

Two-and-a-halfth order lambda-calculus

Murdoch J. Gabbay

<http://www.gabbay.org.uk>

Dominic P. Mulligan

<http://www.macs.hw.ac.uk/~dpm8>

Abstract

Two-and-a-halfth order lambda-calculus is designed to provide a mathematical model of capturing substitution, which is a feature of the informal meta-level. There are two levels of variable; atoms representing object-level variables, and unknowns representing meta-variables. Lambda-abstraction and beta-reduction exist for both atoms and unknowns. This extends the two-levels of variable in nominal terms with a functional meaning.

Keywords: Lambda Calculus, Meta-variables, Functional programming, Confluence, Nominal terms

1 Introduction

The λ -calculus is a syntax to express function abstraction and application which is simple, amenable to mathematical analysis, and easy to extend. However, not everything that looks like a function fits obviously into the λ -calculus; examples include *capturing substitution* and functions depending on intensional properties like free variables and freshness conditions associated with free variables. This paper defines a λ -calculus which includes an explicit model of these notions.

Capturing substitution and freshness are quite common, especially at the ‘informal meta-level’ — the prose discourse of, for example, this paper. Here are some examples:

- λ -calculus: $(\lambda x.r)[y \mapsto t] = \lambda x.(r[y \mapsto t])$ if x is fresh for t
- π -calculus: $\nu x.(P \mid Q) = P \mid \nu x.Q$ if x is fresh for P
- First-order logic: $\forall x.(\phi \supset \psi) = \phi \supset \forall x.\psi$ if x is fresh for ϕ

These quoted (reified) informal statements mention two levels of variable; *object-variables* x, y and *meta-variables* r, t, P, Q, ϕ, ψ . Capture-avoidance conditions are (freshness) constraints on the values that meta-variables may assume.

*This paper is electronically published in
Electronic Notes in Theoretical Computer Science
URL: www.elsevier.nl/locate/entcs*

It seems that meta-variables are naturally substituted with capturing substitution; consider the following quote:

“Set r to x and t to x in $(\lambda x.r)[y \mapsto t]$; obtain $(\lambda x.x)[y \mapsto x]$.”

Capturing substitution on syntax trees is not hard to define, yet syntax usually has semantics, which motivates the study of (amongst other things) α -equivalence, unification, and β -equivalence.

This work extends nominal terms [20]. Nominal terms feature a two-level hierarchy of variables reflecting the hierarchy noted above: **level 1** variables a, b, c, d, \dots (atoms) model object-variables; **level 2** variables X, Y, Z, \dots (unknowns) model meta-variables. In the terminology of this paper, nominal terms’ contribution was to understand α -equivalence of level 1 variables in the presence of level 2 variables (object-level α -equivalence in the presence of meta-variables).

Nominal terms can be the basis of expressive, mathematically well-behaved, and implementable systems. They were introduced in a unification algorithm (freshness conditions are constraints) [20], then extended to rewriting [5], an implemented logic programming language [3], and used as a basis of universal algebra [16].

Variables in nominal terms have no in-built functional meaning. There is no λ -abstraction λX or λa , and no application. In a suitable (generalised) sense, nominal terms are first-order. In this paper we extend nominal terms to investigate full $\alpha\beta$ -equivalence in the presence of level 1 and level 2 variables ($\alpha\beta$ -equivalence in the presence of object- and meta-variables).

We present **two-and-a-halfth order λ -calculus**. We give a syntax, reduction system, and prove confluence and consistency. The calculus contains the untyped λ -calculus (two copies, in fact; at levels 1 and level 2), so it is not strongly normalising.

Just as the step from first-order terms to higher-order terms implies an increase in expressivity traded off against the loss of some computational and mathematical properties [22], so we expect similar benefits and drawbacks moving from nominal terms to two-and-a-halfth order λ -calculus.

Also, until now the only semantics for level 2 variables (unknowns) in nominal terms was ‘they range over terms’. This purely syntactic meaning is acceptable for unification, matching, and rewriting [20,5], and possibly for logic-programming [3], but taking a broader view this is clearly only a partial answer. By developing notions of λ -abstraction and β -reduction for level 2 variables we take a step towards understanding the deeper meaning of nominal techniques.

We sketch with examples the kind of thing we can do, or believe should be possible in future work, using two-and-a-halfth order λ -calculus. Syntax and full definitions follow.

“Set t to be x in $\lambda x.t$ ” and “set t to be y in $\lambda x.t$ ” are modelled by reductions

$$\begin{aligned} (\lambda X.(\lambda a.X))a &\rightarrow (\lambda a.X)[X := a] \equiv \lambda a.a \quad \text{and} \\ (\lambda X.(\lambda a.X))b &\rightarrow (\lambda a.X)[X := b] \equiv \lambda a.b. \end{aligned}$$

(\equiv is syntactic equivalence, i.e. ‘the same term’.) Capture-avoidance for λa (level 1) in the presence of level 2 variables is managed using permutations and freshness in nominal terms style: $c \# X \vdash (\lambda b.(\lambda a.X))a \rightarrow \lambda c.(((c a) \cdot X)[b \mapsto a])$.

“Set r to x and t to x in $(\lambda x.r)[y \mapsto t]$; obtain $(\lambda x.x)[y \mapsto x]$ ” is expressed by:

$\lambda Z.\lambda Y.((\lambda a.Z)[b \mapsto Y])$ applied to a twice reduces to $(\lambda a.a)[b \mapsto a]$.

It is not hard to impose a simple type system on our syntax (this should be a special case of [4]; here, λX should cause no essential new difficulties). An interesting application for our calculus is as the basis of a logic. Example axioms are (we indicate types with subscripts):

- $\forall P_o.(a_o \# P_o \supset P_o \supset \forall a_o.P_o)$

Here o is a type of truth-values. \forall is short for $\forall \lambda$ where \forall is a constant symbol. $\#$ is short for $\# \lambda$ where $\#$ is a constant symbol intended to internalise the nominal freshness judgement. This models ‘for all ϕ , if $a \notin fv(\phi)$ then $\phi \supset \forall a.\phi$ ’.

- $\forall X_\alpha.(a_\beta \# X_\alpha \supset \lambda a_\beta.(X_\alpha a_\beta) = X_\alpha)$

Here $=$ is a constant symbol, written infix. α and β are intended to be arbitrary types. This models η -equivalence (extensionality) at level 1.

- $\forall P_o.(\mathcal{N}a_{\mathbb{A}}. \neg P_o) \Leftrightarrow \neg \mathcal{N}a_{\mathbb{A}}.P_o$.

Here \mathcal{N} is short for $\mathcal{N}\lambda$ where \mathcal{N} is a constant symbol intended to internalise the Gabbay-Pitts ‘new’ quantifier [13]. \neg and \Leftrightarrow are constant symbols. \mathbb{A} is a ‘type of atoms’ with no term-formers. This models the self-duality of \mathcal{N} .

The reductions are real reductions in our calculus. The axioms are expressed in a logic which does not yet exist, but they have some mathematical force because the structure they express has been studied in previous work with level 2 variables but (since nominal terms have no λX) without a level 2 quantification explicitly represented in the syntax. The literature contains axiom-sets for several specific object languages, including first-order logic, the π -calculus, and subsets of ML [16,13,5,8].

2 The syntax

Fix disjoint countably infinite sets of **level 1** and **level 2** variables. We let a, b, c, \dots and X, Y, Z, \dots range over level 1 and level 2 variables respectively. We use a **permutative convention** that these are distinct. For example, ‘ a and b ’ means any pair of distinct level 1 variables.

A **permutation** π is a *finitely supported* bijection of level 1 variables. Here ‘finitely supported’ means that $\pi(a) = a$ for all but finitely many level 1 variables. Write id for the identity permutation, so $\text{id}(a) = a$ always; write \circ for functional composition, so $(\pi \circ \pi')(a) = \pi(\pi'(a))$; write π^{-1} for inverse; and write $(a\ b)$ for the **swapping** such that $(a\ b)(a) = b$, $(a\ b)(b) = a$, and $(a\ b)(c) = c$.

Definition 1 Let the syntax of two-and-a-halfth-order λ -calculus be:

$$r, s, t, u, v ::= a \mid \pi \cdot X \mid \lambda a.r \mid \lambda X.r \mid rr$$

We equate terms up to α -equivalence of λX -bound variables, but *not* λa -bound variables. We write \equiv for syntactic equivalence (up to α -equivalence of λX -bound variables). For example, $\lambda X.X \equiv \lambda Y.Y$ but $\lambda a.X \not\equiv \lambda b.X$ and $\lambda a.a \not\equiv \lambda b.b$. There is no paradox here. We do not seek to eliminate the meta-level; we want mathematical models with which to study it. That is why we have given our calculus two levels

of variable.

We may write $r[a \mapsto t]$ as shorthand for $(\lambda a.r)t$.

Define a notion $fv(r)$ of **free occurrence** (for level 2) by:

$$\begin{aligned} fv(a) &= \{\} & fv(\pi \cdot X) &= \{X\} & fv(r'r) &= fv(r') \cup fv(r) \\ fv(\lambda a.r) &= fv(r) & fv(\lambda X.r) &= fv(r) \setminus \{X\} \end{aligned}$$

Definition 2 Define **level 2 substitution** $r[X := t]$ and **level 1 permutation** actions by the rules in Figure 1.

Level 2 substitution avoids capture by λ -abstracted level 2 variables, but not by λ -abstracted level 1 variables; compare the clauses for $(\lambda a.r)[X := t]$ and $(\lambda Y.r)[X := t]$.

$\pi \cdot X$ is a *moderated* level 2 variable. Moderations ‘rename’ level 1 variables in uninstantiated level 2 variables; for example:

$$((b a) \cdot X)[X := a] \equiv b$$

This is the treatment of α -equivalence from nominal terms; for a discussion of advantages of this approach see Cheney’s comment that permutations are ‘inherently capture-avoiding’ [2] and the surrounding discussion.

Definition 2 must decide how permutation π interacts with λX . The intuition is ‘ π moderates free but not bound level 2 variables’. For example:

$$\begin{aligned} \pi \cdot (XY) &\equiv (\pi \cdot X)(\pi \cdot Y) & \pi \cdot \lambda X.(XY) &\equiv \lambda X.X\pi \cdot Y \\ \pi \cdot \lambda Y.\lambda X.(XY) &\equiv \lambda Y.\lambda X.(XY). \end{aligned}$$

$Y \notin fv(t)$ in the clause for $(\lambda Y.r)[X := t]$ can be guaranteed by renaming Y .

The definitions of $r[X := t]$ and $\pi \cdot r$ are intertwined. This is due to the clause for $\pi \cdot (\lambda X.r)$. The proof that $\pi \cdot r$ and $r[X := t]$ are well-defined is routine and we omit it. It uses a notion of **depth** of a term, which will be useful later:

$$\begin{aligned} \text{depth}(a) &= 1 & \text{depth}(\pi \cdot X) &= 1 & \text{depth}(\lambda a.r) &= 1 + \text{depth}(r) \\ \text{depth}(\lambda X.r) &= 1 + \text{depth}(r) & \text{depth}(r'r) &= \text{depth}(r') + \text{depth}(r) \end{aligned}$$

Lemma 3 $r[X := \pi \cdot X][X := \pi' \cdot X] \equiv r[X := (\pi \circ \pi') \cdot X]$

Lemma 4 $\pi \cdot (\pi' \cdot r) \equiv (\pi \circ \pi') \cdot r$

Lemma 5 $\pi \cdot (r\sigma) \equiv (\pi \cdot r)\sigma$

Proof We prove the result for $\sigma = [Y := u]$ by induction on r . We consider just the case of $\lambda X.r$: α -converting X if necessary, assume $X \notin fv(u)$. Then:

$$\begin{aligned} (\pi \cdot \lambda X.r)[Y := u] &\equiv \lambda X.(\pi \cdot r[X := \pi^{-1} \cdot X][Y := u]) \\ \pi \cdot ((\lambda X.r)[Y := u]) &\equiv \pi \cdot (\lambda X.r[Y := u]) \equiv \lambda X.(\pi \cdot r[X := \pi^{-1} \cdot X][Y := u]). \end{aligned}$$

□

Lemma 6 $\text{depth}(r) = \text{depth}(\pi \cdot r)$.

3 Freshness and reductions

Definition 7 A **freshness** is a pair $a\#r$. Call $a\#X$ a **primitive freshness**. Call a finite set of primitive freshnesses Δ a **freshness context**. We may drop set brackets, for example writing $\{a\#X, b\#X\}$ as $a\#X, b\#X$ and writing $\Delta, a\#X$ for $\Delta \cup \{a\#X\}$. We may also write $a\#X, b\#X$ as $a, b\#X$. Figure 2 gives freshnesses a notion of derivation.

The notion of nominal freshness is well-discussed in the literature [13, 20, 16]. Intuitively, $a\#r$ corresponds with ‘ $a \notin fv(r)$ ’, read ‘ a is abstracted/not free in r ’. In the presence of unknowns, which can be instantiated (substituted in a possibly capturing manner) to any term, the notion of ‘free variables’ is replaced by a notion of freshness which may depend on freshness assumptions on unknowns. For example:

$$\frac{}{a\#X, a\#Y \vdash a\#X} \text{(a\#X)} \quad \frac{}{a\#X, a\#Y \vdash a\#Y} \text{(a\#X)} \quad \frac{}{a\#X \vdash a\#\lambda a.X} \text{(a\#\lambda a)}$$

$$\frac{}{a\#X, a\#Y \vdash a\#XY} \text{(a\#\lambda X)} \quad \frac{}{a\#X \vdash a\#\lambda a.X} \text{(a\#\lambda X)}$$

$$\frac{}{a\#Y \vdash b\#\lambda X.(X(b\ a) \cdot Y)} \text{(a\#\lambda X)}$$

We may write ‘ $\Delta \vdash a\#t$ ’ as shorthand for ‘ $\Delta \vdash a\#t$ is derivable’. We use this shorthand for other derivable assertions including \rightarrow , \rightarrow^* , \Rightarrow , \Rightarrow^* , defined later.

(a $\#\lambda X$) does not implement the denotational notion of freshness for functions from nominal sets [13], with intuition “ $(b\ a) \cdot \lambda X.r$ equals $\lambda X.r$ for fresh b ”. Informally, a is fresh for the function ‘ $\lambda X.\lambda a.X$ ’ in the sense of (a $\#\lambda X$), but not fresh in the sense of nominal sets. (a $\#\lambda X$) is a strictly weaker condition; a discussion of denotations is for a later paper.

(a $\#\lambda X$) is syntax directed, in the sense that $depth(\pi \cdot \lambda X.r) = depth(r) + 1 > depth(r) = depth(\pi \cdot r)$ (see Lemma 6).

Definition 8 Write $\Delta \vdash - \triangleright -$ for a binary relation on terms parameterised on Δ . Call $\Delta \vdash - \triangleright -$ a **congruence** when it is closed under the rules in Figure 3.

Remark 9 (\triangleright_α) builds in the nominal term notion of α -equivalence for level 1 variables (see [10, Lemma 3.2]). A better name for congruence might be ‘congruent α -equivalence’, but we just write ‘congruence’.

Definition 10 Write $level(t) = 2$ if t mentions a level 2 variable, free or bound. Otherwise, write $level(t) = 1$. For example $level((a\ b) \cdot X) = level(\lambda X.X) = 2$ and $level(a) = level(\lambda a.a) = 1$.

Write $a \notin \Delta$ when $a\#X \notin \Delta$ for all level 2 variables X . Write $X \notin \Delta$ when $a\#X \notin \Delta$ for all level 1 variables a .

We can now define our reduction relation:

Definition 11 Let $\Delta \vdash - \rightarrow -$ be the least congruence closed under the rules in Figure 4.

Recall that $r[a \mapsto t]$ is sugar for $(\lambda a.r)t$. Note that level 2 β -reduction is a single step $[X := t]$, level 1 β -reduction is not. Definition 22 gives the single step level 1 β -reduction. There are no level 3 variables in this particular calculus and therefore no special need arises to break level 2 β -reduction into smaller steps.

Example reductions are in the Introduction. Note that capture-avoiding substi-

$$\begin{aligned}
 a[X := t] &\equiv a & (\pi \cdot X)[X := t] &\equiv \pi \cdot t & (\pi \cdot Y)[X := t] &\equiv \pi \cdot Y \\
 (\lambda a.r)[X := t] &\equiv \lambda a.(r[X := t]) & (r'r)[X := t] &\equiv (r'[X := t])(r[X := t]) \\
 (\lambda Y.r)[X := t] &\equiv \lambda Y.(r[X := t]) & (Y \notin fv(t)) \\
 \pi \cdot a &\equiv \pi(a) & \pi \cdot (\pi' \cdot X) &\equiv (\pi \circ \pi') \cdot X & \pi \cdot (r'r) &\equiv (\pi \cdot r')(\pi \cdot r) \\
 \pi \cdot (\lambda a.r) &\equiv \lambda \pi(a).(\pi \cdot r) & \pi \cdot (\lambda X.r) &\equiv (\lambda X.\pi \cdot r[X := \pi^{-1} \cdot X])
 \end{aligned}$$

Figure 1. Level 2 substitution and level 1 permutation action (Definition 2)

$$\begin{array}{c}
 \frac{}{\Delta \vdash a \# b} (\mathbf{a} \# \mathbf{b}) \quad \frac{}{\Delta \vdash a \# \lambda a.r} (\mathbf{a} \# \lambda \mathbf{a}) \quad \frac{\Delta \vdash a \# r}{\Delta \vdash a \# \lambda b.r} (\mathbf{a} \# \lambda \mathbf{b}) \quad \frac{\pi^{-1}(a) \# X \in \Delta}{\Delta \vdash a \# \pi \cdot X} (\mathbf{a} \# \mathbf{X}) \\
 \frac{\Delta \vdash a \# r' \quad \Delta \vdash a \# r}{\Delta \vdash a \# r' r} (\mathbf{a} \# \mathbf{app}) \quad \frac{\Delta, a \# X \vdash \pi(a) \# \pi \cdot r \quad (X \notin \Delta)}{\Delta \vdash \pi(a) \# \pi \cdot (\lambda X.r)} (\mathbf{a} \# \lambda \mathbf{X})
 \end{array}$$

Figure 2. Freshness entailment (Definition 7)

$$\begin{array}{c}
 \frac{\Delta \vdash r \triangleright s}{\Delta \vdash \lambda a.r \triangleright \lambda a.s} (\triangleright \lambda \mathbf{a}) \quad \frac{\Delta \vdash r \triangleright s \quad \Delta \vdash t \triangleright u}{\Delta \vdash rt \triangleright su} (\triangleright \mathbf{app}) \\
 \frac{\Delta \vdash r \triangleright s \quad (X \notin \Delta)}{\Delta \vdash \lambda X.r \triangleright \lambda X.s} (\triangleright \lambda \mathbf{X}) \quad \frac{\Delta \vdash r \triangleright s \quad \Delta \vdash a \# s \quad \Delta \vdash b \# s}{\Delta \vdash r \triangleright (a b) \cdot s} (\triangleright \alpha)
 \end{array}$$

Figure 3. Congruence rules (Definition 8)

$$\begin{array}{c}
 \frac{}{\Delta \vdash a[a \mapsto t] \rightarrow t} (\beta \mathbf{a}) \quad \frac{\Delta \vdash a \# r}{\Delta \vdash r[a \mapsto t] \rightarrow r} (\beta \#) \quad \frac{}{\Delta \vdash (\lambda X.r)t \rightarrow r[X := t]} (\beta \mathbf{2}) \\
 \frac{\Delta \vdash a \# r}{\Delta \vdash (r'r)[a \mapsto t] \rightarrow (r'[a \mapsto t])r} (\beta \mathbf{2app}) \quad \frac{level(r') = 1}{\Delta \vdash (r'r)[a \mapsto t] \rightarrow (r'[a \mapsto t])(r[a \mapsto t])} (\beta \mathbf{1app}) \\
 \frac{\Delta \vdash b \# t}{\Delta \vdash (\lambda b.r)[a \mapsto t] \rightarrow \lambda b.(r[a \mapsto t])} (\beta \lambda \mathbf{1}) \quad \frac{(X \notin fv(t))}{\Delta \vdash (\lambda X.r)[a \mapsto t] \rightarrow \lambda X.(r[a \mapsto t])} (\beta \lambda \mathbf{2})
 \end{array}$$

 Figure 4. Reductions of two-and-a-halfth order λ -calculus (Definition 11)

$$\begin{array}{c}
 \frac{}{\Delta \vdash a \Rightarrow a} (\mathbf{Pa}) \quad \frac{}{\Delta \vdash (\pi \cdot X) \Rightarrow (\pi \cdot X)} (\mathbf{PX}) \quad \frac{\Delta \vdash r \Rightarrow s \quad \Delta \vdash t \Rightarrow u}{\Delta \vdash rt \Rightarrow su} (\mathbf{Papp}) \\
 \frac{\Delta \vdash r \Rightarrow s}{\Delta \vdash \lambda a.r \Rightarrow \lambda a.s} (\mathbf{P} \lambda \mathbf{a}) \quad \frac{\Delta \vdash r \Rightarrow s}{\Delta \vdash \lambda X.r \Rightarrow \lambda X.s} (\mathbf{P} \lambda \mathbf{X}) \\
 \frac{\Delta \vdash r \Rightarrow s \quad \Delta \vdash t \Rightarrow u \quad \Delta \vdash su \xrightarrow{R} v}{\Delta \vdash rt \Rightarrow v} (\mathbf{Papp} \varepsilon) \quad \frac{\Delta \vdash r \Rightarrow s \quad \Delta \vdash a \# s \quad \Delta \vdash b \# s}{\Delta \vdash r \Rightarrow (a b) \cdot s} (\mathbf{P} \alpha)
 \end{array}$$

Figure 5. The parallel reduction relation (Definition 35)

tution is as usual within a single level:

$$\begin{aligned} (\lambda b.(\lambda a.b))a &\rightarrow \lambda a'.(b[b \mapsto a]) \rightarrow \lambda a'.a \\ (\lambda Y.(\lambda X.Y))X &\rightarrow \lambda X'.(Y[Y := X]) \equiv \lambda X'.X \end{aligned}$$

Remark 12 $(\beta 1\text{app})$ and $(\beta 2\text{app})$ can be viewed as two parts of a single rule; if $\text{level}(r) = 1$ and $\Delta \vdash b \# t$ we may join $(\beta 1\text{app})$ and $(\beta 2\text{app})$ with $(\beta \#)$.

Suppose we allow $(r'r)[b \mapsto u] \xrightarrow{\text{FALSE}} (r'[b \mapsto u])(r[b \mapsto u])$. Then:

$$\begin{aligned} ((\lambda X.(a b) \cdot X)b)[b \mapsto c] &\rightarrow ((a b) \cdot X)[X := b][b \mapsto c] \equiv a[b \mapsto c] \rightarrow a \\ ((\lambda X.(a b) \cdot X)b)[b \mapsto c] &\rightarrow (\lambda X.(a b) \cdot X)[b \mapsto c](b[b \mapsto c]) \rightarrow \dots \rightarrow c \end{aligned}$$

a and c cannot be joined. So, without conditions confluence fails.

To close a divergence in $((\lambda X.r)t)[b \mapsto u]$ between $(\beta 2)$ and (FALSE) we must join $r[X := t][b \mapsto u]$ and $r[b \mapsto u][X := t[b \mapsto u]]$ where $X \notin \text{fv}(u)$ and $X \notin \text{fv}(t)$ and where the freshness context Δ is such that $\Delta \vdash b \# u$. It is not possible to join this in general — take $r \equiv (a b) \cdot X$, $t \equiv a$, and $u \equiv c$. However, it is possible to join this if $\text{level}(r) = 1$ or if $\Delta \vdash b \# t$.

In the rest of this section we prove soundness results; that freshness and reduction are preserved under instantiating unknowns (Lemma 14 and Theorem 18), and that freshness is preserved under reduction (Theorem 16):

Definition 13 A **substitution** σ is a finitely supported map from level 2 variables to terms. ‘Finitely supported’ means that $\sigma(X) \equiv \text{id} \cdot X$ for all but finitely many variables. These act on terms $t\sigma$ in the natural way extending the action of $[X := t]$ from Definition 2. We extend this action pointwise as convenient; in particular we write $\Delta\sigma$ for $\{a\#\sigma(X) \mid a\#X \in \Delta\}$.

If \mathcal{F} is a set of freshnesses write $\Delta' \vdash \mathcal{F}$ for ‘ $\Delta' \vdash a\#r$ for every $a\#r \in \mathcal{F}$ ’. Lemma 14 is soundness for substitutions compatible with the freshness context:

Lemma 14 *If $\Delta' \vdash \Delta\sigma$ then $\Delta \vdash a\#r$ implies $\Delta' \vdash a\#(r\sigma)$.*

Proof By induction on r . We consider two cases:

- The case of λa . $\Delta' \vdash a\#(\lambda a.r)\sigma$ always, by $(\text{a}\#\lambda\text{a})$.
- The case of λX . Suppose $\Delta, a\#X \vdash \pi(a)\#\pi \cdot r$ is derivable, where $X \notin \Delta$. Suppose the inductive hypothesis of the derivation. Renaming X if necessary we may assume that $X \notin \Delta'$ and $\sigma(X) \equiv X$. By inductive hypothesis $\Delta', a\#X \vdash \pi(a)\#(\pi \cdot r)\sigma$ is derivable. By Lemma 5, $(\pi \cdot r)\sigma \equiv \pi \cdot (r\sigma)$. We extend the derivation with $(\text{a}\#\lambda X)$ to obtain a derivation of $\Delta' \vdash \pi(a)\#\pi \cdot (\lambda X.(r\sigma))$. We then have $\pi \cdot (\lambda X.(r\sigma)) \equiv \pi \cdot ((\lambda X.r)\sigma) \equiv (\pi \cdot \lambda X.r)\sigma$ (the final \equiv uses Lemma 5) and the result follows.

□

Lemma 15 $\Delta \vdash a\#r$ implies $\Delta \vdash \pi(a)\#\pi \cdot r$.

Proof By induction on derivations, we consider just one case:

- The case $(\text{a}\#\lambda X)$. Suppose $\Delta, a\#X \vdash \pi(a)\#\pi \cdot r$. By inductive hypothesis $\Delta, a\#X \vdash \pi'(\pi(a))\#\pi' \cdot (\pi \cdot r)$, so $\Delta, a\#X \vdash (\pi' \circ \pi)(a)\#(\pi' \circ \pi) \cdot r$ by Lemma 4.

Using $(a\#\lambda X)$ we derive $\Delta \vdash (\pi' \circ \pi)(a)\#(\pi' \circ \pi) \cdot \lambda X.r$. We use Lemma 4 to deduce $\Delta \vdash \pi'(\pi(a))\#\pi' \cdot (\pi \cdot \lambda X.r)$.

□

Theorem 16 is ‘subject-reduction for freshness’:

Theorem 16 *If $\Delta \vdash r \rightarrow s$ then $\Delta \vdash a\#r$ implies $\Delta \vdash a\#s$.*

Proof By induction on derivations. We consider a selection of cases:

- The case $(\beta 2app)$, assuming $\Delta \vdash b\#r$. Suppose $\Delta \vdash b\#r$ and $\Delta \vdash (r'r)[b \mapsto u] \rightarrow (r'[b \mapsto u])r$. If $\Delta \vdash a\#(r'r)[b \mapsto u]$ then $\Delta \vdash a\#r'$, $\Delta \vdash r$, and $\Delta \vdash u$. It follows that $\Delta \vdash a\#(r'[b \mapsto u])r$. Similarly if $\Delta \vdash b\#(r'r)[b \mapsto u]$. Similarly for $(\beta 1app)$.
- The case $(\beta 2)$. Suppose that $\Delta \vdash (\lambda X.r)t \rightarrow r[X := t]$. If $\Delta \vdash a\#(\lambda X.r)t$ then $\Delta \vdash a\#t$ and $\Delta, a\#X \vdash a\#r$. It follows by Lemma 14 that $\Delta \vdash a\#r[X := t]$ as required.
- The case $(\triangleright\alpha)$. Suppose that $\Delta \vdash r \rightarrow s$ and $\Delta \vdash a\#s$ and $\Delta \vdash b\#s$. $\Delta \vdash a\#s$ and $\Delta \vdash b\#s$ by assumption. If $\Delta \vdash c\#r$ then by inductive hypothesis $\Delta \vdash c\#s$, and so $\Delta \vdash c\#(a b) \cdot s$ by Lemma 15.

□

Lemma 17 *If $\text{level}(r) = 1$ then $\text{level}(r\sigma) = 1$.*

Theorem 18 does for \rightarrow what Lemma 14 did for freshness; it is a form of soundness under substitutions compatible with the freshness contexts:

Theorem 18 *If $\Delta' \vdash \Delta\sigma$ then $\Delta \vdash r \rightarrow s$ implies $\Delta' \vdash r\sigma \rightarrow s\sigma$.*

Proof By induction on derivations. We present a selection of cases.

- The case $(\beta\#)$. Suppose $\Delta \vdash a\#r$. By Theorem 16 $\Delta' \vdash a\#r\sigma$ if $\Delta \vdash a\#r$. It follows by $(\beta\#)$ that $\Delta' \vdash r[a \mapsto t] \rightarrow r$.
- The case $(\beta 1app)$. We have $(r'r)[a \mapsto t]\sigma \equiv (r'\sigma)(r\sigma)[a \mapsto t\sigma]$. By assumption $\text{level}(r') = 1$ so by Lemma 17, $\text{level}(r'\sigma) = 1$ and $\Delta \vdash (r'\sigma)(r\sigma)[a \mapsto t] \rightarrow (r'[a \mapsto t])(r[a \mapsto t])\sigma$ by $(\beta 1app)$. The result follows.
- The case $(\beta\lambda 1)$. By Theorem 16 if $\Delta \vdash b\#t$ then $\Delta' \vdash b\#t\sigma$. It follows by $(\beta\lambda 1)$ that $\Delta' \vdash (\lambda b.r\sigma)[a \mapsto t\sigma] \rightarrow \lambda b.(r\sigma[a \mapsto t\sigma])$.

□

4 Confluence

Our calculus can be viewed as two λ -calculi (level 1, level 2) glued together by a nominal treatment of the interaction of level 1 α -equivalence with level 2 variables. The proof of confluence also splits in two proofs, plus some ‘proof-glue’.

4.1 Level 1 reductions

Definition 19 Let (level1) be the set $\{(\beta a), (\beta\#), (\beta 1app), (\beta 2app), (\beta\lambda 1), (\beta\lambda 2)\}$ of rules from Figure 4. Let $\Delta \vdash r \xrightarrow{(\text{level1})} s$ be the least congruence closed under the rules in (level1) .

Definition 20 Say that Δ^+ **freshly extends** Δ when $\Delta^+ = \Delta \cup \Delta'$ where for all $c \# X \in \Delta'$, $c \notin \Delta$ and $X \in \Delta$ (so Δ^+ ‘extends Δ with some fresh atoms’).

Definition 21 Write $\Delta \not\vdash a \# r$ when $\Delta \vdash a \# r$ is *not* derivable.

Choose some fixed but arbitrary order on atoms. If S is a finite set of atoms say ‘for the first atom not in S ’ to mean ‘for the least atom, in our fixed but arbitrary order, that is not an element of S ’.¹

Definition 22 For a given Δ , define a **level 1 substitution action** $r[a := t]$ as below; earlier rules take priority.

- $r[a := t] \equiv r$ if $\Delta \vdash a \# r$.
- $a[a := t] \equiv t$.
- $(\pi \cdot X)[a := t] \equiv (\pi \cdot X)[a \mapsto t]$.
- $(r'r)[a := t] \equiv (r'[a := t])(r[a := t])$ provided $\text{level}(r') = 1$.
- $(r'r)[a := t] \equiv r'[a := t]r$ provided $\Delta \vdash a \# r$.
- $(r'r)[a := t] \equiv (r'r)[a \mapsto t]$ if $\Delta \not\vdash a \# r$ and $\text{level}(r') = 2$.
- $(\lambda b.r)[a := t] \equiv \lambda b.(r[a := t])$ provided $\Delta \vdash b \# t$.
- $(\lambda b.r)[a := t] \equiv (\lambda c.((b \ c) \cdot r)[a := t])$ if $\Delta \not\vdash b \# t$. Here c is the first atom not mentioned in r , a , b , or t , such that $\Delta \vdash c \# r$ and $\Delta \vdash c \# t$, if such a c exists. Thus we α -convert the level 1 λb to a fresh λc , but in the presence of level 2 variables we use an explicit permutation and explicitly fresh level 1 variable, in nominal terms style.
- $(\lambda b.r)[a := t] \equiv (\lambda b.r)[a \mapsto t]$ otherwise.
- $(\lambda b.r)[a := t] \equiv (\lambda b.r)[a := t]$ if $\Delta \not\vdash b \# t$.
- $(\lambda X.r)[a := t] \equiv \lambda X.(r[a := t])$, renaming X if needed so that $X \notin t$.

Then for that Δ , let r^* be defined as follows; earlier rules have priority, read left-to-right then top-to-bottom (Δ will always be clear from the context):

$$\begin{aligned} a^* &\equiv a & (\pi \cdot X)^* &\equiv \pi \cdot X & (\lambda a.r)^* &\equiv \lambda a.r^* & (\lambda X.r)^* &\equiv \lambda X.r^* & (X \notin \Delta) \\ (r'[a \mapsto t])^* &\equiv r'^*[a := t^*] & ((\lambda X.r)t)^* &\equiv r^*[X := t^*] & (r'r)^* &\equiv r'^*r^* \end{aligned}$$

We can always rename X to ensure $X \notin \Delta$.

- If $\Delta = \{a \# X\}$ then $X[a := b] \equiv X$ and $(X[a := b])^* \equiv X$.
- If $\Delta = \{\}$ then $X[a := b] \equiv X[a \mapsto b]$.

Intuitively, r^* is a canonical form of r and $r[a := t]$ one of $r[a \mapsto t]$. This is not necessarily a normal form (which may not exist) but garbage is collected and substitutions (level 1 β -reducts) are pushed into r . Level 2 β -reducts are unreduced.

Definition 23 Call $\Delta \vdash - \triangleright -$ **reflexive** when $\Delta \vdash r \triangleright r$ always, and **transitive** when $\Delta \vdash r \triangleright r'$ and $\Delta \vdash r' \triangleright r''$ imply $\Delta \vdash r \triangleright r''$. Write $\Delta \vdash - \triangleright^* -$ for the least transitive reflexive relation containing $\Delta \vdash - \triangleright -$.

Definition 24 Suppose that Δ and Δ^+ are freshness contexts. Say Δ^+ **freshly extends** Δ when there exists some Δ' such that: $\Delta \cap \Delta' = \emptyset$ (in words: Δ and Δ'

¹ This is not necessary for expressing the proofs to follow but it is convenient. We will never make infinitely many choices of fresh atom, and nowhere will the truth of a result depend on our choice of order.

are disjoint), $\Delta^+ = \Delta \cup \Delta'$, for all $c \# X \in \Delta'$ it is the case that $c \notin \Delta$, and for all $c \# X \in \Delta'$ it is the case that $X \in \Delta$.

Intuitively, Δ^+ ‘extends Δ with some fresh atoms’.

Lemma 25 *For every Δ , r , a , and t there exists a Δ^+ freshly extending Δ such that $\Delta^+ \vdash r[a \mapsto t] \xrightarrow{(\text{level1})^*} r[a := t]$ ($r[a := t]$ calculated for Δ^+ .)*

Proof Each rule in Definition 22 is emulated by a rule in (level1). We may need some fresh atoms to α -convert. \square

Lemma 26 $\text{depth}(r) = \text{depth}(r[X := \pi \cdot Y])$

Lemma 27 (i) $(\pi \cdot r)^* \equiv \pi \cdot r^*$

(ii) *If $(\pi \cdot t)^* \equiv \pi \cdot t^*$ for all π , then $(r[X := t])^* \equiv r^*[X := t^*]$*

Proof By induction on $\text{depth}(r)$, using Lemma 6 and Lemma 26. \square

Theorem 28 states that terms reduce to their canonical form; it enters via Lemma 25 that we may need some fresh atoms, to α -convert.

Theorem 28 *For every Δ and r there exists a Δ^+ freshly extending Δ such that $\Delta^+ \vdash r \xrightarrow{(\text{level1})^*} r^*$ (r^* calculated for Δ^+ .)*

Proof By induction on r . For example, $a^* \equiv a$ and $(\lambda X.r)^* \equiv \lambda X.r^*$. The special case $(\lambda X.r)t$ requires Lemma 27, and the case $(\lambda a.r)t$ requires Lemma 25. \square

Lemma 29 *Fix Δ . Then $\Delta \vdash a \# s$ implies $\Delta \vdash a \# s^*$. (s^* calculated for Δ .)*

Proof By induction on derivations, using Lemma 27. \square

Lemma 30 *If $\Delta \vdash r \xrightarrow{(\text{level1})} s$ and $\Delta' \vdash \Delta[X := \pi \cdot X]$, then $\Delta' \vdash r[X := \pi \cdot X] \xrightarrow{(\text{level1})} s[X := \pi \cdot X]$.*

Proof By induction on derivations, using Lemma 26, Lemma 14 and Lemma 5. \square

Lemma 31 *If $\Delta \vdash r \xrightarrow{(\text{level1})} s$ then $\Delta \vdash \pi \cdot r \xrightarrow{(\text{level1})} \pi \cdot s$.*

Proof By induction on derivations, using Lemma 15 and Lemma 30. \square

Theorem 32, along with Theorem 28 above, makes up the diagram in Theorem 33:

Theorem 32 *For every Δ , r , and s , there exists a Δ^+ freshly extending Δ such that $\Delta \vdash r \xrightarrow{(\text{level1})} s$ implies $\Delta^+ \vdash s^* \xrightarrow{(\text{level1})^*} r^*$. (r^* and s^* calculated for Δ^+ .)*

Proof By induction on the derivation of $\Delta \vdash r \xrightarrow{(\text{level1})} s$. We sketch some cases:

- The case $(\beta 2\text{app})$ where $\Delta \vdash a \# r$. We use Lemma 29 to conclude that $\Delta^+ \vdash a \# r^*$ in the case where $\text{level}(r') = 1$.

$$\begin{aligned} \Delta \vdash (r'r)[a \mapsto t] &\rightarrow (r'[a \mapsto t])r \\ ((r'r)[a \mapsto t])^* &\equiv (r'^*[a := t^*])(r^*[a := t^*]) \equiv (r'^*[a := t^*])(r^*) \quad \text{if } \text{level}(r') = 1 \\ ((r'r)[a \mapsto t])^* &\equiv (r'^*[a := t^*])(r^*) \quad \text{if } \text{level}(r') = 2 \end{aligned}$$

– The case $(\beta 1\text{app})$ where $\text{level}(r') = 1$.

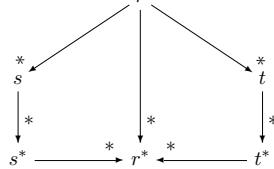
$$\begin{aligned} \Delta \vdash (r'r)[a \mapsto t] &\rightarrow (r'[a \mapsto t])(r[a \mapsto t]) \\ ((r'[a \mapsto t])(r[a \mapsto t]))^* &\equiv (r'^*[a := t^*])(r^*[a := t^*]) \equiv ((r'r)[a \mapsto t])^* \end{aligned}$$

– The case $(\beta\lambda 2)$. Suppose $X \notin t$, which can be guaranteed. Then $\Delta \vdash (\lambda X.r)[a \mapsto t] \xrightarrow{(\text{level1})} \lambda X.(r[a \mapsto t])$. We have $((\lambda X.r)[a \mapsto t])^* \equiv \lambda X.r^*[a := t^*] \equiv (\lambda X.(r[a \mapsto t]))^*$, and we have the result.

– The case $(\triangleright\alpha)$. Suppose $s \equiv (a b) \cdot s'$. Suppose $\Delta \vdash r \rightarrow s'$ and $\Delta \vdash a \# s'$ and $\Delta \vdash b \# s'$. By inductive hypothesis, $\Delta^+ \vdash s'^* \xrightarrow{(\text{level1})^*} r^*$. By Lemma 29 $\Delta^+ \vdash a \# s'^*$ and $\Delta^+ \vdash b \# s'^*$. By Theorem 16 it follows that $\Delta^+ \vdash a \# r^*$ and $\Delta^+ \vdash b \# r^*$. By $(\triangleright\alpha)$ it follows that $\Delta^+ \vdash s'^* \xrightarrow{(\text{level1})^*} (a b) \cdot (r^*)$. By Lemmas 31 and 4 it follows that $\Delta^+ \vdash (a b) \cdot (s'^*) \xrightarrow{(\text{level1})^*} r^*$. By Lemma 27 $\Delta^+ \vdash s^* \xrightarrow{(\text{level1})^*} r^*$ as required.

□

Theorem 33 (level1) is confluent.

Proof From Theorem 28 and Theorem 32: 

□

4.2 Level 2

Definition 34 Let (level2) be the set $\{(\beta 2), (\beta\lambda 2)\}$ of rules from Figure 4. Let $\Delta \vdash r \xrightarrow{(\text{level2})} s$ be the least congruence closed under the rules in (level2).

Note that $\xrightarrow{(\text{level1})}$ and $\xrightarrow{(\text{level2})}$ have $(\beta\lambda 2)$ in common. This is necessary for confluence to work, see Lemma 46.

Definition 35 Define a **parallel reduction relation**, \Rightarrow , by the rules in Figure 5. Here, R ranges over rules in (level2) (Definition 34).

Lemma 36 $\Delta \vdash r \Rightarrow s$ implies $\Delta \vdash r \xrightarrow{(\text{level2})^*} s$. As a corollary, $\Delta \vdash r \Rightarrow^* s$ implies $\Delta \vdash r \xrightarrow{(\text{level2})^*} s$.

Lemma 37 $\Delta \vdash r \xrightarrow{(\text{level2})} s$ implies $\Delta \vdash r \Rightarrow s$. As a corollary, $\Delta \vdash r \xrightarrow{(\text{level2})^*} s$ implies $\Delta \vdash r \Rightarrow^* s$

Proof It suffices to show that every possible (level2)-reduction can be mirrored by a parallel reduction. This is routine. The second part follows from the first part and an easy proof that $\Delta \vdash r \Rightarrow r$ (\Rightarrow is reflexive). □

Theorem 38 $\Delta \vdash r \Rightarrow^* s$ if and only if $\Delta \vdash r \xrightarrow{(\text{level2})^*} s$

Proof From Lemmas 36 and 37. □

Lemma 39 If $\Delta \vdash r \xrightarrow{(\text{level2})} s$ then $\Delta \vdash \pi \cdot r \xrightarrow{(\text{level2})} \pi \cdot s$.

Proof By induction on derivations. We mention two cases:

– The case $(\triangleright\alpha)$. By inductive hypothesis, we have $\Delta \vdash \pi \cdot r \rightarrow \pi \cdot s$ and from Lemma 15 we have $\Delta \vdash \pi(a) \# \pi \cdot s$ and $\Delta \vdash \pi(b) \# \pi \cdot s$. Using $(\triangleright\alpha)$ we obtain $\Delta \vdash (\pi \cdot r) \rightarrow (\pi(a) \pi(b)) \cdot (\pi \cdot s)$ and the result follows via elementary properties of permutations.

– The case $(\beta 2)$. Using Lemma 3, we have:

$$\begin{aligned}\pi \cdot ((\lambda X.r)t) &\equiv (\lambda X.\pi \cdot r[X := \pi^{-1} \cdot X])(\pi \cdot t) \rightarrow (\pi \cdot r[X := \pi^{-1} \cdot X])[X := \pi \cdot t] \\ &\equiv \pi \cdot (r[X := \pi^{-1} \cdot X][X := \pi \cdot t]) \equiv (\pi \cdot r)[X := t] \equiv \pi \cdot (r[X := t])\end{aligned}$$

□

Lemma 40 *If $\Delta \vdash r \Rightarrow s$ and $\Delta' \vdash \Delta[X := \pi \cdot X]$ then $\Delta' \vdash r[X := \pi \cdot X] \Rightarrow s[X := \pi \cdot X]$.*

Proof By induction on derivations using Lemma 5, Theorem 18 and Lemma 14. □

Lemma 41 *If $\Delta \vdash r \Rightarrow s$ then $\Delta \vdash \pi \cdot r \Rightarrow \pi \cdot s$.*

Proof The proof is by induction on derivations. We present a selection of cases:

- The case **(P λ X)**. By inductive hypothesis, we have $\Delta \vdash \pi \cdot r \Rightarrow \pi \cdot s$. From this and Lemma 40 we can obtain $\Delta \vdash (\pi \cdot r)[X := \pi^{-1} \cdot X] \Rightarrow (\pi \cdot s)[X := \pi^{-1} \cdot X]$. Using **(P λ X)**, we have $\Delta \vdash \pi \cdot \lambda X.r \Rightarrow \pi \cdot \lambda X.s$.
- The case **(Papp ε)**. By inductive hypothesis, we have $\Delta \vdash \pi \cdot r \Rightarrow \pi \cdot s$ and $\Delta \vdash \pi \cdot t \Rightarrow \pi \cdot u$ and that $\Delta \vdash (\pi \cdot s)(\pi \cdot u) \xrightarrow{\text{(level2)}} \pi \cdot v$, using Lemma 39. Then $\Delta \vdash (\pi \cdot r)(\pi \cdot t) \Rightarrow \pi \cdot v$ is derivable, and the result follows.
- The case **(P α)**. By inductive hypothesis, $\Delta \vdash \pi \cdot r \Rightarrow \pi \cdot s$, and by Lemma 15, $\Delta \vdash \pi(a) \# \pi \cdot s$ and $\Delta \vdash \pi(b) \# \pi \cdot s$. Then $\Delta \vdash \pi \cdot r \Rightarrow (\pi(a) \ \pi(b)) \cdot (\pi \cdot s)$ is derivable and the result follows by elementary properties of permutations.

□

Lemma 42 *$\Delta \vdash r \Rightarrow s$ and $\Delta \vdash t \Rightarrow u$ imply $\Delta \vdash r[X := t] \Rightarrow s[X := u]$.*

Proof The proof is by induction on the derivation of $\Delta \vdash r \Rightarrow s$ (Figure 5). We assume that $\Delta \vdash t \Rightarrow u$.

- The case **(P X)**. By Lemma 41, and by the fact that $(\pi \cdot Y)[X := t] \equiv \pi \cdot Y$.
- The case **(Papp ε)**. Suppose $\Delta \vdash r \Rightarrow s$ and $\Delta \vdash v \Rightarrow w$ and $\Delta \vdash sw \xrightarrow{\text{(level2)}} v$. Then $\Delta \vdash r[X := t] \Rightarrow s[X := u]$ and $\Delta \vdash v[X := t] \Rightarrow w[X := u]$ are both derivable, and from Theorem 18, we have $\Delta \vdash s[X := u](w[X := u]) \rightarrow v[X := u]$. The result follows from **(Papp ε)**.
- The case **(P α)**. By inductive hypothesis, $\Delta \vdash r[X := t] \Rightarrow s[X := u]$, and by Lemma 14, $\Delta \vdash a \# s[X := u]$ and $\Delta \vdash b \# s[X := u]$. Extending with **(P α)**, we obtain $\Delta \vdash r[X := t] \Rightarrow (a \ b) \cdot (s[X := t])$. The result follows from Lemma 5.

□

Write ‘ $\Delta \vdash r \Leftarrow s \Rightarrow t$ ’ for ‘ $\Delta \vdash r \Rightarrow s$ and $\Delta \vdash r \Rightarrow t$ ’, and similarly for other reduction relations later.

Lemma 43 *$\Delta \vdash - \Rightarrow -$ satisfies the diamond property: If $\Delta \vdash r \Leftarrow s \Rightarrow t$ then there exists some u such that $\Delta \vdash r \Rightarrow u \Leftarrow t$.*

Proof We consider possible pairs of rules that can derive $\Delta \vdash s \Rightarrow r$ and $\Delta \vdash s \Rightarrow t$, where $r \not\equiv t$. We present the case of **(Papp)** and **(Papp ε)** for $(\beta 2)$. Suppose $\Delta \vdash (\lambda X.r')t' \Leftarrow (\lambda X.r)t \Rightarrow r''[X := t'']$ using **(Papp)**, and **(Papp ε)** for $(\beta 2)$. By inductive hypothesis, there exists an r''' such that $\Delta \vdash r' \Rightarrow r''' \Leftarrow r''$ and a t'''

such that $\Delta \vdash t' \Rightarrow t''' \Leftarrow t''$. Using Lemma 42 we derive $\Delta \vdash (\lambda X.r')t' \Rightarrow r'''[X := t'''] \Leftarrow r''[X := t'']$. \square

Theorem 44 $\xrightarrow{(\text{level2})}$ is confluent.

Proof An immediate corollary of Lemma 43 and Theorem 38. \square

4.3 Level 1 and level 2 reductions

Lemma 45 $\Delta \vdash r \rightarrow s$ implies $\text{level}(s) \leq \text{level}(r)$, and so does $\Delta \vdash r \Rightarrow s$.

Lemma 46 $\Delta \vdash r \Leftarrow s \xrightarrow{(\text{level1})} t$ implies that $\Delta \vdash r \xrightarrow{(\text{level1})^*} u \Leftarrow t$. As a corollary, $\Delta \vdash r \Leftarrow s \xrightarrow{(\text{level1})^*} t$ implies $\Delta \vdash r \xrightarrow{(\text{level1})^*} u \Leftarrow t$.

Proof We assume $\Delta \vdash u \Rightarrow u'$, $\Delta \vdash t \Rightarrow t'$, and so on. We present some cases:

$\Delta \vdash (r''r'')[a \mapsto t'] \Leftarrow (r'r)[a \mapsto t] \rightarrow (r'[a \mapsto t])(r[a \mapsto t])$ when $\text{level}(r') = 1$.

This can be closed to $(r''[a \mapsto t'])(r''[a \mapsto t'])$; by Lemma 45 $\text{level}(r'') = 1$.

$\Delta \vdash (r''r'')[a \mapsto t'] \Leftarrow (r'r)[a \mapsto t] \rightarrow (r'[a \mapsto t])r$ when $\Delta \vdash a \# r$.

This can be closed to $(r''[a \mapsto t'])r''$.

$\Delta \vdash ((\lambda X.r')t')[b \mapsto u'] \Leftarrow ((\lambda X.r)t)[b \mapsto u] \rightarrow ((\lambda X.r)[b \mapsto u])t$ when $\Delta \vdash b \# t$.

This can be closed to $((\lambda X.r')[b \mapsto u'])t'$.

$\Delta \vdash r'[X := t'][b \mapsto u'] \Leftarrow ((\lambda X.r)t)[b \mapsto u] \rightarrow ((\lambda X.r)[b \mapsto u])t$ when $\Delta \vdash b \# t$.

This can be closed to $r'[X := t'][b \mapsto u']$ where $X \notin u$ which can be guaranteed; we require $(\beta\lambda 2)$ in (level2). \square

Lemma 47 If $\Delta \vdash r \xleftarrow{(\text{level1})} s \rightarrow^* t$, then $\Delta^+ \vdash r \rightarrow^* u \Leftarrow t$ for some suitably freshened context, Δ^+ . Similarly, if $\Delta \vdash r \xleftarrow{(\text{level2})} s \rightarrow^* t$, then $\Delta^+ \vdash r \rightarrow^* u \Leftarrow t$ for some suitable freshened context Δ^+ .

Proof Both claims follow by induction on the path length of $\Delta \vdash s \rightarrow^* t$ using Theorem 33 and Theorem 44 and Lemma 46. \square

Theorem 48 $\Delta \vdash - \rightarrow -$ (reduction with (level2) \cup (level1)) is confluent, in the following sense: if $\Delta \vdash r \rightarrow^* s$ and $\Delta \vdash r \rightarrow^* s'$ then there exists some Δ^+ freshly extending Δ , and some u , such that $\Delta^+ \vdash s \rightarrow^* u$ and $\Delta^+ \vdash s' \rightarrow^* u$.

Proof By a diagrammatic argument, using Lemma 47. \square

The ‘freshly extending’ part of Theorem 48 ensures we can α -rename λa with a permutation to guarantee the freshness precondition of $(\beta\lambda 1)$. In the presence of only a single level of variable we can ‘just rename’, and so we do not need to record the freshness of freshly generated variables relative to higher-level variables in a freshness context.

Recall Definition 23. Call $\Delta \vdash - \rightarrow -$ **symmetric** when $\Delta \vdash r \triangleright r'$ implies $\Delta \vdash r' \triangleright r$. Write $\Delta \vdash - = -$ for the least congruence closed under $\Delta \vdash - \rightarrow -$ that is also transitive, reflexive, and symmetric.

Corollary 49 $\Delta \vdash - = -$ is consistent. (There exist two terms which are not related by the transitive reflexive symmetric closure of $\Delta \vdash - \rightarrow -$.)

Proof $\lambda a. \lambda b. a$ and $\lambda a. \lambda b. b$ are two distinct terms, and they do not rewrite to a common term. By Theorem 48 the result follows. \square

5 Related and future work

Previous ‘nominal’ λ -calculi.

The NEW calculus of contexts and the λ -context calculus [6,8] are λ -calculi with more than one level of variable. These have a weak theory of α -equivalence far less powerful than that of nominal terms (they also have an infinite hierarchy of levels; combining this with nominal terms style α -equivalence is future work).

The lambda context calculus preserves strong normalisation. A variant of two-and-a-halfth order λ -calculus which preserves strong normalisation is possible using ideas from [8]. The proof of confluence is not harder. The result in this paper is more relevant for designing logics, where we trade off more reductions against weaker computational properties.

Capture-avoiding substitution as a nominal algebra with Mathijssen [9,12] used nominal terms syntax, with permutations and freshness; substitution corresponds to level 1 β -reducts. There is no level 2 λ -abstraction λX .

λ -calculi for capturing substitution.

The λ -calculus itself can emulate capturing substitution. Let r and t range over λ -terms: then the quote of the Introduction is emulated by ‘apply $\lambda x.((\lambda y.r)(yx))$ to $\lambda x.t$ ’. However, compositionality fails in the sense that the number of ‘extra’ λ -abstractions needed on t , and ‘extra’ applications needed on y , depend non-locally on the variables for which we authorise capture at the point(s) at which y occurs in r . See [17, Section 2] for further discussion.

λ -calculi exist with more than one level of variable, or with constructions with essentially the same intent; they are broadly called ‘calculi of contexts’. Calculi include ‘holes with binding power’ by Jojgov and Geuvers [15], two calculi of contexts λm and λM by Sato and others [19], further work also by Sato and others [18,14], and λc by Bognar [1, Section 2]. Two-and-a-halfth-order λ -calculus is specifically tailored to nominal terms and so fits into the authors’ own research programme, and it may offer other advantages too: a relatively simple syntax and the possibility to import other nominal research, from semantics [13,7] to implementation [21]. We have not yet built semantics or a type system for two-and-a-halfth order λ -calculus — but tools exist to do this in a principled way [7,4].

A thread of research exemplified by [17] manages capturing vs. non-capturing substitution inside a specially-designed logical framework. Our calculus uses levels; there is no (need for a) ‘wrapping’ in formal logic. Also, our level 2 variables are ‘open’ (instantiation captures unless a freshness condition forbids it) whereas context variables in [17] are ‘closed’ (variables that can be captured must be accounted for, in the type system).

Future work.

We intend to impose types and create a higher-order logic (this might have elements in common with the logical framework of [17]; a discussion will follow once

the logic is created). Nominal unification, nominal algebra, and one-and-a-halfth order logic [20,16,11] have already done much of the work but the universal quantification of unknowns X is implicit (there is no λX or $\forall X$). Denotations, presumably using nominal sets [13], are future work. We can also consider enriching our functional operational semantics with nominal unification, which is computationally more tractable than higher-order unification [20].

References

- [1] Mirna Bognar. *Contexts in Lambda Calculus*. PhD thesis, Vrije Universiteit Amsterdam, 2002.
- [2] James Cheney. Nominal logic and abstract syntax. *SIGACT News (logic column 14)*, 36(4):47–69, 2005.
- [3] James Cheney and Christian Urban. Alpha-prolog: A logic programming language with names, binding and alpha-equivalence. In Bart Demoen and Vladimir Lifschitz, editors, *Proc. of the 20th Int'l Conf. on Logic Programming (ICLP 2004)*, number 3132 in *LNCS*, pages 269–283. Springer-Verlag, 2004.
- [4] Maribel Fernández and Murdoch J. Gabbay. Curry-style types for nominal rewriting. *TYPES'06*, 2006.
- [5] Maribel Fernández and Murdoch J. Gabbay. Nominal rewriting. *Information and Computation*, 205(6):917–965, 2007.
- [6] Murdoch J. Gabbay. A NEW calculus of contexts. In *PPDP'05*, pages 94–105. ACM, 2005.
- [7] Murdoch J. Gabbay. A General Mathematics of Names. *Information and Computation*, 205:982–1011, July 2007.
- [8] Murdoch J. Gabbay and Stéphane Lengrand. The lambda-context calculus. *ENTCS*, 196:19–35, 2008.
- [9] Murdoch J. Gabbay and Aad Mathijssen. Capture-avoiding Substitution as a Nominal Algebra. In *ICTAC*, volume 4281 of *LNCS*, pages 198–212, 2006.
- [10] Murdoch J. Gabbay and Aad Mathijssen. A formal calculus for informal equality with binding. In *WoLLIC'07: 14th Workshop on Logic, Language, Information and Computation*, volume 4576 of *LNCS*, pages 162–176, 2007.
- [11] Murdoch J. Gabbay and Aad Mathijssen. One-and-a-halfth-order Logic (journal version). *Journal of Logic and Computation*, November 2007. Online.
- [12] Murdoch J. Gabbay and Aad Mathijssen. Capture-avoiding Substitution as a Nominal Algebra (journal version). *Formal Aspects of Computing*, 2008. Online.
- [13] Murdoch J. Gabbay and A. M. Pitts. A New Approach to Abstract Syntax with Variable Binding (journal version). *Formal Aspects of Computing*, 13(3–5):341–363, 2001.
- [14] Masatomo Hashimoto and Atsushi Ohori. A typed context calculus. *Theoretical Computer Science*, 266(1–2):249–272, 2001.
- [15] Gueorgui I. Jojgov. Holes with binding power. In *TYPES*, volume 2646 of *LNCS*, pages 162–181. Springer, 2002.
- [16] Aad Mathijssen. *Logical Calculi for Reasoning with Binding*. PhD thesis, Technische Universiteit Eindhoven, 2007.
- [17] Aleksandar Nanevski, Frank Pfenning, and Brigitte Pientka. Contextual modal type theory. *Transactions on Computational Logic*, 2007.
- [18] Masahiko Sato, Takafumi Sakurai, and Rod Burstall. Explicit environments. *Fundamenta Informaticae*, 45:1–2:79–115, 2001.
- [19] Masahiko Sato, Takafumi Sakurai, Yukiyoshi Kameyama, and Atsushi Igarashi. Calculi of metavariables. In *CSL*, volume 2803 of *LNCS*, pages 484–497, 2003.
- [20] C. Urban, A. M. Pitts, and Murdoch J. Gabbay. Nominal unification. *Theoretical Computer Science*, 323(1–3):473–497, 2004.
- [21] Christian Urban and Christine Tasson. Nominal techniques in Isabelle/HOL. In *CADE*, volume 3632 of *Lecture Notes in Artificial Intelligence*, pages 38–53, 2005.
- [22] Johan van Benthem. Higher-order logic. In *Handbook of Philosophical Logic, 2nd Edition*, volume 1, pages 189–244. Kluwer, 2001.