including the N-quantifier. So Chapter IV is a

huge case study. Our prototypical example is FMLtiny, a drastically simplified

version of FreshML. We shall construct its syntax and typing and evaluation

relations for it, all in FM, and prove a few results about them. We shall dot our

i’s and cross our t’s here and take this as a license not to in Chapter IV.

12.1. The syntax of FMLtiny.

Definition 12.1.1 (FMLtiny syntax). FMLtiny is a typed λ-calculus, its

terms, types, and values are defined in Fig.1190.

90 12.1.2 12. Inductive reasoning in FM

τ ::= Unit Unit Type

| τ → τ Function type

Types of FMLtiny

t ::= TheUnit The Unit

| x Variable Symbols

| Fix(τ, t∗∗) Function fixedpoints

| t t Application

Terms of FMLtiny

V ::= TheUnit

| x Variable Symbols

| Fix(τ, t∗∗) Function fixedpoints

Values of FMLtiny

Consistent with N9.5.3, t∗∗ denotes an atom-abstraction of an atom-abstraction

of a term t . Corresponding binding signatures are

TyX
def
=

Unit
Unit of U +

τ → τ
Func of X x X

TmY
def
=

TheUnit
TheUnit of U +

x , y , z , . . .
Var of A +

Fix(τ, t∗∗)
Fix of X x [A]2Y +

t t
App of Y x Y

VlZ
def
=

TheUnit
TheUnit of U +

x , y , z , . . .
Var of A +

Fix(τ, t∗∗)
Fix of X x [A]2Y

Figure 11. D12.1.1 - Types, Terms, and Variables of FMLtiny

Remark 12.1.2 (Technical points). 1. No sooner do I define a notation

than I abuse it. Fig.1190 is naughty because the initial algebras Ty,Tm

and Vl respectively defined by TyX ,TmY and VlZ are constructed by

12.1. The syntax of FMLtiny 12.1.3 91

mutual induction, which we did not formally develop in §10. I had mutual

induction in mind when I set up BX labelled with a variable symbol X .

I gloss over the issue, quoting Bekić’s theorem which shows how mutual

inductive definitions can be encoded in ordinary inductive definitions (see

[78, §10.1, p.162]).

2. It is unclear whether Vl and Tm are separate datatypes, or whether Vl is

an inductively defined subset of Tm. I gloss over this too.

3

This is a more interesting point:

Remark 12.1.3 (Not ZF grammars). Observe from TmY in Fig.1190 that

the term-former for (fixedpoint) function abstraction Fix takes as arguments a

type τ and a double abstraction t∗∗ of a term. A more traditional writing of this

is

fix f (x : τ) in t ,

where underlined variables are bound.31 I shall call this ‘nameful style’; though

bound variables have no names, we present them as if they did. I shall call the

style of Fig.1190 ‘nameless style’. This follows the terminology first mentioned

in R4.14.

The nameful presentation is more familiar and I use it to define FreshML in

Fig.31164. There is nothing wrong with explicit variable names so long as we

understand that they are bound. So a ‘nameful’ presentation of the grammar for

terms of Fig.1190 is this:

t ::= TheUnit | x | fix f (x : τ) in t | t t .(66)

They are identical declarations, the difference is stylistic. We shall see more about

nameful reasoning in FM in the course of this section, see for example R12.4.1.

3

12.2. Inductive reasoning on the syntax of FMLtiny. What is induction

on the syntax of terms? We consult §10.4 and in particular (55)71 and (details

31This notation is not definitive because it does not specify the scope of the binding, cf.

ft.75163.

92 12.2.1 12. Inductive reasoning in FM

omitted) deduce the following induction scheme:

∀φ : Tm → B.
(

∀x ∈ Unit. φ(TheUnit(x)) ∧

∀x ∈ A. φ(Var(x)) ∧

∀t1, t2 ∈ Tm. φ(t1) ∧ φ(t2) ⇒ φ(App(t1, t2)) ∧

∀τ ∈ Ty, t∗∗ ∈ [A]2Tm. Nf , u. φ((t∗∗@f)@u) ⇒ φ(Fix(τ, t∗∗))
)

=⇒ ∀x ∈ Tm. φ(x)

(67)

In N4.5 we set up a notation that Var, App and Fix are pure syntax term-formers

modelled in FM by functions Var,App and Fix. Now that we have binding

signatures (D10.1.3), adequacy for syntax (T10.5.8) and all the other apparatus

of §10, we can be comfortable that our FM syntactic sets are an accurate reflection

of abstract syntax ‘in nature’. So we just write Var, App, Lam for the set-function

versions of the term-formers too, as in (67)92 above. Cf. R21.11.

Theorem 12.2.1 (Substitution Property). If t is a term, x ∈ A a vari-

able symbol and V a value then t [V /x] (where [−/−] denotes substitution as in

D10.7.13 but written postfix instead of prefix 32) is a well-formed term. Further-

more, if U is a value then U [V /x] is also a value.

Proof. We prove the first assertion only, by FM-induction on t with inductive

hypothesis

∀V ∈ Vl. t [V /x] ∈ Tm.

1 • Suppose t = TheUnit. Then t [V /x] = t and the result is trivial.

2 • Suppose t = x . Then t [V /x] = V . Observe that values V are terms (cf.

Item 2 of R12.1.2). So the result follows.

3 • Suppose t = t1 t2. Then t [V /x] = t1[V /x] t2[V /x]. We work by induction on

the syntax so we have the inductive hypothesis for t1 and t2. Therefore t1[V /x]

and t2[V /x] are both terms and so is their application.

4 • Suppose t = Fix(τ, t∗∗). This is the interesting case. By the clause for Fix

of (67)92 it suffices to choose atoms f , u ∈ A fresh for the current context, so in

particular f , u#t∗∗, x ,V , and verify the inductive hypothesis of t assuming the

inductive hypothesis of t ′
def
= (t∗∗@f)@u (so t = fix f (u : τ) in t ′).

32 . . . for no particular reason.

12.3. Typing of FMLtiny §12.3 93

Γ ⊢ TheUnit : Unit(68)

Γ ⊢ x : τ (Γ(x) = τ)(69)

Γ ⊢ t1 : τ → τ ′ Γ ⊢ t2 : τ

Γ ⊢ t1t2 : τ ′
(70)

Nf , u.
Γ, f : τ → τ ′, u : τ ⊢ (t∗∗@f)@u : τ ′

Γ ⊢ Fix(τ, t∗∗) : τ → τ ′
(71)

Figure 12. D12.3.1 - Typing Judgements of FMLtiny

We therefore assume t ′[V /x] is a term. Now from f , u#x it follows by L9.3.6

that f , u 6= x . Also from f , u#V it follows by L10.7.7 that f , u 6∈ FV(V). So

there are no problems with variable capture and

(fix f (u : τ) in t ′)[V /x] = (fix f (u : τ) in t ′[V /x])

Since the RHS is a term, so is the LHS. This gives us the result.

12.3. Typing of FMLtiny.

Definition 12.3.1 (FMLtiny Typing). Typing contexts are partial functions

with finite domain from A to types Ty, written in standard style as a finite list Γ.

Write the typing contexts Ctxtyp.

Typing judgements are a subset of Ctxtyp × Tm × Ty inductively defined by

the rules of Fig.1293. We write Judgetyp for the valid typing judgements of

FMLtiny.

Recall that the inductive rule

φ(~x)

ψ(~x)
is shorthand for ∀~x . φ(~x) ⇒ ψ(~x)

in ZF. The language of FM has the N-quantifier, so for ~x = ~y , ~x ′ we may now

write inductive rules

N~y .
φ(~x)

ψ(~x)
as shorthand for ∀~x ′. N~y . φ(~x) ⇒ ψ(~x).

94 12.3.2 12. Inductive reasoning in FM

The rule for Fix in Fig.1293 written in traditional ZF -style is

Γ, f : τ → τ ′, u : τ ⊢ t : τ ′

Γ ⊢ fix f (x : τ) in t : τ → τ ′
.

Now Γ, f : τ → τ ′, u : τ is only well-formed when f , u 6∈ Dom(Γ). Traditionally we

insist that we only ever write Γ, x : τ when x 6∈ Dom(Γ). This amounts to adding

a side-condition x 6∈ Dom(Γ).

We can imitate this in FM by writing out t∗∗ in nameful style (R12.1.3) with

explicit variable names:

Γ, f : τ → τ ′, u : τ ⊢ t : τ ′

Γ ⊢ fix f (x : τ) in t : τ → τ ′

We do this in Chapter IV, for example in (126)180, (125)180 and (133)181. It looks

just the same as normal rules. But FM is different. The understanding is we are

just writing out t∗∗ with explicit variable names which may as well be chosen new!

So we really mean:

Nf , u. ∀t .
Γ, f : τ → τ ′, u : τ ⊢ t : τ ′

Γ ⊢ fix f (x : τ) in t : τ → τ ′
(72)

f , u are new for everything except t (see R9.4.12). So f , u#Γ and by L12.4.2 this

implies that f , u 6∈ Dom(Γ) and the side condition is taken care of.

Remark 12.3.2. The slogan is:

Unless otherwise indicated, bound variable names explicitly

appearing in an inductive rule are assumed to be created

new for variables outside the scope of the binding for that

variable, cf. R4.12.

3

Remark 12.3.3 (Monster proof nameful). In Fig.1293 we do it ‘properly’

with Fix(τ, t∗∗). In Chapter IV everything is nameful, in accordance with or-

dinary practice, but the slogan above is observed throughout, the difference is

merely stylistic. It is implicitly used (without any comment) wherever binders

occur, for example in (125)180, (126)180, (133)181, or (148)188. 3

12.4. Type uniqueness.

Remark 12.4.1 (Nameful reasoning on Judgetyp). Judgetyp (D12.3.1) is

an inductively defined set, a least-fixedpoint of an appropriate monotone oper-

ator. How do we reason about such a set? By induction over its rules given in

Fig.1293, just as we normally would. The N-quantifier in the rule for Fix makes

absolutely no odds besides allowing us to assume f and u are new when we reason

12.4. Type uniqueness 12.4.2 95

about them.33 It is at precisely at this point that we first see how FM allows us

to manipulate nameless terms in a nameful way. See R4.14 and R12.1.3. 3

Lemma 12.4.2. If Γ ∈ VFM is a function-set with finite domain (the obvious

candidate being of course an FMLtiny typing context) and a#Γ then a 6∈ Dom(Γ).

Proof. Dom(Γ) is finite so Supp(Dom(Γ)) = Dom(Γ) by L9.3.2. By L9.3.4

we also have Supp(Dom(Γ)) ⊆ Supp(Γ) and a is not in the RHS. Put together

this gives us a 6∈ Dom(Γ) as required.

This result is often applicable because we often have x#Γ, where x was chosen

new by a rule such as (72)94. For an example consider the case of Fix in T12.4.3

below. Cf. also §13.2.

Theorem 12.4.3 (Type Uniqueness). For Γ, t and τ such that Γ ⊢ t : τ ,

∀τ ′. Γ ⊢ t : τ ′ =⇒ τ ′ = τ.

Proof. By induction on the typing rules using inductive hypothesis

Γ ⊢ t : τ =⇒ ∀τ ′. Γ ⊢ t : τ ′ =⇒ τ ′ = τ.

1 • Suppose Γ ⊢ t : τ is deduced using (68)93. Trivially t = TheUnit and τ = Unit.

By pattern-matching against the rules for any other Γ ⊢ TheUnit : τ ′ it is the case

that τ ′ = Unit. We skip to the last typing rule.

2 • Suppose Γ ⊢ t : τ is deduced using (71)93. Then t = Fix(σ, t ′∗∗) and τ = σ1 →

σ2. We now choose new f , u#t ′∗∗, t , Γ, τ and write t ′∗∗ = f .(u.t ′) so that

t = fix f (u : σ1) in t ′.

We have the inductive hypothesis for the judgement

Γ, f : σ1 → σ2, u : σ ⊢ t ′ : σ2.

This is well-formed because f , u#Γ so by L12.4.2, f , u 6∈ Dom(Γ).

33If this does not convince the reader, consider that for any rule

Nx .
φ(x , y)

ψ(x , y)

by T9.4.6 it is actually logically equivalent to the rule

(x#φ, ψ, y) φ(x , y)

ψ(x , y)
.

This version is less convenient but it is traditional ZF in the sense that the inductive rule is of

standard nameful form ∀FreeVars. Assumptions ⇒ Conclusions. x#φ, ψ, y are FM predicates

but that has nothing to do with the induction rule itself.

96 §12.6 12. Inductive reasoning in FM

Now suppose Γ ⊢ t : τ ′. Because of the syntactic form of t we know this was

deduced by an application of (71)93. We follow back the deduction and apply the

inductive hypotheses in the standard way. This gives the result.

12.5. What FM gives us. What has FM given us? Not that much, but that

should not surprise us since if FMLtiny got any simpler it would cease to exist. FM

has simply delivered what it always promised: proofs by pure structural induction

and general tidying up of the treatment of bound variables. Thus T12.2.1 would

normally be proved by induction on term length, here we have seen it proved by

pure structural induction. In T12.4.3, itself by structural induction, newness of

f and u ensured well-formedness of the typing context. There are more complex

results out there as well. For example in a type-substitution property

(Γ, x : τ ⊢ t : σ) ∧ (Γ ⊢ U : τ) =⇒ Γ ⊢ t [U /x] : σ

we would find both the qualities above useful. The industrial-strength application

of FM is in Chapter IV and it contains precisely this result, twice for two different

judgements, and proved by pure structural induction on the derivation (T23.1.14

and L24.1.8, also C24.1.9). We see other and more sophisticated uses of Nas well,

e.g. ≡se in D26.3.1 and its interaction with, say, evaluation in T26.4.7.

Returning to FMLtiny, the fact that we got what we wanted in a prosaic way

is part of the basis for my claim that FM is ‘simple’ and ‘natural’.

Remark 12.5.1. Now is a good opportunity to mention that FM does deliver

a little more than just structural induction. We have equivariance (L8.1.12) for

the datatypes and functions and predicates on them (modulo parameterisation of

course) as well. FMLtiny is too simple for this to matter, but in a more complex

language it may give us a few more results ‘for free’ than we expected. For example

in a language with dynamically allocated local state, where new locations would

be modelled by new atoms, equivariance could come in jolly useful. Consider

for example [67, p.5, Lemma 1], which is a correctness result for evaluation with

respect to different choices for new locations. 3

12.6. Evaluation of FMLtiny. This subsection ostensibly studies evaluation

on FMLtiny, but I really use it to study the interaction of FM-abstractions with

standard deduction rules.

Definition 12.6.1. We define Closed terms and values, CTm and CVl

respectively, by

CTm
def
=

{
t ∈ Tm

∣
∣ Supp(t) = ∅

}
CVl

def
=

{
V ∈ Vl

∣
∣ Supp(V) = ∅

}
.

12.6. Evaluation of FMLtiny 12.6.2 97

TheUnit ⇓ TheUnit(74)

t1 ⇓ Fix(τ, t∗∗) t2 ⇓ V2 (t∗∗@@Fix(τ, t∗∗))@@V2 ⇓ V

t1 t2 ⇓ V
(75)

Fix(τ, t∗∗) ⇓ Fix(τ, t∗∗)(76)

Figure 13. D12.6.4 - Evaluation Relation of FMLtiny

Here we use “FV for free” (see L10.7.7 and the preceding discussion), which

allows us to use Supp directly without bothering to inductively define a “free

variables” function.

To define evaluation we use [t/a] the “substitution for free” defined in

D10.7.13. However, it is convenient to use a slightly different flavour of this

function:

Definition 12.6.2 (Name-free substitution). We define name-free substi-

tution using [t/a] (D10.7.13) by

@@ : [A]PreStx×PreStx −→ PreStx

x∗@@t = fresh a. [t/a](x∗@a).
(73)

Because a is fresh, a#t and by L10.7.14 we deduce a#[t/a](x∗@a). So the use

of fresh is legal (C9.6.7) and (73)97 is well-defined. The variable to be substituted

for is ‘marked’ by being bound (cf. subst2, D4.11).

We see why we prefer @@ to [t/a] in (75)97 and R12.6.5. It behaves well:

Lemma 12.6.3. For s, t ∈ PreStx and a ∈ A,

(a.s)@@t = [t/a]s.

Proof. By induction over s ∈ PreStx using the inductive structure of the

set (D10.3.2). We use the inductive hypothesis

∀t ∈ PreStx, a ∈ A. (a.s)@@t = [t/a]s.

The proof is a bit messy and I give no details.

Definition 12.6.4 (FMLtiny Evaluation). The evaluation relation, writ-

ten EvalFMLtiny , is a subset of CTm×CVl (D12.6.1) inductively defined by the

rules of Fig.1397.

98 12.6.5 13. More set theory

Remark 12.6.5. In (75)97 we use FM dialect but we can rephrase it in name-

ful ZF style (R4.14) using L12.6.3 to rewrite @@ in terms of substitution and the

convention of R12.3.2 to expand abstractions with implicitly fresh atoms f , x ;

t1 ⇓ fix f (x : τ) in t t2 ⇓ V2 [fix f (x : τ) in t/f ,V2/x]t ⇓ V

t1 t2 ⇓ V

meaning

(77) Nf , x . ∀t .

t1 ⇓ fix f (x : τ) in t t2 ⇓ V2 [fix f (x : τ) in t/f ,V2/x]t ⇓ V

t1 t2 ⇓ V
,

cf. R9.4.12 (binding under N). This is what is happening in (147)188 and many

other rules of FreshML, cf. R25.5. 3

13. More set theory

I finish Chapter II by clearing up a few loose ends. We start in §13.1 with

L13.1.1, which relates the support of x to the supports of its elements (always a

useful sort of equality to know in set theory). §13.2 uses L13.1.1 to develop the

theory of the support of syntactic sets.

13.1. Advanced theory of Supp.

Lemma 13.1.1. For all x ,

Supp(x) =







{x} x ∈ A

Supp(
⋃

y∈x Supp(y)) x 6∈ A.

Proof. The base case is L9.3.6. Concerning the second clause, the

right-to-left inclusion Supp(
⋃

y∈x Supp(y)) ⊆ Supp(x) is L9.3.4 for f =

λx .
⋃

y∈x Supp(y).

The left-to-right inclusion Supp(x) ⊆ Supp(
⋃

y∈x Supp(y)) is as follows. Let

us write

S for
⋃

y∈x

Supp(y).

Suppose there exists some a ∈ A such that

a ∈ Supp(x) and a 6∈ Supp(S) ⊆ Supp(x).

Choose some b 6∈ Supp(x). Then (by L9.2.7)

(a b)·x 6= x and (a b)·S = S.

13.2. Theory of finite sets §13.2 99

Since (a b)·x =
{
(a b)·y

∣
∣ y ∈ x

}
(D8.1.8) we can choose y ∈ x such that

(a b)·y 6∈ x and therefore (a b)·y 6= y . Also by construction of S we know

Supp(y) ⊆ S and since a, b 6∈ Supp(S) we have (using (13)30 for ∈)

(a b)·Supp(y) ⊆ S.

Now S is a subset of A so by L9.4.3 either

Supp(S) = S or Supp(S) = A \ S.

We consider only the first case, the second case is similar. Because of this,

Supp(y) ⊆ Supp(S) and (a b)·Supp(y) ⊆ Supp(S).

Now because (a b)·y 6= y we know at least one of a and b is in Supp(y), and

therefore b or a is in (a b)·Supp(y). Hence

b, a ∈ Supp(S).

However, Supp(S) ⊆ Supp(x) and b 6∈ Supp(x), so we have a contradiction.

This is nearly but not quite suitable as a definition by ∈-induction, although if

we define support first on atoms and subsets of A—call this preliminary function

Suppp—then we can actually make the definition

Supp(x)
def
=







Suppp(x) x ∈ A ∨ x ⊆ A

Suppp(
⋃

y∈x Supp(y)) otherwise

(Possible but unused def)

This is not the definition of Supp, see T9.2.1.

13.2. Theory of finite sets. L13.1.1 has consequences for the theory of

finite sets:

Corollary 13.2.1. For F a finite set,

a#F ⇐⇒ ∀x ∈ F . a#F(78)

Proof. A corollary of (Possible but unused def)99, the fact that a finite

union of finite sets is finite, and the fact (L9.3.2) that for X a finite subset of

A, Suppp(X) = X .

And why is this interesting?

It often happens where we use variable binding that we need to “choose a fresh

atom (i.e. variable name) a”. The precise meaning of “choose a fresh atom a” in

our new theory FM is “choose a apart from Γ, t ,X ,Y ,Z and everything else in

the context” (i.e. a#Γ, t ,X ,Y ,Z , see T9.4.6 or L9.4.8). We saw this in L12.4.2

for example.

100 §13.2 13. More set theory

C13.2.1 allows us to translate a#Γ to something more concrete. For example,

if Γ is a finite set of pairs (x , τ) then by C13.2.1 a#Γ precisely when a#(x , τ) for

all (x , τ) ∈ Γ. Pairset is an injective function-class so by L9.3.5 this is the case

precisely when a#x and a#τ . Now variable symbols are interpreted by atoms, so

x is an atom, and by L9.3.6 a#x iff a 6= x . Suppose for the sake of argument that

the typing system is not dependent and satisfies Supp(τ) = ∅ for all types τ (as

was the case in FMLtiny in §12). Then we have “a#Γ iff a does not occur in Γ”.

This is nothing new, we proved it all in L12.4.2. But typing contexts are

more complex in Chapter IV and we use the extra power of C13.2.1 to extend the

results. See C23.1.10 and L24.1.5.

We can argue similarly about “a apart from t” (i.e. a#t) for t a term. Ab-

stract syntax in FM is built up using injective function-classes34 so for t ∈ VFM

a semantic term (N8.2.4) we can use L9.3.5 and C9.5.9 to relate a#t to “a does

not occur free in t”.

Thus we may start in the sparkling springs of FM, leave for the fuming fu-

maroles of traditional practice, and then return, all safe in the knowledge that our

mathematical rigour will neither capsize or be eaten out from beneath us.

34Except, note, for atom-abstraction a.x (D9.5.1). This is ‘injective up to α-equivalence’.

We designed it to be.

Chapter III

Implementation: Isabelle/FM

14. Introduction

Having developed FM in Chapter II, there are at least two ways we may

proceed.

1. We can implement an established programming language extended with

facilities for handling datatypes of syntax with binding. Any programmer

manipulating syntax-like structures would benefit.

2. We can implement FM set theory or a derivative of it in a theorem-proving

environment, at once formally ‘verifying’ the mathematics and allowing

formal methods to be applied to datatypes of syntax with binding in a

practical setting.

The first option is big and requires collaboration between Pitts and me and

practitioners requiring specific features. Dr Pitts and I have written a paper on

the subject, see [66]. See also Chapter IV.

I have carried out this second option, the results are presented here. We shall

see FM set theory implemented inside Isabelle, we call it Isabelle/FM. We shall

present the mathematics of the implementation (subtly different from the FM

presented in Chapter II) and some of the technical considerations that shaped its

design.35

Remark 14.2. Isabelle/FM differs theoretically from FM set theory as pre-

sented in §8 and §9, for various reasons listed below with cross-references to more

extensive discussions.

1. Isabelle/FM is a little stronger than FM; it has many types of atoms. This

makes it possible to attack state of the art case studies. See R16.1.2.

2. Some hacking was used. For an example see R15.5.1.

3. Isabelle/FM uses Quine atoms. See §15.2.

4. Isabelle/FM has many more constant symbols than FM. See R16.1.1.

3

Remark 14.3 (Crude structure of Isabelle/FM). We constructed FM set

theory as ZFA+New (§8+§9 respectively), where ZFA is ZF set theory with an

infinite set of atoms and New is the axiom (Fresh)35, which give FM its unique

power and might be called the “theory of the N-quantifier”.

The implementation mirrors this. Isabelle/FM was created by reengineering

Isabelle/ZF to be Isabelle/ZFQA, ZF with Quine atoms (see §15.2 for a discussion

35Isabelle experts will probably find Chapter III slow in places. I urge tolerance. This is a

feature not a bug; I want this chapter accessible to the non-expert.

14. Introduction 14.4 103

of the nature of Quine atoms and why we used them), and later extending ZFQA

with New, the theory of the Nquantifier. 3

Remark 14.4 (Underlying system). Note that as R14.3 mentions, Isa-

belle/FM is based on a reengineered, extended version of an existing theory

Isabelle/ZF (one of the theories of the Isabelle distribution, [37]). The version

of Isabelle/ZF from which I derived Isabelle/FM was Isabelle98-1. All the work

described took place in the context of that particular release.

If Isabelle is installed on the reader’s system the Isabelle/ZF files are in

$ISABELLE HOME/src/ZF. The precise value of $ISABELLE HOME depends on the in-

stallation. It will be a directory called Isabelle-version, probably in one of the

/usr/local, /usr/local/share or /usr/share paths. 3

Remark 14.5 (Just-in-Time vs All-at-Once). Isabelle scripts are a sequen-

tial development cycle of declaring new types and constants (a Foo.thy ‘theory

declaration’ file) and proving results about them (a corresponding Foo.ML ‘proof

script’ file). We must decide: shall we declare all types and constants in some

Head.thy file and then develop the theory of the various constants in appropriate

Script01.ML to Scriptab.ML files? Or shall we declare types and constants as late

as possible in individual Scriptab.thy files? Call the former strategy ‘All-at-

once’ and the latter ‘Just-in-time’.

Concerning Isabelle/ZF, the type declarations of all standard constructs of set

theory (
⋃

, ∅, etc) are made ‘all at once’ in ZF.thy although the axioms controlling

them and more out-of-the way technical constants (such as ‘less than’ on ordinals

or the internalised relation-set version of ∈), are declared ‘just in time’. This has

the advantage of laying out all the familiar type and constant declarations in a

single initial file.

In contrast Isabelle/FM follows a strict ‘just in time’ strategy. Constants and

their controlling axioms are declared in separate Script.thy files and their theory

developed in a corresponding Script.ML file. This leads to neater code and makes

theory dependencies clearer (e.g. we have a rule of thumb that a result belongs

in the earliest script where all its constants have been declared—and if placed it

earlier, it won’t compile). 3

Remark 14.6 (Local and non-local changes). We start by reengineering Isa-

belle/ZF to Isabelle/ZFQA so we should consider some of the issues involved when

we modify a line in a .thy file of an existing (and extensive) implementation. This

will change one or both of the statement of and proofs of results which mention the

constants or axioms we modify, creating work rewriting the proof scripts which

tends, fatally, to propagate exponentially through the scripts. Once a result is

104 14.7 14. Introduction

changed subsequent proof-script changes and a domino effect sets in. This is to

be avoided, sometimes we can:

Although Isabelle proof scripts are very technical they do tend to mirror a

paper development. This manifests itself in their structure, and a script usually

builds up to a fairly limited number of crucial mostly semantically significant

results (e.g. introduction/elimination or unfolding rules). Although there is no real

provision for ‘local theorems’ scripts usually observe a discipline of only using these

results in the subsequent development. We shall call them interface results, as

opposed to non-interface results, which are used locally but not in other scripts.

A classic example is pair.ML, the Isabelle/ZF script developing the theory of or-

dered pairs. Technical details of the set-theoretic implementation of ordered pairs

(see Pair def in Fig.15108 for the Isabelle/Quine version, slightly different from the

Isabelle/ZF version) are completely hidden. Only implementation-independent re-

sults such as fst(a, b) = a

qed_goalw "fst_conv" thy [fst_def] "fst(<a,b>) = a"

(fn _=> [(Blast_tac 1)]);

are of interest. The implementation of Isabelle/ZFQA ordered pairs differs from

that of Isabelle/ZF and this provoked work in pair.ML but the interfacing results

were unchanged and the disturbance did not propagate.

When we modify an Isabelle theory, one of two things will occur:

1. A change propagates exponentially to all parts of the script logically ‘down-

stream’ of the original modification (usually by getting into the interface

results). We call this a non-local modification.

2. A change propagates exponentially at first, but then dies out. We call this

a local modification.

No change is best, but of the two, local is clearly better. I have found that a

semantically innocuous change need not be local, nor need a semantically radical

change be non-local. We now consider some types of modification: 3

Remark 14.7 (Changes to avoid). Experience shows that a semantically in-

nocuous but very non-local change is the addition of an extra condition or indeed

any modification to an existing condition, in an interface result.36 Because proof

in Isabelle is by resolution this extra condition provokes an extra or modified sub-

goal each time the modified result is used. In the best (but still very unpleasant)

36 For example, if we add atoms to ZF set theory the axiom of extensionality changes from

A = B ⇐⇒ A ⊆ B ∧ B ⊆ A to

(
A 6∈ A ∧ B 6∈ A

)
=⇒

(
A = B ⇐⇒ A ⊆ B ∧ B ⊆ A

)
. . .

15. Isabelle/ZFQA §15.1 105

case we must write a little bit of extra script each time to eliminate the subgoal.37

In the worst case the extra subgoal makes clever applications of the automated

theorem proving tools fail38 and forces the user to think very hard about how

these complicated applications, which he or she did not design, worked and what

went wrong. If in addition this extra condition appears in one of the interface

results, or worst of all systematically propagates to all the interface results, it is

liable to spread uncontrollably and provoke a complete code rewrite.39 Instances

of this kind of problem, thankfully mostly averted, arose for example in founda-

tion (see §15.4 and in particular R15.4.2), Quine vs Empty atoms (see R15.2.3

and R15.2.3), wf def (see p.115), and Memrel (see the discussion in and around

R15.5.1). My only really bad ‘domino-rewrite-everything-from-scratch’ incident

was rank, discussed on p.119. 3

Further examples will arise as we discuss the development.

15. Isabelle/ZFQA

Isabelle/ZFQA is Isabelle/ZF ([59]) re-engineered with Quine atoms (D15.2.1).

We now discuss its design.

15.1. Axioms and Constants of Isabelle/ZFQA. We start by consider-

ing the constants and axioms of ZFQA, the simple theory underlying FM. Its

constants are illustrated in Fig.15108 and Fig.16109.
40 This table is adapted from

the original version for ZF copied by kind permission of the author from [59,

Section 2.2, Fig 2.1, P.22]. The significance of the various constants is discussed

there. Changes and additions appear underlined.

Remark 15.1.1 (Atm collected). The differences between ZFQA and the

original ZF file are slight. We just add a constant symbol Atm of type i , which

declares a set of atoms. A weaker declaration with Atm a predicate of type i ⇒ o

37 . . . so the proof of the result

(A,B) = (C ,D) =⇒
(
A = C ∧ B = D

)

becomes more complicated, because we first have to verify that (A,B) 6∈ A and (C ,D) 6∈ A. Of

course this should be easy to prove, but if five hundred results are involved it becomes a burden.
38For example, in Isabelle/ZF we can prove that

∅ =
{
a ∈ ∅

∣
∣ False

}

automatically. This is implicitly used in a highly automated proof of non mem empty in ZF.ML, right

at the beginning of the implementation. It caused me endless trouble because the proof kept on

breaking with no indication of the hows and whys . . .
39 . . . reimplementation can become impractical with astonishing rapidity.
40In the actual implementation files the name of the theory has not been changed from the

original ‘ZF’.

106 §15.1 15. Isabelle/ZFQA

ZFQA = FOL + Let +

name meta-type description

Let [α, α ⇒ β] ⇒ β let binder

0 i empty set

cons [i , i] ⇒ i finite set constructor

Upair [i , i] ⇒ i unordered pairing

Pair [i , i] ⇒ i ordered pairing

Inf i infinite set

Pow i ⇒ i powerset

Union Inter i ⇒ i set union/intersection

split [[i , i] ⇒ i , i] ⇒ i generalized projection

fst snd i ⇒ i projections

converse i ⇒ i converse of a relation

succ i ⇒ i successor

Collect [i , i ⇒ o] ⇒ i separation

Replace [i , [i , i] ⇒ o] ⇒ i replacement

PrimReplace [i , [i , i] ⇒ o] ⇒ i primitive replacement

RepFun [i , i ⇒ i] ⇒ i functional replacement

Pi Sigma [i , i ⇒ i] ⇒ i general product/sum

domain i ⇒ i domain of a relation

range i ⇒ i range of a relation

field i ⇒ i field of a relation

Lambda [i , i ⇒ i] ⇒ i λ-abstraction

restrict [i , i] ⇒ i restriction of a function

The [i ⇒ o] ⇒ i definite description

if [o, i , i] ⇒ i conditional

Ball Bex [i , i ⇒ o] ⇒ o bounded quantifiers

Atm i set of atoms

Constants

symbol meta-type priority description

‘‘ [i , i] ⇒ i Left 90 image

-‘‘ [i , i] ⇒ i Left 90 inverse image

‘ [i , i] ⇒ i Left 90 application

Int [i , i] ⇒ i Left 70 intersection (∩)

Un [i , i] ⇒ i Left 65 union (∪)

- [i , i] ⇒ i Left 65 set difference (−)

: [i , i] ⇒ o Left 50 membership (∈)

<= [i , i] ⇒ o Left 50 subset (⊆)

Infixes

Figure 14. Constants of ZFQA

15.1. Axioms and Constants of Isabelle/ZFQA 15.1.2 107

would allow a proper class of atoms but there are good reasons to wish Atm to be

a set. For example it lets us define Supp in the way we do, see Fig.20122 and §16.8.

3

Remark 15.1.2 (Safe under extension). Adding a new constant is innocuous

in practice, though it may be devastating in theory. E.g. in the presence of an

anti-choice axiom the mere declaration of a properly axiomatised choice function

makes the theory inconsistent. But previously existing proofs will not mention this

new addition to the theory and will compile as before (even if we can now also

prove False); the declaration of an additional constant cannot ‘break’ a theory

(the same is not true of systems with a more ‘active’ metatheory such as Twelf,

[33]). 3

The axioms of ZFQA are presented in Fig.15108 and Fig.16109. Like Fig.14106

they are adapted from the original [59, Section 2.2, Fig 2.3,2.4, P.26,27].

Most of the axioms are discussed in [59, Part 2.2, “Syntax of set theory”], we

only discuss the points of difference from the original ZF files.

We shall start with Atm quine, the axiom we add to control the elements of

the new constant Atm discussed in §15.2. We shall use the occasion in R15.2.3

to justify implementing ZFQA and not ZFA (see D15.2.1). In §15.3 and §15.4

we discuss the two instances where existing definitions of Isabelle/ZF had to be

modified in the change to Isabelle/ZFQA.

15.2. Discussion of Atm quine.

Definition 15.2.1 (Quine atoms). Atoms a are Quine atoms when it is the

case that a = {a}, and empty atoms when a has no ∈-related elements (i.e. is

empty, though nevertheless not equal to the empty set).

Remark 15.2.2 (Quine). “Quine atoms” are discussed by Quine in [72, §4,

p.31]. See also R15.2.5. 3

In FM we used empty atoms (§8). In Isabelle/FM we use Quine atoms. We

call “ZF with empty atoms” by the name ZFA and “ZF with Quine atoms”

by the name ZFQA. The slogan is

“We choose empty atoms in Chapter II and Quine atoms in Chap-

ter III.”

Atm Quine is the axiom that states that atoms in Isabelle/ZFQA are Quine:

a ∈ A ⇐⇒ a = {a} .

108 §15.2 15. Isabelle/ZFQA

Let_def Let(s, f) == f(s)

Ball_def Ball(A,P) == ALL x. x:A --> P(x)

Bex_def Bex(A,P) == EX x. x:A & P(x)

subset_def A <= B == ALL x:A. x:B

extension A = B <-> A <= B & B <= A

Union_iff A : Union(C) <-> (EX B:C. A:B)

Pow_iff A : Pow(B) <-> A <= B

foundation A=0 | (EX x:A. ALL y:x. (y~:A | x:Atm))

Atm_quine a:Atm <-> (ALL x. x:a <-> x=a)

replacement (ALL x:A. ALL y z. P(x,y) & P(x,z) --> y=z) ==>

b : PrimReplace(A,P) <-> (EX x:A. P(x,b))

The Zermelo-Fraenkel Axioms

Replace_def Replace(A,P) ==

PrimReplace(A, %x y. (EX!z. P(x,z)) & P(x,y))

RepFun_def RepFun(A,f) == {y . x:A, y=f(x)}

the_def The(P) == Union({y . x:{0}, P(y)})

if_def if(P,a,b) == THE z. P & z=a | ~P & z=b

Collect_def Collect(A,P) == {y . x:A, x=y & P(x)}

Upair_def Upair(a,b) ==

{y. x:Pow(Pow(0)), (x=0 & y=a) | (x=Pow(0) & y=b)}

Consequences of replacement

Inter_def Inter(A) == {x:Union(A) . ALL y:A. x:y}

Un_def A Un B == Union(Upair(A,B))

Int_def A Int B == Inter(Upair(A,B))

Diff_def A - B == {x:A . x~:B}

Union, intersection, difference

Figure 15. Rules and axioms of ZFQA

15.2. Discussion of Atm quine §15.2 109

cons_def cons(a,A) == Upair(a,a) Un A

succ_def succ(i) == cons(i,i)

infinity 0:Inf & (ALL y:Inf. succ(y): Inf)

Finite and infinite sets

Pair_def <a,b> == {{{a,a},{a,b}}, 0}

split_def split(c,p) == THE y. EX a b. p=<a,b> & y=c(a,b)

fst_def fst(A) == split(%x y. x, p)

snd_def snd(A) == split(%x y. y, p)

Sigma_def Sigma(A,B) == UN x:A. UN y:B(x). {<x,y>}

Ordered pairs and Cartesian products

converse_def converse(r) == {z. w:r, EX x y. w=<x,y> & z=<y,x>}

domain_def domain(r) == {x. w:r, EX y. w=<x,y>}

range_def range(r) == domain(converse(r))

field_def field(r) == domain(r) Un range(r)

image_def r ‘‘ A == {y : range(r) . EX x:A. <x,y> : r}

vimage_def r -‘‘ A == converse(r)‘‘A

Operations on relations

lam_def Lambda(A,b) == {<x,b(x)> . x:A}

apply_def f‘a == THE y. <a,y> : f

Pi_def Pi(A,B) == {f: Pow(Sigma(A,B)). ALL x:A. EX! y. <x,y>:f}

restrict_def restrict(f,A) == lam x:A. f‘x

Functions and general product

Figure 16. Further definitions of ZFQA

This contrasts with of the ZFA set theory of Fig.226 and in particular (Sets)26

which imply

a ∈ A ⇐⇒ a 6= ∅ ∧ ∀x . x 6∈ a.

Non-wellfounded sets?! And FM is supposed to be easy? I see the point but it

is obvious to me, and I hope it will become so to the reader, that Quine atoms are

110 15.2.3 15. Isabelle/ZFQA

a completely innocuous form of non-wellfounded behaviour (in particular I prove

consistency of ZFQA wrt ZFA in R15.2.5). Worrying about them is a red herring.

Furthermore, they were a vital design choice without which Isabelle/FM would

not exist. R15.2.3 and R15.2.4 below explain why.

Remark 15.2.3 (Empty atoms bad). Quine atoms are the better choice for

Isabelle/ZFQA. Suppose instead we implemented Isabelle/ZFA. As discussed in

ft.36104 and ft.37105 the ZFA-rule for extension in Fig.15108 would have to be

(something logically equivalent to)

BAD_extension "A = B <-> (A:Atm & B:Atm & A=B) |

(A~:Atm & B~:Atm & A <= B & B <= A)"

Sets that are not atoms are extensionally equal, sets that are atoms are equal

precisely when they are equal. The set-equality intro rule equalityI would change

to something like

originalZF equalityI "[| A<=B ; B<=A |] ==> A=B"

newZFA equalityI "[| A<=B ; B<=A ; A~:Atm ; B~:Atm |] ==> A=B"

In the language of R14.6 this would be highly non-local. Uses of extension per-

meate the implementation and each would have to be patched. Results depending

directly or indirectly on extensionality would require extra conditions to keep them

true, and these modified results would in turn create work each time they are used.

Worse still, any other development building on Isabelle/ZF would be incom-

patible with Isabelle/ZFA. It would almost certainly use extension and hence could

not be easily imported. This will not be the case with Isabelle/ZFQA. As we men-

tioned in R15.1.2, an extra constant Atm will not stop scripts that do not mention

it from compiling—so long as the parts of the theory that they do refer to are

unchanged. 3

Remark 15.2.4 (Empty atoms terrible). Empty atoms cause failure in other

ways. Consider the set-theoretic
⋃

-operator, realised in Isabelle/ZF by Union. We

would expect that
⋃
{x} = x but it follows from Union iff in Fig.15108 that for

a:Atm, Union({a}) = 0.

In R15.2.3 we showed that empty atoms would provoke non-local change to

extension, forcing work patching proof scripts and results. We now see that empty

atoms cast doubt on the implementation of the very basic term-former Union.

The problem cannot be ignored. Consider The, the Isabelle/ZF ι-term-former,

defined in Isabelle/ZF as follows:

the_def "The(P) == Union({y . x:{0}, P(y)})"

Now suppose

P = λy .(y = a) where a ∈ A and P = %y.y=a where a:Atm.

15.2. Discussion of Atm quine 15.2.5 111

At this point ZFA and Isabelle/ZFA diverge, since

ιy .P(y) = a but The(P) = Union({a}) = 0.

We opt for Quine atoms. 3

Remark 15.2.5 (Pedigree of Quine Atoms). ‘Quine atoms’ have a distin-

guished history. They may be unfamiliar to the reader but are not exotic. Quine

discusses them in [72, §4, p.31], where he favours them for just that feature which

so suits them for Isabelle/FM, namely leaving extensionality intact. Concern-

ing the consistency of Quine atoms, the reader need only consider in ZFA the

predicate

x ∈′ y
def
= x ∈ y ∨ (x = y ∧ x ∈ A).

Any formula in the logic of ZFQA true of all models of ZFQA (call this ‘valid’) is

mapped to a valid sentence of ZFA by replacing every ∈ by ∈′. In particular, if

ZFQA is inconsistent, ⊥ is one of these formulae, and it must map to a valid ZFA

formula ⊥. So long as we believe ZFA is consistent this cannot happen. 3

15.3. Discussion of Pair def. In §15.2 we argued that Isabelle/ZFQA is

better than Isabelle/ZFA for implementation. That is not to say that the Quine

atoms of Isabelle/ZFQA do not have a price, and part of it is that the axiom

Pair def must now change. We consider how, why, and the change’s implications.

Let us consider the original and the new.

originalZF Pair_def <a,b> == {{a,a},{a,b}}

newZFQA Pair_def <a,b> == {{{a,a},{a,b}}, 0}

The first point is the difference between the original Isabelle/ZF definition of

pairs (rewritten in traditional notation)

(a, b) = {{a, a} , {a, b}}

and the standard set-theoretic implementation,

(a, b) = {{a} , {a, b}} .

It is true that {a, a} and {a} are extensionally equal, but {a,a} and {a} are

different terms. The ‘symmetric’ form is easier to work with.41

Unfortunately, using the original Pair def in the presence of Quine atoms

breaks some interface theorems. For instance for a:Atm,

a = <a,a>,

so two results in pair.ML,

41This claim is direct from the original Isabelle/ZF file ZF.thy. From my own experience I

can agree.

112 §15.4 15. Isabelle/ZFQA

Pair_neq_fst "<a,b>=a ==> P"

Pair_neq_snd "<a,b>=b ==> P"

are no longer true. I have looked and cannot find them used by the rest of the

theory so it might not be affected. Some strange results would become provable

though, for example

Sigma(Atm,%x.({x})) = Atm,

but so long as we do not actually prove them our scripts, this need not trouble

us (there is some small danger of them creeping in through an automated proof

tool).

However, the loss of Pair neq fst and Pair neq snd troubled me sufficiently

that I decided to modify the definition to save them by modifying Pair def as

shown above. This provoked considerable, but entirely local, changes in pair.ML.

15.4. Discussion of foundation. Clearly in the presence of Quine atoms

such that a = {a}, the traditional formulation of foundation

A = 0 ∨ ∃x ∈ A. ∀y ∈ x . y 6∈ A

fails. Just take A = a ∈ A. We use a modified version.

Remark 15.4.1 (Different foundation). Consider the rule foundation

(Fig.15108) written in both Isabelle and set notation.

foundation "A=0 | (EX x:A. ALL y:x. (y~:A | x:Atm))"

A = 0 ∨ ∃x ∈ A. ∀y ∈ x . (y 6∈ A ∨ x ∈ A).

We can read this as

“Foundation still holds, so long as we pretend that atoms are empty.”

3

There are two subtleties to the axiom’s design:

1. Why is foundation not written as follows?

not_foundation1 "A=0 | (EX x:A. x:Atm | (ALL y:x.y~:A))"

Isabelle’s primary proof-method, resolution, deconstructs terms’ syntax

from the top down (as opposed to unfolding definitions or simplification,

which act from the bottom up). It is good strategy to push changes down

into the syntax. Changes to proofs are thus delayed to when the proof-state

is more reduced (perhaps even solved), and when as many instantiations of

unknowns as possible have been settled by the original designers’ code.

2. Why is foundation not written as follows?

not_foundation2 "A=0 | (EX x:A. ALL y:x.(x:Atm | y~:A))"

15.4. Discussion of foundation 15.4.2 113

An Isabelle proof-state is an ordered list of subgoals and the standard style

of manual proof is to attack them in order. If x:Atm comes before y~:A,

new subgoals arising from x:Atm will tend to appear first in the proof-state,

ahead of original subgoals arising from y~:A for which code already exists.

It is better, as in Case 1 of this list, to postpone change.

We edify this with a principle!

Remark 15.4.2 (Principle of latest change). When we modify an Isabelle

script it is best to provoke script changes later rather than sooner. This means

that:

1. We have access to a more developed theory.

2. Changes have less time to propagate exponentially, so less results have to

be modified.

3. On the level of individual proofs, the proof-state is more reduced and un-

knowns are more likely to be instantiated.

Point 3 is especially important in the common case that a modification provokes

a number of trivial typing subgoals, e.g. x~:Atm. My usual strategy has been to

structure the proof so they are postponed till the end of a proof and eliminate them

uniformly with an automated proof tool. These tools have trouble with unknowns

(they are a second-order phenomenon after all), and in the worst case may not

fail, but succeed by instantiating an unknown inappropriately, which completely

breaks the rest of the proof. 3

To the casual reader R15.4.2 might not seem important, but it is a powerful

strategy and underlies a whole style of programming. As such it characterises a

great difference between Isabelle and paper: not only is the semantic significance

of a proposition important, but at a time when theorem-proving environments are

only just easy enough for humans to use, the fine details of the syntax can be

decisive.

Remark 15.4.3 (Change to foundation non-local). foundation is funda-

mental but appears relatively late in the implementation. The change to it

described in R15.4.1 is non-local; everything that depends on ∈ (a.k.a. :) being

well-founded, such as script on rank and ordinals, must be rewritten. However,

nearly all of this occurs later. In keeping with R15.4.2 this is, if not good, at least

not too bad. And yet there is a price to pay. We consider part of it now and the

nastiest effects in §15.5. 3

In fact the first problem comes in the first script file ZF.ML. There is just one

result stating that the empty set has no ∈-related elements:

114 15.4.4 15. Isabelle/ZFQA

not_mem_empty "a~:0"

Remarkably, this is not an axiom, but follows from foundation (and extensional-

ity). See ZF.ML for more details. My early versions of foundation broke the proof.

Unfortunately it is by an automated proof tool called best tac. These are difficult

to trace and debug and even though best tac is well-documented the proof stayed

broken. In fact my first version of foundation was semantically incorrect, but even

the corrected versions did not work. It was one of the early victories of R15.4.2

that the original proof-script worked for the final version of foundation, whose

design it guided.

Remark 15.4.4 (Debugging). I have slipped into the first person and the

above is essentially anecdotal. Unfortunately, writing proof-script in Isabelle can

be low-level.42 Debugging is slow and errors rarely educational. Most mistakes

are made in tiredness or stupidity.

The reader should be aware and beware that at least half of the development

time of Isabelle/FM—my time—was spent chasing really silly bugs. With disci-

pline and experience, as always, one learns habits of programming that minimise

the risks of creating such errors, but the system does not force these habits on the

programmer in the same way that, say, ML tries to. 3

15.5. Further discussion of foundation. We now come to one of the

most demanding parts of the implementation of Isabelle/ZFQA. As mentioned in

R15.4.3 the change to foundation provoked by Quine atoms has non-local effects.

The sections most seriously affected are Ordinal.ML, dealing with the theory of or-

dinals, and the later Epsilon.ML, dealing with ∈-induction and rank. The problem

in both cases is that ∈ ceases to be well-founded in the presence of Quine atoms.

We shall consider how each proof-script was mended, starting with Ordinal.ML,

but first we consider a case where a proof-script was not changed.

WF.ML, which deals with the theory of well-founded relations and which is

used by both Ordinal.ML and Epsilon.ML, compiles without modification in Isa-

belle/ZFQA; the theory of well-founded relations remains the same regardless of

whether ∈ is well-founded. But now ∈ is not well-founded because of Quine atoms

and we might like to change WF.ML’s definition of “well-founded relation”. This

is introduced as a predicate wf of type i=>o in WF.thy, where its one argument is

intended to be an internal relation-set. The Isabelle/ZF definition, unchanged in

Isabelle/ZFQA, reads

wf_def "wf(r) == ALL Z. Z=0 | (EX x:Z.ALL y. <y,x>:r --> ~y:Z)"

Now suppose this were changed to:

42 . . . imperative, technical, difficult to debug, difficult to modify.

15.5. Further discussion of foundation §15.5 115

OTHER_wf_def "wf(r) == ALL Z. Z=0 |

(EX x:Z.ALL y. <y,x>:r --> (~y:Z | y:Atm))"

The form of this definition, it is clear, is chosen so as to make :, the Isabelle/ZFQA

∈-relation, be ‘OTHER-well-founded’ (cf. R15.4.1). We entertain this thought

because:

1. Much of Epsilon.ML compiles without change (I’ve tried).

2. One might argue that the usual notion of well-foundedness is not so appro-

priate in the presence of Quine atoms.

Against this speak the following:

1. We may need the theory of well-founded relations anyway. For example,

recursion on syntactic datatypes is ultimately based on well-foundedness of

a relation (essentially “is a subterm of”)—so we should be careful before

changing it, we may need the original form.

2. Quine atoms are a convenience only and have nothing to do with FM as

such. We may even wish to remove them in a future rewrite. Should we

twist basic definitions to accommodate them?

3. A change to the definition of ‘well-foundedness’ has an impressive potential

for confusion.

4. Purely in practice—and never mind everything else, this reason is telling—

many of the results in WF.ML quote wf def almost verbatim but slightly

changed, for example

wf_induct" "[| wf(r);

!!x.[| ALL y. <y,x>: r --> P(y) |] ==> P(x)

|] ==> P(a)";

OTHER_wf_induct" "[| wf(r);

!!x.[| ALL y. <y,x>: r --> (P(y) | y:Atm) |] ==> P(x)

|] ==> P(a)";

These explicitly quoted instances would change with wf def and propagate

systematically to conditions in many interface results. This is, as discussed

in R14.7, exceedingly undesirable.

So WF.thy remained unchanged. WF.ML compiles smoothly.

Now consider Ordinal.ML. Five constants are introduced in Ordinal.thy;

1. : is internalised by Memrel::i=>i, where Memrel(A) is axiomatised as a

relation-set between elements of A.

2. ‘Is a transitive set’ is introduced as a predicate Transset::i=>o

3. ‘Is an ordinal’ is introduced as a predicate Ord::i=>o.

116 §15.5 15. Isabelle/ZFQA

Memrel :: i=>i

Transset,Ord :: i=>o

"<" :: [i,i] => o (infixl 50)

Limit :: i=>o

Memrel_def "Memrel(A) == z: A*A . EX x y. z=<x,y> & x:y & y~:Atm "

Transset_def "Transset(i)== (ALL x:i. (x<=i))"

Ord_def "Ord(i) == Transset(i) & (ALL x:i.(Transset(x) & x~:Atm))"

lt_def "i<j == i:j & Ord(j)"

Limit_def "Limit(i) == Ord(i) & 0<i & (ALL y. y<i --> succ(y)<i)"

ZF_Memrel_def "Memrel(A) == z: A*A . EX x y. z=<x,y> & x:y "

ZF_Transset_def "Transset(i)== (ALL x:i. (x<=i))"

ZF_Ord_def "Ord(i) == Transset(i) & (ALL x:i. Transset(x))"

ZF_lt_def "i<j == i:j & Ord(j)"

ZF_Limit_def "Limit(i) == Ord(i) & 0<i & (ALL y.y<i --> succ(y)<i)"

Figure 17. Ordinal.thy Definitions

4. The notion of ‘less than’ on ordinals is introduced as a binary predicate

<::[i,i]=>o.

5. ‘Is a limit ordinal’ is introduced as a predicate Limit::i=>o.

The definitions in Ordinal.thy are presented in Fig.17116 along with the original

Isabelle/ZF versions (tagged ZF). Note the unusual definition of Ord, clearly

chosen to work well in Isabelle.43

Atoms are ordinals according to the original ZF definition ZF Ord def; a = {a}

is a transitive set all of whose elements are transitive sets. If atoms are ordinals

then desirable properties of < break, such as antisymmetry and irreflexivity. Typ-

ing conditions like i~:Atm are no option because of the non-local changes they

would cause. We therefore restrict the predicate Ord as seen in Ord def in Fig.17116

so it is true only of the ‘original’ ordinals. Note that the following (logically equiv-

alent) version,

BAD_Ord_def "Ord(i) == i~:Atm & Transset(i) & (ALL x:i. Transset(x))"

is utterly unsuitable, the difference in effort between using BAD Ord def and

Ord def is at least an order of magnitude. See R15.4.2.

43It comes from Halmos [23].

15.5. Further discussion of foundation 15.5.1 117

Memrel causes the second problem. In ZF the relation-set internalising ∈ on A

is always well-founded. In ZFQA it is not; consider A = {a} for a ∈ A, for which

Memrel(A) = {<a,a>}. The proof of the following result breaks:

wf_Memrel "wf(Memrel(A))"

This is an important interface result and a change to it would have serious non-

local consequences, e.g. in Epsilon.ML where rank and ∈-recursion are developed.

Remark 15.5.1 (Hack). The solution I chose is a hack of which I am partic-

ularly proud. We change Memrel as shown in Fig.17116. Memrel still thinks that

atoms are empty and that ∈ is well-founded even as : disagrees. A critical group

of interface results, including wf Memrel, remains unchanged, and this prevents

most modifications from propagating. I call this a ‘hack’ because traditional set

theorists would never dream of doing such a thing (nor did we in Chapter II in

FM)—but they are not programming in Isabelle.44

However, the ‘hack’ has some moral justification aside from its great technical

utility: as already remarked Quine atoms are orthogonal to Isabelle/FM as such.

We insulate the internal universe from the details of its implementation. 3

We need to add typing conditions like i~:Atm in some results (for example

Transset induct, see Ordinal.ML) but the changes are local to the script and lim-

ited because most are of the form “[Ord(i) and/or i<j] imply P”. Since Ord(i)

and i<j already imply i , j 6∈ A, there is usually no need to add this as an extra

condition. Once these results are syntactically unchanged (even though the mean-

ings of their constant symbols have shifted) later results whose proofs use them

do not break, and the changes quickly die out.

Now we consider Epsilon.ML. This deals with ∈-recursion on the set universe

and rank. A somewhat edited list of the constants introduced is in Fig.18118. We

briefly consider each.

1. eclose(A) is the transitive closure of A under the relation-class :.

2. rank(a) is the rank of a. Since rank is defined by ∈-recursion, no longer

well-founded, its definition must be reconsidered.

3. transrec takes a set a::i and function H::[i,i]=>i and returns a set

transrec(a,H)::i, which has the unfolding property that for a 6∈ A,

transrec(a,H) = H(a, lam x:a. transrec(x,H))

44But we used empty atoms in FM. Are then not Quine atoms a ‘hack’? Indeed so! It has

been suggested that both are good solutions, not hacks. I’m happy to accept that, but propose

we call them ‘hacks’ but not ‘kludges’. The real reason for this preference is that using ‘hack’

in connection with my Isabelle work gives it a ‘je ne sais quoi’ of swashbuckling romance which

makes up for the ‘pourquoi moi’ of actually doing it. Do not begrudge me my small fantasies.

118 15.5.2 15. Isabelle/ZFQA

eclose :: i=>i

transrec :: [i, [i,i]=>i] =>i

rank :: i=>i

eclose(A) == UN n:nat. nat_rec(n, A, %m r. Union(r))

transrec(a,H) == wfrec(Memrel(eclose(a)), a, H)

rank(a) == transrec(a, %x f. Union(z . y:x , (x~:Atm & z=succ(f‘y))))

ZF_eclose(A) == UN n:nat. nat_rec(n, A, %m r. Union(r))

ZF_transrec(a,H) == wfrec(Memrel(eclose(a)), a, H)

ZF_rank(a) == transrec(a, %x f. UN y:x. succ(f‘y))

Figure 18. Epsilon.thy Definitions

This is of course ∈-recursion.

We consider eclose first. We can think of this as a function that unfolds a

set ω times and puts all the bits in a big union. Whereas we modified Memrel so

it thinks atoms are empty, we have not changed eclose. For a:Atm, eclose(a) is

equal to {a} and not 0. Changing eclose would cause an inconvenient code rewrite

and leaving it seems to cause no trouble (probably because the only property of

∈-closure we use in practice is that it contains the transitive closure of ∈).

transrec is interesting both for its definition and for the effect that the change

to Memrel has on its behaviour. From Fig.18118 we see transrec(a,H) is defined

by well-founded recursion on

“the restriction of [the internalisation of :] to [the transitive closure

of a] with [the recursion function H]”.

Remark 15.5.2. Now transitive closure of a is taken using : which thinks

atoms are Quine, while Memrel the internalisation of : thinks they are empty.

Clearly transrec could do strange things on atoms. Before we check whether this

mismatch has strange consequences it is interesting to consider what the quote

above actually means by comparing this construction with the pencil-and-paper

development of recursion in ZF. 3

Remark 15.5.3 (Comparison of paper and Isabelle). The standard develop-

ment of ∈-recursion in ZF (not ZFQA) is as follows. We construct in the

language of set theory the class of all function-sets defined on a (transitively

closed) portion of the universe that satisfy an appropriate recursive unfolding

rule. These function-sets, usually called trial functions, correspond exactly to

16. Isabelle/FM §16 119

transrec(a,H). In the language of set-theory we then use foundation to show that

all such function-sets must agree on the intersection of their domains. Hence we

see that there exists a unique function-class with the unfolding property (though

in the language of ZF we cannot say that).

In Isabelle all this reasoning is simply left out. The Isabelle/ZF implementa-

tion does not ‘justify’ ∈-recursion on the type i. The implementors just extract

this internal computation and write it up in Isabelle code as transrec def. 3

We return to R15.5.2. Memrel and : disagree on atoms. The former considers

them empty, the latter considers them Quine (see R15.5.1). Now consider the

definition and the unfolding rules for transrec, side by side.

transrec_def transrec(a,H) == wfrec(Memrel(eclose(a)), a, H)

unfold rule transrec(a,H) = H(a, lam x:a. transrec(x,H))

We see that the unfolding rule uses : whereas the definition uses Memrel. There

is a risk that my hack of R15.5.1 will come back to haunt me in the behaviour of

transrec on a:Atm. But things resolve themselves surprisingly well. The unfolding

rule on a:Atm is precisely what it would be if atoms were empty:

a:Atm ==> transrec(a,H) = H(a, 0)

This enables us to program the behaviour of transrec on elements of Atm with a

simple boolean test on a in H.

Rank is a problem. It is defined by ∈-recursion as follows:

rank :: i=>i

rank(a) ==transrec(a,%x f. Union({z. y:x, (x~:Atm & z=succ(f‘y))}))

ZFrank(a)==transrec(a,%x f. UN y:x.succ(f‘y))

The reader will see that the Isabelle/ZFQA version of rank def is completely

rewritten, in violation of R15.4.2. Both definitions start with transrec but this

similarity is illusionary because the standard proof-method with transrec is to

unfold it, which brings the Union/UN difference right to the top of the term. Isabelle

operates on syntax top-down. If the top-level term-formers change, so do the

proofs; this is a simple and brutal characteristic of the system. I did mend the

section on rank, and this was very difficult, but it is not needed for the development

of datatypes of syntax up to variable binding. We have in the end been forced to

completely rewrite a definition and its proofs, but have postponed this for so long

that there is very little of the theory left to worry about. The rank of atoms is set

(somewhat arbitrarily) to zero.

16. Isabelle/FM

In §15 I discussed how I re-engineered Isabelle/ZF to Isabelle/ZFQA. This

section discusses how this becomes Isabelle/FM.

120 §16.2 16. Isabelle/FM

16.1. The theory of Isabelle/FM. As briefly discussed in R14.2 the theory

behind Isabelle/FM is not quite FM (§9). We now reconsider how and why.

Remark 16.1.1 (More constants). First of all, and this is of no consequence,

pencil-and-paper developments of set theory tend to limit the number of constants

to ∈ (and perhaps ∅), introducing extra constants as macros with the excuse of ‘no-

tational convenience’ and the injunction that they don’t exist, really. Isabelle/FM

on the other hand is full of constant symbols. This is fundamental but need not

concern us further. Cf. ft.1227. 3

Remark 16.1.2 (Many types of atom). The main difference is that Isa-

belle/FM makes provision for many types of atoms. It is quite common to have

variable symbols of different sorts, for example term and type variable symbols x

and σ respectively, and Isabelle/FM provides support for this.

Recall that Isabelle/ZFQA collects all atoms into a single set Atm::i. In Isa-

belle/FM this set is partitioned into disjoint infinite sets. When the Nquantifier

is introduced in §16.7 it takes as argument one of these sets and picks a fresh atom

from it. 3

The rules and constants of Isabelle/FM are presented in Fig.19121 and

Fig.20122. We use Isabelle syntax. The theory is a linear development from

New BOTTOM where the most basic constants are declared, up to New TOP, which

is an empty theory documenting the dependencies and sequence of development.

Following our ‘just-in-time’ strategy of R14.5, constants are declared only in the

theory file of the script that develops their theory.

Remark 16.1.3 (The and New). As discussed in §11.4 the Naxioms of FM

are anti-choice. There is for example no choice function from powfin(A) to A.

Fortunately the designers of Isabelle/ZF made their choice function The an ι-

operator, which introduces no inconsistency (R11.4.3). 3

We now discuss the files in turn and comment on their design. Recall that

an Isabelle theory is a collection of pairs of a .thy and .ML file. The .thy file

adds new constants, definitions, rules, and macros to the theory. The .ML file (the

‘proof-script’) proves results involving them.

16.2. New BOTTOM. This theory consists only of a .thy file with no associated

.ML file. The intended denotation of AtmPart is the set of types of Atm (see R16.1.2).

The associated axioms state that the elements of AtmPart are infinite subsets of

Atm. We do not yet insist that they be a partition, i.e. that they be pairwise

disjoint and their union be equal to Atm, though this becomes necessary later on

in New DISJ.

16.2. New BOTTOM §16.2 121

Atm :: i

Atm_quine "a:Atm <-> (ALL x. x:a <-> x=a)"

From ZFQA

Atmpart :: i

AtmPart_notempty "EX X. X:AtmPart"

AtmPart_inf "X:AtmPart ==> X~:Fin(X)"

AtmPart_elt_subset_Atm

"X:AtmPart ==> X<=Atm"

New BOTTOM

Newfor :: [i,i=>o]=>i

Newfor_def "Newfor(X, P) == {a:X.~P(a)}"

New Newfor

Perm :: [i,i,i]=>i ("(3’(_ _’) ./ _)" 150) (Sugar!)

Perm_def "Perm(a,b,x) == if(a:Atm & b:Atm, transrec(x, %y f. (

if(y:Atm,if(y=a,b,if(y=b,a,y)),f‘‘y)

)),x)"

Note: Perm(a,b,x) is sugared to (a b).x.

New Perm

New :: [i,i=>o] => o

"NEW x:X. P" == "New(X, %x.P)"

New_def "New(X,f) == Newfor(X,f):Fin(Atm)"

New NEW

Figure 19. Constants of FM 1

Since X:AtmPart is typically an infinite and not cofinite subset of Atm, AtmPart’s

structure seems to contradict C9.4.4 (subsets of A are finite or cofinite). In Isa-

belle/FM we will effectively restrict permutations to respect types X:AtmPart (see

122 §16.3 16. Isabelle/FM

AP :: i => i

"#" :: [i,i] => o (infixl 120) (*Apartness*)

Supp :: i => i (*Support*)

Supp_Fin "Supp(x):Fin(Atm)"

Disj_def "(a#x) == (NEW b:AP(a). (((b a).x) = x)) | a~:Atm"

Supp_def "Supp(x) == a:Atm. ~(a#x)"

AtmPart_disj "[| X:AtmPart ; Y:AtmPart ; a:X ; a:Y |] ==> X=Y"

AP_Atm_to_AtmPart

"a:Atm ==> AP(a):AtmPart"

AP_cont "a:Atm ==> a:AP(a)"

AP_AtmPart_from_Atm

"X:AtmPart ==> (EX a:Atm. X=AP(a))"

AP_off_Atm "a~:Atm ==> AP(a)=0"

New DISJ

Abs :: [i,i] => i ("(3 [_] _)" 100)

Con :: [i,i] => i ("(3 _ <_>)" 100)

Abstraction :: [i,i] => o

Abst :: [i,i] => i (*The set of abstractions*)

Abs_def "([a]x) == {<b,(b a).x>. b:{n:AP(a). n=a | n#x}}"

Con_def "x<a> == (THE y. (<a,y>:x))"

Abstraction_def

"Abstraction(X,x’) == (EX a:X. (EX x. (x’=[a]x)))"

Abst_def "Abst(X,U) ==

{[a]x. <a,x>:{b:X. b#U}*U}"

New Abs

No constants declared in New ABST.

New_TOP = New ABST + New Abs + New DISJ + New NEW + New Perm +

New Newfor + New Atm + New Prelim + New BOTTOM + Finite

Figure 20. Constants of FM 2

§16.6 and §18.2), so it is subsets of X that will be necessarily finite or cofinite, not

Atm.

16.4. New Atm §16.5 123

16.3. New Prelim. This file contains some ZF theorems that were found to

be useful but do not appear in the original Isabelle/ZF distribution. Examples

are
Upair(A,B)=Upair(B,A) (P & (P-->Q)) <-> (P & Q)

x<=U ==> x Un (U-x) = U X~:Fin(X) ==> X~=0

u:Fin(X) ==> u-v : Fin(X) y:Fin(A*B) ==> domain(y):Fin(A)

16.4. New Atm. The theory of the set Atm is developed. Examples are

Atm_inf Atm~:Fin(Atm)

Atm_not_0 Atm~=0

Atm_not_Atm Atm~:Atm

FinAtm_ex_new_elt u:Fin(Atm) ==> (EX x:Atm. x~:u)

FinAtmPart_ex_new_elt [| u:Fin(X) ; X:AtmPart |] ==> (EX x:X. x~:u)

Results like Atm not 0 and Atm inf are part of Isabelle/FM and not Isa-

belle/ZFQA. No axioms of ZFQA prohibit Atm from being empty. Only when

we add AtmPart and its axioms do we know Atm is infinite and therefore nonzero.

Atm not Atm is difficult to prove because, using Quine atoms, it amounts to

Atm~={Atm}. The automated tools tend to loop on this. This problem occurs in

the early proof scripts until we develop enough of the theory of Atm to abstract

away from the concrete implementation.

The last two examples are perhaps the first interesting results of Isabelle/FM.

In themselves they merely rephrase Atm inf and AtmPart inf, but they will be

used in the theory of NEW, where u will be the support of a set and x will be a

fresh atom. Both results are special cases of the following more general lemma:45

[| u:Fin(Atm) ; X:AtmPart |] ==> EX x:X. x~:u

16.5. New Newfor. Newfor::[i,i=>o]=>i is a technical precursor to NEW. Re-

call from D9.4.2 that (rephrasing slightly)

Nx . P(x) ⇐⇒
{
a ∈ A

∣
∣ ¬P(a)

}
∈ powfin(A)

Newfor(X,P) is the set of a:X such that not P(a), where we intend X to be a type

of atoms in AtmPart and P to be a proposition on X.

Although the results of Newfor.ML are quite simple, for example

Newfor(X,P) <= X

Newfor(X , %x.(P(x) & Q(x))) <= Newfor(X,P) Un Newfor(X,Q)

Newfor(X,P) <= Newfor(X,%x.(P(x) & Q(x)))

they will later translate directly to more impressive results about N. E.g. the

second one is a distributivity lemma for Nover logical conjunction (cf. C9.4.5).

45This has Atm on the LHS. FinAtmPart ex new elt does not.

124 §16.6 16. Isabelle/FM

16.6. New Perm. The real work starts here. The permutation action of atoms

is defined by ∈-recursion precisely as in D8.1.8 in FM (except that the permutation

is restricted to transpositions from the start, cf. D9.1.1. Note that Perm ignores

the partitioning of Atm and we can permute any two atoms whether or not they

are in the same X:AtmPart. There is an argument for restricting Perm, it is made

in §18.2. See also R16.6.2. Note also that we sugar Perm(a,b,x) to (a b).x.

Remark 16.6.1 (Technical difficulty). Directed proof-search with Perm is

rather problematic:

1. In the very earliest results we unfold the definition of a:Atm as a={a} and

automated tools loop on this. Just imagine what this axiom would do

to the sanity of a substitution-based simplifier (cf. §16.4). This problem

disappears as soon as we abstract away from the implementation of atoms.

2. Because (a b)·x = (b a)·x it can sometimes occur that we have (a b)·x in

the assumptions and (b a)·x in the conclusions. We can’t just put their

equality into the search space because it causes looping. By careful struc-

turing of the results I was able to avoid this.

3. The real problem is that (a b)·x = y ⇐⇒ x = (a b)·y . Again, we cannot

add this to the search space because the tools would loop. Such situations

occur repeatedly (see R16.6.3 below) and are a real problem. I discuss my

solutions to this problem in §17.

Sadly our results often cry out for automation:

1. Perm is defined by cases on elements of Atm (consider its nested if-then-else

structure in Fig.19121) so proofs of elementary results which unfold Perms

definition are often by cases. If three or even four permutations occur

together (for examples see the list below, especially Perm commute), cases

can multiply.

2. The Isabelle/FM analogues of the commutativity results of R8.1.13 are an

important class of results. Unfortunately equivariance as proved in T8.1.10

for ZFA and FM cannot be proved in Isabelle (see R16.6.3). The next best

thing is a uniform automated proof method. See §17.

3

Results of New Perm are of roughly three kinds. We consider two of them here,

and the third in R16.6.3. Most of the proofs of the following displayed one or both

of the difficulties discussed in R16.6.1.

16.6. New Perm 16.6.2 125

Perm_abx_x "[| x:Atm ; x~=a ; x~=b |] ==> (a b).x = x"

Perm_Atm_to_Atm "x:Atm ==> (a b).x :Atm"

Perm_idem "(a b).(a b). x = x"

Perm_idem_twist "(a b).(b a). x = x"

Perm_ab_ba "(a b).x = (b a).x"

Perm_commute "(a b).(c d).x = (c d). (((c d). a) ((c d). b)).x"

The standard proof technique in the first two results is by cases on elements of

Atm. For the rest we consider x:Atm first46 and then use ∈-induction. There is

nothing unexpected here. The devil is in the execution and the sheer volume of

lemmas.

Remark 16.6.2 (Isabelle/ZFQA and Isabelle/FM). Permutation Perm ig-

nores AtmPart. So New Perm belongs to ZFQA more than FM. However, the

line dividing Isabelle/ZFQA and Isabelle/FM is more implementational: Isa-

belle/ZFQA is the modified Isabelle/ZF and Isabelle/FM carries on from there.

However, see §18.2. 3

Remark 16.6.3 (Equivariance results). Now we come to the equivariance

or commutativity results. Together they represent a significant fraction of the

developmental effort. They are precisely the commutativity results of R8.1.13.

Now in ZFA this was a corollary of a general result T8.1.10, which was proved

by induction on the syntax of the language of ZFA set theory starting from some

basic constants which were obviously equivariant. But the datatype of the syntax

of Isabelle terms is of course not an Isabelle type, so we cannot do this!47 So these

results must be proved individually (this is hard). The Isabelle/ZFQA analogue

of (13)30 must be proved symbol by symbol, for example the case ∈ is called

Perm epsilon (Fig.21126) and proved by ∈-induction. 3

Examples of equivariance results are given in Fig.21126. See §19.2 for a concrete

instance where we need an equivariance result in a case study. Their proofs present

these difficulties:

1. They are numerous, one for each constant.

2. They are often difficult to automate (see R16.6.6 and also §17).

3. Some commutativity results cannot be stated. That of RepFun should be

(a b).RepFun(A,f) == RepFun((a b).A,(a b).f)

46We prove this special case using a standard tactic I developed to split it into a multitude of

subcases according as a and b are [1. not atoms], [2. atoms not equal to x], or [3. atoms equal to

x], and then by automation with a standard library of basic results about permutation on atoms.

Without this technique Perm commute would not bear thinking about.
47 . . . but what we can do is add equivariance as an axiom. See §20.

126 16.6.4 16. Isabelle/FM

Perm_0 "(a b).0 = 0"

Perm_Pair "(a b). <x,y> = <(a b).x,(a b).y>"

Perm_cross "(a b). (A*B) = (((a b).A) * ((a b).B))"

Perm_domain "(a b).domain(h) = domain((a b).h)"

Perm_ext "(a b).x = {(a b).y . y:x}"

Perm_epsilon "x: (a b).y <-> (a b).x : y"

Figure 21. A few equivariance results of Isabelle/FM

but this is badly typed because f::i=>i is a function and Perm(a,b), be-

ing of type i=>i, cannot be applied to it. A new proof is needed for each

instantiation of f in the code. Similar problems occur with replacement,

The(P), UN x:A. B(x), Sigma(A,f), and similar.48 The list also includes

lfp(a::i,h::i=>i) and transrec(a::i,H::[i,i]=>i) with disastrous conse-

quences for our Isabelle/FM theory of datatypes, because we cannot prove

general equivariance results for datatypes and functions out of them respec-

tively. See §18.3 and §19.1.

4. They are inexhaustible. We frequently declare new constants and must

prove equivariance for each. Sometimes this is trivial by unfolding defini-

tions. Sometimes, bearing in mind point 3 above, it is not.

Remark 16.6.4 (Perm Collect). We take a moment to continue Item 3

above and mention the interesting halfway case of Perm Collect, which should

be
(a b).Collect(A,P) == Collect((a b).A,(a b).P)

(a b).x:A. P(x) == {x:(a b).A . ((a b).P)(x)}

(the second version uses syntactic sugar). But Collect types as [i,i=>o]=>i,

which is bad (see Item 3 above). Still, we can prove this:

Perm_Collect "(a b).{x:A . P(x)} = {y . x:A, P(x) & y=(a b).x}"

The RHS uses the replacement term-former Replace::[i,[i,i]=>o]=>i. The term

means

(a b)·
{
x ∈ A

∣
∣ P(x)

}
=

{
y

∣
∣ ∃x ∈ A. P(x) ∧ y = (a b)·x

}
.

So we have a rule to pull permutations inside collections, but the top-level

term former changes from Collect to Replace. This change will invalidate any

48Note however that Perm domain in the list above does appear to apply permutation to a

function h. Of course here h::i is an internal function-set.

16.6. New Perm 16.6.5 127

subsequent parts of an existing proof, if we are modifying one, and complicates

proofs we write ourselves.49 3

Remark 16.6.5 (Two notions of equivariance). There are two possible no-

tions of equivariance for a (nullary) constant C:

[| a:Atm ; b:Atm |] ==> (a b).C=C and

[| a:X ; b:X ; X:AtmPart |] ==> (a b).C=C

Because permutations need not respect types of atoms (we can quite happily

transpose a and b in C for a:X and b:Y of distinct types X,Y:AtmPart) these are not

the same. E.g. C=Atm fulfils both and C=Y:AtmPart fulfils only the second. We can

be confident that constants inherited from ZF set theory will be equivariant in

the unconditional sense. More sophisticated objects such as Supp and Disj (§16.8)

are not. This whole issue would vanish if we made permutation respect types of

atoms, see §18.2. 3

Remark 16.6.6 (Proof method for equivariance). Suppose we have expres-

sions e1, e2 with Perm at the top and bottom respectively and we want to prove

e1=e2. The standard proof method is to unfold definitions and push Perm inside

e1 using a library of results.

Unfortunately, if the constants are axiomatised so that there is nothing to

unfold, or if one of them has an argument of function type so that the equivariance

result could not be stated (see point 3 of the list above), we must use extensionality.

At this point we encounter all the difficulties of proof search with Perm discussed in

R16.6.1. This happens sufficiently often to be a programming burden. We discuss

the matter further in §17. 3

Remark 16.6.7 (Irrelevant behaviour vital). Having discussed why this

proof-script is difficult, let us consider why it is not even harder. Isabelle has no

subtyping, so Perm is typed as [i,i,i]=>i: a and b can not only be different types

of atom, they can be any set. Results must account for this, e.g. with typing

conditions like a:Atm. So for example, this would occur:

ZF_Perm_subset "X<=Y <-> (a b).X <= (a b).Y"

OTHER_Perm_subset "[|a:Atm ; b:Atm|] ==> X<=Y <-> (a b).X <= (a b).Y"

The problem is twofold. First, these conditions spawn subgoals with resolution.

Second, the automated proof tools include a simplifier (called Simp tac) which

rewrites arbitrarily deep inside a term using a supplied library of equalities and

logical equivalences. This tool is unique and important because it does not, like

all other facilities in Isabelle, operate strictly top-down on terms. But it does

49See §19 and in particular p.147. See also R16.9.1 and the discussion following it.

128 §16.7 16. Isabelle/FM

NEW_iff "(NEW a:X. P(a)) <->

(EX u:Fin(Atm). (ALL a:X. (a~:u --> P(a))))"

NewI "[| u:Fin(Atm) ; (ALL a:X. (a~:u --> P(a))) |] ==>

(NEW a:X. P(a))"

NewD "[| (NEW a:X. P(a)) |] ==>

(EX u:Fin(Atm). (ALL a:X. (a~:u --> P(a))))"

New_conj "[| (NEW a:X. P(a)) ; (NEW a:X. Q(a)) |] ==>

(NEW a:X. (P(a) & Q(a)))"

Figure 22. Major results of New NEW

not handle conditional rewrite rules such as OTHER Perm subset quite as well as

unconditional ones.

The reader without first-hand experience of Isabelle should understand that

this is important. The choice of the ‘irrelevant’ behaviour of Perm literally deter-

mined the practicality of the entire enterprise. The two obvious candidates for

badly types a or b are to make %x.Perm(a,b,x) the constant empty set function or

the identity on i. The latter proved more convenient, virtually eliminating typing

conditions. cf. §18. 3

16.7. New NEW. We come to the theory of the Nquantifier, although we cannot

get very far because the critical axiom corresponding to (Fresh)35 appears in the

later script §16.8. New NEW merely establishes introduction and elimination rules

for NEW, but this is not entirely straightforward.

Consider the syntax in Fig.19121. New is declared taking as arguments X:i and

P::i=>o. We intend that X:AtmPart and that P is a proposition on X, so New(X,P)

picks a fresh atom a:X and tests whether P(a).

New is implemented in terms of existing constants:

New(X,P) == Newfor(X,P):Fin(Atm)

clearly corresponding to D9.4.2 in FM on p.40. Note that we do not use

Newfor(X,P):Fin(X). Since Newfor(X,P)<=X<=Atm this is equivalent, but the other

version is much more convenient.

The four major results of the script are given in Fig.22128. NEW iff simply

axiomatises the definition of New. NewI and NewD are clearly derived from it and

are suitable for intro and destruct rules. New conj is a basic result, part of C9.4.5.

We consider New conj first. It is very useful:

16.7. New NEW 16.7.2 129

Remark 16.7.1 (New conj very useful). Suppose a subgoal has just one con-

dition resolving with New. Then we apply destruct resolution with NewD to simplify

the condition to

EX u:Fin(Atm). (ALL a:X. (a~:u --> P(a)))

and proceed from there by elim-resolving with the bounded existential quantifier

to produce a constant unknown u.

Now suppose the subgoal has two or more such conditions. If we apply NewD

and eliminate EX in each individually we will have distinct unknowns u1, u2, etc.

But using New conj we could make these unknowns equal. This extremely useful

technique is programmed into a simple ML-function New conj tac.50 3

Now to the most powerful tool so far.

Remark 16.7.2 (NewI tac). Suppose a conclusion of a subgoal resolves with

(the conclusion of) NewI. Resolution produces two subgoals with conclusions

u:Fin(Atm) and (ALL a:X. (a~:u --> P(a))) for P suitably instantiated by the

resolution.

The standard proof-method, very successful, is this:

1. Instantiate u to the union of all Supp(x) where Supp is support (T9.2.1 and

§16.8) and the x are the free variables of type i appearing in the proposition

resolving with P.

2. Solve the first subgoal by a standard automated method.

3. Simplify the second subgoal with ballI and impI (which intro-resolve

against ALL and -->).

The ML-function NewI tac automates this. The technical details are complex (and

interesting) and correspond only in an abstract sense to the recipe shown above.

If P resolves with a term containing higher-order unknowns this proof-method

fails because Supp::i=>i cannot be applied to them in Step 1. In this case we use

one of simpler precursors to NewI tac.

Corresponding functions exist for NewD, for example NewD tac. 3

We can now manipulate NEW almost as conveniently as ALL and EX.

16.8. New DISJ. Isabelle/FM takes shape here. We introduce many types of

atoms, #, the atom-apartness relation (#, see N9.2.4), Supp, support (Supp, see

T9.2.1), and the finite support property Supp fin (see R9.1.3) which is equivalent

to the crucial FM-axiom (Fresh)35.

50Destruct-resolution with New conj obtains a new condition from two old ones, but also

leaves one of the old conditions hanging around littering the proof-state. It’s just the way the

rules of resolution work out. What New conj tac does is tidy up.

130 16.8.1 16. Isabelle/FM

We introduce axioms asserting that AtmPart partitions Atm.51 AP(a) is that

unique X:AtmPart such that a:Atm is in X. We arbitrarily set AP(x)=0 when x~:Atm

(cf. R16.6.7), so for all a:

AP_subset_Atm "AP(a)<=Atm"

AP_iff "a:Atm <-> a:AP(a)"

a_APc_eq "a:AP(c) ==> AP(a)=AP(c)"

a_APc_c_Atm "a:AP(c) ==> c:Atm"

a_APc_a_Atm "a:AP(c) ==> a:Atm"

Remark 16.8.1. We now have various characterisations of atoms a:Atm:

a:Atm, a:AP(a), a:AP(n) and n:AP(a) for any n.52 3

We introduce a#x, apartness. # queries AP for the type of a and therefore does

not take it as an argument. If a~:Atm then we set a#x to True. Otherwise, we use

the following definition (see Fig.19121)

NEW b:AP(a). ((b a).x = x)

corresponding to the following characterisation of #:

a#x ⇐⇒ Nb ∈ A. (b a)·x = x .

This is an old friend last seen in L9.5.7. Results proved include

Disj_Atm_char "x:AP(n) ==> a#x <-> a~=x"

Disj_subsetAtm "X:Fin(Atm) ==> a#X <-> a~:X"

Disj_Perm_fix "[|a#x ; b#x ; a:AP(c) ; b:AP(c)|] ==> (a b).x = x"

Perm_Disj "[|a:AP(n) ; b:AP(n)|] ==> c#x <-> ((b a).c)#(b a).x"

Disj_Perm_I "[|(c=b & a#x) | (c=a & b#x) |

(c~=a & c~=b & c#x) ; a:AP(n) ; b:AP(n)|] ==> c#(a b).x"

The first two results characterise apartness for the special cases Atm (recall the

characterisation of a:Atm of R16.8.1) and Fin(Atm). The standard proof method

with such results is to break them into two implications, of course, and then do

the following with each subgoal.

1. Unfold the definition of #,

2. Use NewD tac and NewI tac (in that order to get variable dependencies right)

to simplify to a subgoal in FOL (without New).

3. Solve using standard methods.

Remark 16.8.2 (Overall strategy). When proving a result involving New

(which any result involving # implicitly does) we face a difficulty. Suppose we

wish to intro-resolve against New x.P(x,y,z). This should reduce to

[| x#y ; x#z |] ==> P(x,y,z)

51Elements pairwise disjoint and union equal to Atm.
52There is also the low-level a={a}, which we avoid. It is implementation-dependent and bad

for proof-search.

16.8. New DISJ 16.8.3 131

but by resolution it is impossible to extract the free variables of P.

The standard method is therefore to (unfold # and then) eliminate New im-

mediately using the programs developed in New NEW. They extract the set of free

variables by inspecting the syntax of a subgoal with an ML-program and we can

then proceed normally. 3

We saw Disj Perm fix in FM in L9.2.7. Its Isabelle/FM proof is far harder

and forced me to develop much of New NEW, as well as the strategy of R16.8.2.

Because of a#x and b#x we also need New conj tac (see R16.7.1). The typing

conditions a:AP(c) and b:AP(c) insist a and b be in the same type X:AtmPart of

atoms. Otherwise the conclusion does not follow.53

Perm Disj is another equivariance result (see R16.6.3).

Disj Perm I is an example of a family of useful intro and elim rules.

We now develop a library of results like these:

Disj_Atm "a#Atm"

Disj_Un_I "[| x#A ; x#B |] ==> x # (A Un B)"

Disj_Upair_I "[| x#A ; x#B |] ==> x # Upair(A,B)"

Disj_succ_I "a#x ==> a#succ(x)"

and like these:
Disj_succ_D "a#succ(x) ==> a#x"

Disj_Upair_D "x#Upair(A,B) ==> x#A & x#B"

Disj_sum_D1 "a#(X+Y) ==> a#X"

Note that some likely-looking results are not true:

NOT TRUE, X=Atm-{a} Y={a} "a#X Un Y ==> a#X & a#Y"

NOT TRUE, X=Atm "[| a#X ; x:X |] ==> a#x"

We have considered # a great deal, what about Supp? Supp(x) is simply the

atoms of any type not apart from x, collected into a set (were Atm a proper class

this would be impossible, see R15.1.1). We could define Supp as follows:

NOT_Supp_def "NOT_Supp(X,x) == {a:X. ~(a#x)}"

Supp_def "Supp(x) == {a:Atm. ~(a#x)}"

So NOT Supp takes as argument an X:AtmPart and returns only atoms of that type.

This is a needless complication which we consider no further. Because Supp is

defined just using #, its theorems are directly derived from the theory of #.

Remark 16.8.3 (Pairs of constants). Supp and # are a natural pair. In §16.9

we shall see Abs and Con (atom abstraction and concretion). On paper we tend to

define such pairs separately, prove their duality, and develop their properties in

parallel. In Isabelle, because of the constructive style, we tend to choose one of the

pair as ‘dominant’ and define the other in terms of it. The standard method with

53In §18.2 I discuss a better way of setting things up that would eliminate the typing

conditions.

132 16.8.4 16. Isabelle/FM

a defined constant is to unfold its definition, so the theory of the non-dominant of

the pair becomes a list of corollaries. 3

Remark 16.8.4 (Different development). New DISJ and the paper develop-

ment in §9 differ in their sequence of development. It is roughly

Perm −→ Supp −→ # ←− N←− Perm

on paper54, but

Perm −→ New −→ # −→ Supp.

in Isabelle. Notions of elegance sometimes diverge between paper and Isabelle.

3

16.9. New Abs. The final declarations of Isabelle/FM are made here.

Atom abstraction and concretion Abs::[i,i]=>i and Con::[i,i]=>i are in-

troduced (D9.5.1 and D9.5.14) along with sugar [a]x and x<a>, a predicate

Abstraction::i=>o which is true precisely on sets of the form [a]x (N9.5.3), and

the abstraction-set set former Abst::i=>i (D9.6.1).

Notice that Abs def completely differs from the FM-definition D9.5.1. We

prove the two versions equivalent in L9.5.11. We see the discussion of Abs twiddle

on p.134 below.

We seem to have developed the theory sufficiently that paper and Isabelle

converge. In previous files most results were quite tedious. This file is full of

interesting ones many of which are familiar from Chapter II. A selection is in

Fig.23133.

The first group concerns the general theory of abstractions: an intro and

destruct rule, and an example of a typical result (L9.5.4 living in Isabelle/FM).

Because of the typing Abs::[i,i]=>i we need Abs off Atm to control the case

a~:Atm.

Perm Abs is the inevitable equivariance result. As with many of the later

equivariance results the proof is extremely complex.55 Just for once, we consider

it in full. See Fig.24134. This works, but it is clearly unstructured nonsense. It

took days to write, and with each fundamental change to the the theory (one of

them is discussed in §18 below) or the claset, the proof broke and took days to

fix.

54a#x is defined as a 6∈ Supp(x). We define Nindependently and connect it to # in L9.5.7.
55For me, this is the indication that there’s something wrong with the Isabelle/FM treatment

of equivariance. The proof of a basic result should get simpler as the theory develops. When the

reverse happens, there’s something wrong. See §18.2 and §20.

16.9. New Abs 16.9.1 133

Abstraction_func_on_fst "[| Abstraction(AP(a),x’) ;
<a,x>:x’ ; <a,y>:x’ |] ==> x=y"

Abstraction_I "[| x’=[a]x ; a:AP(n) |] ==> Abstraction(AP(n),x’)"
Abstraction_D "[| Abstraction(AP(n),x’) |] ==> EX a:AP(n). (EX x. x’=[a]x)"
Abs_off_Atm "a~:Atm ==> [a]x=0"
Perm_Abs "[| b:AP(n) ; a:AP(n) |] ==> (b a).([c]x) = [(b a).c] ((b a).x)"
Pair_in_Abs_char "[| a:AP(n) ; b:AP(n) |] ==>

<a,x>:[b]y <-> ((a=b & x=y) | (a#y & x=(a b).y))"

Abs_twiddle "[|<a,x>:[n]u ; <b,y>:[n]u|] ==> NEW c:AP(n).(c a).x=(c b).y"
Abs_twiddle’ "[|<a,x>:[n]u ; <b,y>:[n]u ; AP(n)=AP(n’)|] ==>

NEW c:AP(n’).(c a).x=(c b).y"

Abs_relocate_binder "[|a#x ; a:AP(n) ; b:AP(n)|] ==> [a]((a b).x) = [b]x"

Abs_eq_Pair_I "<a,x>:[b]y ==> [a]x=[b]y"
Abs_eq_Perm_D "[| [a]x=[b]y ; a:AP(n) ; b:AP(n) |] ==> y=(a b).x"
Abs_func_snd_D "[| [a]x = [a]y ; a:AP(n) |] ==> x=y"

Disj_Abs_a "a#([a]x)"
Disj_Abs_char "a:AP(n) ==> b#([a] x) <-> (b#x | b=a)"
Supp_Abs_eq "a:AP(n) ==> Supp([a]x)=Supp(x)-a"
Abs_eq_Disj_I "[| a#x ; b#x ; a:AP(n) ; b:AP(n) |] ==> [a]x=[b]x"
Abs_eq_New_D "[| [a]x=[b]y ; a:AP(n) ; b:AP(n) |] ==>

NEW c:AP(n). (c a).x = (c b).y"
Abs_eq_Int_I "[| u:[a]x ; u:[b]y |] ==> [a]x=[b]y"

Abstraction_Disj_char_as_Pair "Abstraction(AP(a),x) ==>
a#x <-> (EX y. <a,y>:x)"

Abstraction_New_D "Abstraction(AP(n),x) ==> (NEW a:AP(n). (EX y. x=[a]y))"

Con_Abs_Perm_b "[| b#x ; b:AP(a) |] ==> ([a]x) = (b a).x"
Con_x_Pair_in_x "[| a#x ; Abstraction(AP(n),x) ; a:AP(n) |] ==> <a,x<a>>:x"
Perm_Con "[| a:AP(n) ; b:AP(n) |] ==>

(a b).(x’<r>) = ((a b).x’)<(a b).r>"
Disj_Con_I "[| n#a ; n#x’|] ==> n#(x’<a>)"

Figure 23. Results of New Abs

The standard technique with a complex proof is to simplify the problem to sim-

pler results. But the problem is already simple (that is, the statement of Perm Abs

is not long or compound): the proof is complex, and being so unstructured has

no obvious modularisation.

So we try to find a simpler lemma that gives us a better handle on

Perm Abs, perhaps some characterisation of equality between abstractions [a]x.

Pair in Abs char was the result, but its proof reduces, slowly and horribly, to

Perm Abs.

Remark 16.9.1 (Grit our teeth). Sometimes we must unfold all the defini-

tions and take the consequences. With skill we can minimise the work but it will

always be unpleasant. This pattern—a simple result which is difficult to prove and

134 16.9.2 16. Isabelle/FM

Goalw [Abs_def] "[| b:AP(n) ; a:AP(n) |] ==>

(b a).([c]x) = [(b a).c] ((b a).x)";

by (asm_full_simp_tac (Perm_simpset()) 1);

br equalityI 1;

by (REPEAT (

(SOMEGOAL (eresolve_tac [RepFunE,conjE,CollectE,disjE]))

ORELSE (SOMEGOAL (resolve_tac

[subsetI,RepFun_eqI,Pair_iff RS iffD2,conjI,CollectI]))

ORELSE (SOMEGOAL hyp_subst_tac)));

br (Perm_commute RS trans) 14;

basm 14;

by (REPEAT (fast_tac (claset()

addSIs [Perm_commute_reversed RS sym RS trans RS sym]

addIs (Perm_LEFT_SIs())@[Perm_Disj_I,Perm_idem RS sym]

addSDs (Perm_LEFT_SDs())@[Perm_Disj_RL,Perm_idem_epsilon_LL]) 1));

qed "Perm_Abs";

Figure 24. Proof of Perm Abs

apparently impossible to break up into simpler problems—is a recurring theme I

observe in the initial stages of an Isabelle development. 3

By now many sets are defined by collection or replacement. Because

Perm collect and Perm Replace are inelegant (see R16.6.4), equivariance results

are particularly prone to suffer from R16.9.1, and this is part of the reason they

are such a nuisance (see R16.6.3).

Now we move on to Abs twiddle. Recall from D9.5.1 that an FM abstraction

set a.x is an equivalence class of (a, x) under ∼, where ∼ is the relation

(a, x)∼(a ′, x ′)
def
= Nb. (b a)·x = (b a ′)·x ′.

This is no good for Isabelle. The equivalence class is not a set and cannot be

expressed as an element of i. We can implement it as P::[i,i,i,i]=>o where

P(a,x,a’,x’) is suitably axiomatised, and then prove {x.P(x)} (for well-typed

arguments!) is a set. In order to do this though we would either have to exhibit

the set U directly and prove it extensionally equal to {x.P(x)}, or concoct some

argument using the theory of universes univ(Atm) and collection.

It is clearly simpler to take U as the definition. The reader will see from Abs def

in Fig.20122 that we do just that, using the concrete characterisation of abstraction

we saw in L9.5.11.

16.9. New Abs 16.9.3 135

Remark 16.9.2. Abs twiddle and Abs twiddle’ (Fig.23133) are one half of

the proof that U and the domain of truth of P are equal. Although semantically

interesting they are of no practical use because proof in Isabelle is by resolution and

we do not often encounter conclusions of the form NEW c:AP(n).(c a).x = (c b).y.

Intro and elim rules are useful. They are implementation-independent, pro-

vide standard methods for simplifying goals, and (if well-designed) give good au-

tomated proof-search. They tend to be the real interface results (see R14.6) and

Abs eq Pair I to Abs func snd D are cases in point. 3

Remark 16.9.3. Abs relocate binder (Fig.23133) is a special case of an

equivariance result. It is pivotal (used in the proofs of Abs eq Pair I and the very

important Disj Abs a). I had terrible trouble with Disj Abs a and Abs eq Pair I

and obtained horrible proofs for them. It seemed to be a case of R16.9.1. Then I

realised I could deduce both using Abs relocate binder. The proof is still nasty

but we only have to do it once. 3

Disj Abs a is L9.5.6 and an important intro rule. For once, the Isabelle/FM

and FM proofs are not dissimilar. We use Abs relocate binder. It is one part of

Disj Abs char, which itself has a long and involved proof and is precisely C9.5.9.

With these two results the apartness behaviour of atom-abstraction [a]x is un-

der control. Supp Abs eq is easy to prove and semantically satisfying, but not

immediately useful. The same holds of Abs eq Disj I and Abs eq New D.

Abs eq Int I is rather interesting. It provides an intro rule for equality of

abstractions alternative to Abs eq Pair I and related results.

The other results are fairly straightforward. Abstraction(X,x) means “x is an

abstraction of type X”. Concretion is hardly used. Firstly, it only makes sense

to write x<c> when x is an abstraction, and if we know this we can replace x by

[c’]x’ and simplify x<c> to (c’ c).x’. Secondly, we are designing these files to

provide support for abstract datatypes. Most reasoning with abstract datatypes

is by resolution, which amounts to pattern-matching. Patterns match only with

values, which can be of the form [a]x but not x<a>.

The ‘irrelevant’ behaviour of abstraction and concretion (R16.6.7) is not ad-

dressed in the files at all, because it turns out not to be an issue.

16.10. New ABST. In §16.9 we developed abstraction and concretion. In this

final file we develop abstraction types (D9.6.1). The difficult files were New Abs,

New DISJ and New Perm. New ABST is easy by comparison. Some of the more inter-

esting results are:

136 §17 17. Automation and Perm

Perm_Abst "[| a:AP(n) ; b:AP(n) |] ==>

(a b).Abst(AP(n’),X) = Abst(AP(n’),(a b).X)"

Abst_nosupport "x#X ==> x#Abst(AP(n),X)"

Con_I "[| x:Abst(AP(n),X) ; a#X ; a#x ; a:AP(n) |] ==> x<a>:X"

Abst_bad_typing "n~:AP(n) ==> Abst(AP(n),X)=0"

Abst_mono "X<=Y ==> Abst(AP(n),X) <= Abst(AP(n),Y)"

Abst_E "[| x:Abst(AP(n),X) ;

!!b y.[| b:AP(n) ; y:X ; x=[b]y ; b#X |] ==> Q

|] ==> Q"

Perm Abst is the equivariance result, its proof is dreadful. Note that we do not have

AP((a b).n’) on the RHS because AP(n’) is equivariant (whether n’ is an atom

or not). Abst nosupport is actually a useful intro-rule needed for the theory of

datatypes with binding. Con I is useless in practice. Abst bad typing controls the

irrelevant behaviour. Abst mono is L10.2.5 and needed for the datatypes package

(see monos in Fig.25144), presumably for the same reasons we proved the theorem

in FM. Abst E seems to be useless in practice.

16.11. The theory of finite sets. We conclude the discussion of Isa-

belle/FM proper. The appropriate FM notion of ‘finite set’ differs from the usual

ZF one—namely that the set has finite cardinality. The theory of cardinalities is

badly hit by the addition of atoms and FM finite support arising from (Fresh)35

because, although Atm may be countably finite from the outside, it cannot be bi-

jected with Nat or any other ordinal inside the set-universe (we can think about

the support of the bijecting function-set and create a proof similar to that of

T11.4.1).

A finite set can still be bijected with a finite subset of Nat with a function-

set of finite support, so we could pursue a theory of “cardinalities of finite sets”.

Instead I chose to characterise ‘X is finite’ by X:Fin(X), that is X ∈ powfin(X),

and developed a script of results such as

[| Y<= X ; X:Fin(X) |] ==> Y:Fin(Y)

In Isabelle finite sets are inductively defined, so I use this theory to prove

L13.2.1 and its corollary L24.1.5. I used this to implement the beginnings of

Chapter IV. However, for the reasons discussed in R19.3.1 (not to mention limits

of time), I have not implemented all of Chapter IV.

17. Automation and Perm

Having described the structure of Isabelle/FM I shall indulge myself by de-

scribing one a simple idea in proof-technique that made a big difference. Recall

from Fig.19121 and §16.6 that the permutation action is defined by ∈-recursion on

i just as in FM it is defined on VFM in D8.1.8.

17. Automation and Perm §17 137

Permutation appears mostly in equivariance results, which are numerous. How

do we program the automated proof tools to handle a typical result? Consider

Perm Union from New Perm.ML:

Perm_Union "(a b). Union(A) = Union ((a b).A)"

Isabelle/FM has nothing like T8.1.10 (see R16.6.3) so as with any other goal we

must dissect its syntax. In this case this means using extensionality. First we

split the equality into two set inclusions, then we reduce the set inclusions to

implications:

1. !!x. x:(a b).Union(A) ==> x:Union((a b).A)

2. !!x. x:Union((a b).A) ==> x:(a b).Union(A)

The problem is the same for any term-former ?Con, in this case ?Con = Union: we

have a lot of results for conclusions and assumptions of the form x:?Con(?A), but

almost none for x:(a b).?Con(?A). The solution is simple, we (somehow) pull all

permutations to the left of : as shown:

1. !!x. (a b).x:Union(A) ==> x:Union((a b).A)

2. !!x. x:Union((a b).A) ==> (a b).x:Union(A)

Now everything is of the form ?x:Union(?A) and we can apply standard intro and

elim rules to simplify the proof-state to this:

1. !!x B. [| (a b).x:B ; B:A |] ==> ?B7(x,B):(a b).A

2. !!x B. [| (a b).x:B ; B:A |] ==> x:?B7(x,B)

3. !!x B. [| x:B ; B:(a b).A |] ==> ?B9(x,B):A

4. !!x B. [| x:B ; B:(a b).A |] ==> (a b) . x:?B9(x,B)

Again we pull permutations to the left, and the rest is trivial.

So I developed a collection of libraries with which to program this algorithm

(and others as required) into the automated proof tools. A standard example is

Perm_epsilon_LR "(a b).x:y ==> x:(a b).y"

If we intro-resolve this against a conclusion it “pulls Perm to the left”. Note also

if we destruct-resolve against an assumption it “pulls Perm to the right”.56

The other major term-former is equality =. There the issue is slightly different

because the proof-tools will substitute for x in a subgoal if they encounter an

assumption of the form x=?A, but not of the form (a b).x=?A. The algorithm is

therefore to pull permutation to the right in assumptions. In conclusions we may

prefer permutation on left, because the automated simplifier works with theorems

of the form [|Subgoals|] ==> Complex = Simple. So I developed libraries of (elim)

56Hence Perm epsilon LR is actually in two libraries: Perm LEFT SIs and Perm RIGHT SDs. LEFT

and RIGHT denote the direction the transposition travels. S is a technical flag meaning ‘safe’ (see

[58, §11, ‘The Classical Reasoner’], in particular §11.4, first paragraph) I stands for ‘intro’ and

D for ‘destruct’.

138 §17 17. Automation and Perm

rules to pull permutation to the right in assumptions and (intro) rules to pull it

to the left in conclusions.

This can cause conflict if we need to resolve a conclusion (with Perm on the left)

with an assumption (with Perm on the right). In a future code rewrite I should

give some thought to this.

We find similar libraries useful for, say #. For example:

Perm_Disj_RL "[| c#(b a).x ; a:AP(n) ; b:AP(n) |] ==> (b a).c#x"

Perm_Disj_LR "[| (b a).c#x ; a:AP(n) ; b:AP(n) |] ==> c#(b a).x"

Used appropriately they can pull permutation to the left or right of an assumption

or conclusion of the form c#(b a).x or (b a).c#x. Note that the typing conditions

a:AP(n) and b:AP(n) will spawn two typing subgoals with each application. This

is a real nuisance, I discuss how to eliminate it in §18.2.

We might use these to solve this subgoal 6:

6. !!x’ aa xa.

[| a#x; a:AP(n); b:AP(n); <aa, xa>:[a](a b).x; aa:AP(a);

aa#(a b).x; aa=a; aa~=b |]

==> <aa, xa>:[b]x

(which arises with 15 other similar subgoals just before the end of the proof of

Abs relocate binder, see Fig.23133). We substitute b for aa, and then pull the

permutation from acting on x on the right of the sixth assumption (where it does

no good at all), to the left. We have

!!x’ aa xa.

[| a#x; a:AP(n); b:AP(n); <a, xa>:[a](a b).x; a:AP(a);

(a b).a#x; a~=b |]

==> <a, xa>:[b]x

We can then simplify (a b).a to b, so we have a#x and b#x in the assumptions.

We have a result

Disj_Perm_fix "[| a#x ; b#x ; a:AP(c) ; b:AP(c) |] ==> (a b) .x=x"

This allows us to simplify <b,xa>:[a](a b).x to <b,xa>:[a]x. The conclusion

is <b,xa>:[a]x so the subgoal is solved. In this way all sixteen cases can be

handled automatically by blast tac with Perm Disj RL in the destruct rules and

Perm Disj LR in the intro rules.57

57Isabelle experts may wonder how we can simplify <b,xa>:[a](a b).x to <b,xa>:[a]x using

pure resolution, with Disj Perm fix as shown, in blast tac. I wrote a couple of two-line ML

functions which take a list of simplification rules (like Disj Perm fix) and a list of contexts (like

"%x.?y:[?a]x") and return a long list of intro (or elim) rules that implement all possible simplifi-

cations within the possible contexts. You just pass this list to blast tac, et voilà, simplification

with a tableau theorem prover! Has it been invented before? It was terribly useful, maybe it

should be provided as a standard facility.

18. Alternative approaches §18.1 139

Perhaps the reader thinks this trivial? In a way it is, but what a difference is

makes! Twelve-line proofs collapsed to one-liners overnight. Consider the proof of

Perm Union:
Goal "(a b). Union(A) = Union ((a b).A)";

br equalityI 1;

by (auto_tac (Perm_claset(),Perm_simpset()));

qed "Perm_Union";

Here Perm claset() is a standard library of intro- and elim-rules implementing

the strategies above. Perm simpset() is a standard library of simplification rules

(whose design I shall not discuss), for example (a b).(a b).x=x. Clearly this proof

is quite robust and standardised. It works just as well for Perm Upair, Perm Un,

Perm cons and many more.

18. Alternative approaches

In §15 and §16 we described Isabelle/FM as it is. Of course this misses inter-

esting ideas which for whatever reason were not included. Let us now consider

some of them.

18.1. Meta-level types of atoms. We go back to the moment we have fin-

ished Isabelle/ZFQA and are about to begin Isabelle/FM. We intend to develop

the theory of permutation and partition Atm::i into many types (R16.1.2). How?

The following strategy was the one I originally adopted. It was extensively devel-

oped, but then discarded and does not exist in the source code. New BOTTOM.thy

declares a new class
classes

atmc < term

Recall that the type of sets i is of arity term, so this declares a collection of types

atmc, each of which is on a par with i in the Isabelle meta-system. We intend

’a::atmc to be types of atoms, implemented as separate Isabelle types in their

own right. We declare a polymorphic casting function @::’a::atmc=>i along with

suitable axioms for injectivity and so forth. It is convenient also to declare an

inverse to the casting function -@.

"@" :: ’a::atmc => i

"-@" :: i => ’a::atmc

Cast_inj "(@a)=(@b) ==> a=b"

Cast_inv_char "@-@a=a"

Cast_to_Atm "@a:Atm"

140 §18.1 18. Alternative approaches

Functions in Isabelle f::a=>b are total. If f is badly-behaved off its intended

domain we may in theory need typing conditions in its results, which is inconve-

nient (see R14.7 and R16.6.7). With meta-types of atoms Perm need not be typed

as

Perm :: [i, i, i] => i

which leaves great possibility for inappropriate input in the first two arguments

which ‘should morally be atoms’ but may be anything. Instead we can declare

Perm :: [’a::atmc,’a::atmc,i] => i

There is now no question of inappropriate input.

Results that might need typing conditions, such as

Perm_bij "[| a:Atm ; b:Atm |] ==> x=y <-> (a b).x = (a b).y"

Perm_Diff "[| a:Atm ; b:Atm |] ==>

(a b).(X-Y) = ((a b).X) - ((a b).Y)"

Disj_Perm_interpolate "[| b#x ; c#x ; b:AP(n) ; c:AP(n) ; a:AP(n’) |] ==>

(b c). (c a). x = (b a).x"

lose their typing conditions (although the meta-level typing conditions look messy)

Perm_bij "x=y <-> (a::’a::atmc b::’a::atmc).x = (a b).y"

Perm_Diff "(a::’a::atmc b::’a::atmc).(X-Y) = ((a b).X) - ((a b).Y)"

Disj_Perm_interpolate "[| (b::’n::atmc)#x ; (c::’n::atmc)#x |] ==>

(b c). (c a). x = (b a::’m::atmc).x"

and less conditions is good (R14.7 and R16.6.7).

So why is this bad? Isabelle’s meta-language is too weak to really support it.

For example, the useful result

[| n1~=n2 ; a:AP(n1) ; b:AP(n1) ; a’:AP(n2) ; b’:AP(n2) |] ==>

(a b). (a’ b’). x = (a’ b’). (a b). x

cannot be rephrased as

’n1::atmc~=’n2::atmc ==>

(a::’n1 b::’n1). (a’::’n2 b’::’n2). x = (a’ b’). (a b). x

because there is no equality between meta-level types ’n1::atmc, ’n2::atmc.

Supp and related functions have problems. For example, Isabelle has no sub-

typing so we cannot collect all ’a::atmc into a supertype Atoms. Supp must be

polymorphic over ’a::atmc and no longer returns the global support. Further-

more, types cannot be passed directly as arguments to functions. We use indirect

and inelegant means:

Supp :: [’a::atmc=>i,i] => i

Here the first argument is a dummy function (probably @) that instantiates

’a::atmc in Supp.

18.2. Restrict permutation to types of atoms only §18.2 141

Isabelle does not display type information by default. Type information can

be switched on, but then all variables are completely typed and even simple results

become unreadable. Debugging was very difficult indeed.

I switched once I had realised I could manipulate the ‘irrelevant’ behaviour of

Perm::[i,i,i]=>i. By making Perm(a,b) the identity for a and b not both atoms

we get the best of both worlds. In §18.2 below I discuss how I might make the

‘irrelevant’ behaviour even better.

18.2. Restrict permutation to types of atoms only. Recall that Isa-

belle/FM has many types of atoms (R16.1.2). Isabelle/ZFQA does not; that is,

Perm as implemented does not respect them and will permute atoms of one type

for another. We could move types of atoms to Isabelle/ZFQA, i.e. extend the

‘irrelevant’ behaviour (R16.6.7), to make Perm(a,b) the identity for a,b:Atm not

of the same type X:AtmPart.

This probably would not introduce extra typing conditions (for example into

Perm commute) because the irrelevant behaviour of Perm is so well-behaved. The

definition of Perm would become something like:

CURRENT_Perm_def

"Perm(a,b,x) == if(a:Atm & b:Atm, transrec(x, %y f. (

if(y:Atm,if(y=a,b,if(y=b,a,y)),f‘‘y)

)),x)"

TYPED_Perm_def

"Perm(a,b,x) == if(EX X:AtmPart. (a:X & b:X), transrec(x, %y f. (

if(y:Atm,if(y=a,b,if(y=b,a,y)),f‘‘y)

)),x)"

The bounded existential quantifier would complicate proofs in New Perm.ML that

unfold Perm def, but the effects would be local. I have in fact tried a similar

approach. I moved AP from New DISJ.thy to New Perm.thy and used it to implement

Perm as follows:
ALTERNATIVE_Perm_def

"Perm(a,b,x) == if(a:AP(b) , transrec(x, %y f. (

if(y:AP(y) , if(y=a,b,if(y=b,a,y)) , f‘‘y)

)),x)"

I developed this quite extensively but then dropped it. ALTERNATIVE Perm def was

a total disaster because of the ‘a:AP(b)’. Permutation is symmetric on its first two

arguments and this condition caused parity difficulties in automated proof-search.

That is, the proof-state reduced to subgoals of the form

b:AP(a) ==> a:AP(b)

142 §18.3 18. Alternative approaches

We cannot just add a:AP(b)==>b:AP(a) as an intro-rule, it is instant death to

proof-search through looping.58 Of course we could always replace the offending

clause with something symmetric like EX n.a:AP(n) & b:AP(n), but then we might

as well use TYPED Perm def.

What I did not appreciate is the reward in the later theory where we can drop

typing conditions in many important results. E.g.

AP_Perm_I "[|a:AP(n) ; b:AP(n) ; c:AP(n’)|] ==> (a b).c:AP(n’)"

Disj_Perm_fix "[|a#x ; b#x ; a:AP(c) ; b:AP(c)|] ==> (a b).x = x"

Perm_Disj "[|a:AP(n) ; b:AP(n)|] ==> c#x <-> ((b a).c)#(b a).x"

Abs_relocate_binder

"[|a#x ; a:AP(n) ; b:AP(n)|] ==> [a] ((a b).x) = [b]x"

Perm_Abs "[|b:AP(n) ; a:AP(n) |] ==>

(b a).([c]x) = [(b a).c] ((b a).x)"

simplify to

"c:AP(n’) ==> (a b).c:AP(n’)"

"[|a#x ; b#x|] ==> (a b).x = x"

"c#x <-> ((b a).c)#(b a).x"

"a#x ==> [a] ((a b).x) = [b]x"

"(b a).([c]x) = [(b a).c] ((b a).x)"

respectively.

So Perm should be made to respect types of atoms in the next code rewrite.

18.3. Extend permutation to function types. Recall from §16.6 we

commented that equivariance results for some constants of Isabelle/FM can-

not be stated. Consider for example what the equivariance rule should be for

transrec::[i,[i,i]=>i]=>i (which is discussed on p.118).

(a b).transrec(t,H) = transrec((a b).t,(a b).H)

This is badly typed because %x.(a b).x::i=>i and H::[i,i]=>i, so (a b).H is

badly-typed. Recall that when we developed FM set theory on paper we built the

permutation action by ∈-induction just as we did in Isabelle/FM, but then found

it useful to extend it to functions and predicates (D8.1.8 and the subsequent text).

The action was

(a b)·f = λx .(a b)·f ((a b)·x)(79)

So why don’t we extend Perm similarly? Well, there is room for discussion how we

will handle the extension itself. Do we just define it for functions f::i=>i like so;

Perm’ :: [i,i,i=>i]=>(i=>i)

Specific_axiom "Perm’(a,b,f::i=>i)(x)=Perm(a,b,(f(Perm(a,b,x))))"

or do we try something cleverer and more general like

58I was thinking of this when I wrote Item 2 of R16.6.1.

18.3. Extend permutation to function types §18.3 143

Perm’ :: [i,i,i=>’a]=>(i=>’a)

HO_axiom "(Perm’(a,b,f::i=>’a))(x)=Perm’(a,b,f(Perm’(a,b,x)))"

LO_axiom "Perm’(a,b,x::i)=Perm(a,b,x)"

But this does not actually matter because it brings us nothing. To avoid

details we argue very abstractly. Suppose we generalise Perm to all types by lifting

from i as above. Then instead of writing the above, we can do as we did in (9)29

and write

(a b).transrec = transrec

(Isabelle/FOL gives us equality on higher-order types). Perm on higher types is

defined by its action at lower types based on i so to prove the statement above we

must apply transrec to arguments (a,H), unfold definitions, and so on. The only

thing we can do with a function is apply it to arguments, so if we get anywhere

it must necessarily be to a commutativity result of the form of those in Fig.21126,

where permutation acts only on elements of i. Of course if our goal contains

function variables we can’t even do that.

Now let us be more concrete and illustrate this with the specific case of

transrec. Suppose we have established enough theory to allow us to state the

attractive formula

(a b).transrec(t,H) = transrec((a b).t,(a b).H)

as a goal in Isabelle. We have to prove it. The proof-method for transrec is

unfolding, and (assuming for simplicity t~:Atm) we obtain

(a b).H(t, lam x:t. transrec(x,H)) =

((a b).H) ((a b).t, lam x:t. transrec(x,(a b).H))

We now have no option but to unfold the definition of permutation on H and obtain

(a b).H(t, lam x:t. transrec(x,H)) =

(a b).H(t, (a b).(lam x:t. transrec(x,(a b).H)))

We skip the details, but this reduces to

H(t, lam x:t. transrec(x,H)) =

H(t, lam x:t. transrec((a b).x,(a b).H))

Since H is a function variable symbol, we have no option but to take the last step

of reducing this to

(a b).transrec(t,H) = transrec((a b).t,(a b).H)

and we are back where we began.

If of course we are trying to prove the statement above for a particular in-

stantiation of H to %x y.T then we do not have to take this last step. However,

we might as well just reformulate the initial equivariance result to avoid applying

Perm to H in the first place.

144 §19.1 19. The λ-calculus in Isabelle

consts

aTerm :: i

term :: i

datatype <= "univ(Atm)"

"term" = tVar ("a: AP(aTerm)")

| tApp ("a: term", "b: term")

| tAbs ("a: Abst(AP(aTerm),term)")

monos "[Abst_mono]"

type_intrs "[Supp_Atm_0, subset_refl,AP_subset_Atm RS subsetD]"

type_elims "[make_elim (rotate_prems 2 (Abst_in_univ RS subsetD))]"

end

Figure 25. Declaration of term

In fact I more-or-less go through the loop above (for lfp not transrec) in §19.2

trying to prove in that subsection’s notation that (a b).term=term.

I tried to extend Perm to the type i=>i as in (79)142 and developed the theory,

but I discovered it was pointless just as described above. Now if permutation were

taken as primitive over all types, of course, with some appropriate axiomatisa-

tion, then this story would completely change—and I would have been spared the

discomfort of the equivariance results. See §20.

19. The λ-calculus in Isabelle

After much work the stage is set for the raison d’être of Isabelle/FM: data-

types.59

The untyped λ-calculus has been our running example until now, so let us

use the power of Isabelle/FM to actually declare a datatype Λα (a.k.a ‘L’, last

seen D10.3.4) as an Isabelle datatype term. All the following takes place in scripts

named Term.thy and Term.ML.

19.1. Term.ML. The Isabelle code is in Fig.25144. First we declare a set

aTerm::i, intended to be an atom aTerm:Atm so that AP(aTerm) is its type of atoms

59The Isabelle/ZF datatypes package is under continuous development so the version my

implementation inherited from Isabelle98-1/ZF (R14.4) may differ from any the reader may be

using.

19.1. Term.ML 19.1.1 145

and can serve as a set of syntactic variable symbols.60 We do not add an axiom

aTerm:Atm so AP(aTerm) may be empty (see §16.8). Such an axiom can of course

be added later if needed.

We then declare the set term::i of terms. The datatype declaration calls

an ML program referred to as “the Isabelle/ZF datatypes package” which

axiomatises term as an appropriate least fixedpoint and proves a few of its basic

properties using a default method over which the user has some control via the

lists monos, type intrs and type elims. I shall call this the user-interface for

this section. For edited versions of these properties see Fig.26146.

Remark 19.1.1 (Hack trace). The datatypes package displays the usual

problem of automation in Isabelle—no good error messages or trace—but

its code is quite readable. Obviously the unfamiliar abstraction set-former

Abst(AP(aTerm),term) in term (Fig.25144) confused the program and I had to

figure out what results to put in the user-interface to make it work again. Most of

my learning curve was understanding the code sufficiently to rewrite it to produce

a crude trace61 and see what had to be done. It is a tribute to the design of

the package that I could make it handle abstraction-types using the interface and

proof-method provided, i.e. without hacking code except to get enough trace to

understand the power of the tool. 3

The results of Fig.26146 are enough for us to inductively reason on term. How-

ever, with no functions yet defined out of it (e.g. substitution), we have few

interesting theorems to prove except one:

Perm_term "[| a:AP(n) ; b:AP(n) |] ==> (a b).term = term"

Disj_term "a#term"

Supp_term "Supp(term)=0"

These are three results but only technically so. They are all logically equivalent

(quite easily, see Fig.27149) and I shall collectively call them “equivariance of

term”.62

Because of the dependencies of the definitions in Isabelle/FM, proofs of the

second and third results must reduce to a proof of the first so we restrict attention

to Perm term. There are two ways of proceeding:

60I should have made aTerm::AtmPart. Taking aTerm::i was a strategic error and should be

changed in the next code rewrite. See R20.2.
61Perhaps the designers of Isabelle would like to include this facility in future versions?
62The ideas of §18.2 (make Perm respect types of atoms) would pay off here. Perm term would

lose its typing conditions [|a:AP(n) ; b:AP(n)|] because Perm(a,b) would be the identity for a, b

badly typed. This would simplify subsequent proofs, see R16.6.7.

146 §19.1 19. The λ-calculus in Isabelle

["term == lfp(univ(Atm),
%X. {z: univ(Atm) .

(EX a. z=tVar(a) & a:AP(aTerm)) |
(EX a b. z=tApp(a, b) & a:X & b:X) |
(EX a. z=tAbs(a) & a:Abst(AP(aTerm), X))})"] : thm list

term.defs

["term_case(?f_tVar, ?f_tApp, ?f_tAbs) ==
case(?f_tVar,
case(split(%v. ?f_tApp(v)), ?f_tAbs))",

"tVar(?a) == Inl(?a)",
"tApp(?a, ?b) == Inr(Inl(<?a, ?b>))",
"tAbs(?a) == Inr(Inr(?a))"] : thm list

term.con defs

"term <= univ(Atm)" : thm

term.induct

"[| ?x:term;
!!a. a:AP(aTerm) ==> ?P(tVar(a));
!!a b. [| a:term; ?P(a); b:term; ?P(b)|] ==> ?P(tApp(a, b));
!!a. a:Abst(AP(aTerm), Collect(term, ?P)) ==> ?P(tAbs(a)) |]

==> ?P(?x)" : thm

term.dom subset

["[| tVar(?a) = ?c; ?c = Inl(?a) ==> PROP ?W |]
==> PROP ?W",

"[| tApp(?a, ?b) = ?c; ?c = Inr(Inl(<?a, ?b>)) ==> PROP ?W |]
==> PROP ?W",

"[| tAbs(?a) = ?c; ?c = Inr(Inr(?a)) ==> PROP ?W |] ==> PROP ?W",
"Inl(?a) = Inr(?b) ==> ?P",
"Inr(?b) = Inl(?a) ==> ?P",
"[| Inl(?a) = Inl(?b); ?a = ?b ==> PROP ?W |] ==> PROP ?W",
"[| Inr(?a) = Inr(?b); ?a = ?b ==> PROP ?W |] ==> PROP ?W",
"[| <?a, ?b> = <?c, ?d>; [|?a = ?c; ?b = ?d |] ==> ?R |]

==> ?R"] : thm list

term.free SEs

["?a : AP(aTerm) ==> tVar(?a) : term",
"[| ?a : term; ?b : term |] ==> tApp(?a, ?b) : term",
"?a : Abst(AP(aTerm), term) ==> tAbs(?a) : term"] : thm list

term.intrs

Figure 26. Results of Datatypes Package for term

19.1. Term.ML §19.1 147

1. Unfold definitions repeatedly (beginning with term.defs) and use a library

of equivariance results (which we saw in FM in R8.1.13 and again in Isa-

belle/FM in R16.6.3) to reduce the problem to triviality. This approach is

elegant and fails, we discuss why below.

2. Use extensionality to reduce the problem to two subproblems:

Perm_term_elt1 "[| a:AP(n) ; b:AP(n) |] ==> x:term ==> (a b).x:term"

Perm_term_elt2 "[| a:AP(n) ; b:AP(n) |] ==> (a b).x:term ==> x:term"

In fact we can be clever and use idempotence of permutation to prove

Perm term elt2 from Perm term elt1 by a single automated tactic (see

Fig.27149). We still have to prove Perm term elt1. Proof by hand is out of

the question because of the number of cases involved, even for this simple

datatype. Automated proof is not easy either. We shall return to the proof

below.

So why does option 1 fail? We unfold term using term.defs and obtain a

subgoal of the form

[| a:AP(aTerm) ; b:AP(aTerm) ; x:lfp(univ(Atm),h) |]

==> (a b).x:lfp(univ(Atm),h)

We now use results from New Perm to pull the permutation into the least fixedpoint

operator.

WRONG [| a:AP(aTerm) ; b:AP(aTerm) ; x:lfp(univ(Atm),h) |]

==> x:lfp((a b).univ(Atm),(a b).h)

I have developed the theory of universes in Isabelle/FM and so we can reduce

(a b).univ(Atm) to univ(Atm). The (a b).h however is badly-typed and nonsense:

Perm(a,b)::i=>i63 cannot be applied to h::i=>i as discussed in Item 3 on p.125.

Our only option is to unfold the definition of lfp using

lfp_def "lfp(D,h) == Inter({X:Pow(D). h(X)<=X})"

and hope that the problem goes away (Inter is the Isabelle/ZF version of
⋂

).

Unfortunately it does not. We can use

Perm_Inter "(a b).Inter(A) = Inter((a b).A)"

but we then we come up against Collect (written here in sugared notation)

(a b).{X:Pow(D). h(X)<=X}

In R16.6.4 we remarked that this term-former is somewhat problematic. This is

a case in point. When we apply Perm Collect64 we obtain

[|a:AP(aTerm) ; b:AP(aTerm) ; x:Inter({X:Pow(univ(Atm)). h(X)<=X})|]

==> x:Inter({Y. X:Pow(univ(Atm)), h(X)<=X & Y=(a b).X})

63Recall that (a b).u is sugar for Perm(a,b,u). So Perm(a,b), sugared, is (%u.(a b).u)::i=>i.
64Perm Collect "(a b).{x:A. P(x)} = {y. x:A, P(x) & y=(a b).x}"

see R16.6.4.

148 §19.2 19. The λ-calculus in Isabelle

To stop things getting too technical we switch into ordinary set-theoretic notation.

We need to show that (omitting typing conditions on a and b and the set-universe

typing condition in the collection term),

∀X . (x ∈
⋂ {

X
∣
∣ h(X) ⊆ X

}
) ∧ (h(X) ⊆ X ∧ x ∈ X) =⇒ x ∈ (a b)·X

But of course x ∈ (a b)·X ⇐⇒ (a b)·x ∈ X and if we think about it the equation

above is just

x ∈ term =⇒ (a b)·x ∈ term,

which is Perm term elt1 above. We have gained nothing! We shall discuss this

further in §20.

We have shown that option 1 of the list above reduces in Isabelle/FM to option

2, which amounts to proving the result

Perm_term_elt1 "[| a:AP(n) ; b:AP(n) |] ==> x:term ==> (a b).x:term"

by induction on x:term. We accordingly use term.induct and obtain the following:

> be term.induct 1;

Level 1

[| a:AP(n); b:AP(n); x:term |] ==> (a b).x:term

1. !!aa. [|a:AP(n); b:AP(n); aa:AP(aTerm)|] ==> (a b).tVar(aa):term

2. !!aa ba.

[| a:AP(n); b:AP(n); aa:term; (a b).aa:term; ba:term;

(a b).ba:term |]

==> (a b).tApp(aa, ba):term

3. !!aa. [| a:AP(n); b:AP(n);

aa:Abst(AP(aTerm), {u:term . (a b).u:term}) |]

==> (a b).tAbs(aa):term

The first two subgoals are not difficult; We can expand the definitions of tVar

and tApp using term.con defs and then use standard equivariance techniques.

The third subgoal is a little harder because the set inside the Abst is not just

(a b).term. Nevertheless there is a simple automated proof of it. With this result

it is fairly simple to derive Perm term. The full code is in Fig.27149.

Having settled equivariance there is little else for Term.ML to do. We prove a

few injectivity results of the form

tApp_inj "tApp(x,y) = tApp(x’,y’) ==> x=x’ & y=y’"

by a standard automated method because they’re useful later, and that’s about

it.

19.2. Discussion of Term.ML. Perm term (Fig.27149) is important in various

ways, we consider just one. Suppose we have t:term and a:AP(aTerm). We can

easily prove tLam([a]t):term. Suppose further that c:AP(aTerm) and c#[a]t. We

19.2. Discussion of Term.ML §19.2 149

Goal "[| a:AP(n) ; b:AP(n) |] ==> x:term ==> (a b).x:term";
be term.induct 1;
by (ALLGOALS (asm_full_simp_tac (simpset() addsimps

[Perm_tVar,Perm_tApp,Perm_tAbs])));
by (blast_tac (claset() addSIs term.intrs@[AP_Perm_abc_epsilon]) 1);
by (blast_tac (claset() addSIs term.intrs@[AP_Perm_abc_epsilon]) 1);
by (auto_tac (claset() addSIs (Perm_RIGHT_SIs()) addSDs (Perm_RIGHT_SDs())

addSIs term.intrs,simpset() addsimps [Perm_Abst]));
br (Abst_mono RS subsetD) 1;
ba 2;
by (blast_tac (claset() addSIs (Perm_LEFT_SIs())) 1);
qed "Perm_term_elt1";

Goal "[| a:AP(n) ; b:AP(n) |] ==> (a b).x:term ==> x:term";
br (Perm_idem RS subst) 1;
by (blast_tac (claset() addSIs (Perm_LEFT_SIs()) addIs [Perm_term_elt1]) 1);
qed "Perm_term_elt2";

Goal "[| a:AP(n) ; b:AP(n) |] ==> (a b).term = term";
by (blast_tac (claset() addSIs (Perm_LEFT_SIs()) addSDs (Perm_LEFT_SDs())

addDs [Perm_term_elt1,Perm_term_elt2]) 1);
qed "Perm_term";

Goalw [Disj_def] "a#term";
by (DisjI_jamie_tac 1);
by (NewI_tac 1);
by (blast_tac (claset() addIs [Perm_term,AP_cont]) 1);
qed "Disj_term";

Goalw [Supp_def] "Supp(term)=0";
by (asm_full_simp_tac (simpset() addsimps [Disj_term]) 1);
qed "Supp_term";

A few notes:

term.intrs is proved by the datatypes package, see Fig.26146.

Perm tVar etc. are equivariance results proved by a standard automated method.

Perm RIGHT SIs etc. are standard libraries, see §16.6.

See §20 for my ideas how to reduce this proof to a few lines.

Figure 27. Code of an equivariance result

shall certainly encounter situations where ([a]t)<c>=(c a).t is of interest, e.g.

evaluating tApp(tLam([a]t),c). But we cannot sensibly discuss (c a).t until we

know (c a).t:term. We deduce this by pulling the permutation to the right of :

and using Perm term. Other examples abound.

The case study continues. I have constructed various inductively defined func-

tions out of term, including a size function, a free variables function, and a sub-

stitution function illustrated in Fig.28150.

150 §19.2 19. The λ-calculus in Isabelle

consts

Size :: i

inductive

domains "Size" <= "term * nat"

intrs Atm_I "a:AP(aTerm) ==> < tVar(a),1 >:Size"

App_I "[| <x,sx>:Size ; <y,sy>:Size |] ==>

<tApp(x,y),sx #+ sy #+ 1>:Size"

Abs_I "[| <x,sx>:Size ; a:AP(aTerm) |] ==>

<tAbs([a]x),sx #+ 1>:Size"

Size

consts

FV :: i

inductive

domains "FV" <= "term * Fin(AP(aTerm))"

intrs FV_Atm_I "a:AP(aTerm) ==> <tVar(a),a>:FV"

FV_App_I "[| <x,fx>:FV ; <y,fy>:FV |] ==>

<tApp(x,y),fx Un fy>:FV"

FV_Lam_I "[| <x,fx>:FV ; a:aTerm |] ==>

<tAbs([a]x),fx-a>:FV"

Free Variables

consts

Sub :: i

n :: i

t :: i

inductive

domains "Sub" <= "term * term"

intrs AtmI1 "[| a=n ; a:AP(aTerm) ; t:term |] ==> <tVar(a),t>:Sub"

AtmI2 "[| ~(a=n) ; n:AP(aTerm) ; t:term |] ==>

<tVar(n),tVar(n)>:Sub"

AppI "[| <x,sx>:Sub ; <y,sy>:Sub |] ==>

<tApp(x,y),tApp(sx,sy)>:Sub"

AbsI "[| <x,sx>:Sub ; a:AP(aTerm) ; a#t ; a#n |] ==>

<tAbs([a]x),tAbs([a]sx)>:Sub"

Substitution

Figure 28. Functions out of term

19.2. Discussion of Term.ML 19.2.1 151

The datatypes package of Isabelle98-1/ZF does not include facilities for declar-

ing functions out of abstract datatypes directly, they must be declared as inductive

relations and proved functional by hand.

Remark 19.2.1 (Terrible Struggle). Each of the sets in Fig.28150 was a ter-

rible struggle. For example Size, the size function. Before I could even begin to

prove results about it I had to go back to Isabelle/ZFQA and extend the adap-

tation of Isabelle/ZF to include the theory of ordinal arithmetic (and everything

leading up to it). 3

I have proved that the relations in Fig.28150 are functions, proved their equiv-

ariance results, and established some of their simpler properties. For example:

a:AP(aTerm) ==> <tVar(a),fx>:FV ==> fx=a

and so on. My personal favourite is this:

Size_Omega_is_9 "a:AP(aTerm) ==>

<tApp(tAbs([a] (tApp(tVar(a),tVar(a)))),

tAbs([a] (tApp(tVar(a),tVar(a))))), ?x>:Size";

During the proof, the Isabelle system instantiates the unknown ?x step by step

to the number nine. The result has little to do with FM set theory, but is a

lovely little demonstration of the unity of logic and computation. It also shows it

is possible to implement a deterministic programming language in Isabelle along

with an executable big-step reduction relation.

Back to FM. Note how the definition of substitution in Fig.28150 is the same

as the iterative equations defining substitution on L in (49)69 except that I have

expanded newness explicitly in terms of # (the theoretical justification for this

being T9.4.6).

By expanding Na we forfeit the useful ability to assume a apart from extra

variables in the context (C9.4.11) as well as the ability to assume different new

variables are equal (see New conj tac in R16.7.1, a practical instance of which

appears in a later paper proof in R23.1.13).

Why did I do this? The datatypes package takes its rules in the meta-language:

[| Subgoal1 ; . . . ; Subgoaln |] ==> Conclusion(80)

instead of Isabelle/FOL;

(Subgoal1 & . . . & Subgoaln) --> Conclusion(81)

so on the face of it, to accommodate (49)69 we would have to program Ninto the

meta-language of Isabelle itself—or change the datatypes package to accept rules

in FOL+New.

152 19.2.2 19. The λ-calculus in Isabelle

The first alternative is not particularly appealing. The second is in principle

just a small programming job: we write a small filter to detect rules of the form

of (81)151, possibly with Nquantifiers up front, and apply NewI tac (§16.7) and

various other intro rules to reduce it to the form of (80)151. But this is all rather

pointless because it automates the wrong thing—getting rid of Na the moment

it is handed to the datatypes package. We want to preserve Na, leave it in the

inductive principle of the datatype, and unpack it at the last moment during some

inductive proof so that we may assume a apart from any extra variables in the

context of that particular proof.

So forget that idea, we do not need it:

Remark 19.2.2 (Exceedingly nice datatypes). FM has exceedingly nice

properties which mean that even though the datatypes package only understands

standard ZF, so to speak, it can still be made to handle FM datatypes with a

minimum of fuss. C9.4.5 tells us that Ndistributes over conjunction and implica-

tion. So we can ask the programmer (or program into the datatypes package the

ability) to rephrase a rule of the form

Na.
φ(a, ~x)

ψ(a, ~x)

to the logically equivalent form

Na. φ(a, ~x)

Na. φ(a, ~x)
.(82)

By C9.4.5 we can also distribute Ndown through conjunctions and disjunctions in

φ and ψ if we wish. We the designers of the system can easily put New conj tac,

NewI tac and NewD tac (§16.7) into the datatypes package code65 which will au-

tomatically reconstitute the original rule (82)152 in the course of a proof placing

a#x in the assumptions for every x in the context of that proof. 3

Remark 19.2.3 (No fresh). While we are on the subject, I mention that

Isabelle/FM has no theory of fresh (T9.6.6). I should probably write one so we

can use rules like (48)69 and functions like C9.6.9. 3

I conclude this subsection with one more incidental comment, a forward ref-

erence to Chapter IV.

Remark 19.2.4. Sometimes when ZF forces us to choose ‘fresh variables x ’,

FM allows us not to. For example in (75)97 we do not need to declare names

for new atoms because they remain hidden in the abstraction t∗∗. In ZF dialect

65I know the code quite well (R19.1.1).

19.3. Conclusion §20 153

we would have to write something like (77)98.
66 I merely wish to point out that

traditionally we always unpack abstractions and then re-bind the new atoms as

appropriate. FM not only gives us Nso we can do this much more cleanly than

before, it also gives us the option of not doing so gratuitously. I next take up this

issue in R25.5. 3

19.3. Conclusion. Developing the theory of Λα was far harder than I ex-

pected. I should not have been surprised. Being the first application ever of Isa-

belle/FM, it naturally threw up many of its weaknesses and forced me to rewrite

the code many times. Because of the rather concrete nature of Isabelle proof,

to correct even a small strategic mistake (let alone a large one) can often mean

trawling through all the code making hundreds of changes.

One of the major changes was a systematic organisation and development of

the standard libraries of results discussed in §17. These libraries have names like

Perm Left SIs (this collection of results helps pull permutations to the left of =,

: and # in conclusions by intro-resolution) and thus allow us to easily implement

ideas like “Pull all the permutations to the left of the set-inclusion”. These fairly

simple measures had a dramatic simplifying effect and reduced code-length some-

times by a factor of ten, just by helping me effectively apply the automated tools.

Remark 19.3.1 (Why I stopped where I did). I began more substantial case

studies than the λ-calculus. For example I declared the syntax and operational

behaviour of the π-calculus, and also the inductive types of syntax and operational

behaviour of an FreshML-like language (see Chapter IV). I did some work, and

learnt for example that coinductively defined sets seem to present no new difficul-

ties over inductively defined sets. The real problem was the equivariance results

(R16.6.3), they just get bigger and badder. Then I realised how to get rid of them

forever, see §20 below. The necessary work would have taken more time than I

had. So I stopped. 3

20. Future work: Releasing Isabelle/FM as a tool

In the last section I said the next step was to make a real tool of Isabelle,

something that real people can use to do real syntax. I also said that the real

problem with Isabelle/FM as it now exists is the equivariance results. Their

proofs must be simplified:

“Yes, Isabelle/FM lets you manipulate syntax with binding without

worrying about silly technical ZF lemmas to do with choosing new

66In strict ZF we would not even have a N-quantifier.

154 §20 20. Future work: Releasing Isabelle/FM as a tool

variable names. But you do have to spend ages on technical FM

lemmas to do with permuting variable names.”

No, we can’t have that. An obvious solution is to develop a uniform automated

proof-method for equivariance. Unfortunately this is impossible as things stand,

recall R16.6.6. The best we can do is an automated proof for the kinds of datatypes

users tend to define. In the course of my case studies I have already gone some

of the way to doing this but I have fundamental objections to basing a system on

the idea:

1. It would take thought and we could get it wrong.

2. I have executed such automated proofs for moderately nontrivial datatypes

(datatypes of terms and typings of an FreshML-type language, for example)

and they were slow. The proofs would presumably get slower as n2 or similar

in the complexity of the type. Still, computers get faster every day.

3. What happens to the user with a new kind of datatype which we did not

consider? I was in this position wishing to declare datatypes of syntax

involving abstraction Abst(U,X) (D9.6.1 and §16.10), which of course the

(ZF) datatypes package did not know about. I hacked code for a week

(thankfully just to get a trace, I did not have to change any algorithms, see

R19.1.1).

4. Not all equivariance results concern datatypes. The user is free to axioma-

tise any set they wish, proving equivariance could be very tricky.

In Chapter II we used T8.1.10 and T9.1.6 to give us equivariance ‘for free’ by the

properties of the logic of FM itself. We cannot reason about the meta-language

of Isabelle/FM in Isabelle/FM, but we can axiomatise the properties we need.

I suggest the following. We extend Isabelle/FM to Isabelle/FM++, at the

beginning of which are (something like) the declarations of Fig.29155. From these

axioms we can for example prove

(a b).x = (b a).x

(a b).x = y <-> x = (a b).y

((a b).f)(x) = (a b).f((a b).x)

In addition we add an ML function Equivar:string -> thm that takes a string,

parses it to an Isabelle term t, and checks that t has no free variables or scheme

variables (see ‘scheme’ in the index of [59]), returning the theorem (?a ?b).t=t if

so and False if not.67

67We could simulate the effects of Equivar by declaring a rule (a b).Const=Const for every

Const in the theory and giving the result names in some systematic way. The ML program would

then access these results through this systematic naming system to prove the required result.

This makes for a lot of rule declarations and we would have to make new ones for each constant

20. Future work: Releasing Isabelle/FM as a tool 20.2 155

classes

atmc < term

consts

PERM :: [’a::atmc,’a,’b] => ’b ("(3’(_ _’) ./ _)" 150)

rules

PERM_idem "(a b).((a b).x) = x"

PERM_aba_b "(a b).a = b"

PERM_abb_a "(a b).b = a"

PERM_abx_x "[| ~(x=a) ; ~(x=b) |] ==> (a b).x = x"

PERM_ext "(ALL x::’a::atmc. (a b).x = (c d).x) ==>

(a b).z = (c d).z"

Equivar_app "(a b).(f(x))=((a b).f)((a b).x)"

We also declare Equivar:string -> thm such that

Equivar(t) =







(?a ?b).t=t t has no free variables or meta-variables

False Otherwise

’a::atmc is a polymorphic type of arity atmc. ?a is a so-called ‘scheme variable’,

which is a free variable which may be instantiated in unification (see [59]).

Figure 29. Declarations of Isabelle/FM++

We would introduce object-level types of atoms in AtmPart::i just as in FM

(§9) along with casting functions to biject them with ’a::atmc as in §18.1. We

would introduce object-level permutation Perm::[i,i,i]=>i just as in ZFA (§8).

Now the casting functions mean Perm and PERM coincide on atoms, and by equiv-

ariance for : the action of PERM distributes over ∈-structure just like Perm. By

∈-induction Perm and PERM coincide.

Thus in §19.1, Fig.27149 instead of the code leading up to qed "Perm term" we

would just have

> bind_thm("Perm_term",Equivar("term"));

val Perm_term = "(a b).term = term" : thm

introduced. Furthermore, in some sense this is all completely equivalent to the proposal in the

body of the text. But we would have kept our hands off the meta-system.

Pollack strongly recommends to me the approach of this footnote on the grounds that the

meta-system should be inviolate. Paulson does not seem to care, quote “so long as it’s consistent”;

there is a difference in attitude here to the whole enterprise of mechanised mathematics. My

thanks to them both for talking to me about this.

156 20.3 20. Future work: Releasing Isabelle/FM as a tool

Remark 20.2. Note incidentally that the theory of λ-terms as constructed

would break because I added a constant aTerm:Atm to the theory and this is not

equivariant (see Fig.25144). This is my error, but it is superficial. I should have

made aTerm:AtmPart be a type of atoms instead. This can be done and it’s no big

deal. 3

1. The meta-language of Isabelle is a higher-order logic (HOL). Have we just ad-

dressed the question of “how to implement HOL/FM”?

No. There is no axiom in the meta-language corresponding to (Fresh)35.

2. So what have I really done? We really do just give the meta-level T8.1.10 which,

both paper and Isabelle agree, most comfortably sits there and not lower down

in the object level.

The theory of Nremains definitely object-level inside sets, and indeed

Fig.29155 mentions no meta-level axiom of the form of (Fresh)35 for ’a::atmc

(it could, but that would bring us very little, discussion omitted).

Of course we could use this extended meta-level to build any FM-style theory,

not just Isabelle/FM (e.g. Isabelle/HOL-FM).

Remark 20.3 (The future). The plans for the future are therefore these: We

clean up the code and restrict permutation to types of atoms, see §18.2). We

package equivariance into the meta-level as discussed above to make a general

‘FM toolkit’ not specific to set theory. We add a theory of fresh (T9.6.6, R19.2.3)

to Isabelle/FM. We also extend the datatypes package as described in and around

R19.2.2.

It would also be very convenient to mechanise §10.7 in Isabelle/FM++

(Fig.29155) along with standard automated methods to prove that the various

functions defined ‘for free’ on VFM or PreStx correspond to the usual functions

a developer would normally define on a datatype. Thus for example Isabelle/FM

datatypes would automatically have a FV function defined iteratively by the

system on request along with theorems proving it equal to Supp.

We can then carry out a few large case-studies. Isabelle/FM would then be a

proven tool ready for general use. 3

It sounds so easy.

Chapter IV

Programming Language: FreshML

21. Introduction

In Chapter II we constructed FM. Now we examine one aspect of what we

might call its ‘computational content’—how we can interpret programming lan-

guages and their operational semantics in it.

In Chapter IV we construct the datatypes of terms and values of a language

FreshML in FM, build—still in FM—an operational semantics for it, and prove

one significant correctness result T21.9 about that operational semantics. This

proof is a prime target for automation, see §31.

Remark 21.4 (Totally Ordinary). If what the reader is about to see looks

indistinguishable from normal nameful ZF proofs (R4.14) he or she should be

very happy—this is the way it is supposed to be—and not take this for granted;

other approaches (§33) have never quite managed this ‘totally ordinary’ look.

3

Remark 21.5 (See §12!). Chapter IV is carried out in FM and uses

the extra power that gives us. The reader is reminded that in §12 I laid

groundwork for this, discussed inductive reasoning in FM, and how the

‘totally ordinary’ look is achieved (for example we use R12.3.2). 3

For the future we might like to do to an established programming language

what FM does to ZF, i.e. extend it with intuitive facilities for handling bind-

ing68 while leaving everything looking more-or-less the same. The fact that the

“informal programming language” of §4 seems quite reasonable and non-technical

(at least to me) suggests this is feasible. Note too that other approaches to the

problem of datatypes with binding (§33) have not given us anything like FreshML

or even the informal programming language, which suggests that this thesis is on

to a good thing.

Pitts and myself have begun work on such a language, see [66], but I do not

discuss that here. The aim of Chapter IV is more modest. We return to R4.10.

Recall from there that although we do not and indeed cannot give the informal

language of §4 a rigorous semantics69 we can think of a program loosely as a

function out of an FM-set. This is a powerful idea. I used it heavily to motivate

my development of FM (Chapter II). Conversely, as FM has developed it has

shown us what features our language should have. E.g. fresh (C9.6.7) would

probably not have occured to us without FM.

68 . . . abstraction, concretion, fresh, etc.
69We have no theory of FM domains so cannot handle nontermination. We would not

necessarily anticipate difficulties developing such a theory, but proper denotational semantics are

complicated in themselves.

21. Introduction 21.7 159

Notation 21.6. We call the language we shall construct FreshML.

Remark 21.7 (Lax denotational semantics). FreshML has an (informal) de-

notational semantics as sets and functions in FM. For closed values (of lower-

order-types), for which termination and typing contexts are no issue, we write

the semantics of a value V as [[V]] ∈ VFM. For example, FreshML has an

‘atom-binding’ term-former a.V and

[[a.V]] = [[a]].[[V]]

(a.x introduced in D9.5.1). We may abuse notation where convenient and write

[[t]] for t not necessarily a closed value. 3

The point R4.10 makes is that if contextual equivalence does not appropriately

match informal denotation—if there are V and V ′ such that [[V]] = [[V ′]] but

V 6≡ctx V ′, vice versa, or both—then something is wrong. And indeed it might be

that perfectly reasonable assumptions about type-constructors, type-destructors,

operational semantics and the like unexpectedly interact to demolish even our

informal ideas of what the programs denote.

Remark 21.8 (FreshML design aims). In FreshML we take a collection of

these reasonable assumptions and mathematically prove that we “get reasonable

behaviour out”, which is formalised in T21.9 below. The general idea of the

result is that denotation and contextual equivalence are precisely equal in an

appropriately restricted sense. The issue is not useability nor expressivity, except

in so far as FreshML is not a trivial language. 3

FreshML is based on a fragment of ML, enhanced with new features (inspired

by FM) to support a type of λ-terms up to α-equivalence which we shall write

Λα. We shall show that the following result holds (restated more rigorously in

T29.25):

Theorem 21.9 (Sanity Clause).70 Given

• an appropriate language FreshML whose types include a datatype Λα with

informal denotation L (D10.3.4), untyped λ-terms up to α-equivalence,

• an appropriate operational semantics, and

• an appropriate inductive definition of contextual equivalence ≡ctx for that

operational semantics,

then for all closed values-in-context of type Λα

∅ ⊢ V ,V ′ : Λα,

70Who says there’s no such thing?

160 21.10 21. Introduction

it is the case that contextual equivalence and α-equivalence71 coincide:

⊢ V ≡ctx V ′ : Λα ⇐⇒ V =αV ′.

In other words:

“Terms of the untyped λ-calculus up to α-equivalence are fully and

faithfully represented by closed values of the appropriate FreshML

datatype Λα modulo contextual equivalence.”

Remark 21.10 (Provenance of Proof). The guts of the proof-method used

for T21.9 above are an instance of “Howe’s Method”. I used [64, Appendix A] by

Pitts as my model, cf. R26.6.1. 3

Remark 21.11 (. . . 6= semantics of terms). We conduct this work in FM;

datatypes of terms and values, the operational semantics, contextual equivalence,

are all inductively defined FM sets and we exploit in an integral way the full power

of FM logic and the Nquantifier.72

This is a shift of emphasis. In Chapter II our primitive notion of syntax was

abstract syntax in some external universe (see Item 1 in R4.4) and terms were

written t. The FM-semantics we constructed were a derived notion intended to

model this syntax in a controlled environment, so to speak. We called the FM

semantics of syntax ‘semantic terms’ (N8.2.4), they were written t = [[t]] ∈ VFM.

Now that we have FM, binding signatures (D10.1.3), T10.5.8, and so forth we

throw away t and take as primitive the FM sets. 3

Remark 21.12 (Potential for confusion). I see a particular potential for con-

fusion here because in R21.7 we introduce the concept of the denotation [[V]] of V

a closed value of FreshML. Firstly there is a certain clash between this notation

and the notation [[V]] , which is now primitive and written V . Worse, not only are

syntax and denotation in the same universe, the denotation itself may be a set of

syntax. The particular case which should most concern us is closed values of type

Λα. They biject with M on p.57, the λ-terms not up to α-equivalence. Meanwhile

71 To avoid confusing people with the truth I place this comment in a footnote: here “α-

equivalence” does not refer to terms of FreshML, which are in the ‘meta-level’. It refers to

α-equivalence of ‘object-level’ closed values of type Λα representing (possibly open, possibly

unevaluated) terms of the λ-calculus. See R22.1.6. This relation on closed values of type Λα will

be written ≡se , rigorously constructed in D26.3.1, and used in the rigorous restatement of this

result, T29.25. ≡se enters into the proof via Fig.38196.
72As in FMLtiny (R12.1.2 Item 1) terms and values are defined in Fig.31164 by mutual in-

duction. We did not consider mutually inductive definitions in §10. However as discussed there

they can be encoded in ordinary inductive definitions so in theory the mathematics is powerful

enough to include our syntax.

21. Introduction 21.13 161

τ :: = Atm Atoms

| Bool Bool

| Nat Nat

| τ → τ Function types

| τ × τ Product types

| (τ)List List types

| [Atm]τ Abstraction types

| Λα Lambda terms up to α-equivalence

(83)

Figure 30. D22.1.1 - Types of FreshML

the type’s values’ informal denotation bijects with L (D10.3.4), the λ-terms up to

α-equivalence. Cf. R22.1.6 and ft.71160. 3

Remark 21.13 (Many types of atom). Our FM here has many types of

atoms (R16.1.2). We need this to hypothesise two types of atoms Var and

AtmC to implement syntactic sets of variable symbols and constant symbols

respectively.

Now the language FreshML will have a type of atoms Atm (see Fig.30161).

The constant symbols in AtmC will all be of type Atm and we shall need an FM

type of atoms A for the denotation of the FreshML type Atm.73 In principle this

is a third type of atoms. However, FM does not admit a bijective function-set

between distinct types of atoms—such a bijection would have nonfinite support,

proof omitted but similar to that of T11.4.1, cf. also §16.11. Thus A and AtmC

must actually be identical and the function mapping a to [[a]] must be the identity.

We shall ignore this and preserve distinct symbols for AtmC the set of syntax

and A the denotation. 3

22. Syntax

22.1. Definition.

Definition 22.1.1 (Types of FreshML). Types τ of FreshML are inductively

defined in Fig.30161.

73Recall that syntax and denotation are living in the same universe, cf. R21.12.

162 22.1.2 22. Syntax

The type system is minimal and unsurprising except for the constants Atm and

Λα and the type-former [Atm]−.

Remark 22.1.2 (Informal Denotation).

1. Λα is a type of λ-terms. Its intended denotation is the FM-set L of (42)67 ,

namely untyped λ-terms up to α-equivalence. Looking ahead for a moment

to R22.1.6, we shall see that terms of type Λα are actually isomorphic to

untyped λ-terms not up to α-equivalence.

2. Atm is a type of atoms. Its intended denotation is A (§8 also R21.13).

The only closed values of type Atm will be a collection of constants a, b, c ∈

AtmC.

3. We call [Atm]τ abstraction types. The intended denotation corresponds

to the abstraction-set former [A]X of D9.6.1.

3

As stated in R21.7, a rigorous denotational semantics for FreshML demands

domain theory and we ignore this.

We shall need some constructor symbol constants to build a set of terms.

Definition 22.1.3 (Term Constructors of FreshML). We declare a set of

term constructors. Abusing notation we equate the constructor symbol with its

sugared (e.g. possibly infix term-constructor functional) notation:

TermCon = {True, False,0, Succ(−), (−,−),(84)

Nilτ ,−::−, Var(−), App(−), Lam(−)}.

As promised in R21.13 we declare two types of atoms in FM, one for variable

symbols x , y , z ∈ Var and and the other for constant symbols a, b, c ∈ AtmC. The

type system will in due course (§24) assign constants a, b, c type Atm. We introduce

a notation for a useful syntactic class of variables-or-constants xa, xb, . . . ∈ Var∪

AtmC:

x , y , z ∈ Var

a, b, c ∈ AtmC

xa, xb, xc, ya, yb, . . . ∈ Var ∪AtmC

(85)

Finally we define terms t and values V as datatypes with binding in FM:74

74In §10 we did not consider binding signatures for mutually inductive definitions such as

that of D22.1.4. We can encode them using ordinary inductive definitions (Item 1 of R12.1.2),

so §10 is powerful enough to include the syntax we are defining now. We gloss over the issue.

22.1. Definition 22.1.4 163

Definition 22.1.4 (Terms of FreshML). Terms t ∈ Terms and values V ∈

Val of FreshML are constructed by mutual induction in Fig.31164 as datatypes

with binding in FM.

In those figures, binding occurrences of variable symbols are written

underlined, as in (fix f (x : τ) in t).75 The free variables function on terms

(and values) is written FV(t), we can obtain it ‘for free’ by D10.7.2. Atom-

abstraction xc.t is not binding on xc—we shall call it synthetically binding

instead (see §23 and R23.1.1). We write the set of closed terms and closed

values

CTerms
def
=

{
t ∈ Terms

∣
∣ ∃τ. ∅ ⊢ t : τ

}
and

CVal
def
=

{
V ∈ Val

∣
∣ ∃τ. ∅ ⊢ V : τ

}

respectively.76

The following ground has already been well-covered, but I should not assume

the reader is completely familiar with the rest of the document and I go over this

again:

Remark 22.1.5 (Permutation for free). FM sets have a transposition action

(a b)·x (a, b assumed to be atoms of the same type, i.e. Var, AtmC, Atm or A)

introduced in D8.1.8 which literally goes through the ∈-structure of x swapping

a for b and b for a (R8.2.1). In particular our inductive types in FM inherit

this action ‘for free’ (cf. §10.7), there is no need to inductively define it over the

structure of individual types. So suppose x = t is a term. We use this transposition

action on t much as the reader may have used name-for-name substitution [b/a],

and indeed the two are equal if b is fresh and does not occur in t (cf. §11.1 for

why we do not build FM and in particular Terms using [b/a]). 3

Remark 22.1.6 (Abstraction not binding). xc.V does not bind xc in V ;

a.Var(a) is not the same term as b.Var(b).77 So the terms of Λα correspond

75Binding in FM datatypes has a precise meaning, that is what this thesis is all about. See

R12.1.3. Note that this underlining notation is ambiguous because it does not specify the scope

of the binding (cf. ft.3191). The scoping is as I hope the reader would expect, the only slightly

complicated binding is that let x = t1 in t2 binds x in t1 but not t2. I.e. Let is a function on

[Var]Terms × Terms (cf. §12).
76Here I do not get closed terms and values ‘for free’ from D10.7.8 as I did in D12.6.1 for

FMLtiny. If we automated this proof (§31) we might prefer to do so because it sidesteps the

typing relation. However, if I did that here the reader might ask to see a proof that the version

using empty typing contexts above is identical to the free version, and that would be a tangent.
77This means quite precisely “a.Var(a) and b.Var(b) not identical FM sets”. See R21.11.

The informal denotations are equal: [[a.Var(a)]] = [[b.Var(b)]].

164 22.1.7 22. Syntax

t :: = V Values

let x = t in t Let

V V Application

V @V Atom concretion

fresh x in t Atom binding

ifV = V then t else t Atom destructor

ifV then t else t Bool Case

Fst(V) First projection

Snd(V) Snd projection

CaseV of {Var(x)⇒ t , App(x)⇒ t , Lam(x)⇒ t} Λα Case

CaseV of {Nilτ ⇒ t , x ::x ⇒ t} List Case

CaseV of {0⇒ t , Succ(x)⇒ t} Nat Case

V :: = fix f (x : τ) in t Function fixedpoints

xc Variables and Constants

Con(V1, . . . ,Vn) Constructor arity n

V .V New Atom Binding

Bound variable symbols are underlined, cf. R12.1.3.

Figure 31. D22.1.4 - Terms and values of FreshML

to elements of the näıve datatype (D10.5.2) of λ-terms not up to α-equivalence.

Recall that the intended denotation of Λα is untyped λ-terms up to α-equivalence.

So, the Sanity Clause T21.9 states that contextual equivalence on closed values

coincides with equality in our denotation. The language cannot access the name

of an atom synthetically bound by an abstraction term-former a.(−), so that they

really are in this (operational) sense ‘bound’. 3

We drive the point home. x ∈ FV(x .V) even for V ∈ CVal a closed value. x .V is always

an open term.

22.1. Definition 22.1.8 165

Remark 22.1.7 (Reduced Syntax). We use “reduced syntax”; term-

formers take values instead of general terms wherever possible. So for exam-

ple (V1,V2) is a well-formed term (and value) and (t1, t2) is not. We can use

let x = t in t ′ to recover expressivity. E.g. (t1, t2) can be encoded as

let x1 = t1 in let x2 = t2 in (x1, x2).

I shall usually sugar nested lets to (expressions along the lines of)

let x1 = t1, x2 = t2 in (x1, x2) without comment. See e.g. (Concat)166.

Reduced syntax is useless for programming (we drown in Lets) though

FreshML could be an intermediate language for some more user-friendly syn-

tax. It simplifies the theory; sequential evaluation behaviour is concentrated

in one term-former (let x = − in −). So for example in evaluation relation in

Fig.36188 equation (149)188 is not

t ⇓ (V1,V2)

Fst(t) ⇓ V1

, but the rather simpler Fst(V1,V2) ⇓ V1.

C.f. R16.6.7 where we see the same principle of ‘avoiding conditions where possi-

ble’ appear in the context of implementing proofs in a theorem-proving environ-

ment. The difference is magnified every time we do induction over the evaluation

relation, notably in the rather complicated and very important T27.14. 3

Theorem 22.1.8 (Substitution Property). If t is a term, x ∈ Var a variable

symbol and V a value then t [V /x] (where [−/−] denotes the usual capture-avoiding

substitution) is a well-formed term. Furthermore, if U is a value then U [V /x] is

also a value.

Proof. By mutual induction on the reduced syntax of t and U , or alterna-

tively ‘for free’ (D10.7.13).

22.2. Discussion. Let us consider some likely-looking programs we can write

in FreshML, some which we would like to be typeable and some not.

1 • We can write the functions we used to biject [A](X × Y) with [A]X × [A]Y in

C9.6.9:

fix f (x : [Atm](τ × τ ′)) in fresh u in (u.Fst(x@u), u.Snd(x@u))(Bij1)

fix f (x : ([Atm]τ × [Atm]τ ′)) in fresh u in u.(Fst(x@u), Snd(x@u))(Bij2)

166 §22.2 22. Syntax

2 • We can write substitution Subst(t , y)(−) on Λα:

(Subst(t , y)) fix f (x : Λα) in Case x of






Var(u)⇒if u = y then t else Var(u),

App(s)⇒App(f (Fst(s)), f (Snd(s))),

Lam(s∗)⇒fresh u in Lam(u.f (s∗@u))







3 • We can write “list concat” and using it a “list of free variables” function:

(Concat) fix f (x : (Atm)List× (Atm)List) in let x1 = Fst(x), x2 = Snd(x) in

Case x1 of







Nil(Atm)List⇒x2,

hd ::tl⇒hd ::f (tl , x2)







(FVlist) fix f (x : Λα) in Case x of






Var(u)⇒u::Nil(Atm)List,

App(s)⇒Concat(f (Fst(s)), f (Snd(s))),

Lam(s∗)⇒fresh u in Lam(u.f (s∗@u))







4 • We can write a “body of an abstraction” function:

(FALSE BV) fix f (x∗ : [Atm]τ) in fresh u in x∗@u

which should not type! u is chosen fresh so we need u#x∗@u for the function

to have an informal denotation (T9.6.6), and this is not generally the case. The

moral is

“We may invent abitrary fresh variable names but they must not

escape the scope of their declaration.”

Similarly we would expect (fresh u in u) not to type.

5 • We can write a plausible (but we hope untypeable) “list of bound variables” func-

tion:

(FALSE BVlist) fix f (x : Λα) in Case x of






Var(u)⇒Nil(Atm)List

App(s)⇒Concat(f (Fst(s)), f (Snd(s)))

Lam(s∗)⇒fresh u in u::f (s@u)







We have very simple pattern-matching in FreshML which does not include match-

ing of abstraction-types, but the reader can see from the examples so far that

23. Apartness judgements §23.1 167

we have been implementing it anyway by systematically using fresh u in (−) to

invent a fresh variable and concretion (−)@a to destroy the abstraction.

It does no harm to consider the same program written in the informal pro-

gramming language of §4 using pattern-matching at abstraction types:

fun BVlist Var(u) = Nil(Atm-list)

| BVlist App(s1,s2) = Concat(BVlist(s1),BVlist(s2))

| BVlist Lam([u]s) = u::BFlist(s);

We would expect the typing system to reject this.

In §23.1 we inductively construct an apartness judgement in which is part of

the the typing system (§24) and rejects the undesirables from the list above.

23. Apartness judgements

23.1. Definition.

Remark 23.1.1 (Synthetic binding). Recall from R9.2.10 that # is an FM

version of “is not in the free variables of”, and a#x can be read as “a is syn-

thetically bound/is not synthetically free in x”. Using the informal denotation we

extend this terminology to FreshML and say that a is synthetically bound in

the term a.V . 3

The denotation of V @a is [[V]]@[[a]]. In fact [[a]] = a by R21.13 and I shall in

future write a for both. By D9.5.14, x@a is defined only for a#x . This should

be reflected in the language or there will be terms (such as b.a@a for b 6= a) that

can have no denotation. Similarly, the denotation of fresh a in t is fresh a. [[t]],

and this is only well-defined when Na. a#[[t]]. Before a typing system we must

develop some syntactic approximation to FM-apartness # (N9.2.4). It can only

be an approximation because apartness at higher types in undecidable.

Remark 23.1.2 (Overview of the construction). In the rest of this section we

shall inductively define a syntactic approximation to apartness judgements and

synthetic binding in FM as described in R23.1.1 and R9.2.10. We shall also call

these ‘apartness judgements’, we write them

Γ# ⊢ t#xc.

Their intended interpretation will be “In the context Γ# the possibly open term t

does not contain xc synthetically free inside it”. The apartness context Γ# encodes

information about the atoms synthetically bound in possible values for variable

symbols, which may occur free in the term t . xc may be a variable symbol x

(which we should imagine to be of type Atm) or an atom constant symbol a. 3

168 23.1.3 23. Apartness judgements

There are some subtleties to this. Consider the term

t = (let x = a in a.x).

It should be the case that [[t]]#[[a]], but we can see that a occurs outside the

syntactic scope of a.− in t . Hence, we cannot say “xc is synthetically bound if it

occurs under the scope of a synthetic binder”, corresponding to “x is syntactically

bound if it occurs under the scope of a syntactic binder”. Our decision to use

reduced syntax (R22.1.7) forces let x = − in − to be a primitive term-former,

and this leaves us no choice but to have a cut-like rule (102)170 in the definition

of the apartness judgements (Fig.32169 and Fig.33170).

Definition 23.1.3 (Apartness Context). An apartness context is a finite

subset of (Var∪AtmC)2 written Γ# such that for all xc ∈ Var∪AtmC, (xc, xc) 6∈

Γ#, see R23.1.5 below. We write the set of apartness contexts Ctx#.

Remark 23.1.4. The intended interpretation of Γ#, abuse notation and write

it [[Γ#]], is
∧

(xc,yc)∈Γ#

[[xc]]#[[yc]].

3

Remark 23.1.5. Note that the definition of a typing context prevents

(xc, xc) ∈ Γ#. Since the informal meaning of (xc, yc) ∈ Γ# is [[xc]]#[[yc]] al-

lowing this would allow ⊥ into our context. This is undesirable, cf. Item 2 of

§23.2. 3

Definition 23.1.6 (Apartness Judgement). A apartness judgement is a

triple

(Γ#, t , xc)

where Γ# ∈ Ctx# is an apartness context (D23.1.3), t ∈ Terms is a possibly

open term and xc ∈ Var ∪ AtmC is a variable symbol or atom constant symbol.

We write an apartness judgement

Γ# ⊢ t#xc,

and read it “t is apart from xc in the context Γ#”.

The valid apartness judgements are inductively defined in Fig.32169 and

Fig.33170 using the notation in N23.1.8. The intended meaning of a apartness

judgement is

“∀values for variables. [[Γ#]] =⇒ [[t]]#[[xc]]′′

We shall write ∅ ⊢ t#xc as t#xc where this is convenient.

23.1. Definition §23.1 169

Γ# ⊢ c#a c 6= a Atom Constants(86)

Γ# ⊢ xc#yc (xc, yc) ∈ Γ# Variables (or Constants)(87)

Γ# ⊢ True#xc Bool(88)

Γ# ⊢ False#xc(89)

Γ# ⊢ t1#xc Γ# ⊢ t2#xc

Γ# ⊢ ifV then t1 else t2#xc
(90)

Γ# ⊢ 0#xc Nat(91)

Γ# ⊢ Succ(V)#xc(92)

Γ# ⊢ t0#xc Γ#, x#zc ⊢ tf #xc

Γ# ⊢ CaseV of {0⇒ t0, Succ(x)⇒ tf }#xc
(93)

Γ# ⊢ fix f (x : τ ′) in t#xc Function Types(94)

xc 6∈ FV(t) ∧ xc 6∈
{
c ∈ AtmC

∣
∣ c in text of t

}

Γ# ⊢ V2#xc Γ# ⊢ V1#xc

Γ# ⊢ V1 V2#xc
(95)

Γ# ⊢ V #yc

Γ# ⊢ xc.V #yc
yc 6= xc Abstraction Types(96)

Γ# ⊢ xc.V #xc(97)

Γ# ⊢ V #xc Γ# ⊢ yc#xc

Γ# ⊢ V @yc#xc
(98)

Γ##x ⊢ t#xc

Γ# ⊢ fresh x in t#xc
Atom-Binding(99)

Γ# ⊢ t1#zc Γ# ∪ xc#yc ⊢ t2#zc

Γ# ⊢ if xc = yc then t1 else t2#zc
xc 6= yc Atom-Destructor(100)

Γ# ⊢ t1#zc

Γ# ⊢ if xc = xc then t1 else t2#zc
(101)

Figure 32. D23.1.6 - Apartness Judgements 1

170 23.1.7 23. Apartness judgements

Γ# ⊢ t1#xc Γ#, x#xc ⊢ t2#yc

Γ# ⊢ let x = t1 in t2#yc
Sequential Computation(102)

Γ# ⊢ V #xc Γ# ⊢ V ′#xc

Γ# ⊢ (V ,V ′)#xc
Products(103)

Γ# ⊢ V #xc

Γ# ⊢ Fst(V)#xc
(104)

Γ# ⊢ V #xc

Γ# ⊢ Snd(V)#xc
(105)

Γ# ⊢ Nilτ#xc Lists(106)

Γ# ⊢ V1#xc Γ# ⊢ V2#xc

Γ# ⊢ V1::V2#xc
(107)

Γ# ⊢ V #xa Γ# ⊢ tnil#xc

Γ#, x#xa, y#xa ⊢ tcons#xc

Γ# ⊢ CaseV of {Nilτ ⇒ tnil , x ::y⇒ tcons}#xc

(108)

Γ# ⊢ V #xc

Γ# ⊢ Var(V)#xc
λ-terms(109)

Γ# ⊢ V #xc

Γ# ⊢ App(V)#xc
(110)

Γ# ⊢ V #xc

Γ# ⊢ Lam(V)#xc
(111)

Γ# ⊢ V #xa Γ#, x#xa ⊢ tV #xc

Γ#, x#xa ⊢ tA#xc

Γ#, x#xa ⊢ tL#xc

Γ# ⊢ CaseV of {Var(x)⇒ tV , App(x)⇒ tA, Lam(x)⇒ tL}#xc

(112)

Figure 33. D23.1.6 - Apartness Judgements 2

Remark 23.1.7 (Notational Clash). There is now a clash of notation be-

tween Γ# ⊢ t#xc, read as above as “t is apart from xc in the context Γ#”, and

x#y (N9.2.4) read as “x is apart from y”. I rely on the context (. . . of the

discourse, not Γ#) to disambiguate. 3

23.1. Definition 23.1.8 171

Notation 23.1.8 (Shorthand). We use the following shorthand notations in

Fig.32169 and Fig.33170 and the development that follows:

1. We write xc for an arbitrary finite set of xc.

2. We write

Γ# ⊢ t#xc for
∧

xc∈xc

(Γ# ⊢ t#xc).

3. We write

xa#xc for
{
(xa, xc)

∣
∣ xa ∈ xa

}
,

and

xc#xa for
{
(xc, xa)

∣
∣ xa ∈ xa

}
.

4. We write

Γ# ∪ xa#xc for Γ# ∪
{
(xa, xc)

∣
∣ xc ∈ xc

}

and Γ# ∪ xa#xc for Γ# ∪ {(xa, xc)} .

5. We write

Γ#, xa#xc for Γ# ∪ xa#xc and Γ#, xa#xc for Γ# ∪ xa#xc,

but in both cases insist additionally that there is no za such that (xa, za) ∈

Γ#.

6. We write

xc[t/x] for
{
xc[t/x]

∣
∣ xc ∈ xc

}
,

where [t/x] is a substitution of x for t.

7. t[t’/z] normally denotes substitution of t ′ for z in t. In the case of (xa, xc)

in an apartness context only, (xa, xc)[V /z] shall mean (xa[V /z], xc[V /z])

only if V = zc ∈ Var ∪AtmC and otherwise (xa, xc) (because it makes

no sense to substitute a value not equal to an atom in an apartness context.

8. . . . similarly for the expression xc[V /z] in an apartness judgement

Γ# ⊢ t#xc[V /z].

9. If xc#Γ# we write

Γ##xc for Γ# ∪
{
(ya, xc)

∣
∣ ∃yc. (ya, yc) ∈ Γ#

}
.

L23.1.9 below is rather more than enough to guarantee that (xc, xc) 6∈

Γ##xc and so this is well-formed.

The following result generalises L12.4.2 although the proof is completely dif-

ferent.

172 23.1.9 23. Apartness judgements

Lemma 23.1.9. If R ⊆ X × Y is a finite relation then a#R iff a#x , y for

all (x , y) ∈ R.

Proof. A corollary of C13.2.1 and L9.3.5 for the injective pair-set function

class λx , y .(x , y).

Corollary 23.1.10. As FM sets zc#Γ# iff zc 6= xc, yc for all xc, yc ∈ Γ#.

Proof. Just L23.1.9 combined with L9.3.6 to turn zc#xc, yc into zc 6= xc, yc.

L12.4.2 is a similar result for FMLtiny. It often happens that we know zc#Γ#

because we pick bound variables fresh in expressions such as fresh x in t and

(let x = t1 in t2), cf. (72)94. E.g. in T23.1.12 below. We continue developing

this in L24.1.5.

Now we prove apartness judgement weakening. We never use this result (al-

though it is nice to know it is true). I use the proof to restate some of the points

made in §12 about inductive reasoning in FM.

Remark 23.1.11 (I really mean it). Please note! Here in T23.1.12 and of-

ten elsewhere I shall prove properties of an inductively defined X a subset of some

D by induction “with inductive hypothesis φ(x)” (where x ∈ D). Often, φ(x) will

be of the form x ∈ X =⇒ φ′(x); e.g. (113)172.

I really mean it. The property I prove of X is φ(x), not φ′(x).78

However, in the proof itself I shall tend to elide complexities, e.g. compare (113)172

and (114)172. 3

Theorem 23.1.12 (Weakening).

(Γ# ⊢ t#xc ∧ Γ# ⊆ Γ′
#) =⇒ Γ′

⊢ t#xc.

Proof. By induction on Γ# ⊢ t#xc using induction hypothesis

Γ# ⊢ t#xc =⇒ ∀Γ# ⊆ Γ′
#. Γ′

⊢ t#xc.(113)

We consider only the case of (99)169 in any detail. Suppose we know

Γ# ⊢ t#xc, and Γ# ⊆ Γ′
#.(114)

Now suppose t = fresh x in t ′.

Here is the point: Because we are using FM syntax, t is actually New(t ′∗) for

t ′∗ ∈ [Var]Terms—see the discussion of these issues in §12, in particular R12.1.3

78Having things this way does no harm and sometimes the extra power is useful.

23.1. Definition 23.1.13 173

and R12.3.2. (99)169 is shorthand for

Nx . ∀t .
Γ##x ⊢ t#xc

Γ# ⊢ fresh x in t#xc
(Real (99))

and so x is chosen new and apart from everything free in the current context, in-

cluding x#t ′∗, Γ, Γ′ (but not apart from t , which is not in the context, cf. R9.4.12).

Item 5 of N23.1.8 states that for Γ##x and Γ′
##x to be well-formed, we need

x#Γ, Γ′. We know this. So

Γ##x ⊢ t#xc.

We know Γ′
##x is well-formed too and from its definition (Item 5 of N23.1.8) we

have Γ##x ⊆ Γ′
##x and this gives us the result by the inductive hypothesis.

In a normal ZF presentation without Nsome confusion might arise over

whether x can occur in Γ′
#, since the only explicit condition on it is that Γ# ⊆ Γ′

#.

Similarly for (102)170, where well-formedness of Γ, x#xc follows from x#Γ, which

is automatic because let x = t1 in t2 is actually Let(t1, t
∗
2). In a ZF presentation

we would need a side-condition.

I think the point has been made. Should the reader become confused in the

more complex proofs to follow about newness, he or she is referred to the above

as a prototypical example of ‘the genre’.

Remark 23.1.13 (Exciting). Having said this, case New in T23.1.14 below is

significantly more sophisticated than anything we have seen until now. There we

need to choose x fresh in fresh x in t ′ twice. We use (23)41 the first time to choose

any fresh x , and use (21)41 the second time to choose the same x , observing that

it is fresh for the context in which it is declared new the second time. See below.79

3

79This is rather exciting, which is quite remarkable considering how boring syntax usually is.

FM gives us something that even nonrigorous ZF does not: even if we are comfortable choosing

‘new’ variables in ZF and never mind about the rigour, there is no mechanism for deciding

whether another variable we choose ‘new’ can safely be assumed equal to the old new variable.

What allows us to do this in FM is simply that Nis a quantifier with a well-defined syntactic

scope, which we can easily observe if we write our propositions carefully. Furthermore, this scope

distributes over conjunction (C9.4.5) so we can turn two new variables into one new variable

where appropriate.

In fact we have seen this all before in Isabelle/FM. See §16.7 and in particular R16.7.1.

The ability to assume two new variables equal was used time and time again in Isabelle/FM in

situations just like T23.1.14.

174 23.1.14 23. Apartness judgements

We need the following result for T25.6 (soundness of apartness wrt evaluation),

L24.1.8 (typing substitution property) and also C24.1.9 (overall substitution prop-

erty of typing/apartness judgements).

Theorem 23.1.14 (Apartness Substitution Property). For V a possibly

open value and t a possibly open term, if

Γ′
#, z#zc ⊢ t#yc and Γ′

⊢ V #zc

then Γ′
#[V /z] ⊢ t [V /z]#yc[V /z].

Proof. By induction on apartness judgements Γ# ⊢ t#yc using the hypoth-

esis

(115) ∀Γ′
#, yc, zc.

(

Γ# ⊢ t#yc ∧ Γ# = (Γ′
#, z#zc) ∧ Γ′

⊢ V #zc
)

=⇒

Γ′
#[V /z] ⊢ t [V /z]#yc[V /z].

1 • Consider the case (96)169. Suppose t = xc.W and suppose we have

Γ#, Γ′
#, yc, zc such that

Γ# ⊢ t#yc ∧ Γ# = (Γ′
#, z#zc) ∧ Γ′

⊢ V #zc.

Because Γ# ⊢ t#yc holds it must be the case that

Γ# ⊢ W #yc and yc 6= xc.

By induction hypothesis we have

Γ′
#[V /z] ⊢ W [V /z]#yc[V /z].

If it happens that yc = z and V = xc then we can deduce

Γ′
#[V /z] ⊢ xc[V /z].W [V /z]#yc[V /z]

by (97)169. Otherwise we can use (96)169.

2 • Consider the case (99)169. Suppose we have Γ#, Γ′
#, yc, zc such that

Γ# ⊢ t#yc ∧ Γ# = (Γ′
#, z#zc) ∧ Γ′

⊢ V #zc.

We want to show

Γ′
#[V /z] ⊢ t [V /z]#yc[V /z].

Choose x fresh such that t = fresh x in t ′. This means, by the existential

form of N(23)41 that we may assume x is apart from every variable in the current

context, which includes Γ#, Γ′
#, z , yc and zc, and we do so. Because x is fresh,

(fresh x in t ′)[V /z] = fresh x in t ′[V /z], so this equation really means

Γ′
#[V /z] ⊢ fresh x in t ′[V /z]#yc[V /z].

23.1. Definition §23.1 175

To prove this it suffices to show

(Γ′
#[V /z])#x ⊢ t ′[V /z]#yc[V /z] and x 6= yc[V /z].

The second part is easy because x is fresh. We now prove the first part.

Since Γ# ⊢ t#yc we can resolve with (Real (99))173 using the universal form of

N(21)41. This tells us that for some x ′#Γ#, t , yc,

Γ##x ′ ⊢ t ′#yc.

We choose x ′ equal to the previous x .80 Γ##x (N23.1.8) is well-formed be-

cause x#Γ#, and furthermore x#Γ′
#, zc. So x occurs in them nowhere (L23.1.9,

C13.2.1 and L9.3.6) and

Γ##x = (Γ′
#, z#zc)#x = (Γ′

##x), z#(zc ∪ {x}).

We quantified over the zc in the induction hypothesis (115)174 so we immediately

have that

(Γ′
##x)[V /z] ⊢ t ′[V /z]#yc[V /z].

Now since x is apart from V and z ,

Γ′
#[V /z]#x = (Γ′

##x)[V /z] ⊆ (Γ′
##x , z#x)[V /z]

and we have

Γ′
#[V /z] ⊢ t [V /z]#yc[V /z]

as required.

3 • Consider the case (102)170. Suppose we have Γ#, Γ′
#, yc, zc such that

Γ# ⊢ t#yc ∧ Γ# = (Γ′
#, z#zc) ∧ Γ′

⊢ V #zc.

and suppose t = (let x = t1 in t2) for x fresh (so apart from Γ′
#, zc, z , t1 etc,

but not t2 because t is really Let(t1, t2∗). We want to show

Γ′
#[V /z] ⊢ t [V /z]#yc[V /z].

First of all, because x is chosen fresh and x#t1,V ,

(let x = t1 in t2)[V /z] = (let x = t1[V /z] in t2[V /z])

so this equation really means

Γ′
#[V /z] ⊢ let x = t1[V /z] in t2[V /z]#yc[V /z].

To show this it would suffice to prove for some xc that

Γ′
#[V /z] ⊢ t1[V /z]#xc[V /z] and (Γ′

#, x#xc)[V /z] ⊢ t2[V /z]#yc[V /z].

80See R23.1.13.

176 §23.2 23. Apartness judgements

Since Γ# ⊢ t#yc it must be the case that for some xc,

Γ# ⊢ t1#xc and Γ#, x#xc ⊢ t2#yc.

This first fact is a conjunction of judgements over all xc ∈ xc (N23.1.8) and

because we quantified over the yc in our inductive hypothesis (115)174, we have

(115)174 for each. We can deduce

Γ′
#[V /z] ⊢ t1[V /z]#xc[V /z].

Recall that know Γ#, x#xc ⊢ t2#yc—the comma is legal because x#Γ# (see

N23.1.8 and C23.1.10). We can rewrite this:

Γ#, x#xc = (Γ′
#, x#xc), z#zc.

We therefore have the inductive hypothesis for this too, so we can deduce

Γ′
#[V /z], x#xc[V /z] ⊢ t2[V /z]#yc[V /z].

As we observed above, this is enough to deduce

Γ′
#[V /z] ⊢ t [V /z]#yc[V /z],

as required.

The other cases are longer or shorter, but they do not involve any new ideas.

23.2. Discussion. Perhaps we should briefly run through these rules. We

have not yet developed typing contexts (§24) so we tend to consider closed

terms.

1 • Atom Constants. Obvious. Denotational justification L9.3.6.

But incidentally, why did we allow constants c ∈ AtmC in the language,

seeing as they were so deliberately excluded from the language of FM? It was

convenient to do so and did not compromise the design aims of FreshML (see

§30.1 and R21.8).

2 • Variables. Note that x#y ⊢ y#x does not hold. Continuing R23.1.5 note that

we can never deduce

Γ# ⊢ x#x .

The only rule that resolves against this is (87)169 and this has the side condition

(x , x) ∈ Γ#—but apartness contexts satisfy (x , x) 6∈ Γ# (see D23.1.3). x#x is

nonsense denotationally81, so as in any logical system if we allow ⊥ into our

81Indeed, for all atoms a ∈ A Supp(a) = {a} (L9.3.6).

23.2. Discussion §23.2 177

context we can anticipate trouble.82 We see this manifest itself in the technical

details of typing (FALSE BV)166, which are dissected in a discussion culminating

in (145)185.

3 • Booleans. a#True for all a is equivariance (N9.2.8).

4 • Natural Numbers. Similar to Bool. The case-destructor deserves some comment.

Note from Item 5 of N23.1.8 that Γ#, x#zc makes sense when (x , zc) 6∈ Γ# for

any zc. Yet the rule itself has no side-condition to guarantee it. But this is

automatic; being a bound variable symbol in a conclusion of an inductive rule,

by R12.3.2 it must be chosen fresh for Γ#,V , t0, x .tf , xc and everything else in

the context at the moment of choice. In other words, it is a ‘new’ variable and

only because of FM may we be quite confident it does not matter which ‘new’

variable we choose.

The remaining issue is whether (Γ#)#x in FM implies the necessary side-

condition. It does, we use C23.1.10.

5 • Function Types. This is less obvious. f #a for f a function is not decidable, so we

do not even try to capture the behaviour of FM apartness. The side-condition

of (94)169 merely asserts “Γ# ⊢ f #xc when we can be completely and utterly

certain that this is the case”.

Thinking in sets for a moment, note that a ∈ Supp(f) for f = λx .a.x even

though for all x , a#f (x). Apartness rules based on ‘extensional application

reducing to lower types’ would be false. In particular anything similar to this

version of (94)169 is wrong:

Γ#, f : τ → τ ′#xc, x : τ ′#xc ⊢ t#xc

Γ# ⊢ fix f (x : τ ′) in t#xc
.(FALSE)

We pay a certain price for our uncouthness. For example, we cannot prove

⊢ fix f (x : U) in Fst((0, a))#a(116)

even though the atom a is clearly thrown away. More significantly, because the

rule for application is equally crude, we cannot deduce

⊢ (fix f (x : Λα) in 0) a#a.(117)

This means for example that for some ‘pretty printing’ function f taking closed

terms in Λα to de Bruijn terms expressed as elements of (Nat)List, we shall

82In particular, results about apartness judgements which state that we can’t prove something

will need conditions to exclude nonsense contexts.

178 §24.1 24. Typing Judgements

never be able to deduce

⊢ f (t)#a

even though f (t) is a list of natural numbers and therefore has a necessarily

equivariant denotation.83 We could extend the language with a rule stating that

all terms of type Nat are apart from all xc of type Atm, but this brings problems

of its own—we have no typing system yet, and if we can extend the language

once, we can extend it again with exceptions which may allow calculations of

type Nat to have nontrivial support (see [66, §8]). These issues are all further

research (§35).

6 • Abstraction Types. Direct from L9.3.4 for (96)169 and L9.5.6 for (97)169.

7 • Atom-Binding. Γ##x means “if x is new for the context Γ# . . . ”. t#x means

“ . . . and synthetically bound in the term t . . . ”. The conclusion means “ . . .

then we can abstract over all new x”.

8 • The other rules. I hope fairly intuitive.

24. Typing Judgements

24.1. Definition. Typing judgements occur in a typing context Γ =

(Γtyp, Γ#). As usual Γtyp is a finite partial function from term variables x ∈ Var

to types τ . We call this the pure typing part of the typing context. Γ# is an

apartness context (D23.1.3), which we shall call the apartness part of the typing

context.

Γ# must satisfy the condition that for all (xc, yc) ∈ Γ#,

(xc, yc) ∈ (Dom(Γtyp) ∪ AtmC)2.

Recall from R23.1.4 that the intended meaning of (xc, yc) ∈ Γ# is [[xc]]#[[yc]]

(N9.2.4).

Typing contexts will be written in list form

(x : τ, . . . , xc#yc, . . . , x : τ)

where x : τ indicates that (x , τ) ∈ Γtyp and xc#yc indicates that (xc, yc) ∈ Γ#.

Definition 24.1.1. Typing judgements are 3-tuples (Γ, t , τ) where Γ is a typ-

ing context, t is a term, and τ is a type. We shall write them

Γ ⊢ t : τ .

83Thanks to Simon Peyton-Jones, ([61]) for raising this ‘pretty-printing’ function question

during a conversation.

24.1. Definition 24.1.2 179

They are inductively defined according to the rules in Fig.34180 and Fig.35181 using

the notation of N24.1.2.

Notation 24.1.2 (Typing judgement shorthand). We use the following

shorthand notations Fig.34180 and Fig.35181 and the subsequent development:

1. We write

Γ ⊢ t : τ#xc for Γ ⊢ t : τ ∧ Γ# ⊢ t#xc

and Γ ⊢ t : τ#xc for Γ ⊢ t : τ ∧ Γ# ⊢ t#xc.

(Cf. Point 2 of N23.1.8.)

2. We write

Γ ∪ x#xc for ((Γtyp , (Γ# ∪ x#xc)).

(Cf. Point 4 of N23.1.8.)

3. We write

Γ, x : τ#xc for ((Γtyp ∪ {x 7→ τ}) , (Γ#, x#xc))

on the condition that x 6∈ Dom(Γtyp). (Cf. Point 5 of N23.1.8.)

4. We write

Γ#x : Atm for ((Γtyp ∪ {x 7→ Atm}) , (Γ##x)).

(Cf. Point 9 of N23.1.8).

Notation 24.1.3 (Typeability). We say a term (or value) t is typeable in

an environment Γ if there is a τ such that

Γ ⊢ t : τ .

We write CTermsτ for the set of closed terms typeable as τ . Similarly for

CValτ .

Here is a thoroughly routine lemma (but it is useful):

Lemma 24.1.4 (Typing of Values). For U a value and Γ a context then

1. Γ ⊢ U : Atm iff U = c ∈ AtmC.

2. Γ ⊢ U : Bool iff U = True or U = False.

3. Γ ⊢ U : Nat iff U = 0 or U = Succ(. . . (0)).

4. Γ ⊢ U : τ → τ ′ iff U = fix f (x : τ) in t for Γ, f : τ → τ ′, x : τ ⊢ t : τ ′.

5. Γ ⊢ U : τ × τ ′ iff U = (U1,U2) such that Γ ⊢ U1 : τ1 and Γ ⊢ U2 : τ2.

6. Γ ⊢ U : (τ)List iff U = Nilτ or U = Uhd ::Utl such that Γ ⊢ Uhd : τ and

Γ ⊢ Utl : (τ)List.

7. Γ ⊢ U : [Atm]τ iff U = a.U ′ for Γ ⊢ U ′ : τ .

8. Γ ⊢ U : Λα iff . . . Var,App . . . or U = Lam(U ′) for Γ ⊢ U ′ : [Atm]Λα.

180 §24.1 24. Typing Judgements

Γ ⊢ c : Atm (c ∈ AtmC) Atom Constants(118)

Γ ⊢ x : τ (Γtyp(x) = τ) Variables(119)

Γ ⊢ True : Bool Bool(120)

Γ ⊢ False : Bool(121)

Γ ⊢ V : Bool Γ ⊢ t1 : τ Γ ⊢ t2 : τ

Γ ⊢ ifV then t1 else t2 : τ
(122)

Γ ⊢ 0 : Nat Nat(123)

Γ ⊢ V : Nat

Γ ⊢ Succ(V) : Nat
(124)

Γ ⊢ V : Nat Γ ⊢ t0 : τ Γ, x : Nat#xc ⊢ tf : τ

Γ ⊢ CaseV of {0⇒ t0, Succ(x)⇒ tf } : τ
(125)

Γ, f : τ ′ → τ, x : τ ′ ⊢ t : τ

Γ ⊢ fix f (x : τ ′) in t : τ ′ → τ
Function Types(126)

Γ ⊢ V2 : τ ′ Γ ⊢ V1 : τ ′ → τ

Γ ⊢ V1 V2 : τ
(127)

Γ ⊢ xc : Atm Γ ⊢ V : τ

Γ ⊢ xc.V : [Atm]τ
Abstraction Types(128)

Γ ⊢ V : [Atm]τ#xc Γ ⊢ xc : Atm

Γ ⊢ V @xc : τ
(129)

Γ#x : Atm ⊢ t : τ#x

Γ ⊢ fresh x in t : τ
Atom-Binding(130)

Γ ⊢ xc : Atm Γ ⊢ yc : Atm

Γ ⊢ V3 : τ Γ ∪ xc#yc ⊢ V4 : τ

Γ ⊢ if xc = yc then V3 else V4 : τ

xc 6= yc Atom-Destructor(131)

Γ ⊢ xc : Atm Γ ⊢ V3 : τ Γ ⊢ V4 : τ

Γ ⊢ if xc = xc then V3 else V4 : τ
(132)

Figure 34. D24.1.1 - Typing 1

24.1. Definition §24.1 181

Γ ⊢ t1 : τ#xc Γ, x : τ#xc ⊢ t2 : σ

Γ ⊢ let x = t1 in t2 : σ
Sequential Computation(133)

Γ ⊢ V : τ Γ ⊢ V ′ : τ ′

Γ ⊢ (V ,V ′) : τ × τ ′
Product Types(134)

Γ ⊢ V : τ × τ ′

Γ ⊢ Fst(V) : τ
(135)

Γ ⊢ V : τ × τ ′

Γ ⊢ Snd(V) : τ ′
(136)

Γ ⊢ Nilτ : τ Lists(137)

Γ ⊢ V1 : τ Γ ⊢ V2 : (τ)List

Γ ⊢ V1::V2 : (τ)List
(138)

Γ ⊢ V : (τ)List#xa Γ ⊢ tnil : σ

Γ, x : τ#xa, y : (τ)List#xa ⊢ tcons : σ

Γ ⊢ CaseV of {Nilτ ⇒ tnil , x ::y⇒ tcons} : (τ)List

(139)

Γ ⊢ V : Atm

Γ ⊢ Var(V) : Λα

λ-terms(140)

Γ ⊢ V : Λα × Λα

Γ ⊢ App(V) : Λα

(141)

Γ ⊢ V : [Atm]Λα

Γ ⊢ Lam(V) : Λα

(142)

Γ ⊢ V : Λα#xc Γ, x : Atm#xc ⊢ tV : τ

Γ, x : Λα × Λα#xc ⊢ tA : τ Γ, x : [Atm]Λα#xc ⊢ VL : τ

Γ ⊢ CaseV of {Var(x)⇒ tV , App(x)⇒ tA, Lam(x)⇒ tL} : τ

(143)

Figure 35. D24.1.1 - Typing 2

Proof. The right to left implication is in every case trivial by the typing

rules.

The left to right implication follows by induction on the typing relation with

induction hypotheses precisely equal to the implication. We prove the cases one at

a time in sequence, since we need the case of [Atm]τ and τ × τ ′ to handle Λα.

182 24.1.5 24. Typing Judgements

The following lemma does for typing what C23.1.10 did for Γ# and L12.4.2

before it did for Γ in FMLtiny.

Lemma 24.1.5. If Γ = (Γtyp, Γ#) is an ordered pair of finite relations then

a#Γ if and only if a#x , y for all (x , y) ∈ Γtyp and all (x , y) ∈ Γ#.

Proof. From L23.1.9 using L9.3.5 for pair-set to reduce a#(Γtyp, Γ#) to

a#Γtyp. and a#Γ#.

We need L24.1.5 in the development to follow, but we saw this kind of thing twice

before in FMLtiny and §23 and I shall no longer necessarily make a meal of it.

Lemma 24.1.6 (Apartness context-consistency). For all Γ, t , τ and xc, if

Γ ⊢ t : τ and Γ# ⊢ t#xc

then xc ∈ Dom(Γtyp) ∪AtmC.

Proof. By induction on Γ# ⊢ t#xc using the hypothesis

∀Γ′, τ.
(
Γ# = Γ′

∧ Γ′ ⊢ t : τ#xc
)

=⇒ xc ∈ Dom(Γtyp) ∪ AtmC.

Theorem 24.1.7 (Type Uniqueness). For Γ, t and τ such that Γ ⊢ t : τ ,

∀τ ′. Γ ⊢ t : τ ′ =⇒ τ ′ = τ.

Proof. By induction on Γ ⊢ t : τ using the hypothesis

Γ ⊢ t : τ =⇒ ∀τ ′. Γ ⊢ t : τ ′ =⇒ τ ′ = τ.

The design choices that ensure this theorem holds are that Nilτ is labelled with

a type, as are values of function-type fix f (x : τ) in t . It would be more friendly

for the user not to have to supply these type annotations, but harder on whoever

is reading this proof, because non-uniqueness of typing makes it slightly more

complex. For a simple example see R26.4.2.

Lemma 24.1.8 (Substitution in typing judgements). For t a term and V a

value such that

Γ, z : τ#zc ⊢ t : σ and Γ ⊢ V : τ#zc

it is the case that

Γ[V /z] ⊢ t [V /z] : σ.

24.1. Definition §24.1 183

Proof. By induction on typing judgements Γ ⊢ t : σ using the hypothesis

(144) ∀Γ′, τ.
(

Γ ⊢ t : σ ∧ Γ = (Γ′, z#zc) ∧ Γ′ ⊢ V : τ#zc
)

=⇒

Γ′[V /z] ⊢ t [V /z] : σ.

Consider the case (128)180. Suppose t = xc.W and suppose we have Γ, Γ′

such that

Γ ⊢ t : σ ∧ Γ = (Γ′, z#zc) ∧ Γ′ ⊢ V : τ#zc.

Because Γ ⊢ t : σ holds it must be the case that for some type σ′,

σ = [A]σ′, Γ ⊢ W : σ′ and Γ ⊢ xc : Atm.

By induction hypothesis we have

Γ′[V /z] ⊢ W [V /z] : σ′ and Γ′[V /z] ⊢ xc[V /z] : Atm.

We can then deduce

Γ′[V /z] ⊢ xc[V /z].W [V /z] : [Atm]σ′,

by (128)180 as required.

Consider the case (129)180. Suppose t = W @xc and suppose we have Γ, Γ′

such that

Γ ⊢ t : σ ∧ Γ = (Γ′, z#zc) ∧ Γ′ ⊢ V : τ#zc.

Because Γ ⊢ t : σ holds it must be the case that

Γ ⊢ W : [Atm]σ and Γ# ⊢ W #xc.

By inductive hypothesis and T23.1.14 we know

Γ′[V /z] ⊢ W [V /z] : [Atm]σ and Γ′
#[V /z] ⊢ W [V /z]#xc[V /z].

It follows that

Γ′[V /z] ⊢ t [V /z] : σ,

as required.

Consider the case (133)181. Suppose we have Γ, Γ′ such that

Γ ⊢ t : σ ∧ Γ = (Γ′, z#zc) ∧ Γ′ ⊢ V #τzc.

We want to show

Γ′[V /z] ⊢ t [V /z] : σ.

184 24.1.9 24. Typing Judgements

Now choose fresh x apart from Γ′, zc, z , . . . , with t = let x = t1 in t2. Then

(let x = t1 in t2)[V /z] = (let x = t1[V /z] in t2[V /z]) so this equation really

means

Γ′[V /z] ⊢ let x = t1[V /z] in t2[V /z] : σ.

To show this it would suffice to prove for some xc and τ ′ that

Γ′[V /z] ⊢ t1[V /z] : τ ′#xc[V /z] and (Γ′, x : τ ′#xc)[V /z] ⊢ t2[V /z] : σ.

Since Γ ⊢ t : σ it must be the case that for some τ ′, xc,

Γ ⊢ t1 : τ ′#xc and Γ, x : τ ′#xc ⊢ t2 : σ.

This first fact is a conjunction of judgements over all xc ∈ xc (N23.1.8) and we

have the inductive hypothesis (144)183 for each. We can deduce

Γ′[V /z] ⊢ t1[V /z] : τ ′#xc[V /z].

We also know Γ, x : τ ′#xc ⊢ t2 : σ′. We have the inductive hypothesis for this

too,84 so we can deduce

Γ′[V /z], x : τ ′#xc[V /z] ⊢ t2[V /z] : σ.

As we observed above, this is enough to deduce

Γ′[V /z] ⊢ t [V /z] : σ,

as required.

Corollary 24.1.9. For t a term and V a value such that

Γ, z : τ#zc ⊢ t : σ#yc and Γ ⊢ V : τ#zc

it is the case that

Γ[V /z] ⊢ t [V /z] : σ#yc[V /z].

Proof. We combine T23.1.14 (substitution for apartness judgements) and

L24.1.8 (substitution for pure typing judgements).

84Using the fact that

(Γ′, x : τ ′#xc), z#zc = Γ, x#xc.

The issue is as in T23.1.14 the commas separating the parts of these contexts, which have a

particular meaning (N23.1.8). x was chosen fresh for all variables in the context at the time of

its declaration, which included Γ′

#, z , and zc, so by C23.1.10 and C13.2.1 this equality works.

24.2. Discussion §24.2 185

24.2. Discussion. Now that we have typing judgements we can type the

example programs of §22.2. Going through them on paper would take far too

much space. Let us briefly consider (Bij1)165:

t = fix f (x : [Atm](τ × τ ′)) in fresh u in (u.Fst(x@u), u.Snd(x@u))

We wish to type this as a closed term:

⊢ t : [Atm](τ × τ ′) → [Atm]τ × [Atm]τ ′

so we resolve against (126)180 to strip the function-abstraction and obtain

f : [Atm](τ × τ ′) → [Atm]τ × [Atm]τ ′, x : [Atm](τ × τ ′) ⊢

fresh u in (u.Fst(x@u), u.Snd(x@u)) : [Atm]τ × [Atm]τ ′

We resolve against (130)180 and obtain the following proof-obligation:

f : [Atm](τ × τ ′) → [Atm]τ × [Atm]τ ′#u, x : [Atm](τ × τ ′)#u, u : Atm ⊢

(u.Fst(x@u), u.Snd(x@u)) : [Atm]τ × [Atm]τ ′#u.

This is shorthand for two obligations (see N24.1.2), a pure type judgement and a

pure apartness judgement. I leave it to the reader to work through the rest of the

details, they are not difficult.

More interesting are the FreshML terms which do not type, since it is they

who cause all the trouble with “how do we know it does not matter which new

name we pick” in näıve ZF-like theories of binding. Consider (FALSE BV)166:

fix f (x∗ : [Atm]τ) in fresh u in x∗@u

We try to type it just as above and eventually reach the following obligation:

Γ =
(

f : [Atm]τ → τ#u, x∗ : [Atm]τ#u, u : Atm
)

⊢ x∗@u : τ#u.

The problem is the apartness judgement, which we now separate out:

Γ ⊢ x∗@u#u.

The only rule we can resolve with this is (98)169, which gives us the obligations

Γ ⊢ x∗#u and Γ ⊢ u#u.(145)

We can discharge the first with (87)169 since (x∗, u) ∈ Γ#. We can never discharge

the second, see Item 2 on p.176.

The other ‘false’ programs fail to type for the same reasons, and this is good.

However, sometimes the logic of apartness judgements is less powerful than we

might like. For example (116)177 fails to type because (104)170 is too crude and

does not break V into (V1,V2) even though it could. But we were asking for

186 §25 25. Evaluation

trouble writing such a silly program. (117)177 is more serious. It fails to type

because we have no way of expression in the type system that “f is such that no

matter what the support of the argument x , f (x) has no support”. For similar

reasons, considering (Subst(t , y))166, we cannot deduce

t : Λα#u, s : Λα, u : A ⊢ Subst(t , u)(s)#u.(FALSE)

In conclusion, apartness judgements are not too bad on datatypes but hopeless on

functions. Cf. §30.3.

Since the typing system has this weakness at higher orders, should we worry

that the Sanity Clause T21.9 is not significant for future more sophisticated lan-

guages where better behaviour at higher-orders strengthens contextual equiva-

lence? Actually, not necessarily. In contextual equivalence we quantify over all

possible contexts C [−]. So if C [−] contains function applications such that C [t]

refuses to type, a Kleene-equivalent form C ′[−] without the applications may well

still do so. Of course FreshML is no good for programming, but we knew that

already.

On the other hand, perhaps things are not that bad for programming either.

Perhaps in FreshML a slightly different method of programming is more appro-

priate. Perhaps, instead of passing the atom name to Subst ‘naked’, we should

bind it in the argument instead. What does this mean? Consider the following:

(Subst′(t)) fix f (x : [Atm]Λα) in fresh v in Case x of






Var(u)⇒if u = y then t else v .Var(u),

App(s)⇒v .App(f (Fst(s)), f (Snd(s))),

Lam(s∗)⇒fresh u in v .Lam(u.f (s∗@u))







Even in our weak typing system, we can deduce

t : Λα#u, s : Λα, u : Atm ⊢ Subst(t)(u.s)#u.(VALID)

But this is an unfinished story which I cannot tell here.

From now on we will show fewer examples and concentrate on developing the

operational theory of the language, culminating in the Sanity Clause in §29.

25. Evaluation

Definition 25.1. An evaluation judgement is a pair

(t ,V) ∈ CTerms×CVal

of a typeable closed term and a typeable closed value. We write it

t ⇓ V ,

25. Evaluation 25.2 187

and define a big-step style reduction relation inductively as shown in Fig.36188.

Notation 25.2. We use the standard abbreviation

(let x = s in (let x ′ = s ′ in t)) = (let x = s, x ′ = s ′ in t)

for nested let-expressions, for example in (147)188.

Remark 25.3 (Evaluation nondeterminism). The rule (163)188 introduces a

nondeterminism into the evaluation relation since any c not occurring textually

in t may be chosen. This nondeterminism is not severe but is also not trivial to

characterise. We shall try to because as it turns out there is no need. 3

However, the following at least is true:

Lemma 25.4 (Evaluation on values). For all values V and V ′,

V ⇓ V and (V ⇓ V ′ =⇒ V = V ′).

Proof. Evident from Fig.36188.

Let us just explore these rules a little.

Remark 25.5 (Use of Let). We use let x = V in t to carry out substitu-

tions ‘within the syntax of the language’ rather than the ‘meta-level’ alternative

t [V /x]. This is nonstandard. For example, the standard presentation of the rule

for applications would be

t [fix f (x : τ) in t/f ,U /x] ⇓ V

(fix f (x : τ) in t)U ⇓ V
.

Now this is written in nameful style (R4.14) which as discussed in R12.6.5 really

means

Nf , x . ∀t .
t [fix f (x : τ) in t/f ,U /x] ⇓ V

(fix f (x : τ) in t)U ⇓ V
or equivalently (@@, D12.6.2)

(t∗∗@@Fix(τ, t∗∗))@@U ⇓ V

Fix(τ, t∗∗) ⇓ V
.

However, I have chosen to use the equivalent rule

let x = U , f = fix f (x : τ) in t in t ⇓ V

(fix f (x : τ) in t)U ⇓ V
,

188 §25 25. Evaluation

V ⇓ V V ∈ Val Values(146)

let x = U , f = fix f (x : τ) in t in t ⇓ V

(fix f (x : τ) in t)U ⇓ V
Functions(147)

t1 ⇓ V1 t2[V1/x] ⇓ V

let x = t1 in t2 ⇓ V
Sequential Calculation(148)

Fst(V1,V2) ⇓ V1 Products(149)

Snd(V1,V2) ⇓ V2(150)

t ⇓ V

Case Nilτ of {Nilτ ⇒ t , x ::y⇒ t ′} ⇓ V
Lists(151)

let x = U , x ′ = U ′ in t ′ ⇓ V

CaseU ::U ′ of {Nilτ ⇒ t , x ::x ′⇒ t ′} ⇓ V
(152)

t ⇓ V

Case 0 of {0⇒ t , Succ(x)⇒ t ′} ⇓ V
Nat(153)

let x = U in t ′ ⇓ V

Case Succ(U) of {0⇒ t , Succ(x)⇒ t ′} ⇓ V
(154)

let x = U in t ⇓ V

Case Var(U) of {Var(x)⇒ t , App(x)⇒ t ′, Lam(x)⇒ t ′′} ⇓ V
Λα(155)

let x = U in t ′ ⇓ V

Case App(U) of {Var(x)⇒ t , App(x)⇒ t ′, Lam(x)⇒ t ′′} ⇓ V
(156)

let x = U in t ′′ ⇓ V

Case Lam(U) of {Var(x)⇒ t , App(x)⇒ t ′, Lam(x)⇒ t ′′} ⇓ V
(157)

t1 ⇓ V

if a = a then t1 else t2 ⇓ V
Atom-Destructor(158)

t2 ⇓ V

if a = b then t1 else t2 ⇓ V
(a 6= b)(159)

t1 ⇓ V

if True then t1 else t2 ⇓ V
Bool(160)

t2 ⇓ V

if False then t1 else t2 ⇓ V
(161)

V ′ = (b a)·V

(a.V)@b ⇓ V ′
(a.V #b) Abstraction Types(162)

Nc ∈ AtmC.
t [c/x] ⇓ V

fresh x in t ⇓ V
(x : Atm ⊢ t#x) Atom-Binding(163)

(b a)·t the transposition action swapping b and a in t (R22.1.5).

Figure 36. D25.1 - Evaluation

25. Evaluation 25.6 189

which is really

Nf , x . ∀t .
let x = U , f = fix f (x : τ) in t in t ⇓ V

(fix f (x : τ) in t)U ⇓ V
or

(Let(U , Let(Fix(τ, t∗∗), t∗∗)) ⇓ V

Fix(τ, t∗∗) ⇓ V
.

This leaves the question of why I use the nonstandard formulation using Let

instead of @@. My instinct is that if this proof were implemented in a theorem-

proving environment (§31), the form I select would be easier to work with. Cf.

also R19.2.4.

The reader is also invited to compare the phrasings of (148)188 and (75)97 in

the light of R12.6.5 (the two rules correspond in the sense that they are where I

have concentrated β-reduction). 3

Theorem 25.6 (Apartness Soundness wrt Evaluation). For t a closed term

and V a closed value, if

t ⇓ V and Γ# ⊢ t#yc

then

Γ# ⊢ V #yc.

Proof. By induction on the evaluation relation with inductive hypothesis

t ⇓ V =⇒ ∀Γ#, yc. Γ# ⊢ t#yc =⇒ Γ# ⊢ V #yc.

We consider only one case, (148)188.

Suppose t ⇓ V . Suppose we have Γ#, yc such that

Γ# ⊢ t#yc.

Now we choose a fresh x such that t = let x = t1 in t2. ‘Fresh’ means x is apart

from all variables in the current context which includes Γ#, t1,V and yc.

There must exist V1 such that

t1 ⇓ V1 and t2[V1/x] ⇓ V .

Then it must be the case that there is some xc such that

Γ# ⊢ t1#xc and Γ#, x#xc ⊢ t2#yc

We have the inductive hypothesis for each judgement Γ# ⊢ t1#xc for xc ∈ xc so

from this first fact follows

Γ# ⊢ V1#xc.

190 25.7 26. Bisimulation and Contextual Equivalence

We can also apply T23.1.14 to the second fact and deduce

Γ#[V /x] ⊢ t2[V /x]#yc[V /x].

However, x was chosen apart from Γ# and yc so it does not appear in Γ# (L23.1.9)

and is not equal to yc (L9.3.6) so this is just

Γ# ⊢ t2[V /x]#yc.

We can now apply the inductive hypothesis again to deduce

Γ# ⊢ V #yc,

as required.

Theorem 25.7 (Type Soundness wrt Evaluation). For t ∈ CTerms a

closed term and V ∈ CVal a closed value, if

t ⇓ V and Γ ⊢ t : σ

then

Γ ⊢ V : σ.

Proof. By induction on t ⇓ V using inductive hypothesis

t ⇓ V =⇒ ∀Γ, τ. Γ ⊢ t : τ =⇒ Γ ⊢ V : τ .

We need C24.1.9 for cases like t = let x = t1 in t2 where variables are added to

the context by the corresponding typing rules ((148)188, (163)188, and similar).

26. Bisimulation and Contextual Equivalence

26.1. Basic Definitions.

Definition 26.1.1 (Γ-Closures). Consider a context Γ as a list:

Γ = (Γtyp, Γ#) for Γtyp = (x1, σ1), . . . , (xn , σn).

We write σ(xc) for σi if xc = xi ∈ Dom(Γtyp) and Atm if xc = c ∈ AtmC. We

equate functions Dom(Γtyp) → CVal with lists of closed variables of length n.

Then we say V = (V1, . . . ,Vm) is a Γ-closure when m = n, and for 1 ≤ i ≤

n,

∅ ⊢ Vi : σi ,

and for each (x , yc) ∈ Γ#

∅ ⊢ xV#ycV and ∅ ⊢ xV : σ(xc).

Write the set of Γ-closures as

Closures(Γ).

26.1. Basic Definitions 26.1.2 191

If Γ ⊢ t : τ and V ∈ Closures(Γ) we write tV for t [Vi/xi] and call this a

closure of t.

The intended meaning of V ∈ Closures(Γ) is

“The Vi are possible values of the xi in Γ. tV is therefore the closed

term obtained by instantiating the xi accordingly.”

Definition 26.1.2 (Type-respecting relation). Let R denote the set of type-

respecting relations

{
(s, t)

∣
∣ s, t ∈ Terms ∧ ∃Γ, τ ∈ Typ.

(
Γ ⊢ s : τ ∧ Γ ⊢ t : τ

)}
.

Given R ∈ R we write

R(Γ, τ)
def
=

{
(t , t ′) ∈ Terms×Terms

∣
∣ (t , t ′) ∈ R ∧ Γ ⊢ t , t ′ : τ

}
.

When (t , t ′) ∈ R(Γ, τ) we write

Γ ⊢ t R t ′ : τ .

When we wish to include the condition that Γ# ⊢ t , t ′#xc we write

Γ ⊢ t R t ′ : τ#xc.

We write Rcl for the subset of R of such relations on closed terms.

Remark 26.1.3 (Relations type-respecting). We introduce R so to conve-

niently talk about relations between terms-in-context of the same type. Since

only these relations interest us, all relations on terms-in-context are hence-

forth type-respecting. A corollary of this is that if Γ ⊢ t R t ′ : τ holds, it must

be the case that Γ ⊢ t , t ′ : τ . 3

Notation 26.1.4. Now T24.1.7 tells us that the typing of a term in a given

context is unique if it exists, so actually the τ in Γ ⊢ t R t ′ : τ is redundant. We

leave it in anyway, except in the case when Γ = ∅, i.e. the terms t , t ′ are known

to be closed. In that case we may abbreviate

Γ ⊢ t R t ′ : τ to t R t ′.

Lemma 26.1.5. Evaluation as a relation is in Rcl (D26.1.2).

Proof. Since both t and V are by assumption typeable (D25.1), this is direct

from T25.7.

So when we write t ⇓ V we may assume they have the same type.

192 26.1.6 26. Bisimulation and Contextual Equivalence

Definition 26.1.6 (Adequate relation). We call R ∈ R adequate85 when for

all Γ, t , t ′,V and τ ∈ {Nat, Bool}, if Γ ⊢ t R t ′ : τ and V is a Γ-closure (D26.1.1),

then for all values V

tV ⇓ V =⇒ t ′V ⇓ V .

Write Rad for this subset.

26.2. The Relation ⊳ctx.

Notation 26.2.1 (Congruence). A congruence is a relation on terms satis-

fying the rules of Fig.37193 (which are derived in a consistent way from the typing

rules of Fig.34180 and Fig.35181).

Definition 26.2.2 (Contextual Preorder). The contextual preorder, writ-

ten ⊳ctx, is defined coinductively as the largest adequate congruence (N26.2.1);

the largest element of Rad closed under the rules of Fig.37193. We write t ≡ctx t ′

when t ⊳ctx t ′ and t ′ ⊳ctx t.86

Remark 26.2.3 (Unusual Construction). Contextual equivalence is tradi-

tionally defined using ‘contexts’ with ‘typed holes’, C[−]. Call this the “context-

and-hole approach”, as opposed to the “adequate-congruence approach”

85This is standard terminology in the field though what I call ‘adequate’ is more usually

called ‘preadequate’. See for example [42, p41 §4.1] and [65, p8 Def2.2(iii)].
86In D26.2.2 it is not obvious that a largest R ∈ Rad closed under the rules of Fig.37193

exists. Suppose S ,T ∈ Rad are such. Is it the case that S ∪ T is closed under the rules? No.

Consider (170)193. It may be that

Γ ⊢ V2 S V ′

2 : τ ′ and Γ ⊢ V1 T V ′

1 : τ ′ → τ

but not

Γ ⊢ V2 T V ′

2 : τ ′ or Γ ⊢ V1 S V ′

1 : τ ′ → τ .

Thus S ∪ T is not necessarily closed under (170)193.

There is a ‘patch’ for this. Call the rules in Fig.37193 by the name Rules. We consider a

modified version Rules’. Where there are two troublesome conditions like in (170)193 in Rules,

Rules’ splits the rule in two:

Γ ⊢ V2 ⊳ctx V ′

2 : τ ′

Γ ⊢ V1 V2 ⊳ctx V1 V ′

2 : τ
and

Γ ⊢ V1 ⊳ctx V ′

1 : τ ′ → τ

Γ ⊢ V1 V2 ⊳ctx V ′

1 V2 : τ
.

There is clearly a largest set closed under Rules’, call it ⊳ctx-cl. A set closed under Rules is

closed under Rules’ so if we can show ⊳ctx-cl is closed under Rules as well, it must be the

largest such. It suffices to show that ⊳ctx-cl is transitive. This is easily done by showing that

the relation

{
(x , y)

∣
∣ ∃z . x ⊳ctx-cl z ∧ z ⊳ctx-cl y

}

is closed under Rules’. Lassen has this problem in [42] and addresses it in some generality in

[42, p.29, §3.7].

26.2. The Relation ⊳ctx §26.2 193

Γ ⊢ c ⊳ctx c : Atm Atom Constants(164)

Γ ⊢ x : τ

Γ ⊢ x ⊳ctx x : τ
Variables(165)

Γ ⊢ True ⊳ctx True : Bool Bool(166)

Γ ⊢ False ⊳ctx False : Bool(167)

Γ ⊢ V ⊳ctx V ′ : Bool Γ ⊢ t1 ⊳ctx t ′1 : τ Γ ⊢ t2 ⊳ctx t ′2 : τ

Γ ⊢ ifV then t1 else t2 ⊳ctx ifV then t1 else t2 : τ
(168)

. . . more rules according to the same pattern, omitted . . .

Γ, f : τ ′ → τ, x : τ ′ ⊢ t ⊳ctx t ′ : τ

Γ ⊢ fix f (x : τ ′) in t ⊳ctx fix f (x : τ ′) in t ′ : τ ′ → τ
Function Types(169)

Γ ⊢ V2 ⊳ctx V ′

2 : τ ′ Γ ⊢ V1 ⊳ctx V ′

1 : τ ′ → τ

Γ ⊢ V1 V2 ⊳ctx V ′

1 V ′

2 : τ
(170)

Γ ⊢ V ⊳ctx V ′ : τ Γ ⊢ xc : Atm

Γ ⊢ xc.V ⊳ctx xc.V ′ : [Atm]τ
Abstraction Types(171)

Γ ⊢ V ⊳ctx V ′ : [Atm]τ Γ ⊢ V ,V ′#xc

Γ ⊢ V @xc ⊳ctx V ′@xc : τ
(172)

Γ ⊢ V1 ⊳ctx V ′

1 : τ1 Γ ⊢ V2 ⊳ctx V ′

2 : τ2

Γ ⊢ (V1,V2) ⊳ctx (V ′

1,V
′

2) : τ1 × τ2

Product Types(173)

Γ ⊢ V ⊳ctx V ′ : τ1 × τ2

Γ ⊢ Fst(V) ⊳ctx Fst(V) : τ1

(174)

Γ ⊢ V ⊳ctx V ′ : τ1 × τ2

Γ ⊢ Snd(V) ⊳ctx Snd(V) : τ2

(175)

Γ#x : Atm ⊢ t ⊳ctx t ′ : τ Γ#x : Atm ⊢ t , t ′#x

Γ ⊢ fresh x in t ⊳ctx fresh x in t ′ : τ
Atom-Binding(176)

. . . more rules according to the same pattern, omitted . . .

Γ ⊢ V ⊳ctx V ′ : [Atm]Λα

Γ ⊢ Lam(V) ⊳ctx Lam(V ′) : Λα

λ-terms(177)

(178)
Γ ⊢ V ⊳ctx V ′ : Λα Γ ⊢ V ,V ′#xc

Γ, a : Atm#xc ⊢ tV ⊳ctx t ′V : τ

Γ, x : Λα × Λα#xc ⊢ tA ⊳ctx t ′A : τ

Γ, x : [Atm]Λα#xc ⊢ tL ⊳ctx t ′L : τ

Γ ⊢
CaseV of {Var(x)⇒ tV , App(x)⇒ tA, Lam(x)⇒ tL} ⊳ctx

CaseV ′ of {Var(x)⇒ t ′V , App(x)⇒ t ′A, Lam(x)⇒ t ′L}
: τ

Figure 37. D26.2.2 - Contextual Preorder ⊳ctx

194 26.2.4 26. Bisimulation and Contextual Equivalence

used in D26.2.2. The problem with contexts-and-holes is that they are usually

only informally defined; see [64, p.250-252, ‘PCFL Contexts’] (the paper on which

my overall method of proof is based) or [63, p.4 Def 2.1]. What do I mean? For

example, hardly anyone gives a complete grammar for forming contexts. If I

followed contexts-and-holes I would have to choose to either render it impossible

from the start to prove T21.9 with complete rigour by using a hand-wavy defini-

tion of contexts, or to give a proper grammar for them. The latter choice amounts

to the adequate-congruence approach I have followed, with one important philo-

sophical difference: adequate-congruences bring contextual equivalence in line

with the relations it is eventually proved equal to (C28.24)—a (co)inductively

defined relation on syntactic datatype.87 3

Lemma 26.2.4 (⊳ctx transitive and reflexive). ⊳ctx (D26.2.2) is transitive

and reflexive.

Proof. The method is standard. For reflexivity it suffices to show that

the identity relation is an adequate congruence. It is certainly a congruence

(Fig.37193), so we consult D26.1.6 and see it is adequate as well.

For transitivity we must apply the same argument to the set

{
(s, u) ∈ Terms × Terms

∣
∣ ∃t ∈ Terms. s ⊳ctx t ∧ t ⊳ctx u

}
.

Again, this is an adequate congruence.

We shall not pursue the contextual preorder immediately. Instead we shall

define a notion of bisimulation on terms-in-context, first between closed terms and

then extending to open terms by syntactic instantiation of free variable symbols

with closed values. Ultimately, we shall seek to prove that the bisimulation defined

below (⊳, D26.4.1) and the contextual preorder defined above (⊳ctx, D26.2.2)

coincide.

26.3. The Equivalence ≡se and the Relation ≤kl. We devote a short

subsection to ≡se and ≤kl. ≡se is a technical construction which will soon be

useful, specifically in T26.4.7 and T27.11. ≤kl is a standard relation which we

take the opportunity of this clearing in the mathematics to introduce.

87We see this trivially in L26.2.4. More seriously, the reader is referred to the proofs of

L28.19 and C28.24.

26.3. The Equivalence ≡se and the Relation ≤kl 26.3.2 195

Definition 26.3.1. Let ≡se be the least equivalence relation on closed values

of type Λα that is a congruence and satisfies the following rule:88

Nc.
((c a)·t ≡se (c a ′)·t ′

Lam(a.t) ≡se Lam(a ′.t ′)

)

a 6= a ′(179)

If two values V ,V ′ are such that V ≡se V ′ we say V and V ′ are synthetically

equivalent.

Lemma 26.3.2 (≡se equivalence relation). The relation ≡se of D26.3.1

above is an equivalence relation.

Proof. In C9.4.5 we proved that (Nx . Φ) ∧ (Nx . Ψ) ⇐⇒ Nx . (Φ ∧ Ψ), and

this suffices to establish the result.

Remark 26.3.3 (≡se morally =α). Actually, we proved back in T8.2.5 (be-

fore any of this theory) that ≡se coincides with α-equivalence on untyped λ-

terms, which itself coincides with equality in the denotation L (λ-terms up to

α-equivalence, D10.3.4) by the general nonsense of T10.5.8.

Why do we not simply write ≡se as =α? Because α-equivalence on terms of

FreshML is a completely different creature to do with FreshML variables, and

nothing to do with atoms in FM represented in the language by a ∈ AtmC (and

variables x : Atm). So we needed a new symbol for the concept. 3

Definition 26.3.4 (Kleene Ordering). We also define the Kleene ordering

on closed terms-in-context, written ≤kl as follows:

⊢ s ≤kl t : τ ⇐⇒ ⊢ s, t : τ ∧ ∀V ∈ Val.
(
⊢ V : τ ∧ s ⇓V

)
=⇒ t ⇓ V .

We write ⊢ s =kl t : τ when ⊢ s ≤kl t : τ and ⊢ t ≤kl s : τ .

Theorem 26.3.5. ≤kl is transitive and reflexive.

Proof. Easily from the definition D26.3.4.

26.4. The Relation ⊳.

Definition 26.4.1 (Bisimulation). We coinductively define a relation ⊳ on

closed terms-in-context as the greatest (post-)fixed point of the set-operator given

in Fig.38196.

Remark 26.4.2. Recall that ⊳∈ Rcl is a type-respecting relation on closed

terms-in-context (see D26.1.2), which means that judgements should be written

⊢ s ⊳ t : τ

88When doing induction on ≡se we would like backwards proof search to be linear. The side

condition a 6= a ′ keeps the rule disjoint from simple congruence.

196 26.4.3 26. Bisimulation and Contextual Equivalence

Φ: Rcl −→ Rcl

Φ(R)(s, t) ⇐⇒

∀c ∈ AtmC. s ⇓ c =⇒ t ⇓ c ∧

s ⇓ True =⇒ t ⇓ True ∧

s ⇓ False =⇒ t ⇓ False ∧

s ⇓ 0 =⇒ t ⇓ 0 ∧

s ⇓ Nilτ =⇒ t ⇓ Nilτ ∧

∀a, s ′. s ⇓ a.s ′ =⇒ ∃b, t ′. t ⇓ b.t ′∧ ∧

Nc. (c a)·s ′ R (c b)·t ′ ∧

∀x , s ′, τ. s ⇓ fix f (x : τ) in s ′ =⇒ ∃t ′. t ⇓ fix f (x : τ) in t ′∧

∀U ∈ CValτ . (fix f (x : τ) in s ′)UR ∧

(fix f (x : τ) in t ′)U ∧

∀U1,U2. s ⇓ (U1,U2) =⇒ ∃V1,V2. U1 R V1 ∧ U2 R V2 ∧ t ⇓ (V1,V2) ∧

∀U . s ⇓ Succ(U) =⇒ ∃V . U R V ∧ t ⇓ Succ(V) ∧

∀U . s ⇓ Uh ::Ut =⇒ ∃Vh ,Vt . Uh R Vh ∧ Ut R Vt ∧ t ⇓ Vh ::Vt ∧

∀U . s ⇓ Var(U) =⇒ ∃V . U R V ∧ t ⇓ Var(V) ∧

∀U . s ⇓ App(U) =⇒ ∃V . U R V ∧ t ⇓ App(V) ∧

∀U . s ⇓ Lam(U) =⇒ ∃V . U R V ∧ t ⇓ Lam(V) ∧

All values and terms closed.

Figure 38. D26.4.1 - Bisimulation ⊳

for appropriate τ . However, because of T24.1.7 (type uniqueness) we can deduce

τ from s or t , so we just write

s ⊳ t .

Bear in mind that we can deduce from the judgement s ⊳ t that s and t are closed

typeable terms of the same (unique) type. 3

Remark 26.4.3 (Significance of ⊳). ⊳ implements a notion of equivalence

on terms based on ‘reducing’ a term’s type (by evaluating it and attacking the

value’s structure in a manner appropriate to the type) until we can do so no

longer, and then observing the result. Then the coinductive definition expresses

the slogan

26.4. The Relation ⊳ 26.4.4 197

“s ⊳ t when any behaviour s can display, t can display.”

3

Lemma 26.4.4 (⊳ equivariant). ⊳ is equivariant:

s ⊳ t ⇐⇒ (b a)·s ⊳ (b a)·t .

Proof. To prove this we jump all the way back to Chapter II and L8.1.12. In

the terminology of that lemma ⊳ is an unparameterised 0-ary function-constant

and by that lemma (a b)· ⊳=⊳. ∈ is equivariant so

(x , y) ∈⊳ ⇐⇒ (a b)·(x , y) ∈ (a b)· ⊳=⊳ .

Permutation commutes with pairset by R8.1.13 so we are done.

Theorem 26.4.5 (⊳ trans. and refl.). ⊳ is transitive and reflexive.

Proof. We observe that the set

{(t , t) ∈ Rcl}

is a post-fixed point of Φ, as is the set

{
(s, t)

∣
∣ ∃t ′. s ⊳ t ′ ∧ t ′ ⊳ t

}
.

The following technical lemma is one half of T26.4.7:

Lemma 26.4.6 (⇓⊆⊳). For t a closed term and U a closed value respectively,

t ⇓ U =⇒ U ⊳ t .

Proof. By L25.4 that U ⇓ U so U ≤kl t . The rest is L26.4.8.

The main use of the following theorem is in T27.11, a corresponding result for

⊳∗.

Theorem 26.4.7 (⊳ on closed values). For closed values U and closed terms

t, the lemmas of Fig.39198 hold.

Proof. The results to be proved are all of the form A =⇒ (B ⇐⇒ C),

so split into two implications. Those of the form A =⇒ (C =⇒ B) follow

from L26.4.6 above. So now we may assume this and proceed to prove the A =⇒

(B =⇒ C) part.

Each case is by induction on the typing Γ ⊢ U : τ using the predicate A =⇒

(B =⇒ C) as induction hypothesis. We use L24.1.4 to relate the type to the

syntactic form of U , L25.4, and the fact that Φ(⊳) =⊳.

198 §26.4 26. Bisimulation and Contextual Equivalence

⊢ U , t : Atm =⇒ U ⊳ t ⇐⇒ t ⇓ U

⊢ U , t : Bool =⇒ U ⊳ t ⇐⇒ t ⇓ U

⊢ U , t : Nat =⇒ U ⊳ t ⇐⇒ t ⇓ U

⊢ (U1,U2), t : τ × τ ′ =⇒ (U1,U2) ⊳t ⇐⇒ ∃V1,V2.

U1 ⊳ V1 ∧ U2 ⊳ V2 ∧ t ⇓ (V1,V2)

⊢ U , t : Λα =⇒ U ⊳ t ⇐⇒ ∃V ≡se U . t ⇓ V

⊢ U , t : (τ)List =⇒ U ⊳ t ⇐⇒ ∃V . t ⇓ V ∧
(
(U = V = Nilτ) ∨

∃Uh ,Ut ,Vh ,Vt . (U = Uh ::Ut ∧ V = Vh ::Vt ∧

Uh ⊳ Vh ∧ Ut ⊳ Vt)
)

⊢ U , t : [Atm]τ =⇒ U ⊳ t ⇐⇒ ∃a,W , a ′,W ′.

U = a.W ∧ t ⇓ a ′.W ′ ∧ Nc.(c a)·W ⊳ (c a ′)·W ′

⊢ U , t : τ ′ → τ =⇒ U ⊳ t ⇐⇒ ∃V . t ⇓ V ∧ ∀W . U W ⊳ V W .

U ,W ,V ∈ CVal and t ∈ CTerms.

Figure 39. T26.4.7 - Lemmas of ⊳

1 • Consider the case of Nat. By induction on the typing Γ ⊢ U : τ using induction

hypothesis

⊢ U : Nat =⇒ U ⊳ t ⇐⇒ t ⇓ U .

So suppose ⊢ U : Nat. Then by the typing rules it must be the case that

U = 0 or U = Succ(U ′),

for ⊢ U ′ : Nat. We treat only the second case. Since Φ(⊳) =⊳ we know

∃V ′. U ′
⊳ V ′ ∧ t ⇓ Succ(V).

Let V ′ be one such. Since U ′ ⊳ V ′ we know by L26.4.6 that V ′ ⇓ U ′ and hence

by L25.4 that V ′ = U ′. So V = Succ(U ′) = U and t ⇓ U as required. We

consider only one other case, the only one of any novelty.

2 • Consider the case Λα. L24.1.4 has three possibilities for ⊢ U : Λα; U = Var(a),

U = App(U1,U2), and U = Lam(a.U ′). We consider only this last one.

So suppose

U = Lam(a.U ′), ⊢ U , t : Λα and U ⊳ t .

26.4. The Relation ⊳ 26.4.8 199

By this third fact we know there is some value V (which is of abstraction type

and so by L24.1.4 is) of the form b.V ′, such that

t ⇓ Lam(b.V ′) and a.U ′
⊳ b.V ′.

We follow back ⊳ and deduce that

Nc. (c a)·U ′
⊳ (c b)·V ′.

By L25.4 and the induction hypothesis we can deduce

Nc. (c a)·U ′ ≡se (c b)·V ′.

Recall from the definition of ≡se (D26.3.1) that this is precisely the condition for

U = a.U ′ ≡se a.V ′ = V .

This gives us the result.

Lemma 26.4.8 (≤kl⊆⊳). The relation ≤kl is a subrelation of ⊳. That is,

≤kl⊆⊳.

Proof. By construction of ⊳ we need only show that

≤kl ⊆ Φ(≤kl).

This we see immediately by inspection of Φ as defined in Fig.38196.

Corollary 26.4.9. If s =kl s ′ then s ⊳ t ⇐⇒ s ′ ⊳ t, and similarly if

t =kl t ′.

Proof. By L26.4.8 above and T26.4.5 (⊳ transitive and reflexive).

Remark 26.4.10. In the light of C26.4.9 we see we could have chosen any

Kleene-equivalent terms in the definition of Φ in Fig.38196. For example, the

clauses for values of abstraction and function types could have been

∀a, s ′. s ⇓ a.s ′ =⇒ ∃b, t ′. t ⇓ b.t ′ ∧ Nc. (a.s ′)@c R (b.t ′)@c

∀x , s ′, τ. s ⇓ fix f (x : τ) in s ′ =⇒ ∃t ′. t ⇓ fix f (x : τ) in t ′ ∧

∀U ∈ CValτ . (let x = U , f = (fix f (x : τ) in s ′) in s ′ R

(let x = U , f = (fix f (x : τ) in t ′) in t ′.

In general I chose whichever possibility took less space on the page. 3

We shall need the following result to prove the very similar, but much more

complex, T27.14.

200 26.4.11 26. Bisimulation and Contextual Equivalence

Corollary 26.4.11 (⊳ Evaluation Box). For all closed terms t , t ′ and values

V if

t ⇓ V and t ⊳ t ′

then there exists some V ′ such that

t ′ ⇓ V ′ and V ⊳ V ′

Proof. By L26.4.8 (≤kl⊆⊳) and L26.4.6 (⇓⊆⊳).

We draw a diagram of this result because it is important.

t
⊳ - t ′

V

⇓

6

⊳

- ∃V ′

⇓

6

(180)

26.5. The Relation ⊳◦. Recall we defined Γ-closures in D26.1.1 and the set

of type-respecting relations R in D26.1.2.

Definition 26.5.1 (Open Extension). Consider R ∈ Rcl a relation on closed

terms-in-context. We can extend it to an open extension R◦ ∈ R on possibly

open terms-in-context as follows:

Γ ⊢ s R◦ t : σ

precisely when for all Γ-closures V,

⊢ sV R tV : σ.

Lemma 26.5.2. 1. R◦ inherits transitivity and reflexivity from R if R

possesses these properties.

2. R and R◦ coincide on closed terms.

3. If R ⊆ S then Ro ⊆ So.

Proof. By unpacking D26.5.1 above.

Definition 26.5.3. Let ⊳◦ be the open extension of ⊳ (D26.5.1).

Remark 26.5.4. By L26.5.2 ⊳◦ inherits reflexivity and transitivity from ⊳.

3

Lemma 26.5.5 (⊳◦ implies typing). If Γ ⊢ t ⊳◦ t ′ : τ then Γ ⊢ t , t ′ : τ .

Proof. D26.5.3 is a type-respecting relation (D26.1.2) so this condition is

part of the judgement.

26.5. The Relation ⊳◦ 26.5.6 201

Lemma 26.5.6 (⊳=⊳◦ on closed terms). For t , t ′ ∈ CTerms and τ a type,

if ⊢ t , t ′ : τ then

⊢ t ⊳
◦ t ′ : τ ⇐⇒ t ⊳ t ′.

Proof. Direct from L26.5.2.

We shall use this later.

Lemma 26.5.7 (⊳◦ adequate). ⊳◦ is adequate (D26.1.6).

Proof. We continue the notation of D26.1.6. From the construction of ⊳◦,

if Γ ⊢ t ⊳◦ t ′ : τ then tV ⊳ tV ′. By the clauses of T26.4.7 dealing with Nat and

Bool we know tV ⇓ V implies t ′V ⇓ V .

Definition 26.5.8 (Extend ≤kl to open terms). Let ≤◦
kl be the open exten-

sion of ≤kl. It too inherits transitivity and reflexivity from ≤kl and coincides with

it on closed terms.

We can usefully lift more properties to the open extensions.

Lemma 26.5.9 (≤◦
kl⊆⊳◦). ≤◦

kl is a subrelation of ⊳◦. That is, ≤◦
kl⊆⊳◦.

Proof. Inherited from L26.4.8 (≤kl⊆⊳◦).

This result underlies L27.13, where we use it to switch between ≤◦
kl-equivalent

terms on the left of ⊳◦. Cf. R26.4.10.

Corollary 26.5.10. If Γ ⊢ s =◦
kl s ′ : τ then

Γ ⊢ s ⊳
◦ t : τ ⇐⇒ Γ ⊢ s ′ ⊳

◦ t : τ ,

and similarly if t =kl t ′.

Proof. L26.5.9 (≤◦
kl⊆⊳◦), D26.5.8 (def. ≤◦

kl) and L26.5.4 (⊳◦ trans. and

refl.).

Lemma 26.5.11 (⊳◦ Substitution Properties). For U and U ′ values, if

Γ ⊢ U ⊳
◦ U ′ : τ , Γ ⊢ U ,U ′#xc and Γ, u : τ#xc ⊢ t ⊳

◦ t ′ : σ

then

Γ ⊢ t [U /u] ⊳
◦ t ′[U ′/u] : σ.

(U and U ′ must be values to guarantee that t [U /u] and t ′[U ′/u] are terms in our

reduced syntax, see T22.1.8)

Proof. From D26.5.3 (def. ⊳◦).

202 §26.6 26. Bisimulation and Contextual Equivalence

26.6. Pause for Breath. Between us here and §28, that is §26.7 and §27,

is a considerable mass of inductive proofs. Perhaps we should consider where we

are and where we are going.

We know very little about ⊳ctx beyond its definition, that it is the largest

adequate congruence (D26.2.2). We certainly have little idea about its properties

on closed values of type Λα, which is what the Sanity Clause (T21.9) is all about.

Using our current terminology, the theorem states that on closed values of type

Λα, ≡ctx and ≡se -equivalence coincide (R26.3.3).

Now from Fig.39198 and T26.4.7 we know a lot about ⊳ on Λα. The relevant

line of the figure is

⊢ U , t : Λα =⇒ U ⊳ t ⇐⇒ ∃V ≡se U . t ⇓ V .

In the case that t is a closed value V it evaluates only to itself by L25.4, so this

equation becomes precisely the Sanity Clause:

⊢ U ,V : Λα =⇒ U ⊳ V ⇐⇒ V ≡se U .

Seeing as we want to prove the Sanity Clause, wouldn’t it be convenient if ⊳=⊳ctx

on closed values of type Λα? Well, we could prove this if we knew ⊳ctx=⊳◦

(D26.5.3) since by L26.5.6, ⊳ and ⊳◦ coincide on closed terms.

⊳ctx (D26.2.2) is coinductively defined so we show ⊳◦ (D26.5.3) is closed under

its rules and we have ⊳◦⊆⊳ctx. ⊳ctx is a congruence and adequate. We already

proved ⊳◦ is adequate in L26.5.7, but we do not know it is a congruence. This is

rather hard (it all comes together in the end of the proof of L28.16).

For the converse ⊳ctx⊆⊳◦, we shall show in L28.19 that ⊳ctx is its own open

extension. Meanwhile ⊳◦ is the open extension of the coinductively defined ⊳

(D26.4.1). Set inclusion is preserved by taking open extensions (L26.5.2) so it

suffices to show that ⊳ctx restricted to closed terms is contained in ⊳ (L28.20),

which means proving it is closed under the monotone operator Φ (Fig.38196) used

to coinductively define ⊳. We do this after a few preparatory lemmas in C28.24.

With reference to R26.2.3, this proof method is only possible because we con-

structed ⊳ctx coinductively.

Remark 26.6.1. To prove ⊳◦ a congruence we use “Howe’s Method”, orig-

inally presented in [36] and [35], and it takes up the space between here and §28.

I have not used this original presentation but directly modelled the proof

26.7. The Relation ⊳∗ §26.7 203

which follows on an application of Howe’s method by Pitts in [64].89

3

In theory the method is simple. We define another relation ⊳∗ using ⊳◦, show

one-by-one that it inherits all the good properties of ⊳◦, but also that it is a

congruence. We then use these good properties to show they are equal. This

is important: most of the results to follow are just results about ⊳◦, repeated

for ⊳∗ and the reader is invited to use this correspondence to understand the

structure of the proof. The only results not lifted from the theory of ⊳◦ are

T26.7.4 (⊳∗ ◦ ⊳◦⊆⊳∗) and of course L27.10 (⊳∗ congruence).

It is quite easy really, but checking all the cases does take up a lot of space. I

advise the casual reader not to take anything between now and §29 too seriously,

since I would much prefer them awake.

26.7. The Relation ⊳∗.

Definition 26.7.1. We define an auxiliary relation ⊳∗ inductively on possibly

open terms-in-context as shown in Fig.40204 and Fig.41205.

We need the following lemma in the case [Atm]τ of T27.11.

Lemma 26.7.2 (⊳∗ equivariant). If

Γ ⊢ s ⊳
∗ t : τ

then

(a b)·Γ ⊢ (a b)·s ⊳
∗ (a b)·t : τ .

Proof. Just like the proof of L26.4.4 only a little more complex. We know

(a b)·τ = τ by examining the grammar that generated it in D22.1.1 and observing

that atoms a ∈ A do not feature in it.

Remark 26.7.3 (Overview). We now embark on an extended development

leading up to T27.15 (⊳◦=⊳∗). The important and difficult technical results are

T27.11 (⊳∗ on values) and then T27.14 (⊳∗ evaluation box). Relatively simple

but important technical results are T26.7.4 (⊳∗ ◦ ⊳◦⊆⊳∗) immediately below and

T27.9 (⊳∗ substitution properties). 3

Theorem 26.7.4 (⊳∗ ◦ ⊳◦⊆⊳∗). For all t1, t2, t3, and Γ, τ such that

Γ ⊢ ti : τ i = 1, 2, 3

89I have not only lifted Dr Pitts’ method, but could never have controlled it without his

guidance (it is not easy to understand, at least the first time). I take the opportunity to thank

him.

204 §26.7 26. Bisimulation and Contextual Equivalence

Γ ⊢ xc ⊳
∗ t : σ (if Γ ⊢ xc ⊳

◦ t : σ)(181)

Γ ⊢ True ⊳
∗ t : Bool (if Γ ⊢ True ⊳

◦ t : Bool)(182)

Γ ⊢ False ⊳
∗ t : Bool (if Γ ⊢ False ⊳

◦ t : Bool)(183)

Γ ⊢ V ⊳∗ V ′ : Bool

Γ ⊢ t1 ⊳∗ t ′1 : τ

Γ ⊢ t2 ⊳∗ t ′2 : τ

Γ ⊢ ifV then t1 else t2 ⊳∗ t : τ

(if Γ ⊢ ifV ′ then t ′1 else t ′2 ⊳
◦ t : τ)(184)

Γ ⊢ 0 ⊳
∗ t : Nat (if Γ ⊢ 0 ⊳

◦ t : Nat)(185)

Γ ⊢ V ⊳∗ V ′ : Nat

Γ ⊢ Succ(V) ⊳∗ t : Nat
(if Γ ⊢ Succ(V ′) ⊳

◦ t : Nat)(186)

Γ ⊢ V ⊳∗ V ′ : Nat

Γ ⊢ t0 ⊳∗ t ′0 : τ

Γ, x : Nat#xc ⊢ tf ⊳∗ t ′f : τ

Γ ⊢ CaseV of {0⇒ t0, Succ(x)⇒ tf } ⊳∗ t : τ

(187)

(if Γ ⊢ CaseV ′ of
{
0⇒ t ′0, Succ(x)⇒ t ′f

}
⊳

◦ t : τ)

Γ ⊢ V1 ⊳∗ V ′

1 : τ1xc

Γ ⊢ V2 ⊳∗ V ′

2 : τ2

Γ ⊢ (V1,V2) ⊳∗ t : τ1 × τ2

(if Γ ⊢ (V ′

1,V
′

2) ⊳
◦ t : τ1 × τ2)(188)

Γ ⊢ V ⊳∗ V ′ : τ1 × τ2

Γ ⊢ Fst(V) ⊳∗ t : τ1

(if Γ ⊢ Fst(V ′) ⊳
◦ t : τ1)(189)

Γ ⊢ V ⊳∗ V ′ : τ1 × τ2

Γ ⊢ Snd(V) ⊳∗ t : τ2

(if Γ ⊢ Snd(V ′) ⊳
◦ t : τ2)(190)

Γ ⊢ V ⊳∗ V ′ : Atm

Γ ⊢ Var(V) ⊳∗ t : Λα

(if Γ ⊢ Var(V ′) ⊳
◦ t : Λα)(191)

Γ ⊢ V ⊳∗ V ′ : Λα × Λα

Γ ⊢ App(V) ⊳∗ t : Λα

(if Γ ⊢ App(V ′) ⊳
◦ t : Λα)(192)

Γ ⊢ V ⊳∗ V ′ : [Atm]Λα

Γ ⊢ Lam(V) ⊳∗ t : Λα

(if Γ ⊢ Lam(V ′) ⊳
◦ t : Λα)(193)

Γ ⊢ V ⊳∗ V ′ : τ Γ ⊢ V ,V ′#xc

Γ, a : Atm#xc ⊢ tV ⊳∗ t ′V : τ

Γ, x : Λα × Λα#xc ⊢ tA ⊳∗ t ′A : τ

Γ, x : [Atm]Λα ⊢ tL ⊳∗ t ′L : τ

Γ ⊢ CaseV of {Var(x)⇒VV , App(x)⇒VA, Lam(x)⇒VL} ⊳∗ t : τ

(194)

(if Γ ⊢ CaseV of {Var(x)⇒V ′

V , App(x)⇒V ′

A, Lam(x)⇒V ′

L} ⊳
◦ t : τ)

Figure 40. D26.7.1 - ⊳∗ Defined 1

26.7. The Relation ⊳∗ 26.7.5 205

Γ ⊢ Nilτ ⊳
∗ t : τ (if Γ ⊢ Nil⊳◦ t : τ)(195)

Γ ⊢ Vh ⊳∗ V ′

h : τ Γ ⊢ Vt ⊳∗ V ′

t : (τ)List

Γ ⊢ Vh ::Vt ⊳∗ t ′ : (τ)List
(if Γ ⊢ V ′

h ::V ′

t ⊳
◦ t ′ : (τ)List)(196)

Γ ⊢ V ⊳∗ V ′ : τ Γ ⊢ xc : Atm

Γ ⊢ xc.V ⊳∗ t : [Atm]τ
(if Γ ⊢ xc.V ′

⊳
◦ t : [Atm]τ)(197)

Γ ⊢ V ⊳∗ V ′ : [Atm]τ Γ ⊢ V ,V ′#xc

Γ ⊢ V @xc ⊳∗ t : τ
(if Γ ⊢ V ′@xc ⊳

◦ t : τ)(198)

Γ#x : Atm ⊢ s ⊳∗ s ′ : τ Γ#x : Atm ⊢ s, s ′#x

Γ ⊢ fresh x in s ⊳∗ t ′ : τ
(if Γ ⊢ fresh x in s ′ ⊳

◦ t ′ : τ)(199)

Γ ⊢ xc : Atm Γ ⊢ yc : Atm

Γ ⊢ V3 ⊳∗ V ′

3 : τ Γ, xc#yc ⊢ V4 ⊳∗ V ′

4 : τ

Γ ⊢ if xc = yc then V3 else V4 ⊳∗ t : τ

(200)

(if Γ ⊢ if xc = yc then V ′

3 else V ′

4 ⊳
◦ t : τ)

Γ ⊢ xc : Atm Γ ⊢ V3 ⊳∗ V ′

3 : τ

Γ ⊢ if xc = xc then V3 else V4 ⊳∗ t : τ
(201)

(if Γ ⊢ if xc = xc then V ′

3 else V ′

4 ⊳
◦ t : τ)

Γ, f : τ ′ → τ, x : τ ′ ⊢ s ⊳∗ s ′ : τ

Γ ⊢ fix f (x : τ ′) in s ⊳∗ t : τ ′ → τ
(202)

(if Γ ⊢ fix f (x : τ ′) in s ′ ⊳
◦ t : τ ′ → τ)

Γ ⊢ V2 ⊳∗ V ′

2 : τ ′ Γ ⊢ V1 ⊳∗ V ′

1 : τ ′ → τ

Γ ⊢ V1 V2 ⊳∗ t : τ
(if Γ ⊢ V ′

1 V ′

2 ⊳
◦ t : τ)(203)

Γ ⊢ s1 ⊳∗ s ′1 : τ Γ ⊢ s1, s
′

1#xc Γ, x : τ#xc ⊢ s2 ⊳∗ s ′2 : σ

Γ ⊢ let x = s1 in s2 ⊳∗ t : σ
(204)

(if Γ ⊢ let x = s ′1 in s ′2 ⊳
◦ t : σ)

Figure 41. D26.7.1 - ⊳∗ Defined 2

it is the case that

(Γ ⊢ t1 ⊳
∗ t2 : τ) ∧ (Γ ⊢ t2 ⊳

◦ t3 : τ) =⇒ Γ ⊢ t1 ⊳
∗ t3 : τ .

Proof. By induction on ⊳∗, using transitivity of ⊳◦ (R26.5.4).

Lemma 26.7.5 (⊳∗ Reflexive). For all t and Γ, τ , if Γ ⊢ t : τ then

Γ ⊢ t ⊳
∗ t : τ .

206 26.7.6 27. Proof of ⊳◦=⊳∗ and hence ⊳◦ congruence

Proof. By induction on the derivation of Γ ⊢ t : τ , using reflexivity of ⊳◦

(R26.5.4).

Lemma 26.7.6 (⊳◦⊆⊳∗). If Γ ⊢ t1 ⊳◦ t2 : τ then Γ ⊢ t1 ⊳∗ t2 : τ .

Proof. By combining T26.7.4 with L26.7.5.

Corollary 26.7.7 (≤kl⊆⊳∗). L26.7.6, L26.5.6, and L26.4.8 imply

Γ ⊢ t1 ≤kl t2 : τ =⇒ Γ ⊢ t1 ⊳
∗ t2 : τ .

Lemma 26.7.8. ⊳∗ is a type-respecting relation (D26.1.2): for Γ, τ and

terms t and t ′, if

Γ ⊢ t ⊳
∗ t ′ : τ

then

Γ ⊢ t : τ and Γ ⊢ t ′ : τ .

Proof. From the nature of the inductive rules defining ⊳∗, using the corre-

sponding result, evident from D26.5.3, for ⊳◦.

27. Proof of ⊳◦=⊳∗ and hence ⊳◦ congruence

Theorem 27.9 (⊳∗ Substitution Properties). For U and U ′ values, if

Γ ⊢ U ⊳
∗ U ′ : τ , Γ ⊢ U ,U ′#xc and Γ, u : τ#xc ⊢ t ⊳

∗ t ′ : σ

then

Γ ⊢ t [U /u] ⊳
∗ t ′[U ′/u] : σ.

(U and U ′ must be values to guarantee that t [U /u] and t ′[U ′/u] are terms in our

reduced syntax, see T22.1.8.)

Proof. By induction on the derivation of ∆ ⊢ t ⊳∗ t ′ : τ (due to the syntax-

directed nature of the rules this is similar to induction on the syntax of t) with

fixed U ,U ′ and inductive hypothesis

∀Γ, u, xc.
(

∆ ⊢ t ⊳
∗ t ′ : σ ∧ ∆ = Γ, u : τ#xc =⇒

Γ ⊢ U ⊳
∗ U ′ : τ ∧ Γ ⊢ U ,U ′#xc =⇒ Γ ⊢ t [U /u] ⊳

∗ t ′[U ′/u] : σ
)

.

In the proof below I shall elide ∆ and the universal quantifier, assuming ∆ =

Γ, u : τ#xc from the start, effectively working with an informal hypothesis of the

form

∀Γ, u, xc. (Γ ⊢ U ⊳
∗ U ′ : τ ∧ Γ ⊢ U ,U ′#xc) ⇒ Γ ⊢ t [U /u] ⊳

∗ t ′[U ′/u] : σ.

We consider only a smattering of cases.

27. Proof of ⊳◦=⊳∗ and hence ⊳◦ congruence §27 207

1 • Suppose t = xc. Then the result follows directly from a corresponding result

for ⊳◦, L26.5.11.

2 • The cases t = True, False, 0 are trivial.

3 • Suppose t = CaseV of {0⇒ t0, Succ(x)⇒ tf }. We suppose that

Γ ⊢ U ⊳
∗ U ′ : τ , Γ ⊢ U ,U ′#xc and u : τ#xc, Γ ⊢ t ⊳

∗ t ′ : σ.

Using (187)204 we know there are t ′0, t
′
f , yc and V ′ such that

u : τ#xc, Γ ⊢ t0 ⊳
∗ t ′0 : σ,

u : τ#xc, Γ, x : Nat#yc ⊢ tf ⊳
∗ t ′f : σ and

u : τ#xc, Γ ⊢ V ⊳
∗ V ′ : σ,

and that

u : τ#xc, Γ ⊢ CaseV ′
0 of

{
0⇒ t ′0, Succ(x)⇒ t ′f

}
⊳

◦ t ′ : σ.(205)

By inductive hypothesis we conclude that

Γ ⊢ V [U /u] ⊳
∗ V ′[U ′/u] : σ,

Γ ⊢ t0[U /u] ⊳
∗ t ′0[U

′/u] : σ and

Γ, x : Nat#yc ⊢ tf [U /u] ⊳
∗ t ′f [U

′/u] : σ

and from (205)207 we can use the definition of ⊳◦ to deduce that

Γ ⊢ (CaseV ′ of
{
0⇒ t ′0, Succ(x)⇒ t ′f

}
)[U ′/u] ⊳

◦ t ′[U ′/u] : σ.

The result follows by the definition of ⊳∗.

4 • Suppose t = fresh x in s. Suppose that

Γ ⊢ U ⊳
∗ U ′ : τ , Γ ⊢ U ,U ′#xc and u : τ#xc, Γ ⊢ t ⊳

∗ t ′ : σ.

We resolve with (199)205 and deduce the existence of an s ′ such that

Γ#x : Atm ⊢ s ⊳
∗ s ′ : σ

Γ#x : Atm ⊢ s, s ′#x

u : τ#xc, Γ ⊢ fresh x in s ′ ⊳
◦ t ′ : σ.

By induction hypothesis we know that

Γ#x : Atm ⊢ s[U /u] ⊳
∗ s ′[U ′/u] : σ and Γ#x : Atm ⊢ s[U /u], s ′[U ′/u]#x

and by the definition of ⊳◦ we know that

Γ ⊢ fresh x in s ′[U ′/u] ⊳
◦ t ′[U ′/u] : σ.

208 27.10 27. Proof of ⊳◦=⊳∗ and hence ⊳◦ congruence

The result follows by the construction of ⊳∗ (D26.7.1).

5 • Suppose t = fix f (x : τ ′) in s. Suppose that

Γ ⊢ U ⊳
∗ U ′ : τ , Γ ⊢ U ,U ′#xc and u : τ#xc, Γ ⊢ t ⊳

∗ t ′ : τ ′ → τ .

We resolve with (202)205 and see that

u : τ#xc, Γ, f : τ ′ → τ, x : τ ′ ⊢ s ⊳
∗ s ′ : τ

and the side-condition of (202)205 holds. We can now apply the induction hy-

pothesis to conclude

Γ, f : τ ′ → τ, x : τ ′ ⊢ s[U /u] ⊳
∗ s ′[U ′/u] : τ ,

and since the appropriate side-condition still holds for these new terms, we can

deduce the required result.

Unlike ⊳◦, the relation ⊳∗ is a congruence:

Lemma 27.10 (⊳∗ congruence). ⊳∗ is a congruence (N26.2.1); it is closed

under the rules of Fig.37193.

Proof. By considering the rules of Fig.37193 one-by-one.

We give just one example, that of (176)193. Suppose

Γ#x : Atm ⊢ t ⊳
∗ t ′ : τ and Γ#x : Atm ⊢ t , t ′#x .

We also know from R26.5.4 (⊳◦ reflexive) that

Γ#x : Atm ⊢ t ′ ⊳
◦ t ′ : τ .

We now observe that we can use (199)205 to deduce that

Γ ⊢ fresh x in t ⊳
∗ fresh x in t ′ : τ .

The other cases are no harder.

Theorem 27.11 (⊳∗ on Closed Values). ⊳∗ restricted to closed terms satis-

fies all the lemmas of ⊳ given in Fig.39198. In full this means:

1. For B one of True and False (so a value), if ⊢ B ⊳∗ t ′ : Bool then t ′ ⇓ B.

2. For N a value, if ⊢ N ⊳∗ t ′ : Nat then t ′ ⇓ N .

3. If ⊢ a.W ⊳∗ t ′ : [Atm]τ then there are a ′, W ′ such that t ′ ⇓ a ′.W ′ and for

c new ⊢ (c a)·W ⊳∗ (c a ′)·W ′ : τ .

4. For L a value, if ⊢ L ⊳∗ t ′ : Λα then there is a value L′ ≡se L such that

t ′ ⇓ L′.

27. Proof of ⊳◦=⊳∗ and hence ⊳◦ congruence §27 209

5. If ⊢ Nilτ ⊳∗ t ′ : (τ)List then t ′ ⇓ Nilτ .

For Vh ::Vt a value, if ⊢ Vh ::Vt ⊳∗ t ′ : (τ)List then there exist values

V ′
h ,V ′

t such that ⊢ Vh ⊳∗ V ′
h : τ , ⊢ Vt ⊳∗ V ′

t : (τ)List, and t ′ ⇓ V ′
h ::V ′

t .

6. For P = (P1,P2) a value, if ⊢ P ⊳∗ t ′ : τ1 × τ2 then there exist values P ′
1,P

′
2

such that t ′ ⇓ (P ′
1,P

′
2) and ⊢ Pi ⊳∗ P ′

i : τi for i = 1, 2.

7. For F = fix f (x : τ ′) in s, if ⊢ F ⊳∗ t ′ : τ ′ → τ then there exists F ′ =

fix f (x : τ ′) in s ′ such that t ′ ⇓ F ′ and for all U ∈ CValτ ′,

⊢ F U ⊳
∗ F ′ U : τ .

Proof. In view of L26.5.6 (⊳ and ⊳◦ coincide on closed terms) we shall use

⊳◦ and ⊳ synonymously on closed terms.

1 • Type Bool. Suppose ⊢ B = True ⊳∗ t ′ : Bool. We resolve with (182)204 and

deduce

⊢ True ⊳
◦ t ′ : Bool.

Since t ′ and True are closed terms it follows by L26.5.6 (⊳ and ⊳◦ coincide on

closed terms) that

⊢ True ⊳ t ′ : Bool.

Finally by T26.4.7 we know that t ′ ⇓ True. The case B = False is similar.

2 • Type Nat. We work by induction on the derivation of ⊳∗ using the hypothesis

⊢ N ⊳
∗ t : Nat =⇒ t ⇓ N .

We do only one case, that of N = Succ(M). Suppose

⊢ N ⊳
∗ t : Nat.

It must be the case that for some M ′,

⊢ M ⊳
∗ M ′ : Nat and ⊢ Succ(M ′) ⊳

◦ t : Nat.

By induction hypothesis we know M ⇓ M ′ and, these both being values, M = M ′.

From T26.4.7 it follows that

t ⇓ Succ(M ′) = Succ(M) = N

as required.

3 • Type [Atm]τ . Suppose we have ⊢ a.W ⊳∗ t ′ : [Atm]τ . We follow back the de-

duction of ⊳∗ and deduce the existence of a W ′′ such that

⊢ W ⊳
∗ W ′′ : τ and ⊢ a.W ′′

⊳
◦ t ′ : [Atm]τ .

210 §27 27. Proof of ⊳◦=⊳∗ and hence ⊳◦ congruence

We apply T26.4.7 (⊳ on values) to this second fact and deduce the existence of

a ′,W ′ and a new c such that

t ′ ⇓ a ′.W ′ and ⊢ (c a)·W ′′
⊳

◦ (c a ′)·W ′ : τ .

We also know from L26.7.2 (⊳∗ equivariant) and ⊢ W ⊳∗ W ′′ : τ deduced above

that

⊢ (c a)·W ⊳
∗ (c a)·W ′′ : τ .

We can now apply T26.7.4 (⊳∗ ◦ ⊳◦⊆⊳∗) to obtain the desired result.

4 • Type Λα. By induction on ⊳∗ using the hypothesis

⊢ L ⊳
∗ t ′ : Λα =⇒ ∃L′ ≡se L. t ′ ⇓ L′.

We do only one case, the more subtle one. Suppose

L = Lam(M) and Γ ⊢ L ⊳
∗ t ′ : Λα.

Then by L26.7.8 and the structure of the typing rules we know

⊢ L : Λα and M = a.U .

We resolve with (193)204 and deduce that for some M ′′ = a.U ′′,

⊢ M ⊳
∗ M ′′ : [Atm]Λα and ⊢ Lam(M ′′) ⊳

◦ t ′ : Λα.

We apply T26.4.7 to this second fact to conclude that for L′′ = Lam(M ′′) and

some L′,

t ⇓ L′ and L′ ≡se L′′.

From the first fact on the other hand we can follow back ⊳∗ and see there is some

M ′′′ = a.U ′′′ such that

⊢ U ⊳
∗ U ′′′ : Λα and ⊢ M ′′′

⊳
◦ M ′′ : [Atm]Λα

By induction hypothesis on this first fact U ≡se U ′′′ and therefore

L = Lam(M) = Lam(a.U) ≡se Lam(a.U ′′′) = Lam(M ′′′)

(≡se is a congruence by construction). By the second fact and T26.4.7 we know

M ′′ ⇓ M ′′′ so by L25.4 M ′′ = M ′′′,

so

L ≡se L′′.

≡se is transitive, so from L ≡se L′′ ≡se L′ we deduce L ≡se L′, as required.

27. Proof of ⊳◦=⊳∗ and hence ⊳◦ congruence 27.12 211

5 • Type (τ)List. The first case is similar to the boolean one. Consider the

second. Suppose

⊢ Vh ::Vt ⊳
∗ t ′ : (τ)List.

We resolve with (196)205 and deduce there exist V ′′
h and V ′′

t such that

⊢ Vh ⊳
∗ V ′′

h : τ , ⊢ Vt ⊳
∗ V ′′

t : (τ)List

and

⊢ V ′′
h ::V ′′

t ⊳
◦ t ′ : (τ)List.

By T26.4.7 we know there exist V ′
h ,V ′

t such that V ′
h ⊳ V ′′

h , V ′
t ⊳ V ′′

t , and

t ′ ⇓ V ′
h ::V ′

t . We now apply T26.7.4 to obtain the result.

6 • Type τ1 × τ2. As for the second case of list types above.

7 • Type τ ′ → τ . Suppose ⊢ F = fix f (x : τ ′) in s ⊳∗ t ′ : τ ′ → τ . We resolve with

(202)205 and deduce that there exists an s ′′ such that

f : τ ′ → τ, x : τ ′ ⊢ s ⊳
∗ s ′′ : τ

and

⊢ fix f (x : τ ′) in s ′′ ⊳
◦ t ′ : τ ′ → τ .

We apply L27.10 and deduce

⊢ fix f (x : τ ′) in s ⊳
∗ fix f (x : τ ′) in s ′′ : τ ′ → τ .

We also use T26.4.7 to deduce that s ′ exists such that

t ′ ⇓ fix f (x : τ ′) in s ′

and for all U ∈ CValτ ′

⊢ (fix f (x : τ ′) in s ′′)U ⊳
◦ (fix f (x : τ ′) in s ′)U : τ .

It only remains now to use the case of function application in L27.10 to also

deduce that

⊢ (fix f (x : τ ′) in s)U ⊳
∗ (fix f (x : τ ′) in s ′′)U : τ

and apply T26.7.4 (⊳∗ ◦ ⊳◦⊆⊳∗) to complete the result.

Corollary 27.12. For a type τ a and values V ′,V , if

⊢ V ⊳
∗ V ′ : τ

then V and V ′ have the same top-level term-former.

212 27.13 27. Proof of ⊳◦=⊳∗ and hence ⊳◦ congruence

Proof. Directly from T27.11.

The following is a technical result which bridges a slight mismatch between

the form of Φ at function types in Fig.38196 and the form that would be most

useful in the case of function application in T27.14. It is not a case of L27.10.

Lemma 27.13 (Technical Lemma). If

Γ ⊢ R = (fix f (x : τ ′) in s) ⊳
∗ R′ = (fix f (x : τ ′) in s ′) : τ ′ → τ

and

Γ ⊢ U ⊳
∗ U ′ : τ ′

then

Γ ⊢ (let x = U , f = R in s) ⊳
∗ (let x = U ′, f = R′ in s ′) : τ .

Proof. We resolve with (202)205 and conclude that there exists an s ′′ such

that

Γ, f : τ ′ → τ, x : τ ′ ⊢ s ⊳
∗ s ′′ : τ

and

Γ ⊢ R′′
⊳

◦ R′ : τ ′ → τ .

where R′′ = fix f (x : τ ′) in s ′′.

By a slightly sophisticated use of L26.5.11 we deduce that

Γ ⊢ R′′ U ′′
⊳

◦ R′ U ′ : τ ,

and hence, using C26.5.10, that

Γ ⊢ (let x = U ′′, f = R′′ in s ′′) ⊳
◦ (let x = U ′, f = R′ in s ′) : τ .

By L27.10 we can deduce that

Γ ⊢ (let x = U , f = R in s) ⊳
∗

(let x = U ′′, f = (fix f (x : τ ′) in s ′′) in s ′′) : τ.

We apply T26.7.4 (⊳∗ ◦ ⊳◦⊆⊳∗) to complete the result.

Recall C26.4.11 and (180)200. ⊳∗ restricted to closed values satisfies a similar

property:

Theorem 27.14 (⊳∗ Evaluation Box). For t a closed term and V a closed

value, if t ⇓ V then for all t ′, if ⊢ t ⊳∗ t ′ : τ then there exist V ′ such that

t ′ ⇓ V ′ and ⊢ V ⊳
∗ V ′ : τ .

27. Proof of ⊳◦=⊳∗ and hence ⊳◦ congruence §27 213

Proof. By induction on t ⇓ V . In the light of L26.5.6 (⊳ and ⊳◦ coin-

cide on open terms) we shall use the judgements ⊢ t ⊳◦ t ′ : τ and t ⊳ t ′ synony-

mously.

1 • If t = V there is nothing to prove.

2 • Suppose t = if True then t1 else t2 and suppose t ⇓ V . Therefore t1 ⇓ V .

Suppose also ⊢ t ⊳∗ t ′ : τ and ⊢ V : τ . From (184)204 we see there exist t ′1, t
′
2,U

′

such that

(⊢ t1 ⊳
∗ t ′1 : τ) ∧ (⊢ t2 ⊳

∗ t ′2 : τ) ∧ (⊢ True ⊳
∗ U ′ : τ)

and

⊢ ifU ′ then t ′1 else t ′2 ⊳
◦ t ′ : τ .

By C27.12 we conclude that U ′ = True.

Now we know t1 ⇓ V and ⊢ t1 ⊳∗ t ′1 : τ , so we can apply the inductive hy-

pothesis to deduce that there is some V ′
1 such that t ′1 ⇓ V ′

1 and ⊢ V ⊳∗ V ′
1 : τ .

Furthermore we know

⊢ t ′1 ⊳
◦ if True then t ′1 else t ′2 ⊳

◦ t ′ : τ and t ′1 ⇓ V ′
1

so we know by C26.4.11 that t ′ ⇓ V ′ for a V ′ such that ⊢ V ′
1 ⊳◦ V ′ : τ . We now

use T26.7.4 to complete the result.

3 • The case t = if False then t1 else t2 is similar.

4 • We skip to the case t = CaseU of {0⇒ t0, Succ(x)⇒ tf } where U = Succ(W).

Suppose

t ⇓ V and ⊢ t ⊳
∗ t ′ : τ .

So t ′0, t ′f and U ′ must exist such that

⊢ CaseU ′ of
{
0⇒ t ′0, Succ(x)⇒V ′

f

}
⊳

◦ t ′ : τ

and

(⊢ t0 ⊳
∗ t ′0 : τ) ∧

(x : Nat#xc ⊢ tf ⊳
∗ t ′f : τ) ∧

(⊢ U ⊳
∗ U ′ : Nat).

We apply T27.11 to this third fact and deduce that U ′ = U .

Now we know t ⇓ V , so we follow the evaluation relation and see that

let x = W in tf ⇓ V .

214 §27 27. Proof of ⊳◦=⊳∗ and hence ⊳◦ congruence

We use L27.10 to deduce

⊢ let x = W in tf ⊳
∗ let x = W in t ′f : τ ,

(recall that U = Succ(W) = U ′) and using the induction hypothesis we know

there exists V ′
1 such that let x = W in t ′f ⇓ V ′

1, and ⊢ V ⊳∗ V ′
1 : τ .

Following the same pattern as the previous case, we know

⊢ let x = W in t ′f ≤kl CaseU of
{
0⇒ t ′0, Succ(x)⇒V ′

f

}
⊳

◦ t ′ : τ

and using L26.4.8 (≤kl⊆⊳) and R26.5.4 (⊳◦ transitive) we deduce

⊢ let x = W in t ′f ⊳
◦ t ′ : τ .

From this, let x = W in t ′f ⇓ V ′
1, and C26.4.11 we conclude there exists a V ′

such that t ′ ⇓ V ′ and

⊢ V ⊳
∗ V ′

1 ⊳
◦ V ′ : τ .

We apply T26.7.4 to obtain the desired result.

5 • Suppose

t = CaseU of {Var(a)⇒ tV , App(x)⇒ tA, Lam(a)⇒ tL}

where U = Lam(a.W) and suppose that for some V and t ′,

t ⇓ V and ⊢ t ⊳
∗ t ′ : τ .

We follow back ⊳∗ and deduce that there exist t ′′V , t ′′A, t ′′L and U ′′ such that

⊢ Case Lam(U ′′) of
{
Var(a)⇒ t ′′V , App(x)⇒ t ′′A, Lam(x)⇒ t ′′L

}
⊳

◦ t ′ : τ

and

(a : Atm#xc ⊢ tV ⊳
∗ t ′′V : τ) ∧

(x : Λα × Λα#xc ⊢ tA ⊳
∗ t ′′A : τ) ∧

(x : [Atm]Λα#xc ⊢ tL ⊳
∗ t ′′L : τ) ∧

(⊢ U ⊳
∗ U ′′ : Λα) ∧

(⊢ U ,U ′′#xc).

(206)

We can now use L27.10 to deduce that

⊢ let x = U in tL ⊳
∗ let x = U ′′ in t ′′L : τ .

We know from the evaluation relation that let x = U in tL ⇓ V , so we apply

the inductive hypothesis to conclude that for some V ′′,

let x = U ′′ in t ′′L ⇓ V ′′ and ⊢ V ⊳
∗ V ′′ : τ .

27. Proof of ⊳◦=⊳∗ and hence ⊳◦ congruence §27 215

Now we know let x = U ′′ in t ′′L ⊳ t ′ from L26.4.8, and the fact that U and

U ′′ have the same top-level term-former (C27.12). We can apply C26.4.11 to

let x = U ′′ in t ′′L ⇓ V ′′ and let x = U ′′ in t ′′L ⊳ t ′ to deduce the existence of

V ′ such that

t ′ ⇓ V ′ and ⊢ V ′′
⊳

◦ V ′ : τ .

We now apply T26.7.4 to obtain the desired result.90

6 • Suppose t = R U where R = (fix f (x : τ ′) in s). We assume

t ⇓ V and ⊢ t ⊳
∗ t ′ : τ .

From this second fact we deduce values R′′ = fix f (x : τ ′) in s ′′ and U ′′ exist

such that

⊢ fix f (x : τ ′) in s ⊳
∗ R′′ : τ ′ → τ and ⊢ U ⊳

∗ U ′′ : τ ′,

and

⊢ R′′ U ′′
⊳

◦ t ′ : τ .

We use L27.13 (the hard work of this case is hidden in that lemma) to deduce

that

⊢ (let x = U , f = R in s) ⊳
∗ (let x = U ′′, f = R′′ in s ′′) : τ .

From t ⇓ V we can deduce that

(let x = U , f = R in s) ⇓ V .

By inductive hypothesis therefore we know that there is some V ′′ such that

(let x = U ′′, f = R′′ in s ′′) ⇓ V ′′ and ⊢ V ⊳
∗ V ′′ : τ .

Since ≤kl respects β-equivalence (L26.4.8) we know from R′′U ′′ ⊳ t ′ that

(let x = U ′′, f = R′′ in s ′′) ⊳ t ′

and hence, by C26.4.11 we know there is a value V ′ such that

t ′ ⇓ V ′ and V ′′
⊳ V ′.

It remains only to apply T26.7.4 (⊳∗ ◦ ⊳◦⊆⊳◦) to complete the result.

90Are you reading this? Incredible! Here’s a joke for your entertainment: “Which is worse,

ignorance or apathy? Who knows? Who cares?”

216 §27 27. Proof of ⊳◦=⊳∗ and hence ⊳◦ congruence

7 • Suppose t = fresh x in s. Suppose also that

t ⇓ V and ⊢ t ⊳
∗ t ′ : τ .

From this second fact we deduce the existence of an s ′′ such that

x : Atm ⊢ s ⊳
∗ s ′′ : τ , x : Atm ⊢ s, s ′#x

and

⊢ fresh x in s ′ ⊳
◦ t ′ : τ .

Now we follow back the evaluation relation and deduce that for a new c,

s[c/x] ⇓ V .

For this new c it is also the case, by T27.9, that

⊢ s[c/x] ⊳
∗ s ′′[c/x] : τ and ⊢ s[c/x], s ′′[c/x]#c.

So by induction hypothesis there is some V ′′ such that

s ′′[c/x] ⇓ V ′′ and ⊢ V ⊳
∗ V ′′ : τ .

Now we also know that s ′′[c/x] ⊳ fresh x in s ′′ ⊳ t ′, so we can apply C26.4.11

as in the previous cases and deduce the existence of a V ′ such that V ′′ ⊳ V ′ and

t ′ ⇓ V ′, which gives the result using T26.7.4 as in the previous cases.

8 • Suppose t = Vh ::Vt and t ⇓ V . Since t is already a value, t = V . Suppose

further

⊢ t ⊳
∗ t ′ : (τ)List.

Then there exist V ′′
h ,V ′′

t such that

⊢ Vh ⊳
∗ V ′′

h : τ and ⊢ V ′′
f ⊳

∗ V ′′
t : (τ)List

and

⊢ V ′′
h ::V ′′

t ⊳
◦ t ′ : (τ)List.

We use L27.10 to deduce ⊢ t = Vh ::Vt ⊳∗ V ′′
h ::V ′′

t : (τ)List and proceed us-

ing C26.4.11 and T26.7.4 as in the other cases.

9 • Suppose t = U@c for U a value. Suppose further that

t ⇓ V and ⊢ t ⊳
∗ t ′ : τ .

We follow back ⊳∗ and deduce the existence of a U ′′ such that

⊢ U ⊳
∗ U ′′ : [Atm]τ and ⊢ U ′′@c ⊳

◦ t ′ : τ .

27. Proof of ⊳◦=⊳∗ and hence ⊳◦ congruence 27.15 217

We use L26.7.8 and L26.5.5 and the typing rules for concretion to deduce that

⊢ U ,U ′′#c.

We can now apply L27.10 to deduce ⊢ U@c ⊳∗ U ′′@c : τ and then proceed

using C26.4.11 and T26.7.4 as in the other cases.

Theorem 27.15 (⊳◦=⊳∗). The relation ⊳◦ coincides with ⊳∗.

Proof. We have already shown ⊳◦⊆⊳∗ in L26.7.6, so we need only establish

the reverse inclusion. It suffices to show this inclusion on closed terms only, because

⊳◦ is defined in terms of ⊳ relating closures of terms with appropriate V (D26.5.3),

and ⊳∗ enjoys the same substitutive properties (T27.9).

So we need to show ⊳∗⊆⊳ on closed terms. To do this it suffices to show

that ⊳∗ restricted to closed terms is a post-fixed point of the operator Φ used in

Fig.38196 to coinductively generate ⊳. This follows from T27.11 and T27.14.

28. Proof of ⊳◦=⊳ctx

Lemma 28.16 (⊳◦⊆⊳ctx). ⊳ctx contains ⊳◦.

Proof. Since ⊳ctx is the largest adequate relation (D26.1.6) satisfying the

rules of Fig.37193 (congruence properties) we need only show that ⊳◦ has the

same properties.

⊳◦ is adequate from L26.5.7. ⊳◦ is a congruence from L27.10 (⊳∗ congruence)

and T27.15 (⊳∗=⊳◦). Hence ⊳◦⊆⊳ctx.

Lemma 28.17 (≤◦
kl⊆⊳ctx). ≤◦

kl (D26.5.8) is a subrelation of ⊳ctx.

Proof. By L28.16 (⊳◦⊆⊳ctx) and L26.5.9 (≤◦
kl⊆⊳◦).

Corollary 28.18. If Γ ⊢ s =◦
kl s ′ : τ then

Γ ⊢ s ⊳ctx t : τ ⇐⇒ Γ ⊢ s ′ ⊳ctx t : τ ,

and similarly if t =◦
kl t ′.

Proof. L28.17 (≤◦
kl⊆⊳ctx) and L26.2.4.

Now for a useful corollary of C28.18:

Lemma 28.19. Write ⊳ctx-cl for ⊳ctx restricted to closed terms. Then

⊳◦
ctx-cl, the open extension of ⊳ctx (D26.5.1), is equal to ⊳ctx.

Proof. The only difficulty in this proof is the number of definitions and lem-

mas we must unpack. We prove the two inclusions ⊳◦
ctx-cl⊆⊳ctx and ⊳ctx⊆⊳◦

ctx-cl

separately.

218 28.20 28. Proof of ⊳◦=⊳ctx

By L26.5.2, ⊳◦
ctx-cl coincides with ⊳ctx on closed terms, so it is adequate

(D26.1.6) because ⊳ctx is. From the definition of an open extension in terms of

closures V we see that ⊳◦
ctx-cl is a congruence (N26.2.1). Since ⊳ctx is the largest

adequate congruence, we know ⊳◦
ctx-cl⊆⊳ctx.

For ⊳ctx⊆⊳◦
ctx-cl we use the power of let x = − in − to carry out ‘by hand’

the instantiations of free variables executed by a closure V. Suppose Γ is some

context with Γtyp = {(x1, σ1), . . . , (xn , σn)} and

Γ ⊢ s ⊳ctx t : τ

and suppose V = (V1, . . . ,Vn) is a Γ-closure (D26.1.1). By applying the rules of

Fig.37193 repeatedly we can deduce that

Γ ⊢ (let xn = Vn , . . . , x1 = V1 in s) ⊳ctx

(let xn = Vn , . . . , x1 = V1 in t) : τ.

By C28.18 we have

Γ ⊢ sV ⊳ctx tV : τ .

But ⊳ctx=⊳ctx-cl on the closed terms sV and tV. V was an arbitrary clo-

sure so we can quantify over it. Thus if Γ ⊢ s ⊳ctx t : τ then for all Γ-closures

Γ ⊢ sV ⊳ctx-cl tV : τ , and this means precisely

Γ ⊢ s ⊳
◦
ctx-cl t : τ .

So ⊳ctx⊆⊳◦
ctx-cl as required.

This gives us what we were after:

Lemma 28.20. If ⊳ctx restricted to closed terms is a subset of ⊳ then

⊳ctx⊆⊳◦.

Proof. Recall from L28.19 that we write ⊳ctx-cl for the restriction of

⊳ctx to closed terms and ⊳◦
ctx-cl=⊳ctx. From L26.5.2, if ⊳ctx-cl⊆⊳ then

⊳ctx=⊳◦
ctx-cl⊆⊳◦.

Notation 28.21. In the case that two terms s, t are closed we can use N26.1.4

to write ⊢ s ⊳ctx t : τ as s ⊳ctx t. In the light of this and the results above we shall

abandon the notation ⊳ctx-cl and write s ⊳ctx-cl t as s ⊳ctx t.

Lemma 28.22. Every type τ is populated by a closed value; there exists some

V ∈ CTerms such that

⊢ V : τ

28. Proof of ⊳◦=⊳ctx 28.23 219

Proof. By induction on τ .91

Lemma 28.23. If s, t ∈ CTerms are closed terms and

s ⊳ctx t and s ⇓ U

then there is some V such that

t ⇓ V and U ⊳ctx V .

Proof. It follows from the rules in Fig.37193 that

s ⊳ctx t =⇒ let x = s in True ⊳ctx let x = t in True.

By construction ⊳ctx is adequate (D26.1.6) so let x = s in True ⇓ True (and

it does) then let x = t in True ⇓ True. It follows from the evaluation rule for

(let x = − in −) (148)188 in Fig.36188 that t evaluates to some value V . Then

U ⊳ctx V from C28.18.

Corollary 28.24 (⊳ctx=⊳◦). ⊳ctx and ⊳◦ coincide.

Proof. ⊳ctx⊆⊳◦ is L28.16. To show ⊳ctx⊆⊳◦ it suffices by L28.20 to show

that ⊳ctx restricted to closed terms (call this restriction ⊳ctx, see N28.21) is a

subset of ⊳. We can show this by proving that ⊳ctx is a postfixed point of Φ

as defined in Fig.38196. Since all terms we consider are closed we use N26.1.4 to

write ⊢ s ⊳ctx t : τ as s ⊳ctx t .

Suppose s ⊳ctx t . We seek to prove (s, t) ∈ Φ(⊳ctx). If s does not evaluate

then (s, t) ∈ Φ(⊳ctx) automatically from the definition of Φ. So we suppose s ⇓ U

and work by induction on U .

1 • Suppose s ⇓ True. Since ⊳ctx is adequate (D26.1.6) it follows that t ⇓ True.

Similarly for False.

2 • Suppose s ⇓ 0, Succ(N) for ⊢ N : Nat. Since ⊳ctx is adequate, t ⇓ N . This

settles the cases s ⇓ 0 and s ⇓ Succ(U).

3 • Suppose s ⇓ c for c ∈ AtmC. We use L28.23 and deduce there is some d ∈

AtmC such that t ⇓ d and c ⊳ctx d . We now apply the rules of Fig.37193 and

deduce

if c = c then True else False ⊳ctx if d = c then True else False.

⊳ctx is by definition adequate so if the LHS evaluates to True, and it does, then

so must the RHS. From this it follows from the structure of the evaluation rules

that c = d , as required.

91Note in passing that if we had fixedpoints at every type (we only have fixedpoints at

function types) this result would be trivial, we would just use fix x : τ.x .

220 §28 28. Proof of ⊳◦=⊳ctx

4 • Supposes ⇓ U = U1::U2. We use L28.23 and deduce there is a value V =

V1::V2 or V = Nilτ such that t ⇓ V and U ⊳ctx V . Using Fig.37193 we deduce

CaseU of {Nilτ ⇒B , x1::x2⇒x1} ⊳ctx CaseV of {Nilτ ⇒B , x1::x2⇒x1}

where B is some value of type τ (L28.22).

We use L28.23 again, combined with the evaluation rules, to deduce that

V = V1::V2 and

U1 ⊳ctx V1.

We may similarly deduce that U2 ⊳ctx V2.

The cases U = Nilτ and U = Var(U ′), App(U ′), Lam(U ′) are similar and

easier.

5 • Suppose s ⇓ U = (U1,U2). We use exactly the same argument as in the pre-

vious case. We apply L28.23 to deduce there exists a V = (V1,V2) such that

t ⇓ V . We then use Fig.37193 we deduce

Fst(U) ⊳ctx Fst(V).

From this, using L28.23 once more and the evaluation rules, it follows that

U1 ⊳ctx V1.

We may similarly deduce that U2 ⊳ctx V2.

Recall that we are proving that ⊳ctx is a post-fixed point of Φ defined in

Fig.38196. The pattern of proof is precisely the same as in the previous cases, so

from now on we simply give the appropriate ‘context’, built using the rules of

Fig.37193, that verifies the conditions of Fig.38196 for each possibility for U .

6 • Suppose s ⇓ U = fix f (x : τ) in s ′. For all W ∈ CValτ we have

UW ⊳ctx VW .

7 • Suppose s ⇓ U = a.U ′. For new c and V = b.V ′,

U@c ⊳ctx V @c.

We then apply L28.23 and deduce

(c a)·U ′
⊳ctx (c b)·V ′

as required.

29. The Sanity Clause, proved §30.1 221

29. The Sanity Clause, proved

Let us go back now and finish what we started in §21:

Theorem 29.25 (The Sanity Clause (with proof)).

• The syntax of FreshML is defined in §22.1.

• The typing rules are defined in §24.1.

• The evaluation rules are defined in §25.

• The contextual preorder ⊳ctx is defined in §26.2.

• α-equivalence on closed values of the type Λα (recall, representing possibly

open terms of the untyped λ-calculus), written ≡se , is defined in D26.3.1.

Given this, for all closed values U ,V ∈ CTerms such that ⊢ U ,V : Λα,

U ⊳ctx V ⇐⇒ U ≡se V .

Proof. C28.24 says ⊳ctx=⊳◦. L26.5.6 says ⊳◦=⊳ on closed terms, an in

particular on closed values. From the case of the type Λα in T26.4.7 we have

U ⊳ V ⇐⇒ U ≡se V

which gives us the result.

FreshML is intended as a prototypical example of a language with the features

that FM (Chapter II) inspires, as well as providing the object of a particularly

large case-study in inductive reasoning in FM. The Sanity Clause brings this

all together by proving, using FM, that a language it has inspired really does

represent it in a ‘sane’ way.

30. Questions

30.1. ML-style evaluation? FM set theory has no constants of type A and

FreshML has constants a, b, c ∈ AtmC of type Atm. So we may wonder:

“We use ‘equivariance’ in L26.7.2 yet T9.1.6 (equivariance FM)

depends—simplistically put—on there being no constant symbols in

A in the language of FM. Isn’t there something wrong here?”

The technical answer is:

“No. FreshML is modelled as an object-language inside FM set the-

ory, and therefore has no connection with the language of FM itself.”

But the relation of FreshML and FM is a little incestuous. After all, we began

our discussion of FreshML in §21 by suggesting terms could denote functions in

FM set theory. If the denotation of the FreshML constants of a, b, c ∈ AtmC is

not FM constants a, b, c ∈ AtmC—then what is it? The technical answer above

222 §30.3 30. Questions

says, correctly, that they are FM variables ranging over the set AtmC just as

x , y , z range over Var.

Still, we could eliminate syntactic constants symbols a, b, c ∈ AtmC, they

would be replaced by syntactic variables x , y , z :Atm in the typing context. (163)188

would change because c ∈ AtmC is outlawed. Evaluation would carry an ML-style

evaluation context associating to some variables x ∈ Var constants a ∈ AtmC,

and our notion of ‘closed value’ would change accordingly.

But FreshML was never designed from programming. It was designed for

proving the Sanity Clause (§29). I did not want labelled evaluations and ‘closed’

values that actually contain free variables in my proofs.

30.2. Combine typing and apartness? We defined apartness judgements

first and then used them to define typing judgements (§23 and §24). Why not

combine them and define them together? I.e. why not take the judgement

Γ ⊢ t : τ#xc

as primitive, not shorthand (Item 1 of N24.1.2).

We can do this but it causes problems. Because ⊳∗, ⊳, ⊳◦, ≤kl and ≤◦
kl are

all defined on typeable pairs of terms of the same type, if apartness and pure

typing judgements are defined together we carry apartness judgements #xc in all

the inductive and coinductive reasoning on types. Now we can always strengthen

our inductive hypothesis and universally quantify over xc where necessary. I have

tried this. However, the ‘black lace’ effect of a hundred ‘#xc’s on every page was

most unpleasant, and since I have proved what I need without doing this, it is

also demonstrably unnecessary.

30.3. Incorporate apartness into types? We could extend the typing sys-

tem to include types like τ#xc → σ#yc. We could then type

⊢ F = (fix f (x : τ) in a.x) : τ →
(
[Atm]τ# {a}

)

and use this to deduce

x : τ ⊢ F (x)#a.

We might similarly be able to type ‘silly’ (but acceptable) functions like (116)177

and not-so-silly functions like the pretty-printing function mentioned just below

(116)177.

I have tried designing such a type system, it turned out to be rather compli-

cated. We should be mindful of this idea for future languages, if only to understand

why it might be impractical. In (Subst′(t))186 I hint at how this complexity may

be unnecessary after all.

30.4. Define # ‘co-inductively’? §31 223

30.4. Define # ‘co-inductively’? That is, instead of taking the basic

apartness judgement to be t#x , why not take it to be ¬(t#x) or—loosely speaking

because t is in FreshML not FM—x ∈ Supp(t).

The reader is welcome to consider Fig.32169 and Fig.33170 and think how we

might reformulate them in terms of these ‘negative’ apartness judgements. Let us

write a ⊞ x for a ∈ Supp(x). Should we change apartness contexts to Γ⊞, finite

sets of ordered pairs written x ⊞ y , so an apartness judgement Γ⊞ ⊢ t ⊞ xc means

“if y ∈ Supp(x) for all (x , y) ∈ Γ⊞ then xc ∈ Supp(t)”?

We might even keep Γ# but make apartness judgements of the form

Γ# ⊢ t ⊞ xc, meaning “if x#y for all (x , y) ∈ Γ# then xc ∈ Supp(t)”.

I shall make just these two remarks:

• The natural thing to have on the right seems to be #. Consider the condi-

tion Γ# ⊢ yc#xc in (98)169.

• The most natural thing to have on the left seems also to be #. Consider

the contexts Γ##x in (99)169 and Γ# ∪ xc#yc in (100)169.

31. FreshML and automation

In conclusion there are a few points I would like to make about the Sanity

Clause (T29.25) and automation, particularly in Isabelle/FM (Chapter III).

1. Chapter IV cries out to be automated. It is long, it is complex, it has a lot of

relatively trivial cases. Has the reader checked every line of this proof? If so, can

they guarantee that they are correct? What? That is my responsibility? And

why believe me? So the size and yes, monotony of this proof invites automation.

The reader is also invited to observe that (thanks to FM) every proof we have

seen is by strict induction or coinduction (as appropriate) on a (co)inductively

defined set.92 By ‘strictly’ I mean that I never used any subsidiary ‘renaming’,

‘weakening’ or ‘congruence’ lemmas. For example, we prove T23.1.12 but never

use it.93 The proofs are always the same: apply the (co)inductive principle

and then resolve away the subgoals until there is nothing left. In other words

this whole proof is no more than standard resolution-based theorem-proving, but

carried out on paper instead of a computer.

92Except naturally for those having nothing to do with inductively defined sets such as

L23.1.9, C23.1.10 and L24.1.5, or L26.5.2. Except also for L26.4.4, which we could prove by

co-induction only FM gives it to us ‘for free’.
93The one ‘renaming’ lemma we do use is L26.4.4 but it describes α-equivalence on values

of type Λα, which represent λ-terms not up to α-equivalence. In a strong sense this is the whole

point of FreshML.

224 §31 31. FreshML and automation

Note also that this uniformity is characteristic of syntax without variable

binding, but has been conspicuous by its absence from developments of syntax

with binding. The fact that the proof has been boring and easily automated is

therefore very good. See Item 3 below.

2. Why is the proof so long?

1. The representation of these (co)inductive proofs on paper is not particu-

larly compact. For example the cases in the proof of T27.11, when written

in full, occupy about half a page each—but they are nothing more than “re-

solve against Eq1 to produce two subgoals. Eliminate the first by resolving

against Eq2 and the second by resolving against Eq3”, and so on.

2. We (often) have to write out the proof-state at each step. A theorem-

proving environment would do that for us. For example (206)214.

3. Paper does not have ALLGOALS, REPEAT, ORELSE or blast tac so that part

of themselves which the proofs of the cases have in common cannot be

distilled to a single “by (ALLGOALS tactic)” at the head of a proof (followed

by specialised code to clean up the debris). Instead we must redescribe the

tactic for each case or omit the proof (with an excuse like “proof just like

the last case” or “proof trivial”).

E.g. consider the proofs of T27.9 or the more complicated T27.14. In this

latter proof there is a telling sentence half-way through case 4: “Following

the same pattern as the previous case”. In my experience the cases of these

large inductive proofs do have a general ‘shape’ in common which paper

expresses worse than computers.

3. If this proof is “standard resolution-based theorem proving”, why is more of the

literature not automated (e.g. [64], [65], [42])?

They did not have FM, which gives us structural inductive principles. Without

it we either dishonestly rename bound variables or do induction on the length of

a derivation rather than its structure. Both are messy. With ‘neat’ proofs like

those of Chapter IV, who needs ‘messy’?

4. Could this proof be carried out using de Bruijn datatypes of syntax (§33.1)? After

all, the de Bruijn datatypes have semantics isomorphic to the FM datatypes.

We commented in p.13 that it is not enough that a datatype be isomorphic to

what we want, it must have the right inductive structure. The structural induc-

tive principle for a de Bruijn datatype does not correspond to ‘taking subterms’,

which complicates inductive hypotheses.

31. FreshML and automation §31 225

5. Could this proof be carried out in HOAS?

Not in its present form. We would have to abandon set theory and Isabelle to

avoid exotic terms ([49, §11.2.2, p.132 or Example 11.8, p.135] or [12, §5, p.8]).

The real point is that HOAS does not give inductive reasoning principles (though

see [15]). Cf. §33.2.

Of course we might be able to carry out a different proof of the Sanity Clause

(something like [34]94)—but HOAS has nothing like the facilities necessary to

support this proof.

6. Why have I not implemented Chapter IV in FM?

I know what has to be done to implement this proof, see R19.3.1 and R20.3, but

I also know I do not have the time to do it in this thesis. With the modifications

of R20.3 in place an implementation would not even be particularly difficult. I

have already developed all the underlying results (e.g. I have mechanised §13.2, a

nontrivial task which I do not discuss) and designed the proof in detail on paper.

I did so with an Isabelle/FM implementation specifically in mind, not only in the

strict structural-induction style of my proofs (see Item 1 of this list) but also in

some of the fine detail of the inductive sets’ design.

I shall indulge myself and show one of these details. This one is rather

amusing, perhaps the reader noticed it. (162)188 is of the form

“
V ′ = (b a)·V

(a.V)@b ⇓ V ′
(a.V #b)” and not “(a.V)@b ⇓ (b a)·V (a.V #b)”.

The second version is superficially ‘simpler’ but were the reader to program it

into a resolution-based system he or she would quickly discover that it refuses to

intro-resolve with anything that does not have conclusion with RHS of the form

(b a)·V . This is not at all what we meant, of course.

94Note, one could argue that [34] is an ‘investigation’ rather than a ‘proof’. Discussion

omitted.

226 §31 31. FreshML and automation

Chapter V

Conclusions

32. Commentary on FM

32.1. FM’s great problem: inaccessible.

Remark 32.1.1. At the end of §5.1 I said that FM is ‘new’, but insisted it

is not ‘exotic’, ‘difficult’ or ‘strange’. On the contrary, FM seems to capture our

intuitions about binding very well.

But that is not the whole story. FM does demand a dedicated system, and

even if this system’s use is easy its initial construction need not be.

What does that mean? For example to ‘do’ FM-style datatypes with binding

in a set theory I needed to construct FM set theory first. ZF was not up to the

job. That was not too bad, but when I wanted to automate this in Isabelle I had

to implement Isabelle/FM first—and that took a whole year. Of course this job is

behind us and the rest of the world can benefit from my work without shedding a

tear for me, but the list goes on: What if the reader wants COQ or HOL, not ZF?

I have nothing to offer (for the moment). Similarly, before we write programs on

FM-style datatypes we have to implement a language that supports them.95 And

so on. This contrasts with other most other approaches to syntax with binding

(§33), which can be used for the most part on any current system. 3

The following terminology will be useful. I shall use it for the rest of this

document mostly without comment.

Notation 32.1.2 (Accessible). I shall call an approach to binding inacces-

sible if we cannot use it right now on our average system, and accessible if we

can. Thus FM is inaccessible and de Bruijn nameless terms (§33.1) are.

So a drawback to FM is that it is inaccessible.

The following merely reiterates R4.14, only this time we have the development

of FM behind us.

Notation 32.1.3 (Name-carrying, nameless, nameful). Call a term a name-

less term if bound variables really are bound (e.g. de Bruijn terms, §33.1, or

FM-style terms). Call a term a name-carrying term when bound variables are

not bound and their names are therefore ‘carried’ in the abstract syntax of the term

(e.g. §33.4). FM datatypes allow us to freely invent new names for bound vari-

ables and hence treat them as if they did have names. We call this a ‘nameful’

reasoning style.

Datatypes with nameless terms are usually setwise isomorphic to correspond-

ing name-carrying datatypes up to α-equivalence. Recall from R4.14 that FM

95This has not yet been done, work includes Chapter IV and [66].

32.2. Usefulness of FM §32.2 229

gives us all the benefits of nameless terms while still allowing us to reason in a

nameful manner, as if about a name-carrying datatype.96

32.2. Usefulness of FM. In this subsection I shall consider various situa-

tions in which FM is more, or less, useful. Suppose that . . .

1 • . . . we want syntax as a means to an end.

For example, in [53] Milner and Parrow define the syntax of and a transition

system for π-calculus (incidentally, using name-carrying terms) and then prove

results about them. They do not care about the syntax as such, it is simply a

way of capturing “on paper” the object “in nature” which they want to study.

Similarly in say, [7].

These researchers would conceivably be quite content to use FM-logic as an

algebraic system for reasoning about bound names. They certainly do not have

to understand the minutiae of FM sets to do this, any more than one has to

understand the minutiae of ZF to use FOL.

Naccurately captures our intuitions about manipulating bound names and a

manifestation of this is that reasoning in FM-logics seems almost indistinguish-

able on paper from the material currently produced by researchers.97 It seems

plausible to me that researchers could use FM-logic with a minimum of fuss, and

produce material comprehensible to those who do not know FM.

2 • . . . we want to write a program to manipulate syntax-with-binding.

As in the previous scenario FM is a means to an end. Assuming that an

FM-style language becomes available (and this is the big ‘if’; there are none at

the moment, see R32.1.1), the programmer can just write his or her program.

The reader can see example programs written informally in the kind of lan-

guage I envisage in §4. Programs in a weaker but rigorously constructed language

are in §22.2 and §24.2.

There are subtleties to FM-style languages. But in my opinion—and after

looking at the examples I would hope the reader might agree I may be right—a

practical programmer would quickly get the idea.

The real world is a messier place than the theory to which most of this

thesis is devoted. I discuss how FM-style languages might contribute to the one

application of syntax with which I am most familiar, namely theorem-proving

systems, in the course of §33.4.

96Though there are necessary limits to this emulation, see R33.4.1.
97Concrete evidence supporting this claim appears in this thesis. The mathematics of Chap-

ter IV is conducted entirely FM-style (see R21.4) yet proofs like that of T24.1.7, L24.1.8, T27.11

look traditional.

230 §32.3 32. Commentary on FM

3 • . . . syntax itself is our object of study.

Here, certainly, a researcher would have to become familiar with the technical

details of FM in whatever universe the researcher prefers, let us stick with sets

for the sake of argument.

The development of FM sets in Chapter II is certainly long and technical

(cf. Item 3 of §3). Of course a really rigorous development of any underlying

universe is technical. Yet that misses the point. We are not doing set theory for

its own sake, we just want to give semantics to syntax. Thus what interests us is

ultimately not the precise set-theoretic implementation of abstraction-sets, any

more than that of pair-sets or lists. These implementations are quite arbitrary

except that they must have the right algebraic and logical properties, because it

is these properties that interest us. So I would urge the reader not to worry too

much about the length of Chapter II. The real issue is the beauty, or at least the

utility, of the results we prove about our complicated constructions. And they

come out rather well.98

32.3. FM not panacea. I believe in FM, it has been very successful. Yet as

successful as it is, sometimes it may just be irrelevant. So let me mention just two

examples that on just fine without FM.

If we only ever need to substitute for closed terms, capture of free variables—

and α-equivalence—is not a problem. In particular substitution for closed val-

ues/terms is all we need for proving some properties of run-time systems, for

example type-soundness. According to Tobias Nipkow ([32]), the Bali project

[71] has verified type-soundness for a simplified but significant subset of Java, and

they never had to think about α-equivalence once. Java is imperative and so one

imagines it would be quite well-suited to this because binding plays a little less of

a rôle than it would in a more functional language. Nevertheless, their subset has

methods and objects and local variables are bound in them. But because run-time

behaviour is their object of interest they avoid most of the problems which FM

addresses.

This is not to say that the Bali project need not use FM. Its abstraction types

might simplify the handling of bound variables. Then again, maybe they would

not; the designers might want to label bound variables with names for pretty-

printing as discussed in and around R33.4.1, and as discussed there, that might

effectively bring us back where we started to ZF-style name-carrying terms. Then

again, maybe not.

98At the time of going to press there is a draft paper [6]. There the authors import what

they need of FM techniques and logics to apparently satisfactory effect, and without having to

build all of FM set theory. So it really does seem to work.

33. Other approaches and the literature §33.1 231

Another example of an application that would not need FM is a theorem-

prover called SATCHMO, [4], brought to my attention by Francois Bry. The

system is 12 lines of Prolog (Bry apologised for the length and explained it would

be shorter but for pretty-printing) and took two years to write. Bry assures me

that SATCHMO makes sophisticated non-evident use of Prolog; it is a genuine

system, not just a front-end. However, it hijacks Prolog’s syntactic system and

therefore has no need for its own datatype of terms,99 and sidesteps this entire

thesis.

It is not that I see a shortage of applications for FM. On the contrary, I think

it will be very useful. I merely wish to emphasise that FM is a good solution, but

only to a particular problem.

33. Other approaches and the literature

First I shall reference a few articles and web sites. [62] is a survey of ‘logical

frameworks’ with some emphasis on the issue of syntax. Logical Frameworks have

a homepage [56] with a useful link [73] to researches in the area. Incidentally

“logical framework” is used in a more specific sense than “theorem-proving en-

vironment”, see the homepage. In concrete terms this means that [56] does not

include COQ, among others. However, there is a link there to the COQ homepage

[27] anyway. I should also mention a relatively early paper [75] by Stoughton. In

the introduction he discusses the problem of substitution and binding and gives

references.

Recall the terminology ‘accessible’, ‘inaccessible’, ‘name-free term’ and ‘name-

carrying term’ established in N32.1.2 in N32.1.3.

Now we consider the various other approaches to syntax with binding.

33.1. De Bruijn. The idea was originally presented in de Bruijn’s [11]. The

de Bruijn-style type of untyped λ-terms is

µX .Var of N + Lam of X + App of X × X .(207)

There are many variants but the usual idea is that Var(n) represents the (n − i)th

variable name if there are i occurrences of Lam above this Var(n) in the abstract

syntax of the term for i ≤ n, and represents the variable bound by the nth Lam up

from Var(n) otherwise. Thus n encodes either a pointer to a particular binding

operator Lam or a reference to a free variable.

99Unlike Isabelle, say, which hijacks the ML command-line but uses it as a semi-imperative

meta-language to manipulate an ML datatype of terms.

232 33.1.1 33. Other approaches and the literature

De Bruijn techniques are accessible (N32.1.2) and produce nameless terms

with semantics isomorphic to the syntax-up-to-α-equivalence. They are widely

used in programming applications, program-verifications, and more.

Remark 33.1.1. However de Bruijn datatypes have a rather revolting induc-

tive structure which makes it difficult to write programs using them (cf. Nat and

oNat on p.13). For example, if we want to unpack the body of an abstraction (e.g.

remove λ in a term representing λx .t), we have to write a program to go through

the term relabelling all the indices (as seen in Fig.120). 3

So advantages are:

• Terms are nameless, we do not have to worry about respecting α-equivalence

and a class of bugs is ruled out.

• For a given application there are only a finite number of functions we need

out of the datatype (possibly just substitution, ‘body of a λ-term’, ‘top-

level term-former’, ‘is-well-formed’ and a couple more). We may cry and

beat the walls while we define them, but then it’s over and we can get on

with things.

• This is true in verification as well. There the functions on syntax are defined

by and limited to those declared in the specification of the program.

. . . and disadvantages are:

• People can get used to almost anything including this, but still, programs

come out messy. See R33.1.1 and Fig.120.

• This messiness is not just a cosmetic issue. When we unpack a body of

an abstraction we have to relabel variables as described in R33.1.1. With

huge terms (such as arise in hardware verification) this causes efficiency

problems. For this reason HOL-light ([29]) uses name-carrying terms and

not de Bruijn, we shall return to this in §33.4.

• In a theoretical treatment of syntax the goal may be not only to define a

function but to then study it. If the definition of the function is revolting so

is its analysis (see R33.1.2). Ironically de Bruijn introduced his indices in

[11] precisely to reason about nameless terms and a particular relation on

them (Church-Rosser for the λ-calculus). However, the twisted inductive

principles of de Bruijn seem too much for modern researchers. They prefer

either name-carrying techniques (as in [53]) or HOAS (as in [34], see also

§33.2).

Remark 33.1.2. However, Hirschkoff’s recent thesis [24] (in French, resuméd

to some degree in [25]) uses de Bruijn-style to execute a complete analysis of the

π-calculus and bisimulation equivalence in COQ. Apparently 75% of the author’s

33.2. HOAS §33.2 233

COQ lemmas control de Bruijn indices. The man must have incredible patience. I

am sure no-one wants to go through what he must have gone through again. But

if they use de Bruijn, they will. 3

I shall discuss de Bruijn further when I compare it to name-carrying techniques

in §33.4.

I mention in conclusion that Bird and Paterson in [2] build a de Bruijn style

datatype with a clever structure which avoids many of the problems discussed

above. It has its disadvantages but the point is that sheer cunning can get good

results. See in particular [2, §4, p.10].

33.2. HOAS. HOAS stands for Higher-Order Abstract Syntax. Miculan’s

thesis [49] is an excellent document and [49, Chapter 11, p.125] is devoted to a

clear discussion of HOAS. A roughly similar but more concise, advanced discussion

is in [12]. [51] is a clear historical and technical account of HOAS techniques.100

[52] is a paper discussing logics for reasoning on HOAS and includes references

for that part of the field. I also recommend a survey of Logical Frameworks [62],

in particular [62, §5, p.8] is a discussion of HOAS with plenty of references. [45]

is not a survey article in itself but [45, §5, p.8] is a survey.101

HOAS is a large field to which I cannot do justice here. I shall briefly mention

the basic idea, otherwise I refer the non-expert reader to [49, Chapter 11, p.125]

as a good exposition with plenty of examples. From now on I shall assume the

reader is familiar with HOAS.

Briefly, HOAS is when we interpret binding term-formers as functions (‘meta-

level abstractions’, as it is often put). The datatype of syntax of λ-terms becomes

µX .Lam of (X → X) + App of X × X .(208)

[49, §11.2.1] describes in the vocabulary of COQ ([27]) how things go horribly

wrong with this approach. We see the same problem in sets: the function space

X → X is too large and the fixedpoint does not exist. [49, Example 11.6, p.131]

is a case where the approach of (208)233 does work, but often it does not. One

attempt at solution is to hypothesise a type of atoms Var and redeclare our

datatype as

µX .Lam of Var → X + App of X × X .(209)

Features of HOAS usually portrayed in a positive light are:

1. Substitution is handled by the meta-language.

100Which is very up-to-date. So much so in fact that it is unpublished at the time of writing.

It is available on the net.
101No misprint, the page and section numbers really are the same in both.

234 §33.2 33. Other approaches and the literature

2. α-equivalence is handled by the meta-language.

3. Object-level variables disappear and are replaced by meta-level variables.

This does not impress me.

1 • HOAS datatypes do not have inductive structure and do not yield structural re-

cursion principles.

The types Var → X and X → X do not have inductive structure. This means

the datatypes of (208)233 and (209)233 have no structural inductive principles.

Functions out of them cannot be defined by structural induction.

For an example of how researchers try to get around this see Despeyroux

and Hirschowitz [14]. This does not seem to quite work. A later attempt is De-

speyroux, Pfenning and Schürmann [15] (short version) and [13] (long version).

I would very much like to dissect their paper but there is no space here. One

manifestation of the problems HOAS has with recursion is that we cannot write

down simple pattern-matching iterative definitions like those of §4 or even §22.2

because of the functional type in the recursive definition. Despeyroux et al there-

fore try to sidestep pattern-matching. Instead they ‘replace’ the constructors of

the initial datatype (e.g. λ-terms) with constructors of the target type (e.g. nat-

ural numbers), which produces an ‘iterative’ function from the first (λ-terms) to

the second (natural numbers). (This is their example cntvar .)

• It is complicated.

• The authors’ λ-calculus is not given any underlying semantics (aside from

itself), which is unsatisfactory. Without an underlying (or if the reader

prefers, alternative) semantics, how do we know there isn’t a much better

λ-calculus just round the corner. There probably is. How do they set about

finding it? [26] independently addresses this point and produces presheaf

semantics for the work in [13].102

2 • Therefore, is difficult to reason about and define functions on HOAS datatypes.

Surely not? In [13] and [15] Despeyroux et al present a methodology for

recursion on HOAS datatypes and [26] gives it a semantics. Is this not just what

we wanted? Well, I already mentioned that [13] is not quite recursion as such,

it is something a little different to do with ‘replacement’ rather than ‘pattern-

matching’. Yet I myself am anxious to convince the reader that

“FM is not quite ZF, but close enough to be useful and anyway it’s

quite harmless so don’t worry about it”

102 However, the construction is ad hoc in the sense that presheaf categories can give seman-

tics for almost everything. In a sense, a system that explains everything, tells us nothing.

33.2. HOAS §33.2 235

—so perhaps I had better be open-minded about eccentricities in other people’s

work. And indeed, I do not object to the ‘exotic’ primitive recursion of Despey-

roux et al. It’s perfectly reasonable, it just comes out complicated.

Abstraction types [A]X have far better algebraic properties than function-

types X → X (see C9.6.9) and FM delivers completely standard iterative def-

initions without a hint of a struggle (see §10 for details, §5.2 for an overview).

Thus in [15, p.8 and p.9] the informal iterative definitions of two functions plus

and cntvar , which serve in [15] as the beginning of the rest of their paper, would

in FM just be the definitions of the desired functions: for example I define a

function FVlist similar to cntvar in (FVlist)166. Instead of the number of free

variables it returns a list of them. If the reader can pardon the concrete syntax,

it is clearly just the informal definition of cntvar given in [15]. Notice that no

pure HOAS system can ever define FVlist because in HOAS variables have no

object-level names.

Similarly FreshML (Chapter IV) is a typed λ-calculus corresponding to

(though completely different from and almost melodramatically simpler than)

that of [15]. It is derived from from FM-sets, not plucked out of thin air and

then given semantics as is the case for [15] and [26].

We move on from [15]. Honsell, Miculan and Scagnetto place a different

emphasis in [34]. They are concerned with practical reasoning on a particular

HOAS datatype of terms for the π-calculus. I know this paper quite well because

I mirrored some of it on paper in FM and even began to implement my paper

development in Isabelle/FM. As they say in their conclusions, the great benefit

of HOAS is that it gives them nameless terms but without the trouble de Bruijn

causes (cf. §33.1 and in particular R33.1.2). The price is that their datatype does

not have inductive principles, so they axiomatise the properties and functions

they need (e.g. “is in the free names of”).

It is interesting that their axioms are reminiscent of certain useful properties

of FM, although in FM they are all derived, ultimately from the ‘FM axiom’

(Fresh)35. E.g. unsat on p.20 corresponds to C9.2.5.

3 • HOAS leads to complicated reasoning and programming principles.

Never mind programming, what about logic? HOAS terms are at least

second-order, so we cannot reason about them with First Order Logic (like we

do in FM). Thus HOAS generates a need for new logics with enough strength at

higher orders to manipulate the terms, but not so much that they become too

powerful. After ‘logic’ comes ‘logic programming’, e.g. unification. If the logic

236 §33.2 33. Other approaches and the literature

is too powerful unification becomes undecidable—how do we unify terms of type

X → X or Var → X ?

Relatively recent research in this area includes McDowell’s thesis [44], Mc-

Dowell and Miller’s [45] and the same authors’ most recent paper [46].

FM-abstraction types are first-order objects and FM-logic (§5.1) has been

quite sufficient to manipulate them logically. Some discussion of this is in §12.

The logic of FM is also classical. The logic FOλ∆N of the papers referenced above

is not.

4 • HOAS has exotic terms.

This problem is peculiar to HOAS. See and [49, §11.2.2, p.132 and §11.3.1

p.135] (elementary) or [14, §2.2, p.6] (more advanced). This is a tremendous

problem for HOAS for various reasons. I mention just one of them: they put

a lot of junk in a HOAS datatype that should not be there. If we want to

reason about this datatype we need some way of eliminating exotic terms from

consideration. Why?

• Our theorem may well not be true of them.

• They are not constructed using the term-formers of the datatype and as

such are part of the ‘no structural recursion’ problem discussed in Item 1.

Now let us consider some of the so-called ‘advantages’ of HOAS listed on

p.233.

5 • Object-level variables disappear.

Observe in (208)233 and (209)233 that there is no Var term-former. If we want

open terms in HOAS we model them as functions f : termn → term, see [14, §1

p.3].103 I do not like this. It is just another complication.

6 • Substitution is handled by the meta-language.

I think the reason this is pleasing is that, were it not the case (and without

recursion) HOAS would be completely stuck. This is no blessing, it is utter

damnation averted. For other approaches which give inductive principles of one

kind or another, substitution is just one of a number of interesting functions we

might define out of a datatype.

Sometimes HOAS gives us substitution even when we do not want it. For

example, in the π-calculus we want to bind channel names without allowing name-

for-process substitution. This is discussed in [49, Chapter 11, p.128, Examples

11.1 and 11.2].

103This takes the philosophy of HOAS, to model object level variables using meta-level

variables, to its logical conclusion.

33.2. HOAS 33.2.1 237

7 • α-equivalence is handled by the meta-language.

Yes. HOAS terms are nameless!

This brings the list to an end. The reader should be clear precisely what I am

criticising. It is standard to give (for example) ∀ and ∃ on a type X semantics as

higher-order functions

∀,∃ : (X → b) → b

where b is the type of truth values. Thus ∀x ∈ X .φ is interpreted as ∀X (λx :X .φ).

This idea is very successful (it goes back to Church’s famous paper [8]). Note

that it concerns the semantics of binders. HOAS concerns the semantics of the

syntax of binders. The latter is under scrutiny here. Let me illustrate this with an

example. The Isabelle/FOL universal quantifier All is typed as (’a => o) => o.

This is a classic higher-order encoding of the quantifier. However, the syntactic

term-former we manipulate is just a function from term to term with associated

typing conditions. True higher-order syntax would be if All took an ML-function

from term to term and returned a term in term.

Remark 33.2.1 (A little philosophy). One of the important techniques of

science is to ‘explain’ phenomena in terms of ‘simpler’ concepts. Thus ‘AN OB-

JECT IS BLUE’ is ‘explained’ in terms of wavelengths of light reflected. FM

‘explains’ binding in terms of A and N. De Bruijn ‘explains’ it in terms of point-

ers to variables. HOAS is different. Its great claim is that it ‘explains’ variables

in terms of variables in the meta-language—but is this not suspiciously like ‘ex-

plaining’ ‘AN OBJECT IS BLUE’ by saying ‘THE OBJECT IS COMPOSED

OF BLUE PARTICLES’? This paragraph may be just words, but see [49, §11.1,

p.127] for a concrete manifestation of what I am worrying about. 3

In spite of all I have said, sometimes, with the right language and the right

meta-language, HOAS can work. For example in her thesis [19],104 Gardner shows

that terms of FOL are in bijection with terms of ELF+ (a logical framework she

introduces in her thesis, see [19, Chapter 3, p.45]) in βη-normal form (i.e. what

I would probably call ‘values’), see [19, T5.1.9, p.101]. Furthermore the proofs

of FOL can be represented with complete accuracy in the framework [19, T5.2.7,

p.119]. Similar results hold of HOL (E5.1.10 and E5.2.8 respectively). Even so in

C5.1.8, E5.2.6, or T5.2.13 Gardner discusses how the results can break down for

other logical systems. I would refer the interested reader to Miculan’s thesis [49].

It contains what seems to be a systematic programme of attempts to represent

104Thanks to Randy Pollack for drawing my attention to this work.

238 §33.4 33. Other approaches and the literature

various logics in CIC, the results of which enquiry are summarised in [49, §18.1,

p.200].

33.3. Combinators. Since α-conversion causes so much trouble, why not

use combinators ([10])?

We can. Camilleri and Melham decided to do just that in [5].

If we just want to avoid sinking into that particular bog which this thesis hopes

to drain and landscape over, fine. But as a philosophical position it is untenable.

It commits us to reasoning using combinatory logics, programming using, say,

combinatory versions of C and ML—perhaps even abolishing the words ‘every’, ‘a

few’, ‘all’, and ‘some’ from the English language (and similar) and replacing them

by combinatory versions.

Assuming that interest in traditional methods and languages persists, the

problem of syntax with α-equivalence is there to be solved.

33.4. Name-carrying terms. Recall the terminology ‘name-carrying’ and

‘nameless’ from N32.1.3. In name-carrying techniques abstraction types are inter-

preted by N × X or A × X (or similar).

For an excellently clear exposition on the difficulties traditional name-carrying

terms have with α-equivalence I refer the reader to the slides of a talk by Pollack

[74] and also Stoughton’s [75, §1].

I consider practical applications first. In §33.1 and particularly R33.1.1 I

mentioned that de Bruijn-style terms can suffer efficiency problems because we

cannot break up terms without relabelling indices. In name-carrying terms this

is not a problem, the body of Lam(x,M) is just M. Name-carrying has its own

problems:

• Equality testing, matching, or unification are up to α-equivalence (with

associated computational cost).

• The datatype must be wrapped in an abstract datatype (with some fixed

collection of basic interface functions) to preclude programs which may not

respect α-equivalence. This reduces programming flexibility and . . .

• . . . the interface theorems are complicated, to handle renaming of bound

names. Bugs are possible and a computational price guaranteed.

So in practical applications there is a trade-off between de Bruijn and name-

carrying terms. Isabelle uses de Bruijn, I am told that HOL88 (the original HOL)

used name-carrying terms, HOL90 switched to de Bruijn. Apparently HOL98

went back to de Bruijn but was worked on by people from the COQ system and

now uses explicit substitutions in a way I have not researched. HOL-Light uses

name-carrying terms.

33.4. Name-carrying terms 33.4.1 239

Remark 33.4.1 (Nameless terms and pretty-printing). However, users like

to see terms printed with explicit variable names so even the systems that osten-

sibly use ‘nameless de Bruijn’ often label the bound variables with names anyway.

De Bruijn guarantees we respect α-equivalence, and the labels help us pretty-print.

3

Does FM have anything to contribute? FM-style languages simply give the

‘up to α-equivalence’ of de Bruijn but with the added extra of ‘natural recursive

principles’ and ‘ Nand fresh’. Investigations in FM-style programming suggests

it works excellently (for informal examples see §4, for examples in a rigorously

defined language see §22.2. See also [66]). A project has been applied for to

implement an FM-style language based on ML.

Thus one can expect programs in FM to be easier to handle than de Bruijn, and

if we want name-carrying terms we can adopt the trick mentioned above of using

nameless terms with extra name-carrying labels. Such programs should be easier

to write, debug, and indeed to formally verify. Note that if we do use extra name-

carrying labels we re-introduce the problems of α-conversion and all the tedious

programming involved. However, this problem is now at a more superficial level

in the sense that it is with ‘pretty-printing labels’ rather than the core underlying

representation (which is FM, nameless, and correct).

Would these programs run faster? Not necessarily. The FM-language will

still use an underlying representation of elements of a datatype, probably similar

to those manipulated directly in current systems. It might (or might not) be

that compiled FM code would not be very different from what we have now.

Compared to a name-carrying technique an FM-version would presumably be more

efficient because the underlying datatype could be left exposed (not wrapped in

any computationally expensive abstract datatype).105

I suspect that programmers have got used to not being able to do certain

things and that FM languages will generate their own demand in ways I could not

necessarily foresee now.

Now we leave programming and turn to theory. For most researchers syntax is

a means to an end. They usually use name-carrying terms ([53]) or name-carrying

terms up to α-equivalence ([7]) and work with representatives. Up to a point the

two options are equivalent because in the former technique the authors rename

bound variables. In both techniques proofs tend to be by induction on the length

of terms.

105Thanks to John Harrison ([30]) and Konrad Slind ([31]) for educating me about HOL-

light and HOL.

240 §33.5 33. Other approaches and the literature

Besides being a nuisance these proofs have been known to wrong-foot authors,

though I believe today’s generation has learnt some caution in this regard. For

example [76, p.161-166] is a proof of a substitution lemma which is really by

induction on length but claimed to be by structural induction.

If a paper has one particular object of study, e.g. ‘bisimulation’ in [53], the

authors just have to prove (by induction on length of terms) that their object

of interest is appropriately ‘blind’ to renaming bound variables, at which point

they can continue their development essentially by structural recursion/induction,

renaming where necessary. For an example see [53, §3.1, p.19], just after Theorem

1,

“ . . . we shall freely identify alpha-convertible agents . . . ”.

If the paper studies many different objects or a whole class of them, things are

harder. For example Chapter IV involves the relations ⊳, ⊳◦, ≤kl, ≤
◦
kl, ⊳ctx and

⊳∗ (plus spear-carriers). Without FM we would presumably have had to prove

‘blindness’ for each.

For such researchers FM provides the FM-style logic. One such was used in

this thesis in Chapter II to construct FM set theory and in Chapter IV to prove

an operational extensionality result T29.25 for an example language (itself an

FM-style programming language). Some of its features are sketched in §5.1. A

summary is:

• We have the option of treating terms as name-carrying or nameless as con-

venient. From the former we have all the benefits of induction on terms

and writing terms with explicit names. From the latter we have the option

of writing terms without names (for when we do no care what they are),

and a guarantee we can never violate α-equivalence. We discuss this during

§12.1 and the second half of §12.2.

• The logic has excellent properties which justify reasoning steps whose va-

lidity might not otherwise be obvious (e.g. R23.1.13).

• Reasoning using FM logic looks and feels exactly like what practitioners

do anyway (once they have proved their technical ‘blindness’ results, see

above). In the second half of §12.2 I show how we can phrase FM rules

in a traditional way. All of Chapter IV is carried out in FM and it looks

completely standard—except for when I occasionally take advantage of the

extra power of FM to short-circuit what would otherwise be a few pages of

mathematics (cf. §12.5, in particular R12.5.1).

33.5. McKinna and Pollack. Still on the subject of name-carrying terms,

one approach that deserves special mention is the work of McKinna and Pollack,

33.6. Fiore, Plotkin and Turi §33.7 241

see [74] (slides of a talk) and [47]. They pursue name-carrying terms in ZF to

their logical conclusion. In [47] they present, by working through a particular

example, a general methodology for carrying out structural induction on terms up

to α-equivalence.

The trick that makes it work is an echo of T9.4.6 (duality of Nbetween ∀ and

∃). They prove it by induction on term length for each individual datatype. Their

methodology is a serious practical tool: in conversation, Pollack told me he had

used his method to verify a typechecker in LEGO, a development of 6000 lemmas

which took one-and-a-half years to carry out. See [69] (there a figure of 3000 is

quoted, I presume it has grown since 1995).

The unique property of McKinna’s and Pollack’s work among non-FM ap-

proaches is that, like FM, they try to remain faithful to how we really seem to

handle syntax with binding in the real world. The fact that they come back from

this analysis with structures reminiscent of FM vindicates this document, and

indeed this document vindicates theirs.

33.6. Fiore, Plotkin and Turi. Fiore, Plotkin and Turi have done work on

presheaf models of abstract syntax with binders. See [17]. On p.234 (just after

the itemised list) I comment that presheaves have such rich structure, you can

make them do anything you like if you are clever enough. The challenge is to find

a presheaf with a good model of syntax with binding. This is what [17] tries to

do.

On the subject of presheaves, there is a mathematical presentation of FM in

presheaf style, see Gabbay and Pitts [18, §6], which I do not discuss in this thesis.

In fact, I made a conscious decision to present my material in the ‘lightest’ style I

can and it seemed to me that presheaves are ‘heavier’ than sets. In [17] Fiore et

al present their material in a relatively sophisticated mathematical style and this

may generate the impression that it is completely different from the material in

this thesis. However, the two approaches are quite similar. Many constructions in

both correspond. Their δ operator ([17, p.196]) corresponds in its behaviour and

construction to my [A](−) (D9.6.1). I owe the general idea of binding signatures

([17, §2]) to them. Their treatment of substitution ([17, §3]) is more abstract

than mine but amounts to much the same object as I defined in D12.6.2.

I suggest that my underlying universe is nicer than theirs, in particular FM

logic is classical whereas the internal logic of their category is not. They also do

not have N.

242 §33.7 33. Other approaches and the literature

33.7. The axiomatic approach. It deserves mention that various authors

have tried ‘axiomatising’ α-equivalence in one way or another. The authors do

not try to ‘explain’ binding in terms of this axiomatisation. Either:

1. they want to systematically analyse the behaviour of binding, or

2. they are in COQ (or some similar system), want to make some definition

work, and find they need this or that axiom to do so.

Gordon and Melham’s [21] is a good example of case 1 above, carried out in the

context of HOL ([28]). We can see how they do not ‘explain’ binding because they

do not ‘explain’ renaming of bound variables, they just avoid it; see their §1.2.

Wahid Taha brought to my attention some work, see [16], by Pašalić, Sheard

and Taha, where they try to capture binding behaviour in the framework of a

λ-calculus. There are several examples of case 2 above, in particular Honsell,

Miculan and Sagnetto do precisely this in [34] as already commented on in Item 2

of §33.2.

I should also mention a relatively old paper by Stoughton, [75] (I get the

impression it was rather ahead of its time). This axiomatises simultaneous substi-

tution. Miller has tried extending standard ML with abstraction types to achieve

the same effect as FreshML, see [50]. As in case 2 above, the idea is not to explain

anything, just to get things done.

34. Accomplishments of this thesis §34 243

34. Accomplishments of this thesis

1. I define and develop the theory of a set-universe FM (Chapter II). It en-

ables purely inductive definitions of datatypes of syntax with α-conversion

by standard initial algebra methods, so the datatypes have standard recur-

sive/iterative/inductive principles.

2. This universe is elementary in that it looks just like ZF. In particular it does

not force its (considerable) extra power on practitioners (e.g. through unfamiliar

notation, strange ways of doing things, etc.) if they do not want to use it.

3. The new set-universe and its associated logic accurately and simply capture our

natural intuitions about syntax with binding.

4. Changing the subject, I present an alpha-stage Isabelle implementation of FM

set theory, called Isabelle/FM (Chapter III).

5. I include a discussion of the various monsters I slayed in the course of the im-

plementation. Some of them are pure proof-engineering and have nothing to do

with FM as such. Some concern how FM interacted with mechanised proof.

6. Isabelle/FM includes nearly all the theory of Isabelle/ZF (as well as the extra

FM structure), including facilities for declaring datatypes of syntax—only this

time, thanks to the extra structure, with binding.

7. I have conducted several experiments defining datatypes of syntax up to bind-

ing and explored functions and predicates defined on them by their inductive

structure. From all this I come to definite conclusions and proposals about the

design of a beta-version of Isabelle/FM, and FM-style mechanised mathematics

in general (§20).

8. Changing the subject once more, I demonstrate how an FM-style programming

language might look (§4) and rigorously define a toy programming language as a

first step on this path (Chapter IV).

9. I demonstrate the behaviour of this toy language (§22.2, §24.2) and show how

it allows us to program inventing fresh names for bound variables at our conve-

nience. It all works out very naturally.

10. Chapter IV proves a technical correctness result (T21.9) designed to reassure us

that we have understood the subtle points mentioned above.

11. This technical correctness result is carried out using FM-set theory and logic.

FM really does make the proofs easier and cleaner.

244 §35 35. Future work

35. Future work

1. Continue the investigation of FM underlying universes by pursuing FM sets

further and developing FM-HOL and an FM dependently typed universe (à

la Martin-Löf).

2. Bring Isabelle/FM to beta-version so people could use it (§20). Possibly

implement other mechanised versions of FM such as FM-HOL.

3. Develop the underlying theory for (and implement a version of) the FM-

style programming language which this document nibbles at and lays the

technical groundwork for (based on ML, a project has been applied for).

4. Further demonstrate the advantages of FM for paper mathematics by car-

rying out real mathematics using FM.

5. Lots more.

And that, gentle reader, was my thesis.

Murdoch J. Gabbay

10 August 2000

Cambridge University, England

— The End —

List of Figures

1 Substitution in Isabelle98-1/Pure 20

2 D8.1.1 - Axioms of ZFA 26

3 D9.1.5 - Axioms of FM 35

4 D10.1.3 - Binding Signatures 58

5 Functorial action of ×, + and [A](−) 59

6 D10.1.6 - Functor associated to a binding signature 60

7 D10.5.3 - Scheme for canonical α out of näıve datatype 73

8 D10.7.2 - Free Variables FV For Free 76

9 D10.7.10 - Name-for-Name Substitution [b/a] For Free 79

10 D10.7.13 - Substitution [t/a] For Free 81

11 D12.1.1 - Types, Terms, and Variables of FMLtiny 90

12 D12.3.1 - Typing Judgements of FMLtiny 93

13 D12.6.4 - Evaluation Relation of FMLtiny 97

14 Constants of ZFQA 106

15 Rules and axioms of ZFQA 108

16 Further definitions of ZFQA 109

17 Ordinal.thy Definitions 116

18 Epsilon.thy Definitions 118

19 Constants of FM 1 121

20 Constants of FM 2 122

21 A few equivariance results of Isabelle/FM 126

22 Major results of New NEW 128

23 Results of New Abs 133

24 Proof of Perm Abs 134

25 Declaration of term 144

26 Results of Datatypes Package for term 146

27 Code of an equivariance result 149
245

246 §35

28 Functions out of term 150

29 Declarations of Isabelle/FM++ 155

30 D22.1.1 - Types of FreshML 161

31 D22.1.4 - Terms and values of FreshML 164

32 D23.1.6 - Apartness Judgements 1 169

33 D23.1.6 - Apartness Judgements 2 170

34 D24.1.1 - Typing 1 180

35 D24.1.1 - Typing 2 181

36 D25.1 - Evaluation 188

37 D26.2.2 - Contextual Preorder ⊳ctx 193

38 D26.4.1 - Bisimulation ⊳ 196

39 T26.4.7 - Lemmas of ⊳ 198

40 D26.7.1 - ⊳∗ Defined 1 204

41 D26.7.1 - ⊳∗ Defined 2 205

Bibliography

1. H. P. Barendregt, The lambda calculus: Its syntax and semantics (revised ed.), Studies in

Logic and the Foundations of Mathematics, vol. 103, North-Holland, Amsterdam, 1984.

2. Richard Bird and Ross Paterson, De Bruijn notation as a nested datatype, Journal of Func-

tional Programming 9 (1999), no. 1, 77–91.

3. Francis Borceux, Handbook of categorical algebra I,II,III, CUP, 1994.

4. Francois Bry and Rainer Manthey, Satchmo: A theorem prover implemented in prolog, 9th

Int. Conf. on Automated Deduction (CADE), Argonne, IL, Springer-Verlag LNCS 310, May

1988, pp. 415–434.

5. Juanito Camilleri and Tom Melham, Reasoning with inductively defined relations in the hol

theorem prover, Tech. Report 265, University of Cambridge Computer Laboratory, August

1992.

6. Luca Cardelli and Andrew D. Gordon, Logical properties of name restriction (not yet pub-

lished), Microsoft Research, Cambridge.

7. G. L. Cattani and P. Sewell, Models for name-passing processes: Interleaving and causal (ex-

tended abstract), Fifteenth Annual Symposium on Logic in Computer Science, IEEE Com-

puter Society Press, Washington, 2000.

8. A. Church, A formulation of the simple theory of types, Journal of Symbolic Logic 5 (1940),

56–68.

9. Thierry Coquand and Gérard Huet, The Calculus of Constructions, Information and Com-

putation 76 (1988), no. 2/3, 95–120.

10. H. B. Curry and R. Feys, Combinatory logic, vol. 1, North Holland, 1958, (Second edition,

1968).

11. N. G. de Bruijn, Lambda calculus notation with nameless dummies, a tool for automatic for-

mula manipulation, with application to the Church-Rosser theorem, Indag. Math. 34 (1972),

381–392.

12. J. Despeyroux, A. Felty, and A. Hirschowitz, Higher-order abstract syntax in Coq, Typed

Lambda Calculus and Applications, 2nd International Conference (M. Dezani-Ciancaglini

and G. D. Plotkin, eds.), Lecture Notes in Computer Science, vol. 902, Springer-Verlag,

Berlin, 1995, pp. 124–138.

13. J. Despeyroux, F. Pfenning, and C. Schürmann, Primitive recursion for higher-order abstract

syntax, Technical Report CMU-CS-96-172, Carnagie Mellon University, September 1996.

14. Joëlle Despeyroux and André Hirschowitz, Higher-order abstract syntax with induction in

Coq, Proceedings of the 5th International Conference on Logic Programming and Automated

Reasoning (Kiev, Ukraine) (Frank Pfenning, ed.), Springer-Verlag LNAI 822, July 1994,

pp. 159–173.

15. Joëlle Despeyroux, Frank Pfenning, and Carsten Schürmann, Primitive recursion for higher-

order abstract syntax, Proceedings of the Third International Conference on Typed Lambda

247

248 §35

Calculus and Applications (TLCA’97) (Nancy, France) (R. Hindley, ed.), Springer-Verlag

LNCS, April 1997, An extended version is [13], pp. 147–163.

16. Walid Taha Emir Pasalic, Tim Sheard, An untyped cbv operational semantics and equational

theory of datatypes with binders (technical development), Tech. Report CSE-00-007, OGI

Computer Science and Engineering, 1999.

17. M. P. Fiore, G. D. Plotkin, and D. Turi, Abstract syntax and variable binding, 14th Annual

Symposium on Logic in Computer Science, IEEE Computer Society Press, Washington, 1999,

pp. 193–202.

18. M. J. Gabbay and A. M. Pitts, A new approach to abstract syntax involving binders, 14th An-

nual Symposium on Logic in Computer Science, IEEE Computer Society Press, Washington,

1999, pp. 214–224.

19. Philippa Gardner, Representing logics in type theory, Ph.D. thesis, University of Edinburgh,

July 1992, Available as Technical Report CST-93-92.

20. J. Goguen, J. Thatcher, , and E. Wagner, An initial algebra approach to the specification, cor-

rectness and implementation of abstract data types, Current Trends in Programming Method-

ology IV (1978), 80–149.

21. A. D. Gordon and T. Melham, Five axioms of alpha-conversion, Theorem Proving in Higher

Order Logics: 9th Interational Conference, TPHOLs’96, Lecture Notes in Computer Science,

vol. 1125, Springer-Verlag, Berlin, 1996, pp. 173–191.

22. C. A. Gunter, Semantics of programming languages: Structures and techniques, Foundations

of Computing, MIT Press, 1992.

23. P. R. Halmos, Näıve set theory, Springer Verlag, March 1987.

24. D. Hirschkoff, Mise en œuvre de preuves de bisimulation, Ph.D. thesis, École Nationale des

Ponts et Chaussées, January 1999, in French.

25. Daniel Hirschkoff, A full formalization of pi-calculus theory in the Calculus of Constructions,

Proceedings of the 10th International Conference on Theorem Proving in Higher Order Log-

ics (TPHOLs’97) (Murray Hill, New Jersey) (E. Gunter and A. Felty, eds.), August 1997,

pp. 153–169.

26. M. Hofmann, Semantical analysis of higher-order abstract syntax, 14th Annual Symposium on

Logic in Computer Science, IEEE Computer Society Press, Washington, 1999, pp. 204–213.

27. COQ Homepage, http://coq.inria.fr/.

28. HOL Homepage, http://www.cl.cam.ac.uk/Research/HVG/HOL/HOL.html#index.

29. HOL-Light Homepage,

http://www.cl.cam.ac.uk/users/jrh/hol-light/index.html.

30. John Harrison Homepage, http://www.cl.cam.ac.uk/users/jrh/.

31. Konrad Slind Homepage, http://www.cl.cam.ac.uk/users/kxs/.

32. Tobias Nipkow Homepage, http://www4.informatik.tu-muenchen.de/~nipkow/.

33. Twelf Homepage, http://www.cs.cmu.edu/~twelf.

34. F. Honsell, M. Miculan, and I. Scagnetto, π-calculus in (co)inductive type theory, Tech.

report, Dipartimento di Matematica e Informatica, Università degli Studi di Udine, 1998.

35. D. J. Howe, Proving congruence of bisimulation in functional programming languages, Infor-

mation and Computation 124 (1996), no. 2, 103–112.

§35 249

36. Douglas J. Howe, Equality in lazy computation systems, Proceedings, Fourth Annual Sympo-

sium on Logic in Computer Science (Asilomar Conference Center, Pacific Grove, California),

IEEE Computer Society Press, 5–8 June 1989, pp. 198–203.

37. Isabelle Cambridge Homepage,

http://www.cl.cam.ac.uk/research/hvg/isabelle/cambridge.html.

38. T. J. Jech, About the axiom of choice, Handbook of Mathematical Logic (J. Barwise, ed.),

North-Holland, 1977, pp. 345–370.

39. T. J. Jech, Set theory, Academic Press, 1978.

40. P. T. Johnstone, Notes on logic and set theory, CUP Mathematical Textbooks, 1987.

41. L. Lamport and L. C. Paulson, Should your specification language be typed?, Tech. Report

147, Digital SRC, 1998.

42. Søren Bøgh Lassen, Relational reasoning about functions and nondeterminism, Ph.D. thesis,

Department of Computer Science, University of Aarhus, 1998.

43. Saunders Mac Lane, Categories for the working mathematician, Springer, 1971.

44. Raymond McDowell, Reasoning in a logic with definitions and induction, Ph.D. thesis, Uni-

versity of Pennsylvania, 1997.

45. Raymond McDowell and Dale Miller, A logic for reasoning with higher-order abstract syntax,

12th Annual Symposium on Logic in Computer Science, IEEE Computer Society Press,

Washington, 1997, pp. 434–445.

46. , A logic for reasoning with higher-order abstract syntax: An extended abstract, Pro-

ceedings of the Twelfth Annual Symposium on Logic in Computer Science (Warsaw, Poland)

(Glynn Winskel, ed.), June 1997, pp. 434–445.

47. James McKinna and Robert Pollack, Some lambda calculus and type theory formalized, Tech.

report, 1997.

48. Thomas F. Melham, Using recursive types to reason about hardware in higher-order logic,

Tech. Report TR135, Cambridge University Computer Lab, April 1990.

49. Marino Miculan, Encoding logical theories of programs, Ph.D. thesis, Università di Pisa-

Genova-Udine, Thesis TD-7/97, March 1997.

50. D. Miller, An extension to ML to handle bound variables in data structures: Preliminary

report, Proceedings of the Logical Frameworks BRA Workshop, 1990.

51. Dale Miller, Abstract syntax for variable binders, CL2000, Springer-Verlag, 2000, To appear.

52. Dale Miller and Catuscia Palamidessi, Foundational aspects of syntax, Computing Surveys

31 (1999).

53. R. Milner, J. Parrow, and D. Walker, A calculus of mobile processes (parts I and II), Infor-

mation and Computation 100 (1992), 1–77.

54. R. Milner, M. Tofte, R. Harper, and D. MacQueen, The definition of standard ML (revised),

MIT Press, 1997.

55. J. C. Mitchell and G. D. Plotkin, Abstract types have existential types, ACM Transactions on

Programming Languages and Systems 10 (1988), 470–502.

56. Logical Frameworks Page, http://www.cs.cmu.edu/~fp/lfs.html.

57. L. C. Paulson, ML for the working programmer, 2nd ed., Cambridge University Press, 1996.

58. Lawrence C. Paulson, Isabelle reference manual, Isabelle99 edition, Part of the Isabelle Dis-

tribution (see [37]).

250 §35

59. , Isabelle’s logics: FOL and ZF, Isabelle99 edition, Previously “Isabelle’s Object-

Logics”, Isabelle98-1 Edition. Part of the Isabelle Distribution (see [37]).

60. , A fixedpoint approach to implementing (co)inductive definitions, Proceedings of the

12th International Conference on Automated Deduction (Nancy, France) (Alan Bundy, ed.),

Springer-Verlag LNAI 814, June 1994, pp. 148–161.

61. Simon Peyton-Jones, http://research.microsoft.com/~simonpj/.

62. Frank Pfenning, The practice of logical frameworks, Proceedings of the Colloquium on Trees

in Algebra and Programming (Linköping, Sweden) (Hélène Kirchner, ed.), Springer-Verlag

LNCS 1059, April 1996, Invited talk, pp. 119–134.

63. A. M. Pitts, A note on logical relations between semantics and syntax, Logic Journal of the

Interest Group in Pure and Applied Logics 5 (1997), no. 4, 589–601.

64. , Operationally-based theories of program equivalence, Semantics and Logics of Com-

putation (P. Dybjer and A. M. Pitts, eds.), Publications of the Newton Institute, Cambridge

University Press, 1997, pp. 241–298.

65. , Parametric polymorphism and operational equivalence, Mathematical Structures in

Computer Science 10 (2000), 1–39.

66. A. M. Pitts and M. J. Gabbay, A metalanguage for programming with bound names modulo

renaming, Mathematics of Program Construction, MPC2000, Proceedings, Ponte de Lima,

Portugal, July 2000 (R. Backhouse and J. N. Oliveira, eds.), Lecture Notes in Computer

Science, vol. ?, Springer-Verlag, Heidelberg, 2000, pp. ?–?

67. A. M. Pitts and I. D. B. Stark, Observable properties of higher order functions that dynami-

cally create local names, or: What’s new?, Mathematical Foundations of Computer Science,

Proc. 18th Int. Symp., Gdańsk, 1993, Lecture Notes in Computer Science, vol. 711, Springer-

Verlag, Berlin, 1993, pp. 122–141.

68. Andrew M. Pitts, http://www.cl.cam.ac.uk/~ap.

69. R. Pollack, A verified typechecker, Proceedings of the Second International Conference on

Typed Lambda Calculi and Applications (M. Dezani-Ciancaglini and G. Plotkin, eds.),

TLCA’95, 1995.

70. Robert Pollack, http://www.dcs.ed.ac.uk/home/rap/.

71. Bali Project, http://www4.informatik.tu-muenchen.de/~isabelle/bali/.

72. Willard Van Orman Quine, Set theory and its logic, revised ed., Harvard University Press,

Cambridge, MA, 1963.

73. Logical Frameworks Researchers, http://www.cs.cmu.edu/~fp/lfs-people.html.

74. Robert and James McKinna, Names, binding and substitution, February 1998, Unpublished

slides of a talk, available as bindingTalk.ps via [70].

75. A. Stoughton, Substitution revisited, Theoretical Computer Science 59 (1988), no. 3, 317–325.

76. Joseph E. Stoy, Denotational semantics: The Scott-Strachey approach to programming lan-

guage theory, The MIT Press, 1977.

77. Benjamin Werner, Une théorie des constructions inductives, Ph.D. thesis, Université de Paris

VII, 1994.

78. Glynn Winskel, The formal semantics of programming languages: An introduction, MIT

Press, 1993.

