WEFLP 2007

Two-and-a-halfth order lambda-calculus

Murdoch J. Gabbay

http://www.gabbay.org.uk

Dominic P. Mulligan

http://www.macs.hw.ac.uk/~dpm8

Abstract

Two-and-a-halfth order lambda-calculus is designed to provide a mathematical model of capturing substi-
tution, which is a feature of the informal meta-level. There are two levels of variable; atoms representing
object-level variables, and unknowns representing meta-variables. Lambda-abstraction and beta-reduction
exist for both atoms and unknowns. This extends the two-levels of variable in nominal terms with a
functional meaning.

Keywords: Lambda Calculus, Meta-variables, Functional programming, Confluence, Nominal terms

1 Introduction

The A-calculus is a syntax to express function abstraction and application which
is simple, amenable to mathematical analysis, and easy to extend. However, not
everything that looks like a function fits obviously into the A-calculus; examples
include capturing substitution and functions depending on intensional properties
like free variables and freshness conditions associated with free variables. This
paper defines a A-calculus which includes an explicit model of these notions.
Capturing substitution and freshness are quite common, especially at the ‘infor-

mal meta-level’ — the prose discourse of, for example, this paper. Here are some
examples:

e \-calculus: (Az.r)[y — t] = Ax.(rly — t]) if x is fresh for ¢

e r-calculus: ve.(P|Q) =P |vze.Q if is fresh for P

e First-order logic: Vz.(¢p DY) = ¢ D Vo) if x is fresh for ¢

These quoted (reified) informal statements mention two levels of variable; object-
variables x,y and meta-variables r,t, P,Q, ¢,v. Capture-avoidance conditions are
(freshness) constraints on the values that meta-variables may assume.

This paper is electronically published in
Electronic Notes in Theoretical Computer Science
URL: www.elsevier.nl/locate/entcs

http://www.gabbay.org.uk
http://www.gabbay.org.uk
http://www.macs.hw.ac.uk/~dpm8

GABBAY AND MULLIGAN

It seems that meta-variables are naturally substituted with capturing substitu-
tion; consider the following quote:

“Set r to z and t to x in (Az.r)[y — t]; obtain (Az.z)[y — x].”

Capturing substitution on syntax trees is not hard to define, yet syntax usually
has semantics, which motivates the study of (amongst other things) a-equivalence,
unification, and [-equivalence.

This work extends nominal terms [20]. Nominal terms feature a two-level hierar-
chy of variables reflecting the hierarchy noted above: level 1 variables a,b,c,d, ...
(atoms) model object-variables; level 2 variables X,Y,Z,... (unknowns) model
meta-variables. In the terminology of this paper, nominal terms’ contribution was
to understand a-equivalence of level 1 variables in the presence of level 2 variables
(object-level a-equivalence in the presence of meta-variables).

Nominal terms can be the basis of expressive, mathematically well-behaved, and
implementable systems. They were introduced in a unification algorithm (freshness
conditions are constraints) [20], then extended to rewriting [5], an implemented
logic programming language [3], and used as a basis of universal algebra [16].

Variables in nominal terms have no in-built functional meaning. There is no A-
abstraction AX or Aa, and no application. In a suitable (generalised) sense, nominal
terms are first-order. In this paper we extend nominal terms to investigate full a3-
equivalence in the presence of level 1 and level 2 variables (a/f-equivalence in the
presence of object- and meta-variables).

We present two-and-a-halfth order A-calculus. We give a syntax, reduction
system, and prove confluence and consistency. The calculus contains the untyped A-
calculus (two copies, in fact; at levels 1 and level 2), so it is not strongly normalising.

Just as the step from first-order terms to higher-order terms implies an increase
in expressivity traded off against the loss of some computational and mathematical
properties [22], so we expect similar benefits and drawbacks moving from nominal
terms to two-and-a-halfth order A-calculus.

Also, until now the only semantics for level 2 variables (unknowns) in nominal
terms was ‘they range over terms’. This purely syntactic meaning is acceptable
for unification, matching, and rewriting [20,5], and possibly for logic-programming
[3], but taking a broader view this is clearly only a partial answer. By developing
notions of A-abstraction and S-reduction for level 2 variables we take a step towards
understanding the deeper meaning of nominal techniques.

We sketch with examples the kind of thing we can do, or believe should be
possible in future work, using two-and-a-halfth order A-calculus. Syntax and full
definitions follow.

“Set t to be x in Az.t” and “set t to be y in Ax.t” are modelled by reductions

(AX.(Aa.X))a — (Aa.X)|
(AX.(Aa.X))b — (Aa.X)|

al = Aa.a and

X
X :=b] = Aa.b.

(= is syntactic equivalence, i.e. ‘the same term’.) Capture-avoidance for \a (level
1) in the presence of level 2 variables is managed using permutations and freshness
in nominal terms style: ¢#X F (Ab.(Aa.X))a — Ae.(((c a) - X)[b— a)).

2

GABBAY AND MULLIGAN

“Set r to x and t to x in (Az.r)[y—t]; obtain (Az.z)[y—z]” is expressed by:
“AZ.AY.((Aa.Z)[b— Y]) applied to a twice reduces to (Aa.a)[b — al.”

It is not hard to impose a simple type system on our syntax (this should be a special
case of [4]; here, AX should cause no essential new difficulties). An interesting
application for our calculus is as the basis of a logic. Example axioms are (we
indicate types with subscripts):

* VP,.(ap#P, D P, D Va,.P,)
Here o is a type of truth-values. V is short for YA where V is a constant symbol. #
is short for #\ where # is a constant symbol intended to internalise the nominal
freshness judgement. This models ‘for all ¢, if a & fv(¢) then ¢ D Va.¢'.

i VXQ.((LQ#XQ D)xag.(Xaaﬁ) = Xa)
Here = is a constant symbol, written infix. o and (§ are intended to be arbitrary
types. This models n-equivalence (extensionality) at level 1.

o VP,.(Nap.—P,) & —WNay.P,.
Here W is short for A where W is a constant symbol intended to internalise the
Gabbay-Pitts ‘new’ quantifier [13]. = and < are constant symbols. A is a ‘type
of atoms’ with no term-formers. This models the self-duality of W.

The reductions are real reductions in our calculus. The axioms are expressed in a
logic which does not yet exist, but they have some mathematical force because the
structure they express has been studied in previous work with level 2 variables but
(since nominal terms have no AX) without a level 2 quantification explicitly repre-
sented in the syntax. The literature contains axiom-sets for several specific object
languages, including first-order logic, the m-calculus, and subsets of ML [16,13,5,8].

2 The syntax

Fix disjoint countably infinite sets of level 1 and level 2 variables. We let a, b, c, . ..
and X,Y,Z,... range over level 1 and level 2 variables respectively. We use a
permutative convention that these are distinct. For example, ‘a and b’ means
any pair of distinct level 1 variables.

A permutation 7 is a finitely supported bijection of level 1 variables. Here
‘finitely supported’ means that 7(a) = a for all but finitely many level 1 variables.
Write id for the identity permutation, so id(a) = a always; write o for functional
composition, so (o 7')(a) = 7 (7’(a)); write 7! for inverse; and write (a b) for the
swapping such that (a b)(a) = b, (a b)(b) = a, and (a b)(c) = c.

Definition 1 Let the syntax of two-and-a-halfth-order A-calculus be:
rs,tbu,v = a | - X | daor | XX | orr

We equate terms up to a-equivalence of AX-bound variables, but not Aa-bound
variables. We write = for syntactic equivalence (up to a-equivalence of AX-bound
variables). For example, AX.X = AY.Y but Aa.X # \b.X and Aa.a # A\b.b. There is
no paradox here. We do not seek to eliminate the meta-level; we want mathematical
models with which to study it. That is why we have given our calculus two levels

3

GABBAY AND MULLIGAN

of variable.
We may write r[a +— t| as shorthand for (Aa.r)t.
Define a notion fuv(r) of free occurrence (for level 2) by:

fo@)={} fo(r-X)={X} folr'r)= fo(r')U fo(r)
fo(har) = fo(r) fo(AX.or) = fo(r)\ {X}

Definition 2 Define level 2 substitution r[X := ¢] and level 1 permutation
actions by the rules in Figure 1.

Level 2 substitution avoids capture by A-abstracted level 2 variables, but not by A-
abstracted level 1 variables; compare the clauses for (Aa.r)[X := t] and (A\Y.r)[X =
t].

m - X is a moderated level 2 variable. Moderations ‘rename’ level 1 variables in
uninstantiated level 2 variables; for example:

((ba)-X)[X:=a]=b

This is the treatment of a-equivalence from nominal terms; for a discussion of ad-
vantages of this approach see Cheney’s comment that permutations are ‘inherently
capture-avoiding’ [2] and the surrounding discussion.

Definition 2 must decide how permutation 7 interacts with AX. The intuition
is ‘m moderates free but not bound level 2 variables’. For example:

T (XY)=(r-X)(7-Y) T AX(XY) =\ X X7V
T AYAX(XY) = AYAX(XY).
Y & fu(t) in the clause for (\Y.r)[X := t] can be guaranteed by renaming Y.
The definitions of r[X := ¢] and 7 - r are intertwined. This is due to the clause

for - (AX.r). The proof that = -r and r[X := t] are well-defined is routine and we
omit it. It uses a notion of depth of a term, which will be useful later:

depth(a) =1 depth(m - X) =1 depth(Xa.r) =1+ depth(r)
depth(AX.r) = 1+ depth(r) depth(r'r) = depth(r') + depth(r)
Lemma 3 r[X ;=7 - X|[X :=7"- X]=r[X :=(ro7') X]
Lemma 4 7 (7' -r)=(ron')-r
Lemma 5 7-(ro)=(n-1)o

Proof We prove the result for o = [V := u| by induction on r. We consider just
the case of AX.r: a-converting X if necessary, assume X ¢ fv(u). Then:

(T - AX)Y ==u) = AX (7 -r[X ;=7 X][Y = u])
7 (AX)Y =u) =7 AXr[Y :=u]) = AX.(7-7[X =71 X][Y :=4]).

Lemma 6 depth(r) = depth(m -).

GABBAY AND MULLIGAN

3 Freshness and reductions

Definition 7 A freshness is a pair a#r. Call a# X a primitive freshness. Call
a finite set of primitive freshnesses A a freshness context. We may drop set
brackets, for example writing {a#X,b# X} as a#X,b#X and writing A, a#X for
AU {a#X}. We may also write a#X,b#X as a,b#X. Figure 2 gives freshnesses
a notion of derivation.

The notion of nominal freshness is well-discussed in the literature [13,20,16]. Intu-
itively, a#£r corresponds with ‘a & fv(r)’, read ‘a is abstracted /not free in r’. In the
presence of unknowns, which can be instantiated (substituted in a possibly captur-
ing manner) to any term, the notion of ‘free variables’ is replaced by a notion of
freshness which may depend on freshness assumptions on unknowns. For example:

— (a#$X) —————————————— (a#X)

a#X,a#Y Fa#X a# X, a#Y F a#Y —————— (a#)a)
(a#app) a#X F a#INa. X

a# X, a#Y F a# XY ——————————— (a#X\X)
(a#AX) Fa#AX a. X

a#Y Fb#AX.(X(ba)-Y)

We may write ‘A F a#t’ as shorthand for ‘A F a#t is derivable’. We use this
shorthand for other derivable assertions including —, —*, =, =, defined later.

(a#2X) does not implement the denotational notion of freshness for functions
from nominal sets [13], with intuition “(b a) - AX.r equals AX.r for fresh b”. Infor-
mally, a is fresh for the function ‘AX.Aa.X’ in the sense of (a#AX), but not fresh
in the sense of nominal sets. (a#AX) is a strictly weaker condition; a discussion of
denotations is for a later paper.

(a#XX) is syntax directed, in the sense that depth(w - AX.r) = depth(r) +1 >
depth(r) = depth(w - r) (see Lemma 6).

Definition 8 Write A F - - for a binary relation on terms parameterised on A.
Call At ->- a congruence when it is closed under the rules in Figure 3.

Remark 9 (ra) builds in the nominal term notion of a-equivalence for level 1 vari-
ables (see [10, Lemma 3.2]). A better name for congruence might be ‘congruent
a-equivalence’, but we just write ‘congruence’.

Definition 10 Write level(t) = 2 if ¢ mentions a level 2 variable, free or bound.
Otherwise, write level(t) = 1. For example level((a b) - X) = level(AX.X) = 2 and
level(a) = level(Aa.a) = 1.

Write @ ¢ A when a#X ¢ A for all level 2 variables X. Write X ¢ A when
a#X ¢ A for all level 1 variables a.

We can now define our reduction relation:

Definition 11 Let A F - — - be the least congruence closed under the rules in
Figure 4.

Recall that r[a — t] is sugar for (Aa.r)t. Note that level 2 S-reduction is a single
step [X :=t], level 1 S-reduction is not. Definition 22 gives the single step level 1
[B-reduction. There are no level 3 variables in this particular calculus and therefore
no special need arises to break level 2 G-reduction into smaller steps.

Example reductions are in the Introduction. Note that capture-avoiding substi-

5

GABBAY AND MULLIGAN

alX =tj=a (m- X)X :=tl=7m-t (m- V)X :=tj=n-Y
(Aa.r)[X :=t] = da.(r[X :=1]) ()X =t = ([X =t])(r[X :=1])
AYr)[X =t = \Y.(r[X :=t]) (Y & fo(t)

~ Il

m-a=m(a) (- X)=(ron') - X 7-(r'r)y=(x-0") (7 7)

- (Aa.r) = An(a).(m- 1) 7-(AXr)= AXr-r[X =7xt X))

Figure 1. Level 2 substitution and level 1 permutation action (Definition 2)

A& a#r Ha)#X € A
0 @#b) ——————(a#la) Ty X
A& a#b A& affra.r Aka#ﬂbr@ : AFa#mX'@#)
At a#r Aba#r Aya#X Fr(a)#rr (X € A)
; (a#app) (a#AX)
A& aftr'r AF m(a)#m-(AX.r)
Figure 2. Freshness entailment (Definition 7)
AFrps AFros AkFtou
(>Aa) (>app)
AF da.r> Aa.s AFrt>su
AFres (X €A) AbFres Abaf#s Al b#s
>AX) (bav)
AFAX.r>AX.s Abre(abd)-s

Figure 3. Congruence rules (Definition 8)

A a#tr

5 B2
Al—a[ar—>t]—>t(a) Al—r[al—>t]—>r(ﬂ#) AI—()\X.T)t—>r[X::t]()
A aftr (| level(r') = 1
(2app 61
AF (a1 — (la— AF (et = (am)l t)
A+ bt (X & fu(t))
(BA1) (BA2)
AFE (Abr)[a— t] — Ab.(rla— t]) AF (AX.r)[a—t] = AX.(r[a — t])
Figure 4. Reductions of two-and-a-halfth order A-calculus (Definition 11)
(Pa) (PX) AbFr=s AFt=u
- (Pa p
AFa=a Ak (mX) = (mX) AFrt= su (Papp)
AFr=s AFr=s
(PAa) (PAX)
AF dar = da.s AFMXr=)X.s
AFr=s Art=u AFsu—S0v AFr=s Ata#s AFb#S(Pa)

AFrt— o (Papps) AFr=(ab)-s

Figure 5. The parallel reduction relation (Definition 35)

GABBAY AND MULLIGAN

tution is as usual within a single level:

(Ab.(Aa.b))a —Xd’.(b[b — a]) — A\d'.a
Y. QXY DX SAX(Y]Y = X]) = AX".X

Remark 12 (B1app) and (B2app) can be viewed as two parts of a single rule; if
level(r) = 1 and At b#t we may join (G1lapp) and (52app) with (5#).

Suppose we allow (r'7)[b — u] (FALSE) (r'[b — u])(r[b — u]). Then:

(AX.(ab)- X)b)[b—c] — ((ab) X)X =b]br—c =alb—c —a
(AX.(a b)- X)b)[b—] — AX.(ab)- X)[br (b) = —c

a and ¢ cannot be joined. So, without conditions confluence fails.

To close a divergence in ((AX.r)t)[b — u] between (32) and (FALSE) we must
join r[X = t][b > u] and r[b — u|[X := t[b — u]] where X ¢ fv(u) and X ¢ fu(t)
and where the freshness context A is such that A F b#wu. It is not possible to join
this in general — take r = (a b) - X, t = a, and u = ¢. However, it is possible to
join this if level(r) = 1 or if A F b#t.

In the rest of this section we prove soundness results; that freshness and reduc-
tion are preserved under instantiating unknowns (Lemma 14 and Theorem 18), and
that freshness is preserved under reduction (Theorem 16):

Definition 13 A substitution o is a finitely supported map from level 2 variables
to terms. ‘Finitely supported’ means that o(X) = id - X for all but finitely many
variables. These act on terms to in the natural way extending the action of [X := ¢]
from Definition 2. We extend this action pointwise as convenient; in particular we
write Ao for {a#0o(X) | a#X € A}.

If F is a set of freshnesses write A’ = F for ‘A’ & a#r for every a#r € F .

Lemma 14 is soundness for substitutions compatible with the freshness context:

Lemma 14 If A'+ Ao then A& af#tr implies A' - a#(ro).

Proof By induction on r. We consider two cases:

— The case of Aa. A’ a#(A\a.r)o always, by (a#\a).
— The case of AX. Suppose A,a#X F 7w(a)#n - r is derivable, where X ¢ A.

Suppose the inductive hypothesis of the derivation. Renaming X if necessary we
may assume that X ¢ A’ and ¢(X) = X. By inductive hypothesis A’ a#X F
m(a)#(m - r)o is derivable. By Lemma 5, (7 -r)o = 7 - (ro). We extend the
derivation with (a#AX) to obtain a derivation of A’ - 7(a)#m - (AX.(ro)). We then
have - (AX.(ro)) =7 (AX.r)o) = (7 - AX.r)o (the final = uses Lemma 5) and
the result follows.

(]

Lemma 15 A& a#r implies A b w(a)#w - r.

Proof By induction on derivations, we consider just one case:

— The case (a#AX). Suppose A,a#X F w(a)#m - r. By inductive hypothesis
Aja#X E ' (w(a)#r" - (m-71), 80 Aja#X b (7' om)(a)# (7" om) - r by Lemma 4.

7

GABBAY AND MULLIGAN

Using (a#AX) we derive A b (7' om)(a)# (7' om) - AX.r. We use Lemma 4 to deduce
A b7 (m(a)#r" - (- AX.r).
(]

Theorem 16 is ‘subject-reduction for freshness’:

Theorem 16 If A+ r — s then A& a#tr implies A - a#s.

Proof By induction on derivations. We consider a selection of cases:

— The case (82app), assuming A F b#r. Suppose A F b#r and A + (r'r)[b —
u] — (r'[b— u])r.

If A a#(r'r)[b — u] then A F a#r’, A F r, and A F u. It follows that
A+ a#(r'[b u])r. Similarly if A F b#(r'r)[b — u]. Similarly for (51app).
— The case (52). Suppose that A F (AX.r)t — r[X =]

If AF a#(AX.r)t then A a#t and A, a# X F a#r. It follows by Lemma 14
that A F a#r[X := t] as required.
— The case (>a). Suppose that A+ r — s and A F a#s and A F b#s.

A F a#s and A F b#s by assumption. If A c#r then by inductive hypothesis
A& c#s, and so A F c#(a b) - s by Lemma 15.

O

Lemma 17 If level(r) = 1 then level(ro) = 1.

Theorem 18 does for — what Lemma 14 did for freshness; it is a form of sound-
ness under substitutions compatible with the freshness contexts:

Theorem 18 If A'F Ao then A+ r — s implies A' - ro — so.

Proof By induction on derivations. We present a selection of cases.

— The case (8#). Suppose A b a#r. By Theorem 16 A’ - a#tro if A& a#tr. It
follows by (8#) that A" - rla—t] — 7.
— The case (f1app). We have (r'r)[a — tlo = (r'o)(ro)[a — to]. By assumption
level(r") = 1 so by Lemma 17, level(r'o) =1 and A & (r'o)(ro)[a — t] — (r'[a —
t])(r[a — t])o by (31app). The result follows.
— The case (6A1). By Theorem 16 if A b#t then A’ F b#to. It follows by (3A1)
that A" F (Ab.ro)[a — to] — Ab.(rofa — to]).

O

4 Confluence

Our calculus can be viewed as two A-calculi (level 1, level 2) glued together by a
nominal treatment of the interaction of level 1 a-equivalence with level 2 variables.
The proof of confluence also splits in two proofs, plus some ‘proof-glue’.

4.1 Level 1 reductions

Definition 19 Let (levell) be the set {(ga), (3#), (31app), (32app), (3A1), (6A2)} of rules

levell

from Figure 4. Let A+ r) ¢ be the least congruence closed under the rules in
(levell).

GABBAY AND MULLIGAN

Definition 20 Say that AT freshly extends A when AT = AU A’ where for all
c#HX eAN, cg Aand X € A (so AT ‘extends A with some fresh atoms’).

Definition 21 Write A tf a#r when A F a#r is not derivable.

Choose some fixed but arbitrary order on atoms. If S is a finite set of atoms say
‘for the first atom not in S’ to mean ‘for the least atom, in our fixed but arbitrary
order, that is not an element of S’.!

Definition 22 For a given A, define a level 1 substitution action r[a := t] as
below; earlier rules take priority.

—rla:=t|=rif At afr

—ala:=t]=t

— (- X)a:=t]= (7 X)[art].

— (r'r)[a:=t] = (r'[a := t])(r[a := t]) provided level(r') = 1.
— (r'r)[a :=t] = r'[a := t]r provided A F a#r.
—(r'r)a:=t] = (r'r)|a — t] if At/ aftr and level(r') = 2.
— (Ab.r)[a :=t] = Ab.(r[a := t]) provided A F b#t.

— (Ab.r)[a :=t] = (Ae.((b ¢) - r)[a = t]) if AV b#t. Here c is the first atom not
mentioned in r, a, b, or ¢, such that A F c¢#r and A F c#t, if such a ¢ exists. Thus
we a-convert the level 1 A\b to a fresh Ac, but in the presence of level 2 variables we
use an explicit permutation and explicitly fresh level 1 variable, in nominal terms
style.
— (Ab.r)[a :=t] = (A\b.r)[a — t] otherwise.
— (Ab.r)[a = t] = (Ab.r)[a = t] if A b#t.
— (AX.r)[a:=t] = AX.(r[a :=t]), renaming X if needed so that X ¢ t.
Then for that A, let r* be defined as follows; earlier rules have priority, read left-
to-right then top-to-bottom (A will always be clear from the context):

a'=a (m-X)'=7-X (Aar) =lar® (AXr)"=AX0r" (X €A)
t*

(r'la—t)* =r""[a:=t"] (AX.))* =r*[X =t ('r)* =r"r*

We can always rename X to ensure X ¢ A.
—If A ={a#X} then X[a:=b] = X and (X[a:=b])" = X.
—If A = {} then X[a :=b] = X]a — b].

Intuitively, 7* is a canonical form of r and r[a := t] one of r[a — t]. This is

not necessarily a normal form (which may not exist) but garbage is collected and
substitutions (level 1 f-reducts) are pushed into r. Level 2 S-reducts are unreduced.

Definition 23 Call A - - reflexive when A F r > r always, and transitive
when A Frer and A F ' >r” imply A F r>r”. Write A F -* - for the least
transitive reflexive relation containing A F - -,

Definition 24 Suppose that A and AT are freshness contexts. Say AT freshly
extends A when there exists some A’ such that: ANA" =0 (in words: A and A’

L This is not necessary for expressing the proofs to follow but it is convenient. We will never make infinitely
many choices of fresh atom, and nowhere will the truth of a result depend on our choice of order.

9

GABBAY AND MULLIGAN

are disjoint), AT = AU A/, for all c#X € A’ it is the case that ¢ € A, and for all
c#X € A’ it is the case that X € A.

Intuitively, A" ‘extends A with some fresh atoms’.
Lemma 25 For every A, r, a, and t there exists a AT freshly extending A such

that A*T Frla —t] — (levell rla:=t] (r[a:=t] calculated for AT.)

Proof Each rule in Definition 22 is emulated by a rule in (levell). We may need
some fresh atoms to a-convert. O

Lemma 26 depth(r) = depth(r|X =7 -Y])

Lemma 27 (i) (n-r)*=mn-r*

(ii) If (w-t)* =7 - t* for all w, then (r[X :=t])* = r*[X = t¥]

Proof By induction on depth(r), using Lemma 6 and Lemma 26. O

Theorem 28 states that terms reduce to their canonical form; it enters via
Lemma 25 that we may need some fresh atoms, to a-convert.

Theorem 28 For every A and r there exists a A" freshly extending A such that
At F o (r* calculated for A™.)

Proof By induction on r. For example, a* = a and (AX.r)* = AX.r*. The special
case (AX.r)t requires Lemma 27, and the case (Aa.r)t requires Lemma 25. 0

Lemma 29 Fiz A. Then A& a#s implies At a#s*. (s* calculated for A.)

Proof By induction on derivations, using Lemma 27. 0O
Lemma 30 If At s and A' - A[X =7 X], then A' - r[X =7 X] =%
s X =7 X].

Proof By induction on derivations, using Lemma 26, Lemma 14 and Lemma 5. O

(levell) (levell)

Lemma 31 IfAl—r) s then A m-r = 1.

Proof By induction on derivations, using Lemma 15 and Lemma 30. O
Theorem 32, along with Theorem 28 above, makes up the diagram in Theo-

rem 33:

Theorem 32 For every A, v, and s, there exists a A" freshly extending A such
that A b r "5 s implies AT b g% Bk px, (r* and s* calculated for AT.)

(levell)

Proof By induction on the derivation of A 75, We sketch some cases:

— The case (32app) where A F a#r. We use Lemma 29 to conclude that AT -
a#r* in the case where level(r') = 1.

A+ (r'r)[a—t] — (r'[a—t])r

((r'P)[a—t])* = (r*a:=t"])(r*[a:=t"]) = (" [a:=t*])(r*) if level(?)) = 1
((r'r)[a—t])* = (r*[a:=t"])(r") if level(r') = 2

GABBAY AND MULLIGAN

— The case (S1app) where level(r') = 1.

= (r')la— 1] = (e t))(rla— 1))
('l = th(rla—)" = (r"[a:=t])(r"[a = t7]) = (('r)[a — t])”

— The case (x2). Suppose X ¢ t, which can be guaranteed. Then A + (AX.r)[a —
] 2 AX.(r[a — ¢]). We have (AX.r)[a — t])* = AX.r*[a := t*] = A\X.(r[a —
t]))*, and we have the result.

— The case (o). Suppose s = (a b) - s’. Suppose A - r — s and A F a#s’ and
A F b#5s'. By inductive hypothesis, AT - s’ oveld), por By Lemma 29 AT I- a#s’*
and A1 F b#s". By Theorem 16 it follows that A+ F a#r* and AT - b#r*.

(>a) it follows that AT - s (lovell), (a b)-(r*). By Lemmas 31 and 4 it follows that

AT F (ab)-(s%) Dx % By Lemma 27 At F s* " 1% as required.

O
Theorem 33 (levell) is confluent. /r\
Proof From Theorem 28 and Theorem 32: s 3 O
4.2 Level 2 } o }*

Definition 34 Let (level2) be the set {(52), (8)\2)} of rules from Figure 4. Let A

level2 .
9 s be the least congruence closed under the rules in (level2).

(levell) (level2

Note that "% and “* have (622) in common. This is necessary for confluence to
work, see Lemma 46.

Definition 35 Define a parallel reduction relation, =, by the rules in Figure 5.
Here, R ranges over rules in (level2) (Definition 34).

(level2)

Lemma 36 Al r = s implies At r o s, Asa corollary, A F r = s implies
A I— leve12

Lemma 37 A Fr % g implies A+ r = s. As a corollary, A+ r (oveld). s mplies

AFr=*s

Proof It suffices to show that every possible (level2)-reduction can be mirrored by
a parallel reduction. This is routine. The second part follows from the first part
and an easy proof that A Fr = r (= is reflexive). O

leve12)

Theorem 38 AL r =+ sifand only if AFr —* s

Proof From Lemmas 36 and 37. O

(level2) (level2)
—

Lemma 39 IfAFr sthen Abm-r —'7-s.

Proof By induction on derivations. We mention two cases:

— The case (>a). By inductive hypothesis, we have A+ 7 -r — 7 - s and from
Lemma 15 we have A F m(a)#m - s and A b 7(b)#n - s. Using (ra) we obtain
At (m-r)— (m(a) w(b)) - (w - s) and the result follows via elementary properties
of permutations.

11

GABBAY AND MULLIGAN

— The case (82). Using Lemma 3, we have:

m(AX.r)t) = D Xrr[Xi=r1X])(rt) - (rr[X:=r1X])[X:=n1]
= 1-(rX:=nt X|[X:=nt]) = (7r)[X:=t] = 7(r[X:=t])

(]
Lemma 40 If A+ r=s and A'+ A[X:=7-X] then A’ b r[X:=r-X|=s[X:=n-X].
Proof By induction on derivations using Lemma 5, Theorem 18 and Lemma 14.0
Lemma 41 IfAFr=sthen Ab7m-r=7-s.

Proof The proof is by induction on derivations. We present a selection of cases:

— The case (PAX). By inductive hypothesis, we have A+ 7 -r = 7 -s. From this
and Lemma 40 we can obtain A - (7 -7)[X =71 X] = (7-s8)[X = 7. X].
Using (PAX), we have AF 7 - AX.r = 7 - AX.s.
— The case (Pappe). By inductive hypothesis, we have A - 7-r = 7 - s and
AF7m-t= 7 uand that A F (7-s)(7-u) @ & . v, using Lemma 39. Then
AF (m-r)(m-t) = m- v is derivable, and the result follows.
— The case (Pa). By inductive hypothesis, A+ 7 -r = 7 - s, and by Lemma 15,
At w(a)#m-sand A F w(b)#n-s. Then A+ 7-r = (w(a) 7(b)) - (7-s) is
derivable and the result follows by elementary properties of permutations.

O

Lemma 42 AFr = s and At = uimply A r[X =t] = s[X = ul.

Proof The proof is by induction on the derivation of A F r = s (Figure 5). We
assume that A -t = u.

— The case (PX). By Lemma 41, and by the fact that (7-Y)[X :=t]=n-Y.

level2)

— The case (Pappe). Suppose A Fr = sand AFv = wand A F sw e
Then A + r[X :=t] = s[X := u] and A + v[X = t] = w[X := u] are both
derivable, and from Theorem 18, we have A F s[X := u](w[X = u]) — v[X :=u].
The result follows from (Pappe).
— The case (Pa). By inductive hypothesis, A - r[X := t] = s[X := u], and by
Lemma 14, A F a#s[X := u| and A F b#s[X := u]. Extending with (Pa), we
obtain A - r[X :=t] = (a b) - (s[X :=t]). The result follows from Lemma 5.

O

Write ‘AkFr < s=1t for ‘AFr = sand At r =t and similarly for other
reduction relations later.

Lemma 43 A - = - satisfies the diamond property: If A+ r < s =t then there
exists some u such that A r = u < t.

Proof We consider possible pairs of rules that can derive A - s = r and A F
s = t, where r % t. We present the case of (Papp) and (Pappe) for (32). Suppose
AF AXN < (AXor)t = r"[X := t"] using (Papp), and (Pappe) for (42). By
inductive hypothesis, there exists an r” such that A F v = " < ¢" and a t"”

12

GABBAY AND MULLIGAN

such that A ¢ = t" < ¢”. Using Lemma 42 we derive A - (AX.7")t' = r"'[X :=
t”/] — ?””[X — t”]. d

2)

level .
Theorem 44 "% js confluent.

Proof An immediate corollary of Lemma 43 and Theorem 38. O

4.8 Level 1 and level 2 reductions

Lemma 45 At r — s implies level(s) < level(r), and so does A Fr = s.

lovell) 4 implies that A F r

levell)
—™* u < t.

(levell)

Lemma 46 A F r < s —* u < t. As a corollary,

A|—7“<:s(lev—el})*tz‘mplz‘esAl—r(

Proof We assume A+ u = v, A+ t=t, and so on. We present some cases:
AE (""" a—t] < (r'r)a— t] — (r'[a — t])(r[a — t]) when level(r’) = 1.
This can be closed to (r"”'[a +— t'])(r"[a — t]); by Lemma 45 level(r"") = 1.
AE (""" a—t'] < (r'r)[a— t] — (r'[a — t])r when A F ar.
This can be closed to (r"'[a — t'])r".
AF ((AX)E) b= u] < (AX.r)t)[b— u] — (AX.r)[b— u])t when A b#t.
This can be closed to (AX.r")[b— u/])t.
A7 [X =t]b u] < (AX.r)t)[b— u] — (AX.r)[b— u])t when A - b#t.
This can be closed to /[X := t'][b — u/] where X ¢ u which can be guaranteed; we
require (5A2) in (level2).

O

levell
Lemma 47 If A+ r (?E) s —* t, then AT = r —* u «— t for some suitably

level2
freshened context, A*. Similarly, if A& r (?ﬁ) s —*t, then AT Fr — u«—t

for some suitable freshened context A™T.

Proof Both claims follow by induction on the path length of A F s —* t using
Theorem 33 and Theorem 44 and Lemma 46. O

Theorem 48 A F - — - (reduction with (level2) U (levell)) is confluent, in the
following sense: if A+ r — s and A+ r — s' then there exists some AT freshly
extending A, and some u, such that AT+ s — u and AT+ s' — w.

Proof By a diagrammatic argument, using Lemma 47. O

The ‘freshly extending’ part of Theorem 48 ensures we can a-rename Aa with a
permutation to guarantee the freshness precondition of (8A1). In the presence of
only a single level of variable we can ‘just rename’, and so we do not need to record
the freshness of freshly generated variables relative to higher-level variables in a
freshness context.

Recall Definition 23. Call A F ->- symmetric when A F r>7/ implies A + r/>r.
Write A = - = - for the least congruence closed under A + - — - that is also
transitive, reflexive, and symmetric.

Corollary 49 A F - = - is consistent. (There exist two terms which are not related
by the transitive reflexive symmetric closure of A+ - — -.)

13

GABBAY AND MULLIGAN

Proof Ma.\b.a and Aa.)\b.b are two distinct terms, and they do not rewrite to a
common term. By Theorem 48 the result follows. a

5 Related and future work

Previous ‘nominal’ A-calculi.

The NEW calculus of contexts and the A-context calculus [6,8] are A-calculi with
more than one level of variable. These have a weak theory of a-equivalence far less
powerful than that of nominal terms (they also have an infinite hierarchy of levels;
combining this with nominal terms style a-equivalence is future work).

The lambda context calculus preserves strong normalisation. A variant of two-
and-a-halfth order A-calculus which preserves strong normalisation is possible using
ideas from [8]. The proof of confluence is not harder. The result in this paper
is more relevant for designing logics, where we trade off more reductions against
weaker computational properties.

Capture-avoiding substitution as a nominal algebra with Mathijssen [9,12] used
nominal terms syntax, with permutations and freshness; substitution corresponds
to level 1 B-reducts. There is no level 2 A-abstraction AX.

A-calculi for capturing substitution.

The A-calculus itself can emulate capturing substitution. Let r and ¢ range over
A-terms: then the quote of the Introduction is emulated by ‘apply Az.((Ay.r)(yx))
to Az.t’. However, compositionality fails in the sense that the number of ‘extra’ \-
abstractions needed on ¢, and ‘extra’ applications needed on y, depend non-locally
on the variables for which we authorise capture at the point(s) at which y occurs
in 7. See [17, Section 2| for further discussion.

A-calculi exist with more than one level of variable, or with constructions with
essentially the same intent; they are broadly called ‘calculi of contexts’. Calculi in-
clude ‘holes with binding power’ by Jojgov and Geuvers [15], two calculi of contexts
Am and AM by Sato and others [19], further work also by Sato and others [18,14],
and Ac by Bognar [1, Section 2]. Two-and-a-halfth-order A-calculus is specifically
tailored to nominal terms and so fits into the authors’ own research programme,
and it may offer other advantages too: a relatively simple syntax and the possibility
to import other nominal research, from semantics [13,7] to implementation [21]. We
have not yet built semantics or a type system for two-and-a-halfth order A-calculus
— but tools exist to do this in a principled way [7,4].

A thread of research exemplified by [17] manages capturing vs. non-capturing
substitution inside a specially-designed logical framework. Our calculus uses levels;
there is no (need for a) ‘wrapping’ in formal logic. Also, our level 2 variables are
‘open’ (instantiation captures unless a freshness condition forbids it) whereas con-
text variables in [17] are ‘closed’ (variables that can be captured must be accounted
for, in the type system).

Future work.
We intend to impose types and create a higher-order logic (this might have el-
ements in common with the logical framework of [17]; a discussion will follow once

14

GABBAY AND MULLIGAN

the logic is created). Nominal unification, nominal algebra, and one-and-a-halfth
order logic [20,16,11] have already done much of the work but the universal quantifi-
cation of unknowns X is implicit (there is no AX or VX). Denotations, presumably
using nominal sets [13], are future work. We can also consider enriching our func-
tional operational semantics with nominal unification, which is computationally
more tractable than higher-order unification [20].

References

[1] Mirna Bognar. Contexts in Lambda Calculus. PhD thesis, Vrije Universiteit Amsterdam, 2002.

[2] James Cheney. Nominal logic and abstract syntax. SIGACT News (logic column 14), 36(4):47-69,
2005.

[3] James Cheney and Christian Urban. Alpha-prolog: A logic programming language with names, binding

and alpha-equivalence. In Bart Demoen and Vladimir Lifschitz, editors, Proc. of the 20th Int’l Conf.
on Logic Programming (ICLP 2004), number 3132 in LNCS, pages 269-283. Springer-Verlag, 2004.

[4] Maribel Fernédndez and Murdoch J. Gabbay. Curry-style types for nominal rewriting. TYPES’06, 2006.

[5] Maribel Fernandez and Murdoch J. Gabbay. Nominal rewriting. Information and Computation,
205(6):917-965, 2007.

[6] Murdoch J. Gabbay. A NEW calculus of contexts. In PPDP’05, pages 94-105. ACM, 2005.

[7] Murdoch J. Gabbay. A General Mathematics of Names. Information and Computation, 205:982-1011,
July 2007.

[8] Murdoch J. Gabbay and Stéphane Lengrand. The lambda-context calculus. ENTCS, 196:19-35, 2008.

[9] Murdoch J. Gabbay and Aad Mathijssen. Capture-avoiding Substitution as a Nominal Algebra. In
ICTAC, volume 4281 of LNCS, pages 198-212, 2006.

[10] Murdoch J. Gabbay and Aad Mathijssen. A formal calculus for informal equality with binding. In
WoLLIC’07: 14th Workshop on Logic, Language, Information and Computation, volume 4576 of LNCS,
pages 162-176, 2007.

[11] Murdoch J. Gabbay and Aad Mathijssen. One-and-a-halfth-order Logic (journal version). Journal of
Logic and Computation, November 2007. Online.

[12] Murdoch J. Gabbay and Aad Mathijssen. Capture-avoiding Substitution as a Nominal Algebra (journal
version). Formal Aspects of Computing, 2008. Online.

urdoc . Gabbay an . M. Pitts. ew Approach to stract Syntax wit ariable Binding
13] Murdoch J. Gabb d A. M. Pi A N A h Ab S ith Variable Bindi
(journal version). Formal Aspects of Computing, 13(3-5):341-363, 2001.

[14] Masatomo Hashimoto and Atsushi Ohori. A typed context calculus. Theoretical Computer Science,
266(1-2):249-272, 2001.

[15] Gueorgui I. Jojgov. Holes with binding power. In TYPES, volume 2646 of LNCS, pages 162-181.
Springer, 2002.

[16] Aad Mathijssen. Logical Calculi for Reasoning with Binding. PhD thesis, Technische Universiteit
Eindhoven, 2007.

[17] Aleksandar Nanevski, Frank Pfenning, and Brigitte Pientka. Contextual modal type theory.
Transactions on Computational Logic, 2007.

[18] Masahiko Sato, Takafumi Sakurai, and Rod Burstall. Explicit environments. Fundamenta Informaticae,
45:1-2:79-115, 2001.

[19] Masahiko Sato, Takafumi Sakurai, Yukiyoshi Kameyama, and Atsushi Igarashi. Calculi of meta-
variables. In CSL, volume 2803 of LNCS, pages 484-497, 2003.

[20] C. Urban, A. M. Pitts, and Murdoch J. Gabbay. Nominal unification. Theoretical Computer Science,
323(1-3):473—-497, 2004.

[21] Christian Urban and Christine Tasson. Nominal techniques in Isabelle/HOL. In CADE, volume 3632
of Lecture Notes in Artificial Intelligence, pages 38—53, 2005.

[22] Johan van Benthem. Higher-order logic. In Handbook of Philosophical Logic, 2nd Edition, volume 1,
pages 189-244. Kluwer, 2001.

15

http://www.gabbay.org.uk/papers.html#curstn
http://www.gabbay.org.uk/papers.html#nomr-jv
http://www.gabbay.org.uk/papers.html#newcc
http://www.gabbay.org.uk/papers.html#genmn
http://www.gabbay.org.uk/papers.html#lamcc
http://www.gabbay.org.uk/papers.html#capasn
http://www.gabbay.org.uk/papers.html#forcie
http://www.gabbay.org.uk/papers.html#oneaah-jv
http://www.gabbay.org.uk/papers.html#capasn-jv
http://www.gabbay.org.uk/papers.html#capasn-jv
http://www.gabbay.org.uk/papers.html#newaas-jv
http://www.gabbay.org.uk/papers.html#newaas-jv

	Introduction
	The syntax
	Freshness and reductions
	Confluence
	Level 1 reductions
	Level 2
	Level 1 and level 2 reductions

	Related and future work
	References

