
Under consideration for publication in Math. Struct. in Comp. Science

Two-level nominal sets and semantic nominal
terms: an extension of nominal set theory for
handling meta-variables

Murdoch J. Gabbay (gabbay.org.uk)

Received August 2010; Revised 7 February 2011�

Nominal sets are a sets-based first-order denotation for variables in logic and
programming. In this paper we extend nominal sets to two-level nominal sets. These
preserve much of the behaviour of nominal sets—including notions of variable and
abstraction—but they include a denotation for variables and meta-variables.
Meta-variables are interpreted as infinite lists of distinct variable symbols. We use
two-level sets to define, amongst other things, a denotation for meta-variable abstraction,
and nominal style datatypes of syntax-with-binding with meta-variables. We discuss the
connections between this and nominal terms and prove a soundness result.

Contents

1 Introduction 2
1.1 A word on multi-level syntax 2
1.2 Nominal terms 3
1.3 Semantics for nominal terms 4
1.4 Summary 6

2 Two-level nominal sets 7
2.1 Atoms and permutatations 7
2.2 Sets with a two-level permutation action 8
2.3 Level 2 swappings 10
2.4 Two-level nominal sets 12

3 Support and equivariance; functions and the category NOM2 14
3.1 Support at levels 1 and 2 14
3.2 Functions and equivariance 16
3.3 The cartesian product and exponential 17
3.4 The category of two-level nominal sets 17

� This version differs from the publisher’s version by including corrections suggested by Claus-Peter Wirth.
23 June 2011

http://www.gabbay.org.uk

Murdoch J. Gabbay 2

4 Atoms-abstraction 17
4.1 Basic definition 18
4.2 The pointwise action 19
4.3 Support and equality 19
4.4 Abstracted level 1 atoms of a level 2 abstraction 21
4.5 Concretion 21
4.6 Arrows out of atoms-abstractions 23

5 Semantic nominal terms 24
5.1 The basic definition 24
5.2 Substitutions 24

6 Implementing semantic nominal terms 26
6.1 The basic definition 26
6.2 The isomorphism between implementation and theory 28

7 Conclusions 29

1. Introduction

This paper is about generalising nominal sets and linking this to the denotational se-
mantics of unknowns (meta-variables) in nominal terms. Most of the paper is devoted
to introducing two-level nominal sets and doing concrete sets calculations on them.
We then apply the results thus obtained to construct what is essentially a soundness
proof for a generalisation of nominal terms. This generalisation includes nominal terms
(Urban et al. 2004), permissive-nominal terms (Dowek et al. 2010), and the syntax of
predicates in permissive-nominal logic (Dowek and Gabbay 2010).

Thus, this paper presents a new semantic theory for nominal terms and their gener-
alisations as considered by the author over the past several years.

To set this work in its general context, we will take a short detour through meta-
programming and logical specification.

1.1. A word on multi-level syntax

Meta-programming and logical specification are concerned with specifying computa-
tion and logic respectively, and then reasoning about them (this is of course the topic of
mathematical computer science). One design question is whether there should be two
(or more) distinct kinds of variable in the system—one for the meta-level reasoning sys-
tem and one for the object-level system—or whether there should be just one kind of
variable.

First-order logic is a one-level system; it has only one kind of variable. Axiomatisa-
tions of logic and computation within first-order logic include, for instance, combina-
tors, lambda abstraction algebras, and cylindric algebra (Hindley and Seldin 2008; Man-
zonetto and Salibra 2010; Henkin et al. 1971 and 1985). Arguably, higher-order logic and
the λ-calculus are also one-level systems. These underlie, for instance, LCF and the Is-
abelle theorem prover (Paulson 1990). Having only one level is no barrier to having

Two-level nominal sets 3

unorthodox control of variables; see for example Adbmal (Hendriks and van Oostrom
2003). Having only one level of variable is no barrier to doing meta-level reasoning; con-
sider that ZF set theory is axiomatised in Isabelle using an axiomatisation of first-order
logic in higher-order logic.

Yet if we want to do meta-programming or meta-reasoning, having two (or more)
levels of variable can be useful; one level for the object-system, the other for the system
we use to reason or program about it.

In (Gacek et al. 2009, Section 2) these two levels are called variables and nominal con-
stants. The authors trace this to a previous paper on LGω (Tiu 2007), though their ideas
and terminology are also closely related to the nominal atoms of nominal techniques
introduced in (Gabbay and Pitts 2001), which also underlie the work in this paper. Sim-
ilarly the ∇-quantifier of Miller and Tiu’s work is very similar to the Gabbay-Pitts N-
quantifier.1

Many other examples of multi-level systems exist. Thus for example we have Talcott’s
‘theory of binding structures’ (Talcott 1993), a family of λ-calculi by Sato et al with levels
of variable explicitly designed to model meta-variables (Sato et al. 2003); the ? and !
variables of McBride’s thesis (McBride 1999); the ‘holes with binding power’ of Jojgov’s
thesis and subsequent work (Jojgov 2002); Muñoz’s ‘variables and place-holders’ (noz
1997); Bognar’s study of contexts in the λ-calculus (Bognar 2002); the term equational
systems of Fiore and Hur (Fiore and Hur 2008); and Cardelli et al’s work on trees with
hidden labels (Cardelli et al. 2003).

Similar issues have arisen and continue to arise with research into contexts, mod-
ules, object-oriented programming, incremental program construction, dynamic bind-
ing, proof-search, and more. Arguably, the γ and δ variables which appear in work by
Wirth and others are an instance of a two-level system (Wirth 2004); more on this in
the Conclusions. Also arguably the multiple levels of variable in MetaML (Moggi et al.
1999) are a multi-level system. These lists are not intended to be exhaustive.

There is a need here, repeatedly manifested over many decades of research and many
different fields, for syntax and semantics with ‘holes’. There is no consensus for what
‘holes’ are, nor agreement over what to call them, but there are clearly some thing or
things out there and they are not just variables in first- or higher-order logic.

1.2. Nominal terms

Nominal terms are a formal syntax that takes a two-level approach very seriously, mak-
ing it a centrepiece of their design.

Three features make nominal terms special:

–– two levels of variable and an unusual capturing substitution,

1 We believe that a process of convergent evolution may be taking place; the ∇-quantifier and its nominal
constants are very similar to the N-quantifier and atoms of this author’s work. Perhaps most of the apparent
differences between the author’s work and others and that of Miller and others is down to differences in
emphasis: in the author’s case on semantics and staying close to the spirit of first-order logic; in Miller’s
case on implementation and staying close to the spirit of higher-order logic.

Murdoch J. Gabbay 4

–– a non-functional notion of abstraction with α-equivalence based on permutations,
and

–– a distinctive first-order semantics based on Fraenkel-Mostowski set theory and nom-
inal sets (Gabbay 2011).

We take full mathematical advantage of these features in this paper.
Nominal terms have two levels of variable: atoms (level 1 or object-level variables)

and unknowns (level 2 or meta-level variables2). Nominal terms and their unification
were introduced in (Urban et al. 2003, 2004). They were designed to formally express
questions couched in the informal meta-level of mathematical discourse (the rigorous
but informal language of mathematics papers like this one), such as:

“What values of t make ‘λx.λy.t’ equal to ‘λy.λx.t’?”

Here we see the same two levels of variable, with x and y having a different level from
the ‘meta-variable’ t. This is modelled almost symbol-for-symbol as the nominal terms
unification problem

“What values of X make ‘λrasλrbsX’ equal to ‘λrbsλrasX’?”

Here, λ is just a term-former and ras- and rbs- denote the atoms-abstraction from (Gab-
bay and Pitts 2001). Note that ras- is not a functional abstraction. This is a ‘nominal’
answer to the issues with function spaces highlighted in the quote above.

The applications of nominal terms go beyond unification. Here, for example, is a for-
mal specification of η-equivalence “if x is fresh for t then λx.ptxq � t”:

a#X ñ λraspapppX, aqq � X

Here a#X is a freshness side-condition which formally models ‘if x is not free in t’.
Thus, in a series of logical systems on nominal rewriting, nominal logic programming,

nominal algebra, and permissive-nominal logic (Fernández and Gabbay 2007; Cheney
and Urban 2008; Gabbay and Mathijssen 2009; Dowek and Gabbay 2010), the author
and others have investigated nominal terms’ application to rewriting, logic program-
ming, equational specification, and first-order specification. These have been used by
the author and others to axiomatise first-order logic, λ-calculus, and arithmetic (Gab-
bay and Mathijssen 2008b, 2010; Dowek and Gabbay 2010). Cheney and Urban have
implemented a logic-programming system αProlog (Cheney and Urban 2008) which is
based on nominal terms.

1.3. Semantics for nominal terms

There is however no nominal semantics for the unknowns in nominal terms; so far, we
only have functional semantics for them. That question motivates this paper.

What do we mean by this? As already mentioned, nominal terms have a notion of
meta-variable X, which we call unknowns. They also have a notion of atoms-abstraction

2 I deprecate calling level 2 variables ‘meta-level’, because when they are modelled in a formal syntax they
cease to be meta-level and instead become a model of the meta-level. A thing is not the same as our mathe-
matical model of that thing.

Two-level nominal sets 5

ras- whose semantics is not functional; abstraction is modelled using the Gabbay-Pitts
atoms-abstraction in nominal sets, from the author’s thesis and subsequent work (Gab-
bay and Pitts 1999; Gabbay 2001; Gabbay and Pitts 2001).

However, the only interpretation of unknowns in nominal terms is based on func-
tional abstraction. This is usually phrased as a valuation mapping unknowns to deno-
tations, but note that a valuation is just one giant simultaneous functional abstraction
over all unknowns. See for example the denotation of nominal algebra in (Gabbay and
Mathijssen 2009, Definition 4.14).

This is a mathematically reasonable and correct denotation but it is also unsatisfactory
that this should be the only one in our toolbox—for a number of reasons:

–– Part of nominal techniques is that we get inductive datatypes of syntax-with-binding
called nominal abstract syntax (Gabbay and Pitts 2001). Because nominal unknowns
do not have a nominal semantics, atoms-abstraction in nominal term syntax cannot
be directly interpreted as atoms-binding in the style of nominal abstract syntax.3

–– Thus, nominal inductive reasoning principles cannot be applied to nominal terms
in a way corresponding to the syntax-with-binding explored in (Gabbay and Pitts
2001).

–– There is no nominal style theory of binding for variables in nominal terms. That is,
nominal terms have a notion of variable X, but no accompanying notion of @X or
λX.

In short, and in spite of their name, nominal terms are closer to first-order terms than to
nominal terms: it is hard to define datatypes of nominal term syntax-with-binding, and
their variables have denotational semantics using valuations.

So we are led to the following question:

What ‘nominal’ meaning can be given to the meta-variables of nominal terms, if any?

In this paper we will develop a semantic theory which explains nominal terms purely
in terms of an elaboration of the nominal semantics from (Gabbay and Pitts 2001). We
call this new semantics two-level nominal sets. There is no need to appeal to functions
and higher-orders to explain the variables in nominal terms. As a nice corollary of this
semantics, we see how to extend nominal terms with binding for its variables; that is,
following the notation and terminology of (Urban et al. 2004), we will extend nominal
term syntax with unknowns-abstraction rXsr and interpret that in two-level nominal
sets.

This work is based on two ideas:

–– (Meta-)Variables are modelled as well-orderings on infinite sets of names / atoms /
urelemente. In this paper we call these level 2 atoms.

3 The literature has been strangely quiet on this point. The datatype of nominal terms of Definition 2.3 in
(Urban et al. 2004) is what we would have called a first-order name-carrying datatype of abstract syntax;
that is, an ‘ordinary’ datatype, not up to α-conversion. This relation has to be defined ‘by hand’; see Figure 2
of (Urban et al. 2004).

Murdoch J. Gabbay 6

–– Binding is modelled as equivalence classes of permutations of well-orderings.

That is, by the mathematical story told in this paper, level 2 atoms are well-orderings
on level 1 atoms, and α-renaming of level 2 atoms is based on reordering those well-
orderings. It is not obvious why this should work, but the mathematics to follow will
show that it does. We give some intuitions as to why, in Remark 2.10.

The reader familiar with nominal terms can recover the notion of a moderated unknown
or variable with suspended permutation π�X by considering a level 2 atom as a pair pπ, Xq
where π is a finite level 1 permutation and X (or ā, in the notation of this paper) is a
fixed but arbitrary choice of representative. We make this formal towards the end of the
paper, in Definition 6.11.

1.4. Summary

There are many multi-level syntaxes in the literature. This is because it is useful to sep-
arate ‘meta-level’ from ‘object-level’, or to capture ideas of context, modularity, incom-
pleteness, and incrementality.

Nominal sets (or Fraenkel-Mostowski sets, to use an earlier and scarier name) are a
sets-based denotation with a marked first-order flavour.4 Nominal terms are a syntax
with two levels of variable. Nominal terms have well-understood denotations in nomi-
nal sets; notably those developed in previous work by the author and others on nominal
algebra and permissive-nominal logic (Gabbay and Mathijssen 2009; Dowek and Gab-
bay 2010). However, these denotations are based on valuations and so are functional.
Since one motivation for nominal techniques is “names and binding without functions”
we are led to ask whether an alternative, less functional and more nominal, answer
exists; this question also has practical repercussions if we want to reason inductively
on nominal-terms-up-to-binding or extend nominal terms with abstraction for level 2
variables.

In this paper we will construct a new semantic answer by generalising nominal sets,
and verify its soundness with respect to nominal terms generalised to include level 2
abstraction.

Note that this paper concentrates on semantics. The reader interested in unpacking
the applications of nominal terms can find plenty of material elsewhere: notably the
nominal rewriting and algebraic frameworks (Fernández and Gabbay 2007; Gabbay and
Mathijssen 2009), αProlog (Cheney and Urban 2008), and axiomatisations using nominal
terms and proofs of correctness of first-order logic, λ-calculus, and arithmetic (Gabbay
and Mathijssen 2008b, 2010; Dowek and Gabbay 2010). A first application to incremental
program construction is (Gabbay and Mathijssen 2008b), with more in preparation.

4 The first ‘nominal’ denotation as considered in (Gabbay and Pitts 1999) was models of Fraenkel-Mostowski
set theory. Nominal sets are equivariant Fraenkel-Mostowski sets; so nominal sets are a special case of
Fraenkel-Mostowski sets. However, elements of nominal sets need not be equivariant and in that sense we
still get back to Fraenkel-Mostowski sets; indeed since the universe of all Fraenkel-Mostowski sets is itself
equivariant, in a certain sense they are a special case of a nominal set. It does not matter for this paper, but
this brief footnote might be of benefit to an interested reader.

Two-level nominal sets 7

2. Two-level nominal sets

2.1. Atoms and permutatations

We start as usual in nominal techniques by postulating a set of atoms A. This is Defini-
tion 2.1.

Unlike some previous work, A is split into two countably infinite halves, A and
A¡ . This makes the development permissive, following terminology from (Dowek et al.
2010): Our treatment of atoms is based not on finite and cofinite sets of atoms like (Gab-
bay and Pitts 2001), but on permission sets which are sets of atoms differing finitely from
A .5 This is Definition 2.3.

The next idea is a notion of level 2 atom. A level 2 atom is an ordering on a list of (level 1)
atoms. This is Definition 2.5. We also introduce the notion of the orbit of a level 2 atom.

Finally, we consider a fundamental property of the interaction between level 2 atoms
and permutations. This is Proposition 2.9.

Definition 2.1. Fix two disjoint countably infinite sets of (level 1) atoms A and A¡ and
write A � A YA¡ .

a, b, c, . . . will range over distinct atoms; we call this the permutative convention.

Definition 2.2. A level 1 permutation is a bijection π on A such that
nontrivpπq � ta | πpaq � au is finite.

π will range over level 1 permutations.

Definition 2.3. A permission set S has the form

S � pA zAq Y A1 where A � A and A1 � A¡ are finite.

S, T, U will range over permission sets.

Notation 2.4. i will range over strictly positive natural numbers 1, 2, 3, . . .

Definition 2.5. A level 2 atom ā is an ω-tuple (a stream, or infinite list) paiqi of distinct
level 1 atoms such that

atomspāq � tai | i P ωu is a permission set.
Write Ā for the set of level 2 atoms.

Definition 2.6. Define π�ā and orbpāq by:

π�ā � pπpaiqqi P Ā

orbpāq � tπ�ā | all πu � Ā

Remark 2.7. orbpāq in Definition 2.6 is particularly important.

5 One nice way of looking at the difference between permissive nominal terms from (Dowek et al. 2010) and
the nominal terms from (Urban et al. 2004), is that in nominal terms we are particularly interested in sets
of atoms that differ finitely from ∅, whereas in permissive nominal terms we are particularly interested in
sets of atoms that differ finitely from A .

Murdoch J. Gabbay 8

orbpāq is the orbit of ā under the action of level 1 permutations π such that π permutes
only atoms in atomspāq. Thus orbpāq is the equivalence class of level 2 atoms obtained
from ā by re-ordering finitely but unboundedly many of the atoms in ā.

Note that atomspāq � atomspb̄q does not imply orbpāq � orbpb̄q. This is because two
infinite lists may mention exactly the same atoms, but in orders which differ infinitely
from each other.

We will see these same ideas when we define level 2 atoms-abstraction rāsx in Defini-
tion 4.2.

Notation 2.8. Henceforth ā, b̄, ā1, c̄, . . . will range over level 2 atoms in distinct orbits. That
is, ‘ā and b̄’ means “any two ā P Ā and b̄ P Ā such that orbpāq � orbpb̄q”.

Proposition 2.9. π�ā � π1�ā if and only if πpaq � π1paq for every a P atomspāq.

Proof. By an easy calculation.

Remark 2.10. ω-tuples have infinitely many level 1 atoms and satisfy Proposition 2.9.
They are the simplest non-trivial structure with these two properties, that this author can
think of. ω-tuples can also be swapped: if the atoms in b̄ and ā are equal then intuitively
pb̄ āq swaps the ith atom of ā ‘pointwise’ for the ith atom of b̄.

There is a close connection between Proposition 2.9 and an axiomatic property of
nominal terms (see e.g. Lemma 2.8 of (Urban et al. 2004)). In the terminology used in
(Tzevelekos 2007), Proposition 2.9 states that level 2 atoms are strongly supported at level
1. So in that terminology, ω-tuples are the simplest strongly-supported elements with
infinite support.

Other structures with these properties are possible (for instance, binary trees with
ordered daughters), and we make no claim that Definition 2.5 is unique. We discuss
some possible alternatives in the Conclusions. Definition 2.5 seems canonical in the sense
that it is minimal amongst possible definitions in a sense we do not make formal.

Later on in Definition 2.21 we will define level 2 swapping pb̄ āq. As mentioned, one
further benefit of using ω-tuples is that they make the level 2 swapping action easy
to imagine: intuitively pb̄ āq swaps the ith atom of ā ‘pointwise’ for the ith atom of b̄.
Having given this intuition we should qualify it: Definition 2.21 is more subtle than that;
it may be that pb̄ āqpc̄q � c̄ even if atoms in b̄ and ā occur in c̄, depending on whether c̄
differs finitely from ā or b̄.

The headline is this: ω-lists are a concise mathematical structure with infinitely many
atoms, strong support, and determining a level 2 swapping action.

2.2. Sets with a two-level permutation action

Our ultimate goal is to define a notion of two-level nominal set (Definition 2.33, for the
impatient) but before we do this it is useful to consider a more primitive notion of a set
with permutation actions for level 1 and for level 2.

In this short subsection we introduce the idea of a level 2 permutation (Definition 2.11)
and a set with a two-level permutation action (Definition 2.15).

Two-level nominal sets 9

As the name suggests, a ‘level 2 permutation’ is like a ‘level 1 permutation’, only it
permutes level 2 atoms instead of level 1 atoms.

However, whereas level 1 atoms are atomic elements (urelemente), level 2 atoms are
not atomic at all. Level 2 atoms are lists, and as such they have internal structure.6

Nominal techniques from (Gabbay and Pitts 2001) are based on the idea of atoms being
atomic. It is not obvious that ā should display enough of the behaviour which makes
atoms a useful, to be similarly useful—but it does, just.

Definition 2.11. A level 2 permutation is a bijection π̄ on Ā such that:

1. atomspπ̄pāqq � atomspāq for all ā.
2. ¯nontrivpπ̄q is finite.
3. π̄pπ�āq � π�pπ̄pāqq for all π and all ā.

Write
¯nontrivpπ̄q � torbpāq | π̄pāq � āu � orbpĀq.

π̄ will range over level 2 permutations.

Remark 2.12. π̄ rearranges the order of the atoms in ā, not necessarily finitely. Thus
atomspπ̄pāqq � atomspāq but orbpπ̄pāqq is not necessarily equal to orbpāq.

π̄ must also be finitely-supported in that it only affects finitely many orbits of level 2
atoms.

Finally, π̄ must commute with the level 1 permutation action. In the terminology of
Definition 3.14, the level 2 action must be level 1 equivariant; see Lemma 3.16.

Definition 2.13. As is standard, we write --1 for inverse, � for functional composition,
and id for the identity. Thus for example p f � gqpxq � f pgpxqq, and idpxq � x.

Lemma 2.14. Level 1 permutations form a group with �, --1, and id. Level 2 permutations form
a group similarly.

Definition 2.15. A set with a two-level permutation action X is a triple p|X|, �1, �2q of

–– an underlying set |X|,
–– a level 1 permutation action �1 : P� |X| Ñ |X|, we write it infix π�x, and
–– a level 2 permutation action �2 : P̄� |X| Ñ |X|, we write it infix π̄�x

such that �1 and �2 are group actions of P and P̄ respectively on |X|.
We will normally write π�1x as π�x and π̄�2x as π̄�x.

Definition 2.15 states that |X| is acted on by two different groups, with no further spec-
ification of their interaction except that, as observed in Remark 2.12, level 2 and level 1
permutations will by Definition 2.11 commute.

Example 2.16. Here are examples of sets with a two-level permutation action:

6 If a is an atom then ā is a ‘molecule’ or ‘polymer’ of level 1 atoms. In spite of its name, a level 2 atom is not
an atomic structure. What is atomic, in a certain sense, is the order of the atoms within ā.

Murdoch J. Gabbay 10

1. A with π�a � πpaq and π̄�a � a.

2. Ā with π�ā � pπpaiqqi and π̄�ā � ā.

3. The set of permission sets with π�S � tπpaq | a P Su and π̄�S � S.

4. The set of all sets of atoms powersetpAqwith the pointwise action π�A � tπpaq | a P Au
and π̄�A � A.

5. The set of all sets of level 2 atoms powersetpĀqwith the pointwise action π�B � tπ�ā |
ā P Bu and π̄�B � tπ̄pb̄q | b̄ P Bu.

6. orbpĀq with π�orbpāq � orbpāq and π̄�orbpāq � orbpπ̄pāqq.

7. Suppose X and Y are sets with a two-level permutation action. Then X Ñ Y with
underlying set |X| Ñ |Y| (functions on the underlying sets) with the conjugation
action

pπ� f qx � π�p f pπ-1�xqq and pπ̄� f qx � π̄�p f pπ̄-1�xqq

is a set with a two-level permutation action.

Remark 2.17. We take a moment to check in detail that the action π̄�orbpāq � orbpπ̄pāqq of
part 6 of Example 2.16, is well-defined. Suppose π�atomspāq � atomspāq so that orbpāq �
orbpπ�āq. We need to show that orbpπ̄pπ�āqq � orbpπ̄pāqq.

By assumption π̄pπ�āq � π�π̄pāq. Also by assumption atomspπ̄pāqq � atomspāq, so that
π�atomspπ̄pāqq � atomspπ̄pāqq. It follows that orbpπ�π̄pāqq � orbpπ̄pāqq.

Remark 2.18. Another way to characterise the conjugation action from part 7 of Exam-
ple 2.16 is that

π� f pxq � pπ� f qpπ�xq and π̄� f pxq � pπ̄� f qpπ̄�xq.

Remark 2.19. The condition atomspπ̄pāqq � atomspāq in Definition 2.11 is necessary. Sup-
pose we drop it. Now consider π̄ such that atomspπ̄pāqq � atomspāq. Suppose π�ā � π1�ā,
so that by Proposition 2.9 π and π1 agree on atoms in atomspāq. Now it does not follow
that π�π̄pāq � π1�π̄pāq.

The condition π�π̄pāq � π̄pπ�āq is also necessary. It is in the terminology of Subsec-
tion 3.2 an equivariance condition; see also Lemma 3.16. To examine one more example
of where it is used, see Lemma 4.20.

2.3. Level 2 swappings

Intuitively a swapping pā b̄q maps ā to b̄ and vice-versa. But the definition of a swap-
ping needs to be a little more elaborate, to account for the coherence condition in Defi-
nition 2.11 that pā b̄q�π�x � π�pā b̄q�x. So we have to be just a little careful.

We introduce level 1 swappings and level 2 swappings in Definitions 2.20 and 2.21.
In Lemma 2.25 and Proposition 2.26 we check that relevant parts of the theory of per-
mutations remain true in the more elaborate level 2 case.

Definition 2.20 is standard from (Gabbay and Pitts 2001):

Two-level nominal sets 11

Definition 2.20. Suppose a and b are level 1 atoms. Define a level 1 swapping pb aq by:

pb aqpaq � b
pb aqpbq � a
pb aqpcq � c

Definition 2.21 is new:

Definition 2.21. Suppose ā and b̄ are level 2 atoms (and orbpāq � orbpb̄q). Suppose
atomspāq � atomspb̄q.

Suppose also that π is a level 1 permutation and atomspπ�āq � atomspāq.
Define level 2 swappings pb̄ āq and pπ�ā āq by:

pb̄ āqpπ1�āq � π1�b̄ pπ�ā āqpπ1�āq � pπ1 � πq�ā
pb̄ āqpπ1�b̄q � π1�ā pπ�ā āqpb̄q � b̄

pb̄ āqpc̄q � c̄

Remark 2.22. Recall from Notation 2.8 the permutative convention that ā, b̄, and c̄ range
over level 2 atoms in distinct orbits.

The three cases in the definition of the action of pb̄ āq in Definition 2.21 come from the
fact that for any level 2 atom z, exactly on of the following three must hold: orbpzq �
orbpāq, orbpzq � orbpb̄q, or orbpzq � orbpc̄q for some c̄ with orbpc̄q R torbpāq, orbpb̄qu.

Similarly for the definition of the action of pπ�ā āq.

Remark 2.23. The reader familiar with nominal techniques with expect that pb̄ āq � pā b̄q,
since pb aq � pa bq. This is correct.

However, pπ�ā āq � pā π�āq in general. To see why, choose any ā and suppose a, b, c P
atomspāq. Let π�pb cq � pc aq (so πpaq�b, πpbq�c, and πpcq�a). Then pπ�ā āqpāq � π�ā and
pā π�āqpāq � π-1�ā � π�ā.

It is true that pπ�ā āq � pā π-1�āq always: this is a special case of Lemma 2.25.

Lemma 2.24. Definition 2.21 is well-defined, defines level 2 permutations, and ¯nontrivppb̄ āqq �
torbpb̄q, orbpāqu and ¯nontrivppπ�ā āqq � torbpāqu.

Proof. The only slightly non-trivial part is to check is that pπ�ā āq�π1�ā � π1�pπ�ā āq�ā.
This is not hard.

Lemma 2.25. Suppose ā and b̄ are level 2 atoms (and by convention orbpāq � orbpb̄q). Suppose
atomspāq � atomspb̄q. Suppose π is a level 1 permutation. Suppose π1 is a level 1 permutation
such that π1�atomspāq � atomspāq. Then

pπ�b̄ π�āq � pb̄ āq and pπ�π1�ā π�āq � pπ1�ā āq.

Proof. By routine calculations unpacking Definition 2.21.

Proposition 2.26. The set of all level 2 permutations is generated as a group by the level 2
swappings.

Murdoch J. Gabbay 12

Proof. This is not immediately obvious because tā | π̄pāq � āu is not in general finite (the
generators of a group should generate that group finitely). However, by assumption

¯nontrivpπ̄q is finite, and we can induct on its size.
Suppose π̄ is a level 2 permutation. There are three cases:

–– π̄ � id. There is nothing to prove.
–– There exists some ā such that orbpπ̄pāqq � orbpāq. Write b̄ � π̄pāq. It is a fact, proved

much as Lemma 2.25, that ¯nontrivpπ̄ � pb̄ āqq � ¯nontrivpπ̄qztorbpb̄qu. By inductive
hypothesis π̄ � pb̄ āq is generated by swappings. The result follows.

–– There exists some ā such that orbpπ̄pāqq � orbpāq and π̄pāq � π�ā � ā. It is a fact that
¯nontrivpπ̄ � pā π�āqq � ¯nontrivpπ̄qztorbpāqu. By inductive hypothesis π̄ � pā π-1�āq is

generated by swappings. The result follows.

2.4. Two-level nominal sets

We are now ready to extend the ideas in (Gabbay and Pitts 2001) to develop a notion of
two-level nominal set. In the terminology we are about to develop, a two-level nominal
set is a set with a two-level permutation action that has small support at levels 1 and 2.

This is what the reader familiar with nominal techniques would expect, except that
our notion of support at level 2 has to be based on orbits of level 2 atoms (under finitely-
supported permutations π). Thus in Definition 2.28 fixpπ̄q is a set of orbpāq and not a set
of ā.7

Remark 2.27. The reader might at this point begin to question our design decision to let
level 2 atoms be ω-tuples of atoms. Since orbits orbpāq are used in the coming definitions
so much, why do we not take level 2 atoms to be what here we write orbpāq instead of ā?
The answer is this: suppose b, a P atomspāq; we do not want pb aq�ā to be equal to ā and
it is a fact that orbppb aq�āq � orbpāq.

Put another way, Proposition 2.9 would fail.
More on this in Remark 4.19, including an intuition for why pb aq�ā � ā and Proposi-

ton 2.9 are so desirable.

Definition 2.28. Suppose A � A and B � orbpĀq. Define fixpAq and fīxpBq by:

fixpAq � tπ | @a P A.πpaq � au � P

fīxpBq � tπ̄ | @o P B.@b̄ P o.π̄pb̄q � b̄u � P̄

Remark 2.29. The ‘o’ in the definition of fīxpBq in Definition 2.28 is there because B is
a set of orbits under the action of level 1 permutations π. Since π̄pπ�b̄q � π�pπ̄pb̄qq is
assumed in Definition 2.11, the value of π̄ on one b̄ P o determines that on every b̄ P o.
Thus another way to define fīxpBq would use Db̄ P o instead of @b̄ P o.

Perhaps simplest of all, using the permutation action in part 6 of Example 2.16, is to
define fīxpBq � tπ̄ | @o P B.π̄�o � ou. These definitions are all equivalent.

7 It could almost never be finite otherwise.

Two-level nominal sets 13

Definition 2.30. Suppose X is a set with a two-level permutation action.

Say that A � A 1-supports, and say that B � orbpĀq 2-supports x P |X| when
@π. π P fixpAq ñ π�x�x and
@π̄. π̄ P fīxpBq ñ π̄�x�x

respectively.

Definition 2.31. Call a set A � A small when A � S for some permission set S. Call a
set B � orbpĀq small when for every permission set S, the set torbpāq P B | supppāq �
Su is finite.

Remark 2.32. Another way to characterise ‘small’ from Definition 2.31 brings out a sym-
metry between the two levels: A is small when AzA is finite; B is small when Bz∅ is
finite. More on the design of Definition 2.31 in Remark 2.35.

Definition 2.33. Call a set with a two-level permutation action X a two-level nominal
set when:

–– For every x P |X| there exist small A � A and B � orbpĀq that support x.
–– π̄�pπ�xq � π�pπ̄�xq.

Henceforth X, Y, and Z will range over two-level nominal sets.

Example 2.34. Recall the example sets with a two-level permutation action from Exam-
ple 2.16. A, Ā, and the set of permission sets are two-level nominal sets. orbpĀq is a
two-level nominal set.

The set of sets of atoms powersetpAq (number 4 in Example 2.16) is not a two-level
nominal set, because not all sets of atoms have small support to level 1. Neither are
powersetpĀq and |X Ñ Y|, for similar reasons.

Remark 2.35. A purpose of small support is to guarantee an infinite supply of fresh
names; it is a feature of names that ‘we can always find a fresh one’ and this is also
a technical requirement of the mathematics to follow, e.g. the construction of atoms-
abstraction in Section 4.

There is design freedom in what we take ‘small’ to mean. Definition 2.33 does exactly
what is convenient:

–– At level 2 we take small to be finite. This is consistent with (Gabbay and Pitts 2001).
–– At level 1 we cannot do this, because we want level 2 atoms ā to have small support.

So we use A instead.
As remarked, we can view small at level 1 as ‘small’=‘only finitely larger than A ’.
Small sets at level 1 are closed under the axioms of a support ideal (Cheney 2006)
(permission sets are not, because they do not include finite sets). In view of the fact
that level 2 atoms are well-orderings of small sets of level 1 atoms, we can also view
small at level 1 as being ‘small’=‘well-orderable’. This is consistent with (Gabbay
2002, 2007).

Murdoch J. Gabbay 14

Other design choices exist. For instance, we could take uncountably many atoms and
take ‘small’=‘countable’ at both levels.

3. Support and equivariance; functions and the category NOM2

It is well-known from nominal techniques that a ‘nominal’ element x has a supporting
set of atoms supppxq, which is the least set of atoms such that if πpaq � π1paq for all
a P supppxq then π�x � π1�x. Permutations are to α-renaming, as support is to ‘free
variables in’.

In Subsection 3.1 we extend this story to the level 2 atoms. Note that ¯supppxq is a set of
orbits; e.g. ¯supppāq � torbpāqu. We emphasise here that orbpāq (Definition 2.6) is not equal
to atomspāq (Definition 2.5). The notion of level 2 support is actually quite subtle—but it
seems to be what is required to make important ‘nominal’ results valid for the level 2
case, such as Theorem 3.9 and the property of having small support.

In Subsection 3.2 we explore notions of equivariance for elements and functions. Equiv-
ariance is important, because an equivariant element is in some sense ‘global’ or ‘generic’.
Equivariance manifests itself in several equivalent ways: supppxq � ∅, π�x � x for all
π, and (if x is a function) π�pxpyqq � xpπ�yq, and similarly at level 2. We state and prove
these properties. We then discuss some useful examples of equivariant elements in Re-
mark 3.17 and the subsequent results. In Corollary 3.10 we exploit one of these examples
to give one way of detecting the support of an element; it will be useful later.

3.1. Support at levels 1 and 2

Definition 3.1. Call a permutation π / π̄ self-inverse when π � π-1 / π̄ � π̄-1.

Lemma 3.2. 1. If A1, A � A are small and 1-support x P |X| then so does A1 X A.
2. If B1, B � orbpĀq are small and 2-support x P |X| then so does B1 X B.

Proof. We prove only the second part; the first part is similar.
Suppose B1 and B are small and 2-support x P |X|. Suppose π̄ P fīxpB X B1q. Now

B1zB is finite and orbpĀqzpB Y B1q is infinite, so we can find a self-inverse permutation
π̄1 P fīxpBq such that pπ̄1�B1q X B1 � BX B1. It can be verified that π̄1 � π̄ � π̄1 P fīxpB1q, so
pπ̄1 � π̄ � π̄1q�x � x. It follows from Definition 2.28 that π̄�x � x, as required.

Lemma 3.3. –– A supports x if and only if π�A supports π�x.
–– B supports x if and only if π̄�B supports π̄�x.

Proof. We consider only the second part; the first is exactly similar. Since permutations
are invertible, it suffices to show that if B supports x then π̄�B supports π̄�x.

Suppose B supports x and suppose π̄1 P fīxpπ̄�Bq. It is a fact that π̄-1 � π̄1 � π̄ P fīxpBq.
So pπ̄-1 � π̄1 � π̄q�x � x. It follows that π̄1�pπ̄�xq � π̄�x.

Two-level nominal sets 15

Definition 3.4. Define supppxq and ¯supppxq by:

supppxq �
�
tA � A | A is small and A 1-supports xu

¯supppxq �
�
tB � orbpĀq | B is small and B 2-supports xu

Notation 3.5. Following (Gabbay and Pitts 2001), we write a#x for ‘a R supppxq’. Simi-
larly we write ā#x for ‘ā R ¯supppxq’.

Example 3.6. Recall the two-level permutation actions from Example 2.34. With these
actions:

In A : supppaq � tau and ¯supppaq � ∅
In Ā : supppāq � atomspāq and ¯supppāq � torbpāqu
In orbpĀq : suppporbpāqq � ∅ and ¯suppporbpāqq � torbpāqu

Lemma 3.7. supppπ�xq � π�supppxq and ¯supppπ̄�xq � π̄� ¯supppxq.

Proof. Routine from Lemma 3.3 and Definition 3.4.

Definition 3.8. Define diffpπ, π1q and ¯diffpπ̄, π̄1q by:

diffpπ, π1q � ta | πpaq � π1paqu � A
¯diffpπ̄, π̄1q � torbpāq | π̄pāq � π̄1pāqu � orbpĀq

Theorem 3.9. 1. If x P |X| has a small 1-supporting set A then supppxq is well-defined, is
small, and is the unique least set of level 1 atoms that 1-supports x.

2. If x P |X| has a small 2-supporting set B then ¯supppxq is well-defined, is small, and is the
unique least set of orbits of level 2 atoms that 2-supports x.
As a particular corollary,

3. if diffpπ, π1q X supppxq � ∅ then π�x � π1�x, and
4. if ¯diffpπ̄, π̄1q X ¯supppxq � ∅ then π̄�x � π̄1�x.

Proof. For part 1, we reason as follows:

–– supppxq is small (Definition 2.31). By construction supppxq � A and A is small.
–– supppxq is well-defined. By assumption A a small supporting set for x, exists.
–– supppxq supports x. Assume π P fixpsupppxqq. It suffices to show that π�x � x.

nontrivpπq is finite, so write nontrivpπq � ta1, . . . , anu. By assumption nontrivpπq X
�
tA small and 1-supports xu � ∅, so for every ai there exists a small Ai that 1-

supports x and such that ai R Ai. By Lemma 3.2
�

i Ai supports x. By construction
π P fixp

�
i Aiq, and it follows that π�x � x.

–– supppxq is least. Suppose A � supppxq. Suppose there exists a P supppxqzA. Then
choose b fresh (so b R supppxq). By Lemma 3.7 pb aq�supppxq � supppxq; it follows that
pb aq�x � x, so A does not support x. Therefore, A � supppxq.

The case of part 2 is similar, but easier.
Parts 3 and 4 follow by unpacking the definition of what it is to support x (Defini-

tion 2.30) and considering π-1 � π1 and π̄-1 � π̄1.

Corollary 3.10. –– a P supppxq if and only if for fresh b (so b#x) pb aq�x � x.
–– ā P ¯supppxq if and only if for fresh b̄ (so b̄#x) such that atomspb̄q � atomspāq, pb̄ āq�x � x.

Murdoch J. Gabbay 16

3.2. Functions and equivariance

Definition 3.11. –– Call x P |X| level 1 equivariant when π�x � x for all level 1 permu-
tations π.

–– Call x P |X| level 2 equivariant when π̄�x � x for all level 2 permutations π̄.

Example 3.12. Recall Examples 2.16 and 2.34.

1. In A, all elements are level 2 equivariant and no elements are level 1 equivariant.
2. In Ā, no elements are level 1 or level 2 equivariant.
3. In orbpĀq, all elements are level 1 equivariant and no elements are level 2 equivari-

ant.

Proposition 3.13. x P |X| is level 1 / level 2 equivariant if and only if supppxq � ∅ / ¯supppxq �
∅ respectively.

Proof. By routine calculations.

Recall the definition of X Ñ Y from number 7 of Example 2.16).

Definition 3.14. Suppose X and Y are sets with a two-level permutation action. Suppose
f P |X Ñ Y| is a function.

–– Call f level 1 equivariant when f pπ�xq � π� f pxq for all level 1 permutations π.
–– Call f level 2 equivariant when f pπ̄�xq � π̄� f pxq for all level 2 permutations π̄.
–– Call f equivariant when it is level 1 and level 2 equivariant.

Lemma 3.15. Suppose f P |X Ñ Y|. Then f is equivariant in the sense of Definition 3.11
(suppp f q � ∅ � ¯suppp f q) if and only if f is equivariant in the sense of Definition 3.14
(π� f pxq � f pπ�xq and π̄� f pxq � f pπ̄�xq).

Proof. By routine calculations.

Lemma 3.16. Suppose X is a two-level nominal set. Then the following three conditions are
equivalent:

–– π̄�pπ�xq � π�pπ̄�xq (this is the condition on two-level nominal sets from Definition 2.33).
–– The function λx.π�x P |X Ñ X| is level 2 equivariant.
–– The function λx.π̄�x P |X Ñ X| is level 1 equivariant.

Proof. Direct from the definitions.

Remark 3.17. In nominal techniques, ‘natural’ functions tend to be equivariant. Exam-
ples are Lemma 2.25, Lemma 3.16, and Lemma 3.18. See also part 2 of Lemma 5.10.

Lemma 3.18. Suppose X and Y are two-level nominal sets. The maps

λx.supppxq P |X Ñ powersetpAq| and λx. ¯supppxq P |X Ñ powersetpĀq|

(with the conjugation action from Example 2.16) are equivariant.

Proof. A reformulation of Lemma 3.7.

Lemma 3.19. suppp f pxqq � suppp f q Y supppxq and similarly for ¯supp.

Proof. By routine calculations using Remark 2.18 and Theorem 3.9.

Two-level nominal sets 17

3.3. The cartesian product and exponential

Definition 3.20. Suppose X and Y are two-level nominal sets. Define X�Y by:

–– |X�Y| is |X| � |Y|.
–– π�px, yq � pπ�x, π�yq and π̄�px, yq � pπ̄�x, π̄�yq.

Define X ñ Y by:

–– f P |X ñ Y| when f P |X Ñ Y| (Example 2.16) and f has small (Definition 2.31)
support to level 1 and level 2.

–– The permutation action is the conjugation action, inherited from X Ñ Y.

Lemma 3.21. If X and Y are two-level nominal sets then so are X�Y and X ñ Y.

Proof. Direct from the constructions.

Lemma 3.22. A bijection between equivariant functions f P |X| Ñ |Y ñ Z| and g P |X�Y| Ñ

|Z| is given by currying and uncurrying. That is,

–– f maps to λx, y. f pxqpyq.
–– g maps to λx.λy.gpx, yq.

3.4. The category of two-level nominal sets

Definition 3.23. Define a category NOM2 by the following data:

–– Objects are two-level nominal sets X.
–– Arrows f : X ÝÑ Y are equivariant functions f P |X Ñ Y|.

It is easy to check that NOM2 is indeed a category.

Definition 3.24. Let B be the two-level nominal set with |B| � t0, 1u and the trivial
permutation action.

That is, @π.@xPt0, 1u.π�x � x and @π̄.@xPt0, 1u.π̄�x � x.

Proposition 3.25. NOM2 is a topos:

–– An initial object is the one-element set with trivial permutation actions.
–– The cartesian product and exponential are X�Y and X ñ Y from Definition 3.20.
–– A subobject classifier is B.

Proof. The first two parts are routine given the results already proven. For the subobject
classifier, it suffices to note that X � |X| is the underlying set of an object in NOM2 (so
xPX implies @π.π�xPX and @π̄.π̄�xPX) if and only if λx.if xPX then 1 else 0 is an equiv-
ariant function in the sense of Definition 3.14.

4. Atoms-abstraction

We now come to the theory of abstractions by level 1 and level 2 atoms.
Nominal techniques introduced the idea of an atoms-abstraction rasx in (Gabbay and

Pitts 2001). This is a notion of α-abstraction that generalises beyond syntax, though in

Murdoch J. Gabbay 18

the special case that x is an abstract syntax tree it coincides with what we would nor-
mally call ‘real’ α-abstraction.

In Definition 4.2 we reprise the nominal definition of rasx and extend it with a new
definition rāsx of abstraction by a level 2 atom ā. The specific design of the definitions
does not follow (Gabbay and Pitts 2001) and is based on a decomposition of abstraction
into pairing and permutation orbits, following (Gabbay 2007, 2011).

In Subsection 4.2 we check that the permutation action we give atoms-abstraction
matches up with the permutation action we obtain pointwise from atoms-abstractions
as sets (permutation orbits) in Definition 4.1. This is interesting because it helps us
to prove later results, but it is relevant also for another reason: One useful aspect of
nominal techniques is its connection with sets foundations of mathematics, and Subsec-
tion 4.2 verifies that this connection remains sound.

Subsection 4.3 develops the theory of support and equality for atoms-abstraction. In
spirit, the theorems follow (Gabbay and Pitts 2001) but the level 2 case has its own
unique character and things do not play out entirely as one might expect. Perhaps
the most important point is hidden in part 3 of Theorem 4.11, where we prove that
suppprāsxq � supppxq Y atomspāq. In words, this expresses an important distinction that
rāsx abstracts the order of the atoms in ā in x, but it does not abstract the atoms them-
selves. This is a recurring theme in this paper: our notion of a level 2 atom is an order
on an infinite list of level 1 atoms, rather than the (infinite collection of) level 1 atoms in
the list.

Subsection 4.4 is very brief but makes the observation of the previous paragraph for-
mal. absprāsxq identifies the atoms in ā, but does not (and cannot) recover their order.
This technical definition is useful later on in Section 4.6.

Finally, Subsections 4.5 and 4.6 develop and explore atoms-concretion and the theory
of functions out of atoms-abstraction.

4.1. Basic definition

Definition 4.1. Suppose X is a two-level nominal set. Suppose x P |X|, and suppose
A � A and B � orbpĀq are small (Definition 2.31). Define permutation orbits x

ð

A and
x

ð

B by:

x

ð

A � tπ�x | π P fixpAqu
x

ð

B � tπ̄�x | π̄ P fīxpBqu

Definition 4.2. Suppose X is a two-level nominal set. Define level 1 and level 2 atoms
abstraction rAsX and rĀsX, which are sets with a two-level permutation action, as fol-

Two-level nominal sets 19

lows:

rasx � pa, xq

ð

supppxqztau |rAsX| � trasx | aPA, xP|X|u
rāsx � pā, xq

ð

¯supppxqztorbpāqu |rĀsX| � trāsx | āPĀ, xP|X|u

π�rasx � rπpaqsπ�x π̄�rasx � rasπ̄�x
π�rāsx � rπ�āsπ�x π̄�rāsx � rπ̄pāqsπ̄�x

Remark 4.3. We will prove a number of things about Definition 4.2:

–– rAsX and rĀsX are two-level nominal sets. This is Corollary 4.7.
–– The permutation action on rasx and rāsx given in Definition 4.2 coincides with the

pointwise permutation action on pa, xq

ð

supppxqztau and pā, xq

ð

supppxqztāu respectively (Defi-
nition 4.4). This can be viewed as a kind of ‘sanity check’, but it turns out to be an
independently useful result. This is Proposition 4.5.

–– We describe the theory of equality on abstractions. This is Propositions 4.9 and 4.10.
–– We describe the theory of support of abstractions. This is Theorem 4.11.

4.2. The pointwise action

Definition 4.4. Suppose X is a set with a two-level permutation action. Then the set of
subsets U � |X| inherits the two-level permutation action pointwise, defined by:

π�U � tπ�u | u P Uu π̄�U � tπ̄�u | u P Uu

Proposition 4.5. Suppose A � A and B � Ā are small. Suppose X is a two-level nominal set
and x P |X|. Then:

–– π�px

ð

Aq � pπ�xq

ð

π�A. As a corollary, π�rasx in the sense of Definition 4.2 is equal to π�rasx
in the sense of Definition 4.4.

–– π̄�px

ð

Aq � pπ̄�xq

ð

π̄�A. As a corollary, π̄�rasx in the sense of Definition 4.2 is equal to π̄�rasx
in the sense of Definition 4.4.

–– Similarly for π�rāsx and π̄�rāsx.

4.3. Support and equality

Lemma 4.6. Suppose X is a two-level nominal set and x P |X|. Suppose a P A and ā P Ā. Then:

1. suppprasxq � supppxqztau and ¯suppprasxq � ¯supppxq.
2. suppprāsxq � atomspāq Y supppxq and ¯suppprāsxq � ¯supppxqztorbpāqu.

Proof. By routine arguments on the group action using Proposition 4.5.

Corollary 4.7. rAsX and rĀsX are two-level nominal sets.

Proof. We need to check the properties in Definition 2.33. rAsX and rĀsX have a two-
level permutation action by construction. The existence of small supporting sets follows
from Lemma 4.6.

Murdoch J. Gabbay 20

It remains to check that π̄�π�rasx � π�π̄�rasx and π̄�π�rāsx � π�π̄�rāsx. This is by
routine calculations using the fact that π̄�π�x � π�π̄�x and (by Definition 2.11) π̄�π�ā �
π�π̄�ā.

Lemma 4.8. Suppose X is a two-level nominal set and x P |X|. Suppose a P A and ā P Ā.
Then rasx and rāsx are graphs of partial functions.
That is, py1, yq P rāsx and py1, zq P rāsx imply y � z, and similarly for rasx.

Proof. We present only the proof for rāsx.
Suppose π̄ is such that fixpπ̄q � ¯supppxqztorbpāqu and similarly for π̄1. Suppose π̄pāq �

π̄1pāq. Then diffpπ̄, π̄1q X ¯supppxq � ∅. By Theorem 3.9 π̄�x � π̄1�x.

Proposition 4.9. Suppose X is a two-level nominal set and x P |X|. Suppose a, b P A and
ā, b̄ P Ā.

1. rasx � rbsy if and only if b#x and pb aq�x � y.
2. rāsx � rb̄sy if and only if atomspb̄q � atomspāq, b̄#x, and pb̄ āq�x � y.

Proof. We present only the proof for part 2. We prove two implications.

–– Left-to-right. Suppose rāsx � rb̄sy.
By Definition 4.2 pā, xq P rb̄sy and it follows that ā � π̄�b̄ for some π̄. By Defini-
tion 2.11 atomspāq � atomspb̄q.
By Definition 4.2 pb̄, pb̄ āq�xq P rb̄sy and pb̄, yq P rb̄sy. It follows by Lemma 4.8 that
pb̄ āq�x � y. We deduce that b̄#x using Lemma 4.6.

–– Right-to-left. Suppose atomspāq � atomspb̄q, b̄#x, and pb̄ āq�x � y. Then rb̄spb̄ āq�x �

rb̄sy. It is a fact that pb̄ āq P fīxp ¯supppxqztorbpāquq. Using Lemma 4.6 and Theorem 3.9
and some easy calculations we deduce that rāsx � rb̄sy.

Proposition 4.10. –– rasx � rasx1 if and only if x � x1.
–– rāsx � rπ�āsx1 if and only if π�atomspāq � atomspāq and pπ�ā āq�x � x1.

Proof. Routine using Lemma 4.8 and Theorem 3.9.

Theorem 4.11. rAsX and rĀsX are two-level nominal sets. Furthermore:

1. suppprasxq � supppxqztau
2. ¯suppprasxq � ¯supppxq
3. suppprāsxq � supppxq Y atomspāq
4. ¯suppprāsxq � ¯supppxqztorbpāqu

Proof. 1. Suppose b#rasx. Choose b1 fresh (so b1#x, rasx). By Corollary 3.10 b#rasx if and
only if pb1 bq�rasx � rasx. By Proposition 4.10 pb1 bq�rasx � rasx if and only if pb1 bq�x �
x. By Corollary 3.10 pb1 bq�x � x if and only if b#x.

2. Like the proof of part 1, using the fact that pb̄ āq�rasx � raspb̄ āq�x.
3. Suppose b#rāsx. Choose b1 fresh (so b1#x, ā, rāsx). By Corollary 3.10 b#rāsx if and only

if pb1 bq�rāsx � rāsx. By Proposition 4.10 pb1 bq�rāsx � rāsx if and only if pb1 bq�atomspāq �
atomspāq and ppb1 bq�ā āq�x � pb1 bq�x. This happens if and only if b#ā and, by Corol-
lary 3.10, b#x.

4. Like the proof of part 1.

Two-level nominal sets 21

4.4. Abstracted level 1 atoms of a level 2 abstraction

Note in Theorem 4.11 that suppprāsxq � atomspāqY supppxq and suppprāsxq � supppxqzatomspāq.
In rāsx we do not abstract the atoms in ā—we abstract the order in which they appear in
ā.

With this in mind, the following definition will be useful later:

Definition 4.12. Suppose X is a two-level nominal set, x P |X|, and ā P Ā. Define

absprāsxq � atomspāq.

Lemma 4.13. abs is well-defined.

Proof. Suppose rāsx � rb̄sy. By Proposition 4.9 atomspāq � atomspb̄q.

4.5. Concretion

Definition 4.14. Suppose x P |rAsX|. Write x@a for the unique (by Lemma 4.8) ele-
ment of |X| such that pa, x@aq P x, when this element exists.
Suppose x P |rĀsX|. Write x@ā for the unique element of |X| such that pā, x@āq P x,
when this element exists.
We call x@a / x@ā level 1 / 2 concretion.

Lemma 4.15. –– If x P |rAsX| then x@a exists if and only if a#x.
–– If x P |rĀsX| then x@ā exists if and only if ā#x.

Proof. By construction and Theorem 4.11.

Lemma 4.16. Suppose X is a two-level nominal set.

–– Suppose x P |rAsX| and b#x.
Then prasxq@b � pb aq�x and prasxq@a � x.

–– Suppose x P |rĀsX|, b̄#x, and π�atomspāq � atomspāq.
Then prāsxq@b̄ � pb̄ āq�x and prāsxq@π�ā � pπ�ā āq�x.

–– Suppose x P |rAsX| and a#x.
Then raspx@aq � x.

–– Suppose x P |rĀsX|, ā#x, and π�atomspāq � atomspāq.
Then rāspx@π�āq � pπ�ā āq�x.

Proof. By routine calculations using Lemma 4.8 and Theorem 3.9.

It is now convenient to pause for a moment and explore some fine detail of abstrac-
tions at both levels:

Proposition 4.17. Suppose ā is a level 2 atom and suppose a P atomspāq and b P atomspāq are
two distinct atoms. Then:

–– rāsa � rāsb.
–– rāsrasa � rāsrbsb.

Murdoch J. Gabbay 22

–– rasrāsa � rbsrāsb.
–– rāsā � π�rāsā if and only if nontrivpπq � atomspāq or nontrivpπq X atomspāq � ∅.

Proof. –– By part 2 of Lemma 4.16 prāsaq@ā � a � b � prāsbq@ā.
–– By part 1 of Proposition 4.9 rasa � rbsb. The result follows.
–– By contradiction: by Proposition 4.9 if rasrāsa � rbsrāsb then b#rasrāsa. This is impos-

sible by Theorem 4.11.
–– By definition π�rāsā � rπ�āsπ�ā. We use Proposition 4.9 and some routine calcula-

tions to reduce to the question of whether π�atomspāq � atomspāq. The result follows
by properties of sets.

Remark 4.18. Proposition 4.17 is designed to highlight some of the (perhaps less obvi-
ous) aspects of level 2 and level 1 abstraction.

First, we note that rāsa � rāsb for two distinct atoms a, b P atomspāq. This emphasises
that the index of an atom—where it appears in ā—really counts. The order of the atoms in
ā matters, even under a ā-abstraction; shades here of de Bruijn indexes (de Bruijn 1972).

Second, we note that this does not affect atoms-abstraction inside the level 2 atoms-
abstraction. rasa � rbsb still holds no matter what.

Third, we note that the index of a and b in ā (where they occur in ā) continues to
matter, even under atoms-abstraction by a and b. From outside the ā-abstraction, a and b
remain visible by their index.

Fourth, we note that the order of the atoms in ā is nevertheless abstracted by a ā-
abstraction.

Remark 4.19. In Remark 2.27 which opened Subsection 2.4, we asked why we use ā to
build atoms-abstraction and why in general we take ā as our model of meta-variables,
instead of using orbits under finite permutations orbpāq (Definition 2.6). After all, ¯supp
and fīx both return sets of orbits of level 2 atoms and not sets of level 2 atoms.

We could do that. We would obtain an alternative theory in which there is no distinc-
tion between ā and orbpāq.

But then, pb aq�ā � ā would hold and (using an appropriately updated version of
Proposition 4.9) so would rasrbsā � rbsrasā, for a, b P atomspāq. In this author’s opinion,
this is wrong for the following reason: the context ‘λx.λy.t’ is not generally taken to be
equal to ‘λy.λx.t’.

Note however that if we know of our language that the order of binding will not
matter, as in first-order logic where @x.@y.φ is always logically equivalent with @y.@x.φ,
then this might not matter.

Lemma 4.20. –– Suppose x P |rAsX| and a#x. Then π�px@aq � pπ�xq@πpaq.
–– Suppose x P |rAsX| and a#x. Then π̄�px@aq � pπ̄�xq@a.
–– Suppose x P |rĀsX| and ā#x. Then π�px@āq � pπ�xq@π�ā.
–– Suppose x P |rĀsX| and ā#x. Then π̄�px@āq � pπ̄�xq@π̄pāq.

Proof. We consider only the first and the third case and use Lemma 4.16.

–– If x � rasx1 then x@a � x1 and pπ�xq@πpaq � π�x1.
If x � rbsx1 then x@a � pb aq�x1 and pπ�xq@πpaq � pπpbq πpaqq�π�x1 � π�ppb aq�x1q.

Two-level nominal sets 23

–– If x � rπ1�āsx1 then x@ā � pā π1�āq�x1 and pπ�xq@π�ā � pπ�ā π�π1�āq�π�x1. By Lemma 2.25
pπ�ā π�π1�āq � pā π1�āq and by equivariance of the permutation actions (Defini-
tion 2.33) pā π1�āq�π�x1 � π�pā π1�āq�x1. The result follows.
If x � rb̄sx1 then x@ā � pb̄ āq�x1 and pπ�xq@π�ā � pπ�b̄ π�āq�π�x1. By Lemma 2.25
pπ�b̄ π�āq � pb̄ āq and by equivariance of the permutation actions (Definition 2.33)
pb̄ āq�π�x1 � π�pb̄ āq�x1. The result follows.

4.6. Arrows out of atoms-abstractions

We know how to build atoms-abstractions; given a and x we build rasx and similarly for
ā and x. It is just as important, if not more important, to know how to destruct atoms-
abstractions. That is, how do we build functions on atoms-abstractions?

Recall the definition of abspxq from Definition 4.12 and the definition of the exponen-
tial X ñ Y from Definition 3.20.

Definition 4.21. Define maps between f P |pĀ � Xq ñ Y| such that ā# f pā, xq for all ā
and x P |X|, and g P |rĀsX ñ Y| as follows:

–– We map f P |pĀ�Xq ñ Y| to g P |rĀsX ñ Y| such that gpx1q � f pā, x1@āq for ā such
that ā#x1 and ā# f and atomspāq � abspxq.

–– We map g P |rĀsX ñ Y| to f such that f pā, xq � gprāsxq.

Lemma 4.22. The maps in Definition 4.21 are well-defined. The map from g to f and back is the
identity. The map from f to g and back is the identity provided that f is level 2 equivariant.

As a corollary, the maps define a bijection on arrows in NOM2.

Proof. The non-trivial part of well-definedness is to check that the choice of fresh ā in the
map from f to g, does not matter. Suppose x1 P |rĀsX|. Suppose atomspāq � atomspb̄q �
abspxq and suppose ā#x1 and b̄#x1. We need to check that f pā, x@āq � f pb̄, x@b̄q. By as-
sumption ā# f pā, x@āq and b̄# f pb̄, x@b̄q. The result follows using Theorem 3.9, properties
of the conjugation action (Remark 2.18), and Lemma 4.20.

To check that the maps are inverse and so define a bijection, it suffices to check two
things:

–– Suppose ā and x P |X|. Suppose b̄#x, and atomspb̄q � atomspāq. Suppose ā# f and b̄# f .
Then f pb̄, prāsxq@b̄q � f pā, xq.

–– Suppose x1 P |rĀsX|, ā#x1, and atomspāq � abspx1q.
Then gprāspx1@āqq � gpx1q.

Both of these facts follow using Theorem 3.9 and Lemma 4.16.

The case of level 1 atoms-abstractions is known from (Gabbay and Pitts 2001). See
also (Gabbay 2011).

Definition 4.23. Define maps between f P |pA � Xq ñ Y| such that a# f pa, xq for all a
and x P |X|, and g P |rAsX ñ Y| as follows:

–– We map f P |pA�Xq ñ Y| to g P |rAsX ñ Y| such that gpx1q � f pa, x1@aq for a such
that a#x1 and a# f .

–– We map g P |rAsX ñ Y| to f such that f pa, xq � gprasxq.

Murdoch J. Gabbay 24

Lemma 4.24. The maps in Definition 4.23 are well-defined. The map from g to f and back is the
identity. The map from f to g and back is the identity provided that f is level 1 equivariant.

As a corollary, the maps define a bijection on arrows in NOM2.

Proof. Like the proof of Lemma 4.22, but simpler.

5. Semantic nominal terms

We can now exploit what we have built, to construct datatypes of syntax-with-binding
containing level 2 atoms. This extends nominal abstract syntax from (Gabbay and Pitts
2001) to datatypes with level 2 atoms and abstraction of level 2 atoms.

We do a little more than build a nominal abstract syntax style presentation of nominal-
terms-up-to-binding, because there is binding for level 1 atoms but also for level 2
atoms. There is also a little more to this than just building the datatype, because we
also give it a substitution action for level 2 atoms.

The similarity with nominal terms unknowns is of course deliberate and is developed
in Section 6.

5.1. The basic definition

Definition 5.1. Fix some countably infinite set of term-formers. f, g, h will range over
distinct term-formers.

Definition 5.2. Define semantic nominal terms inductively by:

r ::� a | ā | fpr, . . . , rq | rasr | rāsr

We make these into a set with a two-level permutation action Sem as follows:

π�a � πpaq π�ā � pπpaiqqi π�fpr1, . . . , rnq � fpπ�r1, . . . π�rnq

π�rasr � rπpaqsπ�r π�rāsr � rπ�āsπ�r

π̄�a � a π̄�ā � π̄pāq π̄�fpr1, . . . , rnq � fpπ̄�r1, . . . π̄�rnq

π̄�rasr � rasπ̄�r π̄�rāsr � rπ̄pāqsπ̄�r

Lemma 5.3. Sem is a two-level nominal set.

Proof. Routine using Theorem 4.11.

5.2. Substitutions

Definition 5.4. A (semantic) level 2 substitution is an element σ P |Ā ñ Sem| (Propo-
sition 3.25) such that supppσq � ∅ and ¯supppσq is finite.

σ will range over semantic level 2 substitutions.
In words: σ is equivariant at level 1 and finitely-supported at level 2.

Lemma 5.5. Suppose σ is a level 2 substitution. Then supppσpāqq � atomspāq for all ā P Ā.

Two-level nominal sets 25

Proof. Suppose π P fixpatomspāqq. By Lemma 3.15 π�σpāq � σpπ�āq, and by assumption
σpπ�āq � σpāq. It follows that atomspāq supports σpāq.

Definition 5.6. Given a substitution σ define a level 2 substitution action on Sem by:

aσ � a āσ � σpāq fpr1, . . . , rnqσ � fpr1σ, . . . , rnσq

prasrqσ � rasprσq prāsrqσ � rāsprσq

In the clause for rāsr we choose ā such that ā#σ.8

Well-definedness of the action in Definition 5.6 follows using Lemmas 4.21 and 4.23,
and Theorem 4.11.

Lemma 5.7. Suppose r P |Sem|. Then π�prσq � pπ�rqσ. That is, the substitution action is level
1 equivariant.

Proof. By a routine induction on r. We briefly consider most cases; they are all just by
definitions, except in the case of π�pāσq:

–– π�paσq � πpaq and pπ�aqσ � πpaq.
–– π�pāσq � π�σpāq. By Lemma 3.15 π�σpāq � σpπ�āq. Then by definition σpπ�āq �

pπ�āqσ.
–– π�pprasrqσq � rπpaqspπ�prσqq � rπpaqsppπ�rqσq � pπ�rasrqσ.
–– π�pprāsrqσq � rπ�āspπ�prσqq � rπ�āsppπ�rqσq � pπ�rāsrqσ.

Lemma 5.8. suppprσq � suppprq and ¯suppprσq � ¯suppprq Y ¯supppσq.

Proof. By Lemmas 5.7 and 3.19.

Definition 5.9. Suppose ā is a level 2 atom. Suppose X is a two-level nominal set and
x P |X|. Suppose supppxq � atomspāq. Define an atomic level 2 substitution rā::�xs by:

rā::�xspπ�āq � π�x rā::�xspb̄q � b̄

Lemma 5.10. 1. rā::�xs is well-defined.
2. suppprā::�xsq � ∅ and ¯suppprā::�xsq � torbpāqu Y ¯supppxq.

Proof. We continue the notation of Definition 5.9.
For well-definedness, the slightly non-trivial part is to show that if π�ā � π1�ā then

π�x � π1�x. Suppose π�ā � π1�ā. We use Proposition 2.9, our assumption that supppxq �
atomspāq, and Theorem 3.9.

The rest of the proof is by routine calculations.

Lemma 5.11. Suppose a, b P atomspāq, so that rā::�as and rā::�bs are defined. Then:

–– prasāqrā::�as � rasa.
–– prasāqrā::�bs � rasb.

8 The clause for rasr could have a similar condition a#σ but it is ‘invisible’ because supppσq � ∅ by assump-
tion (Definition 5.4).

Murdoch J. Gabbay 26

Proof. By unfolding definitions.

Remark 5.12. Lemma 5.11 is suprising. After all, a#rasā (by Theorem 4.11) and also
a#rā::�as (by Lemma 5.10). So how do rasā and rā::�as ‘know’ about a in the substi-
tution if a is fresh for them?

They do not; but they remember its index within ā, that is, the position where it occurs
in ā. This index is what makes prasāqrā::�as equal to rasa.

At this level, ‘nominal’ ideas begin to converge with de Bruijn indexes (de Bruijn
1972).

6. Implementing semantic nominal terms

Semantic nominal terms from Definition 5.2 are non-finite because the ā in ā and rāsr is
an infinite structure.

Nevertheless, semantic nominal terms are implementable. They admit an easy finite
representation. This turns out to closely resemble nominal terms.9

In Subsection 6.1 we build permissive nominal terms. These build on ideas first intro-
duced in (Dowek et al. 2010) and of course on nominal terms (Urban et al. 2004), though
the nominal terms here have abstraction of both level 1 and level 2 atoms (atoms and
unknowns, in the terminology of ‘vanilla’ nominal terms from (Urban et al. 2004)).10

Then, in Subsection 6.2 we inject permissive nominal terms into semantic nominal
terms and show that the kernel of the map is exactly the notion of α-equivalence.

Thus we establish that in principle we can program on a finite representation (per-
missive nominal terms) and know that this is a representation of structures with good
mathematical properties which we have developed earlier in the paper.

6.1. The basic definition

Remark 6.1. –– Finitely representing atoms (Definition 2.1). Atoms may be represented
as integers; we can take A to be negative integers and A¡ to be non-negative inte-
gers.

9 Now may be a good time to reiterate our motivations for building a non-trivial theory behind nominal
terms. Nominal terms come equipped with an α-equivalence relation. It is there for a reason, and semantic
nominal terms express that reason in a new and very simple manner: nominal terms’ α-equivalence is
the way it is, because it reflects equality of semantic nominal terms and more generally because it reflects
equality of atoms-abstractions over two-level nominal sets.
Semantic nominal terms also extend ‘nominal’ inductive reasoning principles to nominal terms, show how
to abstract over unknowns as well as atoms, give a mathematically non-obvious explanation of unknowns
in terms of orderings on lists of atoms, and they link nominal sets/nominal abstract syntax, with two-level
nominal sets/nominal terms.

10 The pedant who notes that permissive nominal terms are not actually the same as nominal terms is right,
and we direct them to a correspondence defined in (Dowek et al. 2010) which is bijective in a sense we
make formal in that paper. To the level of detail that interests us now, they are close enough to be the same
thing.

Two-level nominal sets 27

–– Finitely representing permission sets (Definition 2.3). Given two sets U and V define
U∆V the exclusive or of U and V by:

U∆V � tx | x P U ^ x R Vu Y tx | x R U ^ x P Vu

Then a permission set S may be represented by S∆A ; this is a finite set and uniquely
identifies S, since pS∆A q∆A � S.

Definition 6.2. For each permission set fix a disjoint countably infinite set of unknowns
of that permission set. X, Y, Z will range over distinct unknowns.

X, Y, Z may be represented as a pair pi, jq where i represents S and j represents the
‘name’ X of the unknown.

Write ppXq for the permission set of X.

Definition 6.3. Recall from Definition 5.1 the term-formers f, g, h. These can easily be
represented, e.g. by numbers. Define (two-level) permissive nominal terms by:

r, s, t ::� a | π�X | fpr, . . . , rq | rasr | rπ�Xsr

This may be finitely represented in some standard way, like any inductive datatype.
We call π�X a moderated unknown.

Definition 6.4. Define faprq the free atoms of r and π�r the (atoms) permutation action
on r by:

fapaq � tau fapπ�Xq � π�ppXq fapfpr1, . . . , rnqq �
�

fapriq

faprasrq � faprqztau faprπ�Xsrq � faprq

π�a � πpaq π�pπ1�Xq � pπ � π1q�X π�fpr1, . . . , rnq � fpπ�r1, . . . π�rnq

π�rasr � rπpaqsπ�r π�rπ1�Xsr � rpπ � π1q�Xsπ�r

Definition 6.5. A permutation of unknowns is a map from unknowns to moderated
unknowns such that distinct unknowns map to (moderations of) distinct unknowns
and

nontrivpΠq � tX | ΠpXq � id�Xu is finite, and
π�ppXq � ppXq if ΠpXq � π�X, and
π�ppYq � ppXq if ΠpXq � π�Y.

Π will range over permutations of unknowns.

Definition 6.6. Define fVprq the free unknowns of r and Π�r the (unknowns) permuta-
tion action on r by:

fVpaq � ∅ fVpπ�Xq � tXu fVpfpr1, . . . , rnqq �
�

fVpriq

fVprasrq � fVprq fVprπ�Xsrq � fVprqztXu

Π�a � a Π�pπ�Xq � π�ΠpXq Π�fpr1, . . . , rnq � fpΠ�r1, . . . Π�rnq

Π�rasr � rasΠ�r Π�rπ�Xsr � rπ�ΠpXqsΠ�r

Definition 6.7. Given X, Y, and π such that π�ppYq � ppXq, write pπ�Y Xq for the
swapping permutation mapping X to π�Y, Y to π-1�X, and all other Z to id�Z. Also

Murdoch J. Gabbay 28

if π�ppXq � ppXq then write pπ�X Xq for the swapping permutation mapping X to π�X
and all other Z to id�Z.

Definition 6.8. Define α-equivalence r �α s inductively by:

p�αaq
a �α a

pπpaq � π1paq all a P ppXqq
p�αXq

π�X �α π1�X
ri �α si

p�αfq
fpr1, . . . , rnq �α fps1, . . . , snq

r �α s
p�αraasq

rasr �α rass
pb aq�r �α s pb R faprqq

p�αrabsq
rasr �α rbss

ppπ-1�π1q�X Xq�r �α s
p�αrXXsq

rπ�Xsr �α rπ
1�Xss

ppπ-1�π1q�Y Xq�r �α s pY R fVprqq
p�αrXYsq

rπ�Xsr �α rπ
1�Yss

Theorem 6.9. –– π�X �α π1�X if and only if πpaq � π1paq for all a P ppXq.
–– rasr �α rass if and only if r �α s.
–– rasr �α rbss if and only if b R faprq and pb aq�r �α s.
–– fpr1, . . . , rnq �α fps1, . . . , snq if and only if ri �α si for 1 ¤ i ¤ n.
–– rπ�Xsr �α rπ

1�Xss if and only if ppπ-1�π1q�X Xq�r �α s.
–– rπ�Xsr �α rπ

1�Yss if and only if Y R fVprq and ppπ-1�π1q�Y Xq�r �α s.

Proof. By a routine argument on derivations. We consider one case: Suppose rπ�Xsr �α

rπ1�Yss is derivable with some derivation D. We examine the rules in Definition 6.8 and
see that D must conclude with p�αrXYsq. Therefore Y R fVprq and ppπ-1�π1q�Y Xq�r �α

s.

6.2. The isomorphism between implementation and theory

There are more semantic nominal terms than permissive nominal terms because there
are uncountably many level 2 atoms and only countably many unknowns. We choose a
fixed but arbitrary map γ to ‘pick out’ a countable sub-selection of the level 2 atoms
to represent unknowns. Once we have done that it is not trivial, but routine, to bi-
ject permissive-nominal terms quotiented by α-equivalence with (a subset of) semantic
nominal terms; this is Theorem 6.14.

Definition 6.10. Fix a choice of representatives map γ from unknowns X to level 2 atoms
ā such that:

–– atomspγpXqq � ppXq for all X.
–– The map X ÞÑ orbpγpXqq is injective.

So γ maps each unknown X to some fixed but arbitrary ā.
It does not matter how γ is obtained, or which γ we chose: all we need is that one

exists.

Definition 6.11. Define a map J-K from permissive nominal terms to semantic nominal

Two-level nominal sets 29

terms by:

JaK � a Jπ�XK � π�γpXq Jfpr1, . . . , rnqK � fpJr1K, . . . , JrnKq
JrasrK � rasJrK Jrπ�XsrK � rπ�γpXqsJrK

Also define a map J-K on permutations of unknowns by:

–– JΠKpπ�γpXqq � pπ � π1q�γpXq if ΠpXq � π1�X.
–– JΠKpπ�γpXqq � pπ � π1q�γpYq if ΠpXq � π1�Y.
–– JΠKpāq � ā if there exists no X such that orbpāq � orbpγpXqq (so in a suitable sense ā

is not in the image of γ).

Lemma 6.12. JΠK is a level 2 permutation, so J-K defines a map from permutations of unkowns
to permutations of level 2 atoms.

Proof. We look at Definition 2.11 and see that we need to check that atomspJΠKpγpXqqq �
atomspγpXqq, ¯nontrivpJΠKq is finite, and JΠK�pπ�āq � π�JΠKpāq. These can all be checked
by unfolding definitions.

Lemma 6.13. 1. faprq � supppJrKq and fVprq � ¯supppJrKq.
2. Jπ�rK � π�JrK.
3. X P nontrivpΠq if and only if orbpγpXqq P ¯nontrivpJΠKq.
4. JΠ�rK � JΠK�JrK.

Proof. We use Theorem 4.11 for the first part and routine calculations for the rest.

With the results we have proved so far, it is easy to verify that permissive nominal
terms (Definition 6.3) quotiented by α-equivalence (Definition 6.8) are isomorphic with
a subset of semantic nominal terms (Definition 5.2).

Theorem 6.14. JrK � JsK if and only if r �α s.

Proof. By further routine calculations. We use Lemma 6.13, Propositions 4.9 and 4.10,
and Theorem 6.9.

7. Conclusions

We have explored a semantic theory of two-level nominal sets, inspired by nominal sets
(sets with a finitely-supported permutation action) and by nominal terms (first-order
syntax with variable and meta-variable symbols).

We have seen that we can model a level 2 variable as an infinite sequence of the level
1 variables on which it depends. More precisely, it is the ordering on the permission set
which an infinite sequence gives rise to, that matters. It is not clear that this should all
work, but it does.

So in a succession of results, starting with Proposition 2.9 and culminating in the
construction of semantic nominal terms in Section 5, we make the journey from nominal
sets semantics to a concrete syntax, which we show how to implement in Section 6.

Murdoch J. Gabbay 30

The fragment of Section 6 without level 2 atoms-abstraction—which following (Gab-
bay and Mathijssen 2008b) one could call the one-and-a-halfth order fragment—has been
programmed by Mulligan as part of his thesis (Mulligan 2009).

The reader familiar with nominal sets and nominal abstract syntax (‘nominal’ syntax-
with-binding) from (Gabbay and Pitts 2001) can think of semantic nominal terms as a
nominal abstract syntax version of nominal terms, extended with abstraction by un-
knowns as well as atoms, and can think of two-level nominal sets as reflecting into
nominal sets semantics the idea of unknowns coming from nominal terms. The un-
known with a suspended permutation π�X in nominal terms corresponds to choosing a
representative ā and writing an element of its permutation equivalence class as π�ā.

We would prefer the reader to maintain a sense of irony about this paper. It presents
a model of nominal unknowns as infinite sequences: that should not be read as a claim
that nominal unknowns are infinite sequences of atoms. We claim only that they can be
modelled as such, and we make a (so far only semi-substantiated) suggestion that this
model has potential to advance our understanding, e.g. by inspiring new semantics,
algorithms, proofs and definitions.

Related work

The idea that ‘small’ should correspond to ‘well-orderable’ was explored in (Gabbay
2002). Abstraction by infinite sequences of atoms was considered in (Gabbay 2007).11 A
connection between well-orders and nominal terms unknowns was proposed in (Gab-
bay and Mulligan 2009a). This paper extends on that work by considering level 2 per-
mutations and the notion of two-level nominal set.

Two companion pieces to this work are currently under development—not quite se-
quels, but motivated by the same general current of thinking:

–– In one paper, we will concentrate on syntax and operational semantics (Gabbay
2010a). We will explore what nominal unification and nominal rewriting (Urban
et al. 2004; Fernández and Gabbay 2007) look like if we model unknowns as ω-lists
of atoms. We will check whether this model offers proofs of new properties, and
shorter proofs of known properties. We will also check the computational properties
of working with the syntax of Definition 5.2.

–– In another paper, we will focus on models and logical theories (Gabbay 2010b).
We will consider a version of nominal algebra (Gabbay and Mathijssen 2009) in
which syntax and semantics admit infinitely-supported elements (but we retain val-
uations). We will study soundness and completeness, and how to move between
finitely-supported and infinitely-supported models.

Nominal algebra has a valuation semantics; unknowns are given a denotation via a valu-
ation (Gabbay and Mathijssen 2009, Definition 4.14). We speculate that it may be possible

11 This notion of abstraction was not identical to the level 2 abstraction here. In (Gabbay 2007) suppprāsxq �
supppxqzatomspxq. See part 2 of Lemma 41 in (Gabbay 2007) and contrast this with part 3 of Theorem 4.11
in this paper.

Two-level nominal sets 31

to give a two-level nominal sets semantics to nominal algebra, thus eliminating valua-
tions entirely. Thus, just as atoms map to themselves, so would unknowns. Valuations
would be eliminated. We could recover a denotation for instantiation of unknowns, by
assuming a level 2 substitution action as discussed below in Future Work.

This author is not aware of any other sets-based denotation for meta-variables, and
certainly not nominal ones.

The denotation implicit in (Gacek et al. 2009) is based on capture-avoiding substitu-
tion and raising—a limited form of function application. Similarly, the denotations in
(Sun 1999; Dowek et al. 2002) are based on controlled forms of functional abstraction.

As has been observed by Levy and Villaret and by Dowek and the author (Levy and
Villaret 2008; Dowek et al. 2009, 2010) a connection can be made between raising and the
capturing substitution of nominal terms. However, the translation from nominal syntax
to raised syntax is quadratic.

Not all models of meta-variables are functional. A semantic basis for meta-variables
is implicit in the categorical constructions in (Fiore and Hur 2008). A notion of ‘hole’
is basic to (Cardelli et al. 2003) though this work operates in the context of a specific
concrete model. Of course, variables ranging over nominal sets are also the semantics
for nominal terms unknowns, which model meta-variables. Note that Fiore had also
previously created a presheaf semantics for names and binding (Fiore et al. 1999), and
as it turns out the presheaves used are virtually identical to nominal sets and in fact
both were introduced in the self-same conference (Gabbay and Pitts 1999).

Semantic nominal terms have informed the design of permissive-nominal logic (Dowek
and Gabbay 2010). The syntax of permissive-nominal logic is roughly equivalent to the
implementation from Section 6. There is one subtlety; in (Dowek and Gabbay 2010) we
took the permutation action to be π�@X.φ � @X.π�φ (and not π�@X.φ � @π�X.π�φ). For
the special case of permissive-nominal logic this makes no difference because substitu-
tions are equivariant, and it follows that @X.φ is equivalent to @π�X.φ.

The permissive-nominal terms syntax of this paper clearly generalises the permissive-
nominal terms syntax of (Dowek et al. 2010). Note that (Dowek et al. 2010) also gives an
elementary mapping from nominal terms to permissive-nominal terms. That is why we
do not need to worry about the distinction between nominal terms and their permissive
variant, in this paper.

Nominal logic from (Pitts 2003) is a first-order axiomatisation of nominal sets from
(Gabbay and Pitts 2001). For the purposes of this discussion, nominal sets are equal to
Fraenkel-Mostowski set theory minus the sets hierarchy. By design, this paper extends
nominal sets with a level 2 permutation action—it would be interesting to write down
a corresponding axiomatisation.

Contextual Modal Type Theory (Nanevski et al. 2008) has types for open code and
a two-level notion of context with the two levels corresponding to ‘values’ an ‘code’.
Two-level nominal sets, which support a denotation of meta-variables, might be useful
in giving new kinds of denotational semantics to this, and to logics and programming
languages in a similar spirit. Indeed, it is an interesting open question to what extent
nominal denotations in general can be brought to bear on this problem.

Murdoch J. Gabbay 32

Future work

Add level 2 β-reduction to the syntax. We have substitution from Definition 5.9 and so it
is easy to build a notion of level 2 β-reduction; it suffices to fix a binary application term-
former and to define a congruenceÑ on terms such that prāsrqs Ñ rrā::�ss provided that
supppsq � atomspāq. The properties of this rewrite system, such as confluence, types, and
normalisation properties, remain to be investigated. Semantic nominal terms might help
inform the design of the multi-level λ-calculi considered e.g. in (Gabbay and Lengrand
2008; Gabbay and Mulligan 2009b), which feature notions of β-reduct at multiple levels
with the idea that this could model object- and meta-level computation.

Design choice in level 1 support of level 2 abstraction. We have chosen that rāsx abstracts
the order of ā in x, but not the atoms in ā: see part 3 of Theorem 4.11. This is one design
choice, but it is not the only one.

It is easy to design a stronger definition (in the sense that more things become equal)
such that it abstracts also the atoms in ā.

Our reasons for defining things as they are in this paper are twofold:

–– The stronger definition can be obtained from the weaker definition in this paper via
a further quotient or equivalence-class, but not vice-versa.

–– If we interpret rāsrasā as λX.rasX (bearing in mind the mention of multi-level λ-
calculi above) then we would like pλX.rasXqa to be equal to/to reduce to rasa. If λX
abstracts pmsspXq in rasX, then this would fail and we would obtain rbsa instead.

Add level 2 substitution to the denotation. One of the most interesting potential applica-
tions of two-level nominal sets is to impose a level 2 substitution action (substitution for
level 2 atoms). This could be done either axiomatically, following (Gabbay and Mathi-
jssen 2006), or by concrete sets constructions, following (Gabbay 2009). Being familiar
with the constructions in (Gabbay 2009), this author expects the case of level 2 substitu-
tion to be easier than the level 1 substitution. If we can do this then we will have even
more explicitly an ‘abstract theory of meta-variables’, in the sense that level 2 atoms
will not only exist as they do in two-level nominal sets, but also be substitutable-for. Po-
tentially, the applications of this are great, since many systems for meta-programming,
contexts, objects, modules, and incomplete objects, might be modelled using it. This is
future work.

Indeed, it might be possible to model the γ and δ variables from work like (Wirth
2004) using the two levels of variable of this paper. We have in mind that atoms cor-
respond to δ (intuitively: universal) variables, and unknowns correspond to γ (intu-
itively: existential) variables, with ¯supppāq expressing the dependence/independence
conditions generated by nested quantifiers. This too is future work.

Interpret level 2 abstraction in the λ-calculus. It remains to extend the correspondence
between nominal terms and higher-order patterns of (Levy and Villaret 2008; Dowek
et al. 2009, 2010) to the case of syntax with level 2 abstraction. This may or may not turn
out to be possible.

Two-level nominal sets 33

Adjoints to level 2 abstraction. Given a two-level nominal set X write:

–– XbA for the two-level nominal set with underlying set tpx, aq | x P |X|, a P A, a R
supppxqu and the natural permutation actions and

–– Xb Ā for the two-level nominal set with underlying set tpx, āq | x P |X|, ā P Ā, ā R
¯supppxqu and the natural permutation actions.

It is a fact that -bA is left adjoint to rAs- (see (Gabbay and Pitts 2001) or (Gabbay 2011)).
This does not hold of level 2 atoms: -b Ā is not left adjoint to rĀs-. An intuition for why
this is so is as follows: given an abstraction x P |rAsX|, concretion x@a is defined for any
a#x. However, given an abstraction x P |rĀsX| concretion x@ā is defined only for ā#x
such that atomspāq � abspxq.

In a category of two-level FM sets (where we do not insist that the underlying set be
equivariant), it may be possible to recover adjunctions via the two-level FM set ĀS �

tā P Ā | atomspāq � Su.
What is arguably the really important property of atoms-abstraction—the arrows out

of atoms-abstraction developed in Subsection 4.6—does hold in the level 2 case of rĀsX.

Add level 1 substitution to the denotation of unknowns. An obvious generalisation of the
notion of level 2 atom is to take it to be an ω-tuple such that all but finitely many el-
ements of the tuple are distinct atoms. This is interesting because we suspect it could
provide a nice model of substitution for atoms (if we substitute a for, say, 2 in ā, then we
should get ā in which a is replaced by 2). The same effect could be obtained by adding
an explicit substitution or explicit parallel substitution, and this would be equivalent,
but this author suspects that for the purposes of mathematical proof integrating the
substitution into the unknown itself will be easier.

This paper is not the place to discuss the complexities of understanding substitution,
but we can note that substitution underlies unification, quantification, λ-abstraction, ex-
plicit substitution calculi, calculi of incomplete objects, and more. The author has also
considered axiomatisation and (abstract) models of substitution in (Gabbay and Mathi-
jssen 2008a). Suffice it to say that a new and good concrete model of substitution would
be a useful thing to have.

Non-syntactic applications of two-level nominal sets. In this paper we have applied two-
level nominal sets to model (nominal terms) syntax.

But sets are very general. There is no reason we should stop there. Just as the sets
model given by nominal sets has been used to model non-syntactic structures (like
domains, functions, games, and so on) so we can imagine that two-level nominal sets
might also be applied to non-syntactic structures. These remain to be investigated.

Atoms and unknowns generalise to variables with dependencies. In this paper, level 2 vari-
ables are infinite lists. We could easily take unknowns to be ‘lists, plus extra information’
(e.g. if we wanted more than one sort of unknown). The property we need to preserve
is Proposition 2.9. Taking infinite lists is a convenient way to get this.

But we might take this much further. We could dispense entirely with the distinction

Murdoch J. Gabbay 34

between atoms and unknowns and consider variables x and a variable dependency relation
x ¤ y meaning intuitively ‘y depends on x’, of which the assertion ‘a P atomspāq’ would
be a special case.

This paper, then, studies a special case where x either depends on nothing (and is an
atom) or depends on certain classes of atoms (permission-sets). Connections here with
Fine’s theory of arbitrary objects (Fine 1985), though Fine was more abstract than we
would be, e.g. we would still have ‘nominal’ permutation-based notions of support and
freshness.

If this can be done, then the ‘lists’ model of this paper is relevant because it suggests
how to design a permutation action for variables with dependencies. Permutations of
variables should satisfy those laws that they would satisfy, if variables were associated
with lists of their variable dependencies, in order. Making these intuitions formal is
future work.

Acknowledgements.

Thanks to two anonymous referees. Supported by grant RYC-2006-002131 at the Poly-
technic University of Madrid.

References

Mirna Bognar. Contexts in Lambda Calculus. PhD thesis, Vrije Universiteit Amsterdam,
2002.

Luca Cardelli, Philippa Gardner, and Giorgio Ghelli. Manipulating trees with hidden
labels. In FoSSaCS 2003, pages 216–232, 2003.

James Cheney. Completeness and Herbrand theorems for nominal logic. Journal of
Symbolic Logic, 71:299–320, 2006.

James Cheney and Christian Urban. Nominal logic programming. ACM Transactions on
Programming Languages and Systems (TOPLAS), 30(5):1–47, 2008.

Nicolaas G. de Bruijn. Lambda calculus notation with nameless dummies, a tool for au-
tomatic formula manipulation, with application to the Church-Rosser theorem. Inda-
gationes Mathematicae, 5(34):381–392, 1972.

Gilles Dowek and Murdoch J. Gabbay. Permissive Nominal Logic. In Principles and Prac-
tice of Declarative Programming, 12th International ACM SIGPLAN Symposium (PPDP
2010), 2010.

Gilles Dowek, Thérèse Hardin, and Claude Kirchner. Binding logic: Proofs and models.
In Proceedings of the 9th International Conference on Logic for Programming, Artificial Intel-
ligence, and Reasoning (LPAR 2002), pages 130–144. Springer, 2002. ISBN 3-540-00010-0.

Gilles Dowek, Murdoch J. Gabbay, and Dominic P. Mulligan. Permissive Nominal Terms
and their Unification. In Proceedings of the 24th Italian Conference on Computational Logic
(CILC’09), 2009.

Gilles Dowek, Murdoch J. Gabbay, and Dominic P. Mulligan. Permissive Nominal Terms
and their Unification: an infinite, co-infinite approach to nominal techniques (journal
version). Logic Journal of the IGPL, 18(6):769–822, 2010.

http://www.gabbay.org.uk/papers.html#pernl-cv
http://www.gabbay.org.uk/papers/perntu.pdf
http://www.gabbay.org.uk/papers/perntu.pdf
http://www.gabbay.org.uk/papers.html#perntu-jv
http://www.gabbay.org.uk/papers.html#perntu-jv
http://www.gabbay.org.uk/papers.html#perntu-jv

Two-level nominal sets 35

Maribel Fernández and Murdoch J. Gabbay. Nominal rewriting (journal version). Infor-
mation and Computation, 205(6):917–965, June 2007.

Kit Fine. Reasoning with Arbitrary Objects. Blackwell, 1985.
Marcelo Fiore and Chung-Kil Hur. Term equational systems and logics. Electronic Notes

in Theoretical Computer Science, 218:171–192, 2008.
Marcelo P. Fiore, Gordon D. Plotkin, and Daniele Turi. Abstract syntax and variable

binding. In Proceedings of the 14th IEEE Symposium on Logic in Computer Science (LICS
1999), pages 193–202. IEEE Computer Society Press, 1999.

Murdoch J. Gabbay. A Theory of Inductive Definitions with alpha-Equivalence. PhD thesis,
University of Cambridge, UK, March 2001.

Murdoch J. Gabbay. FM-HOL, a higher-order theory of names. In F. Kamareddine,
editor, 35 Years of Automath, April 2002.

Murdoch J. Gabbay. A General Mathematics of Names. Information and Computation, 205
(7):982–1011, July 2007.

Murdoch J. Gabbay. A study of substitution, using nominal techniques and Fraenkel-
Mostowski sets. Theoretical Computer Science, 410(12-13):1159–1189, March 2009.

Murdoch J. Gabbay. Meta-variables as infinite lists: computational properties in nominal
unification and rewriting. 2010a. Submitted for publication.

Murdoch J. Gabbay. Permissive-nominal algebra with infinite name-restriction, using
semantic-nominal terms. 2010b. Submitted for publication.

Murdoch J. Gabbay. Foundations of nominal techniques: logic and semantics of vari-
ables in abstract syntax. Bulletin of Symbolic Logic, 2011. In press.

Murdoch J. Gabbay and Stéphane Lengrand. The lambda-context calculus. Electronic
Notes in Theoretical Computer Science, 196:19–35, January 2008.

Murdoch J. Gabbay and Aad Mathijssen. Capture-avoiding Substitution as a Nominal
Algebra. In ICTAC 2006: Theoretical Aspects of Computing, volume 4281 of Lecture Notes
in Computer Science, pages 198–212, November 2006.

Murdoch J. Gabbay and Aad Mathijssen. Capture-Avoiding Substitution as a Nominal
Algebra. Formal Aspects of Computing, 20(4-5):451–479, June 2008a.

Murdoch J. Gabbay and Aad Mathijssen. One-and-a-halfth-order Logic. Journal of Logic
and Computation, 18(4):521–562, August 2008b.

Murdoch J. Gabbay and Aad Mathijssen. Nominal universal algebra: equational logic
with names and binding. Journal of Logic and Computation, 19(6):1455–1508, December
2009.

Murdoch J. Gabbay and Aad Mathijssen. A nominal axiomatisation of the lambda-
calculus. Journal of Logic and Computation, 20(2):501–531, April 2010.

Murdoch J. Gabbay and Dominic P. Mulligan. Semantic nominal terms. In TAASN,
March 2009a.

Murdoch J. Gabbay and Dominic P. Mulligan. Two-level lambda-calculus. In Proceed-
ings of the 17th International Workshop on Functional and (Constraint) Logic Programming
(WFLP 2008), volume 246, pages 107–129, August 2009b.

Murdoch J. Gabbay and Andrew M. Pitts. A New Approach to Abstract Syntax Involv-
ing Binders. In Proceedings of the 14th Annual Symposium on Logic in Computer Science
(LICS 1999), pages 214–224. IEEE Computer Society Press, July 1999.

http://www.gabbay.org.uk/papers.html#nomr-jv
http://www.gabbay.org.uk/papers.html#thesis
http://www.gabbay.org.uk/paper.html#fmhotn
http://www.gabbay.org.uk/papers.html#genmn
http://www.gabbay.org.uk/papers.html#stusun
http://www.gabbay.org.uk/papers.html#stusun
http://www.gabbay.org.uk/papers.html#metvil
http://www.gabbay.org.uk/papers.html#metvil
http://www.gabbay.org.uk/papers.html#pernai
http://www.gabbay.org.uk/papers.html#pernai
http://www.gabbay.org.uk/papers.html#fountl
http://www.gabbay.org.uk/papers.html#fountl
http://www.gabbay.org.uk/papers.html#lamcc
http://www.gabbay.org.uk/papers.html#capasn
http://www.gabbay.org.uk/papers.html#capasn
http://www.gabbay.org.uk/papers.html#capasn-jv
http://www.gabbay.org.uk/papers.html#capasn-jv
http://www.gabbay.org.uk/papers.html#oneaah-jv
http://www.gabbay.org.uk/papers.html#nomuae
http://www.gabbay.org.uk/papers.html#nomuae
http://www.gabbay.org.uk/papers.html#nomalc
http://www.gabbay.org.uk/papers.html#nomalc
http://www.gabbay.org.uk/papers.html#semnt
http://www.gabbay.org.uk/papers/twollc.pdf
http://www.gabbay.org.uk/papers.html#newaas
http://www.gabbay.org.uk/papers.html#newaas

Murdoch J. Gabbay 36

Murdoch J. Gabbay and Andrew M. Pitts. A New Approach to Abstract Syntax with
Variable Binding. Formal Aspects of Computing, 13(3–5):341–363, July 2001.

Andrew Gacek, Dale Miller, and Gopalan Nadathur. A two-level logic approach to
reasoning about computations. Submitted, November 2009.

Dimitri Hendriks and Vincent van Oostrom. Adbmal. In CADE, pages 136–150, 2003.
Leon Henkin, J. Donald Monk, and Alfred Tarski. Cylindric Algebras. North Holland,

1971 and 1985. Parts I and II.
J. Roger Hindley and Jonathan P. Seldin. Lambda-Calculus and Combinators, An Introduc-

tion. Cambridge University Press, 2nd edition, 2008.
Gueorgui I. Jojgov. Holes with binding power. In TYPES, volume 2646 of Lecture Notes

in Computer Science, pages 162–181. Springer, 2002.
Jordi Levy and Mateu Villaret. Nominal unification from a higher-order perspective. In

Rewriting Techniques and Applications, Proceedings of RTA 2008, volume 5117 of Lecture
Notes in Computer Science. Springer, 2008.

Giulio Manzonetto and Antonino Salibra. Applying universal algebra to lambda calcu-
lus. Journal of Logic and computation, 20(4):877–915, August 2010.

Conor McBride. Dependently Typed Functional Programs and their Proofs. PhD thesis,
University of Edinburgh, 1999.

Eugenio Moggi, Walid Taha, Zine-El-Abidine Benaissa, and Tim Sheard. An idealized
MetaML: Simpler, and more expressive. In Proceedings of the 8th European Sympo-
sium on Programming Languages and Systems (ESOP’99), volume 1576 of Lecture Notes
in Computer Science, pages 193–207. Springer, 1999. ISBN 3-540-65699-5.

Dominic P. Mulligan. Implementation of permissive nominal terms. Available at http:
//www2.macs.hw.ac.uk/~dpm8/permissive/perm.htm, 2009.

Aleksandar Nanevski, Frank Pfenning, and Brigitte Pientka. Contextual modal type
theory. ACM Transactions on Computational Logic (TOCL), 9(3), 2008.

Cesar Mu noz. A calculus of substitutions for incomplete-proof representation in type
theory. Technical Report 3309, INRIA, France, November 1997.

Lawrence C. Paulson. Isabelle: the next 700 theorem provers. In P. Odifreddi, editor,
Logic and Computer Science, pages 361–386. Academic Press, 1990.

Andrew M. Pitts. Nominal logic, a first order theory of names and binding. Information
and Computation, 186(2):165–193, 2003.

Masahiko Sato, Takafumi Sakurai, Yukiyoshi Kameyama, and Atsushi Igarashi. Calculi
of meta-variables. In CSL, volume 2803 of Lecture Notes in Computer Science, pages
484–497, 2003.

Yong Sun. An algebraic generalization of Frege structures - binding algebras. Theoretical
Computer Science, 211:189–232, 1999.

Carolyn Talcott. A theory of binding structures and applications to rewriting. Theoretical
computer science, (112):99–143, 1993.

Alwen Tiu. A logic for reasoning about generic judgments. Electronic Notes in Theoretical
Computer Science, 174(5):3–18, 2007.

Nikos Tzevelekos. Full abstraction for nominal general references. In Proceedings of the
22nd IEEE Symposium on Logic in Computer Science (LICS 2007), pages 399–410. IEEE
Computer Society Press, 2007.

http://www.gabbay.org.uk/papers.html#newaas-jv
http://www.gabbay.org.uk/papers.html#newaas-jv
http://www2.macs.hw.ac.uk/~dpm8/permissive/perm.htm
http://www2.macs.hw.ac.uk/~dpm8/permissive/perm.htm

Two-level nominal sets 37

Christian Urban, Andrew M. Pitts, and Murdoch J. Gabbay. Nominal Unification. In
CSL, volume 2803 of Lecture Notes in Computer Science, pages 513–527. Springer, De-
cember 2003.

Christian Urban, Andrew M. Pitts, and Murdoch J. Gabbay. Nominal Unification. The-
oretical Computer Science, 323(1–3):473–497, September 2004. ISSN 0304-3975.

Claus-Peter Wirth. Descente infinie + Deduction. Logic Journal of the IGPL, 12(1):1–96,
2004.

http://www.gabbay.org.uk/papers.html#nomu
http://www.gabbay.org.uk/papers.html#nomu-jv

	Introduction
	A word on multi-level syntax
	Nominal terms
	Semantics for nominal terms
	Summary

	Two-level nominal sets
	Atoms and permutatations
	Sets with a two-level permutation action
	Level 2 swappings
	Two-level nominal sets

	Support and equivariance; functions and the category NOM2
	Support at levels 1 and 2
	Functions and equivariance
	The cartesian product and exponential
	The category of two-level nominal sets

	Atoms-abstraction
	Basic definition
	The pointwise action
	Support and equality
	Abstracted level 1 atoms of a level 2 abstraction
	Concretion
	Arrows out of atoms-abstractions

	Semantic nominal terms
	The basic definition
	Substitutions

	Implementing semantic nominal terms
	The basic definition
	The isomorphism between implementation and theory

	Conclusions

