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Abstract

There are currently no fewer than four dedicated logics for equality reasoning over nominal
sets: nominal algebra, nominal equational logic, nominal equational logic with equality only,
and permissive-nominal algebra.

In this survey and research paper we present these logics side-by-side in a common notation,
survey their similarities and differences, discuss their proof- and model-theories, and discuss in
detail what the implications of those differences are for mathematical reasoning in each of them.
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1. Introduction

1.1. Nominal sets for names and binding
Nominal sets, introduced in [GP01], are a particularly abstract and effective way of giving

semantics to names and binding (for a definition see Section 4). Suppose you want to axiomatise
capture-avoiding substitution [a:=t] over a calculus (a logic or rewrite system) with a binder—
call it, say, λ. Then you will almost certainly write this:

(λx.r)[y:=t] = λx.(r[y:=t]) if x is not free in t

You might also write ‘choose y fresh and α-rename λx.r to λy.(r[y/x])’.
Nominal sets were developed to interpret these kinds of assertions [GP01]; names, binding,

fresh choice of names, and α-renaming become primitives of the denotation. They are repre-
sented directly, rather than e.g. as de Bruijn indexes [dB72], functional abstraction [PE88], or Bour-
baki’s boxes and links notation [Bou70, Section 1].

Once nominal sets are established it is only a matter of time before we develop term and pred-
icate languages to describe them. The term language came in the form of nominal terms [UPG04].
The first predicate language for nominal terms was actually nominal rewriting [FG07] but the first
‘logical’ language (focussed on derivability) was nominal algebra—followed by nominal equa-
tional logic, then permissive-nominal algebra and nominal equational logic with equality only
(also permissive-nominal logic, which adds quantifiers [DG10, DG12]).

In nominal algebra and nominal equational logic, the two fragments above can be represented
as follows (nominal rewriting would be just the same, but with→ instead of =):

• a#X ` (λ[a]Z)[b7→X] = λ[a](Z[b 7→X])
• b#X ` λ[b](b a)·X = λ[a]X .

The permissive-nominal version replaces the freshness condition ‘a#X’ with a typing condition
that a 6∈ A< , where A< and A> partition A into two infinite subsets:

• (λ[a]Z)[b7→X] = λ[a](Z[b 7→X]) (where a 6∈ A< and b ∈ A< ).
• λ[b](b a)·X = λ[a]X (where b 6∈ A< ).

See Subsection 3.4 in this paper or [DG10, DG12, DGM09, DGM10].1

Details follow; our point here is that this family of logics is designed to represent, more-or-less
symbol-for-symbol, informal reasoning on specifications with binders. Here are some examples,
just to prove that such specifications occur and are useful: quantifiers in logic (∀), functional
abstraction in the λ-calculus (λ), integration (

∫
), and name-restriction in the π-calculus (ν).

Names and binding matter, and logics for equality over nominal sets matter because equality
reasoning is prototypical for serious and usable meta-reasoning systems.

1.2. Four logics for equality
A glance at the literature reveals no fewer than four logics for equational reasoning over

nominal sets:

• nominal algebra (NA) as presented e.g. in [GM06a, GM06b, GM06c, GM07, GM09a],
• nominal equational logic (NEL) as presented e.g. in [CP07, Clo09],
• NEL with equality only [Clo09, Clo11], and

1The advantage of the permissive syntax is that a mutable freshness context is replaced by a static typing condition
and permissive-nominal syntax can be directly quotiented by α-equivalence.
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• permissive-nominal algebra (PNA) [GM09b, Gab12b].2

This raises the question of why we need these logics, what their distinctive features are, how they
can be applied, and to what extent they are saying the same thing.

In fact, these logics are all just different ways of approaching the same mathematical entity,
much as there are many different and equivalent choices of connectives for setting up first-order
logic. They do differ in complexity; which in decreasing order are (according to this author, at
least): NEL, NEL with equality only, NA, and PNA.

It is quite hard to get an overview of this design space from individual research papers, since
these tend to concentrate on the demands of the particular theorems at hand. Thus there seems
to be a space in the literature for a paper dedicated specifically to presenting what equational
reasoning over nominal sets looks like, to chart the development of the various logics, and to
discuss how the author’s own work on NA and PNA fits in to the larger picture.

The discussion and theorems in this paper do not just matter for this family of logics. The
design choices being made here may be prototypical for the design of any logic over nominal
sets; these choices should be informed by a rich and detailed understanding of the design space,
to which we hope this paper can contribute.

1.3. Structure of the paper
The structure of the paper is as follows:

• In Section 2 we introduce nominal terms.
• In Section 3 we present nominal algebra, nominal equational logic, nominal equational logic

with equality only, and permissive-nominal algebra, and in Subsection 3.5 we give a first
discussion of them.

• Denotations in nominal sets are considered in Section 4, and these are used as a mathemat-
ical foundation for a discussion of semantic freshness in nominal algebra and translation of
NEL to NA in Section 5.

• Section 6 includes an extended and detailed discussion of the design issues involved in
designing algebra over nominal sets, with a particular focus on how Clouston and Pitts’s
evaluation of NA has been consistently wide of the mark, from [CP07] to [Clo11].

• Section 7 focuses on the more recent permissive-nominal algebra by this author with Dowek
and Mulligan. This is a more recent system and we do not give many proofs, focussing
instead on giving some useful idea of how the permissive-nominal techniques slot in to the
broader territory and why it was developed.

• Section 8 more briefly discusses a key feature of nominal techniques, namely, the ability to
talk about name-abstraction.

• We conclude with brief sketches of two other ‘nominal’ logics in Section 9 and a concluding
discussion in Section 10.

2. Nominal terms

Definition 2.1. For each natural number i ∈ N = {0, 1, 2, . . . } fix a disjoint set of atoms Ai. Let
a, b, c range over distinct atoms.3

Definition 2.2. Fix a signature Σ = (AtomicSort ,BaseSort ,TermFormer , ar) which is a tuple of
a set of atomic sorts ν ⊆ N, base sorts τ , a set of term-formers f, and an arity function mapping
each f to a tuple ar(f) = (α1, . . . , αn)τ where αi range over atomic or base sorts.

2Cousins of these logics are the Synthetic Nominal Equational Logic of Fiore and Hur [FH08] and the presentation of
nominal terms as many-sorted first-order terms by Kurz and Petrişan [KP10], which we shall also consider, briefly, in
Section 9.

3So a, b, c are meta-variables ranging over distinct atoms. Call this the permutative convention (which goes back to
[GM06c, GM08]); it accurately models what we mean when we write e.g. λx.λy.xy.
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f, g will range over distinct term-formers. α will range over atomic or base sorts, or just sorts
for short.

For each sort α fix a countably infinite set of variables of that sort. X , Y , Z will range over
distinct variables and we write sort(X) for the sort of X .

Remark 2.3. Elsewhere, such as in [UPG04, FG07, GM09a, CP07, Clo11], atoms-abstraction sorts
[ν]τ are also considered. As noted in [GM09a] and [Clo10] this adds no expressivity, so we omit
abstraction sorts here. This is only for simplicity.

Definition 2.4. A permutation is a bijection on atoms such that nontriv(π) = {a | π(a) 6= a} is
finite and π(a) ∈ Aν if and only if a ∈ Aν . Write P for the set of all permutations.

Write id for the identity permutation and ◦ for composition of permutations. Write π-1 for
inverse.

Definition 2.5. Nominal terms are inductively defined by:

r ::= a | π·X | f(r, . . . , r)

We define a sorting relation r : α by:

(a ∈ Aν)

a : ν

(sort(X) = α)

π·X : α

r1 : α1 · · · rn : αn (ar(f) = (α1, . . . , αn)τ)

f(r1, . . . , rn) : τ

Notation 2.6. It is not hard to show that sorts are unique where they exist. Write sort(r) = α
when r : α and call r well-sorted when r : α for some α. We are only interested in well-sorted
terms, so henceforth we restrict to well-sorted terms.

Remark 2.7. a is an atom representing a name (e.g. an object-level variable symbol, a channel
name, a memory location, and so on). π·X is a pair of π and X and is called a moderated un-
known; and f(r1, . . . , rn) is a term-former applied to terms.

Example 2.8. Assume one atomic type ν, one base type τ , and term-formers var, app, and lam
where ar(var) = (ν)τ , ar(app) = (τ, τ)τ , and ar(lam) = (ν, τ)τ .

Terms of the untyped λ-calculus can be represented by var(a) (variable symbols), app(r′, r)
(application), and lam(a, r) (lambda-abstraction), all of which are terms of sort τ . See also Sub-
section 3.5 (a theory of functions).

Definition 2.9. Define a permutation action on a nominal term as follows:

π·a = π(a) π·(π′·X) = (π ◦ π′)·X π·f(r1, . . . , rn) = f(π·r1, . . . , π·rn)

Definition 2.10. A substitution θ is a map from unknowns to terms. Give terms a substitution
action as follows:

aθ = a (π·X)θ = π·θ(X) f(r1, . . . , rn)θ = f(r1θ, . . . , rnθ)

Definition 2.11. Define a notion of variables of a nominal term4 as follows:

vars(a) = ∅ vars(π·X) = {X} vars(f(r1, . . . , rn)) =
⋃n

1 vars(ri)

Definition 2.12. A freshness context ∆ is a finite set of freshness assumptions a#X .

3. Equality reasoning over nominal terms

3.1. Nominal algebra
We need some notation to help us express the notion of derivable equalities in nominal algebra

(Definition 3.6).

4Our nominal terms syntax has no binder for X . For that, see permissive-nominal logic [DG10, Gab12b].
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(Refl)
T; ∆ `NA r = r

T; ∆ `NA r = s T; ∆ `NA s = t
(Trans)

T; ∆ `NA r = t

T; ∆ `NA r = s
(Symm)

T; ∆ `NA s = r

(a 6∈ fa∆(r), b 6∈ fa∆(r))
(Perm)

T; ∆ `NA (a b)·r = r(
∀X.fa∆′(θ(X)) ⊆ fa∆(X),

(∆ ` r=s)∈T
)

(Ax∆`r=s)
T; ∆′ `NA π·(rθ) = π·(sθ)

T; ∆ `NA ri = si (1 ≤ i ≤ n)
(Cong)

T; ∆ `NA f(r1, . . . , rn) = f(s1, . . . , sn)

T; ∆, a#X `NA r = s (a 6∈atms(r, s))
(Fresh)

T; ∆ `NA r = s

Figure 1: Derivable entailment in Nominal Algebra (NA)

Definition 3.1. If A ⊆ A is a set of atoms, define π·A = {π(a) | a ∈ A}.
Definition 3.2. Define a notion of free atoms of a nominal term (in a freshness context) fa∆(r) as
follows:

fa∆(a) = {a} fa∆(π·X) = π·{a | a#X 6∈∆} fa∆(f(r1, . . . , rn)) =

n⋃
1

fa∆(ri)

‘Free atoms of’ is parameterised over ∆. For example,

fa{a#X,b#X,c#Y }(X) = A \ {a, b}.

Remark 3.3. In [UPG04, FG07] and elsewhere, the judgement a 6∈ fa∆(r) is written ∆ ` a#r. This
is purely a matter of notation; see Subsection 6.1 for a further discussion of this.

We need one more freshness definition; in [GM09a] it is written a 6∈ r and in [CP07] it is
written a#r:

Definition 3.4. Define atms(r) the atoms appearing in r inductively by:

atms(a) = {a} atms(π·X) = nontriv(π) atms(f(r1, . . . , rn)) =
⋃n

1 atms(ri)

Remark 3.5. Having two freshness judgements, a 6∈ fa∆(r) and a 6∈ atms(r), is an artefact of using
a ‘primitive’ name-carrying syntax. In permissive-nominal techniques as presented in [Gab12b],
a 6∈ fa∆(r) and a 6∈ atms(r) coincide. So by promoting permissive-nominal techniques, this au-
thor is trying to move the literature towards a world in which Definitions 3.2 and 3.4 are conflated
(cf. Remark 6.4). Since this paper is partly a survey, we have to faithfully represent the tools we
used at the time.

Definition 3.6. A nominal equality E is a tuple ∆ ` l = r.
A nominal algebra theory T is a signature along with a set of nominal equalities in that

signature.
The derivable equalities T; ∆ `NA r = s are generated by the rules in Figure 1.

3.2. Nominal equational logic
Nominal equational logic adds a semantic freshness judgement.

Definition 3.7. A nominal freshness is a tuple ∆ ` a#r. A nominal freshness axiom is a nominal
freshness. A nominal equational logic theory U is a signature along with a set of freshness or
equality axioms in that signature.

The derivable equalities and freshnesses U; ∆ `NEL r = s and U; ∆ `NEL a#r are generated by
the rules in Figure 2.
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(Refl)
U; ∆ `NEL r = r

U; ∆ `NEL r = s U; ∆ `NEL s = t
(Trans=)

U; ∆ `NEL r = t

U; ∆ `NEL r = s
(Symm)

U; ∆ `NEL s = r

U; ∆ `NEL r = s U; ∆ `NEL a#r
(Trans#)

U; ∆ `NEL a#s

a#X ∈ ∆
(#Ax)

U; ∆ `NEL π(a)#π·X
U; ∆ `NEL ri = si (1 ≤ i ≤ n)

(Cong)
U; ∆ `NEL f(r1, . . . , rn) = f(s1, . . . , sn)

U; ∆, a#X `NEL r = s (a6∈atms(r, s))
(Fresh)

U; ∆ `NEL r = s

U; ∆ `NEL a#r U; ∆ `NEL b#r
(Perm)

U; ∆ `NEL (a b)·r = r

U; ∆ `NEL a#ri (1 ≤ i ≤ n)
(#1)

U; ∆ `NEL a#f(r1, . . . , rn)
(#2)

U; ∆ `NEL a#b

U; ∆′ `NEL a#θ(X) every a#X ∈ ∆ ((∆ ` r = s) ∈ U)
(Ax∆`r=s)

U; ∆′ `NEL π·(rθ) = π·(sθ)

U; ∆′ `NEL a#θ(X) every a#X ∈ ∆ ((∆ ` a#r) ∈ U)
(Ax∆`a#r)

U; ∆′ `NEL π(a)#π·(rθ)

Figure 2: Derivable entailment in Nominal Equational Logic (NEL)
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Remark 3.8. For the benefit of the interested reader, we compare the rules in Figure 2 and those
in e.g. Figure 5.1 of [Clo09], where Nominal Equational Logic is presented in Clouston’s thesis.
This is not intended to be a formal proof of equivalence, but it should make ‘obvious’ that the we
are talking about the same mathematical object, if differently presented.

• (Refl), (Symm), and (Trans=) and (Trans#) in Figure 2 correspond to (REFL), (SYMM),
and (TRANS) from [Clo09, Figure 5.1].

• (Cong), (#1), and (#2) taken together correspond to (SUBST), which is a single complex
rule expressing intersubstitutability of derivably equal terms (the complexity of having
three rules being offset by the complexity implicit in the arbitrary substitution used in
(SUBST); for our purposes, the more ‘expanded’ version is much easier to prove things
about).

• (WEAK) from Figure 5.1 is an admissible rule of Figure 2; we build weakening into (#Ax)
here, whereas in Figure 5.1 it is an explicit rule plus a ‘non-weakened’ freshness axiom rule
(≈//-EQUIVAR).

• (ATM-INTRO) from Figure 5.1 has no direct counterpart in Figure 2; it is a product of the more
structured sequent used in [Clo09] which combines equality with freshness judgements.
Our design decision, to split the judgement-form from [Clo09] into separate freshness and
equality judgements, seems to us the simpler and more elementary approach, but it is in
any case purely a matter of presentation.

• (ATM-ELIM) from Figure 5.1 corresponds to (Fresh) in Figure 2; the side-condition a#(∇, ā, t, t′)
from (ATM-ELIM) corresponds the the side-condition a 6∈atms(r, s) in (Fresh).
There is one slight difference, that (ATM-ELIM) requires you to add your freshness assump-
tions all at once, whereas (Fresh) allows you to add them one at a time. This is purely a
design decision (cf. [GM09a, Remark 3.8]).

• (≈//-EQUIVAR) is an admissible rule corresponding as discussed above to the specific design
of (#Ax).

• (SUSP) from Figure 5.1 corresponds to (Perm) from Figure 2.
• The two axiom rules in Figure 2 are not explicitly written out in Figure 5.1, but are under-

stood to be admitted ‘as axioms’.

Remark 3.9. One difference between the NEL of Figure 2 and the NEL of Figure 5.1 in [Clo09] is
that Clouston and Pitts admitted signatures of non-equivariant term-formers (so π·f(r1, . . . , rn) =
(π·f)(π·r1, . . . , π·rn)), whereas we do not and we keep signatures equivariant (so π·f(r1, . . . , rn) =
f(π·r1, . . . , π·rn)).

So the NEL of this paper is a ‘core NEL’ which is actually a bit simpler than the NEL in the
literature. What may surprise some readers is a point that appears to not be widely appreciated:
we lose no expressivity in the simplification. See Subsections 6.3.2 and 6.3.3.5

Remark 3.10. We now compare Figures 1 and 2. The rules (Ax∆`a#r) and (Trans#) add axioms
and equational reasoning for freshness, relative to the NA system from Figure 1. The rules (#1)
and (#2) in Figure 2 also do not feature in Figure 1.

The rules (#1) and (#2) are needed here, and they are not part of some inductive definition
e.g. like we saw in Definitions 3.2 or 3.4. Axioms can change what freshnesses are derivable; no
axiom can change fa∆(r) or atms(r).

So for instance, in conjunction with appropriate axioms, the NEL freshness judgement is un-
decidable. For instance we can axiomatise some computation using a term r that returns a if it
terminates. Then ` a#r judges whether r terminates (if r does not terminate, then it is equal to
the diverging function).

5A referee suggested viewing the NEL and NEL with equality only in this paper as two new systems, inspired by
the NEL of [CP07] and the NEL with equality only of [Clo09]. These have similar properties; e.g. NEL has an explicit
freshness judgement and is sound and complete with respect to both equality and freshness, but they leave out the
orthogonal issue of non-equivariant function symbols. I agree, except that I do not think one should sell, or appear to
sell, something as a new system, just for a relatively minor change of signature.
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(Refl)
U; ∆ `NELeo r = r

U; ∆ `NELeo r = s U; ∆ `NELeo s = t
(Trans=)

U; ∆ `NELeo r = t

U; ∆ `NELeo r = s
(Symm)

U; ∆ `NELeo s = r

U; ∆ `NELeo ri = si (1 ≤ i ≤ n)
(Cong)

U; ∆ `NELeo f(r1, . . . , rn) = f(s1, . . . , sn)

U; ∆, a#X `NELeo r = s (a6∈atms(r, s))
(Fresh)

U; ∆ `NELeo r = s

(a, b 6∈ atms(r))
(Perm)

U; ∆, a#vars(r), b#vars(r) `NELeo (a b)·r = r

U; ∆′, b#vars(r, s) `NELeo (b a)·θ(X) = θ(X) every a#X ∈ ∆
(∆ ` r = s) ∈ U)

(Ax∆`r=s)
U; ∆′ `NELeo π·(rθ) = π·(sθ)

Figure 3: Derivable entailment in Nominal Equational Logic with Equality Only (NELeo)

3.3. Nominal equational logic with equality only
We need just a little notation, which will also be useful later:

Notation 3.11. Write ∆, a#vars(r) for ∆ ∪ {a#X | X ∈ vars(r)}.
Definition 3.12. A nominal equational logic with equality only theory U is a signature along
with a set of equality axioms (no freshness axioms) in that signature.

The derivable equalities U; ∆ `NELeo r = s are generated by the rules in Figure 3.

Remark 3.13. The presentation here is a rendering of Figure 1 from [Clo11]. Figure 1 in [Clo11]
seems shorter than Figure 3 here, but its presentation uses plenty of macros and sugar. For
instance, to unpack the notation used in (SUBST) from Figure 1 of [Clo11] requires all of page 5
from [Clo11]. The presentation here is more explicit, and also perhaps a little simpler too.

Remark 3.14. Comparing Figures 2 and 3, note the different treatment of the (Perm) rule, which
in Figure 3 seems to have some overlap with (Fresh); similarly for the (Ax) rule. NEL with
equality only is more profligate than NEL or NA with its generation of fresh resources.

3.4. Permissive-nominal algebra
Definition 3.15. Choose a fixed, arbitrary, and computable partition of A into two countably in-
finite halves A< and A> , so that A = A< ] A> .6 We can do this since we assumed that A was
countably infinite.

Definition 3.16. Define a notion of permissive free atoms of a nominal term fa(r) as follows:

fa(a) = {a} fa(π·X) = π·A< fa(f(r1, . . . , rn)) =
⋃n

1 fa(ri)

6A fancy mathematician’s name for this is moiety, meaning ‘partition into two equal halves’ (from the French moitié).
When this idea was first introduced to the nominal literature, the referees loathed it. They found a partition arbitrary.

Where did it come from? How was it computed? Why do we need to make an arbitrary choice? This was eventually
solved by taking the set of atoms to be defined as A = A< ] A> , instead of taking the set of atoms and then partitioning
it arbitrarily. If A had already been chosen, as is the case in this paper, then we specify that the moiety is computable and
all is well.

Perhaps this is an an interesting litmus test to check whether you are talking to a mathematician or a computer scientist.
Tell a mathematician ‘partition this set’ and he says ‘OK’. Tell a computer scientist the same thing and he says ‘How?’.
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(Refl)
V `PNA r = r

V `PNA r = s V `PNA s = t
(Trans)

V `PNA r = t

V `PNA r = s
(Symm)

V `PNA s = r

(a 6∈ fa(r), b 6∈ fa(r))
(Perm)

V `PNA (b a)·r = r

V; ∆ `PNA ri = si (1 ≤ i ≤ n)
(Cong)

V; ∆ `PNA f(r1, . . . , rn) = f(s1, . . . , sn)

((r=s)∈V)
(Axr=s)

V `PNA π·(rθ) = π·(sθ)

Figure 4: Derivable entailment in permissive-nominal Algebra (PNA)

Definition 3.17. A permissive-nominal equality E is a pair l = r.
A permissive-nominal algebra theory V is a signature along with a set of permissive-nominal

equalities in that signature.
The derivable equalities V `PNA r = s are generated by the rules in Figure 4.

3.5. Expressivity
Atoms-as-constants and atoms inequality. One feature of nominal terms languages is that they treat
atoms as a kind of bindable and permutable constant symbol. So note that distinct atoms a and b
in the syntax actually denote distinct atoms in the denotation. Thus if ν is an atomic sort then we
can axiomatise atoms-inequality as a binary term-former neq : (ν, ν)o with axioms

` neq(a, b) = > ` neq(a, a) = ⊥

along with appropriate term-formers and equalities for > : o and ⊥ : o. If atoms behaved more
like variables, so that ‘a could be equal to b’, then this would not make sense.

Non-equivariant term-formers can be emulated. Signatures are equivariant in that π commutes with
term-formers; π·f(r1, . . . , rn) = f(π·r1, . . . , π·rn) (Definition 2.9)—this is reflected in the models
when in Definition 4.6 we take fI to be an equivariant function.

We can always pass term-formers atoms as arguments. For instance, abstraction over a base
type τ can be axiomatised as a term-former abs : (ν, τ)τ with a single axiom

b#X ` abs(a,X) = abs(b, (b a)·X).

So abs(a, -) can be viewed as a ‘non-equivariant’ term-former. More on this in Subsections 6.3.2
and 6.3.3.

Example: a theory of functions. A theory of functions is given as follows (this example is modified
from [GM10, Figures 1 and 4]). Assume a name sort ν, a base sort τ , and term-formers var : (ν)τ ,
app : (τ, τ)τ , and lam : (ν, τ)τ . Sugar var(a) to a, app(r′, r) to r′r, and lam(a, r) to λa.r. Then
axioms are:

(βvar) ` (λa.a)X = X
(β#) b#Z ` (λb.Z)X = Z

(βapp) ` (λa.(Z ′Z))X = ((λa.Z ′)X)((λa.Z)X)
(βabs) b#X ` (λa.(λb.Z))X = λb.((λa.Z)X)

(βid) ` (λa.Z)a = Z
(α) b#Z ` λb.(b a)·Z = λa.Z

9



Here is an example derivation, sketched out and written in natural deduction style to save space:

(a 6∈ vars∅(b))
(Axα)

λa.b = λc.b

λb.λa.b = λb.λc.b
(Refl)

a = a

(λb.(λa.b))a = (λb.(λc.b))a

(c 6∈ fa∅(a))
(Axβabs)

(λb.(λc.b))a = λc.((λb.b)a)

(Axβvar)
(λb.b)a = a

λc.((λb.b)a) = λc.a
(Tran)

(λb.(λc.b))a = λc.a
(Tran)

(λb.(λa.b))a = λc.a

(1)

The corresponding theories and derivations in NEL would look much the same. In PNA we
would replace a freshness side-condition like b#Z in (β#) with a concrete choice of b ∈ A> (it
does not matter which one). So we obtain the following PNA theory, where b ∈ A> and a ∈ A< :

(βvar) (λa.a)X = X
(β#) (λb.Z)X = Z

(βapp) (λa.(Z ′Z))X = ((λa.Z ′)X)((λa.Z)X)
(βabs) (λa.(λb.Z))X = λb.((λa.Z)X)

(βid) (λa.Z)a = Z
(α) λb.(b a)·Z = λa.Z

Undecidability of semantic freshness in general. Equality and semantic freshness can encode arbi-
trary complexity. For instance, consider two λ-terms r and s in the signature above (we do not
even need unknowns). The question whether ∅ ` r = s is derivable, is undecidable. Even re-
stricted forms of equality have this power. Consider a λ-term r which encodes some assertion
and returns a if the answer is ‘yes’ and diverges if the answer is ‘no’. Then just using the judge-
ment ∅ ` (c a)·r = r we can detect whether the problem encoded by r has answer ‘yes’ or ‘no’;
this equality test is semantic freshness. Thus, this restricted form of equality is also undecidable in
general (more on semantic freshness later).

4. Denotations

We can give our logics a common denotation in nominal sets.

4.1. Definition of nominal sets
Definition 4.1. A set with a permutation action X is a pair (|X|, ·) of

• a carrier set |X| and
• a group action on the carrier set (P× |X|)→ |X|, written infix as π·x.

So, id ·x = x and π·(π′·x) = (π ◦ π′)·x for every π and π′ and every x ∈ |X|.

Definition 4.2. Say A ⊆ A supports x ∈ |X| when for all permutations π, if π(a) = a for all a ∈ A
then π·x = x.

Definition 4.3. A nominal set is a set with a permutation action such that every element has a
unique least finite supporting set supp(x), called the support of x.7

X, Y will range over nominal sets.

Definition 4.4. Call a function from |X| to |Y| equivariant when π·f(x) = f(π·x) for all x ∈ |X|
and all permutations π.8

Lemma 4.5. Given nominal sets Xi for 1 ≤ i ≤ n the following data defines a nominal set Πn
1Xi:

|Πn
1Xi| = |X1| × · · · × |Xn| π·(x1, . . . , xn) = (π·x1, . . . , π·xn)

7In fact, if a finite supporting set exists then so does a unique least such. See [GP01, Proposition 3.4], or [Gab11,
Theorem 2.21].

8So a function is equivariant when it is completely symmetric with respect to the permutation action.
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4.2. Denotation
Definition 4.6. A model I of a signature Σ = (AtomicSort ,BaseSort ,TermFormer , ar) (Defini-
tion 2.2) consists of the following data:

• For each base sort τ a nominal set JτKI .
• For each term-former f of arity (α1, . . . , αn)τ an equivariant function fI from Πn

1 JαiKI to
JτKI , where JνKI = Aν .

Definition 4.7. A valuation ς to I assigns to each X an element ς(X) ∈ Jsort(X)KI .
Call ς permissive when supp(ς(X)) ⊆ A< for all X .

Definition 4.8. Suppose I is a model and ς is a valuation to I . Assign nominal terms denota-
tions in I as follows:

JaKI

ς = aI Jπ·XKI

ς = π·ς(X) Jf(r1, . . . , rn)KI

ς = fI (Jr1KI

ς , . . . , JrnKI

ς )

Lemma 4.9. Suppose I is a model, ς is a valuation to I , r is a nominal term, and π is a permutation.
Then π·JrKI

ς = Jπ·rKI

ς .
If ς is a permissive valuation then π·JrKI

ς = Jπ·rKI

ς .9

Definition 4.10. • Write T; ∆ |=NA r = s when for every model I and valuation ς to I , if
supp(ς(X)) ⊆ fa∆(X) for every X then JrKI

ς = JsKI

ς .

• Write U; ∆ |=NEL r = s when for every model I and valuation ς to I , if supp(ς(X)) ⊆
fa∆(X) for every X then JrKI

ς = JsKI

ς (cf. equation (38) and Definition 6.3 of [CP07]).

• Write U; ∆ |=NEL a#rwhen for every model I and valuation ς to I , if supp(ς(X)) ⊆ fa∆(X)
for every X then a 6∈ supp(JrKI

ς ) (cf. equation (38) and Definition 6.3 of [CP07]).

• Write V |=PNA r = s when for every model I and permissive valuation ς to I , JrKI

ς = JsKI

ς .

Soundness and completeness for NA.
Fix some model I and valuation ς to I .

Lemma 4.11. If supp(ς(X)) ⊆ fa∆(X) for every X then supp(JrKI

ς ) ⊆ fa∆(r).

Theorem 4.12. T; ∆ `NA r = s if and only if T; ∆ |=NA r = s.

Soundness and completeness for NEL.
Theorem 4.13. • U; ∆ `NEL r = s if and only if U; ∆ |=NEL r = s.
• U; ∆ `NEL a#r if and only if U; ∆ |=NEL a#r.

Soundness and completeness for PNA.
Lemma 4.14. If ς is permissive (Definition 4.7) then supp(JrKI

ς ) ⊆ fa(r).

Theorem 4.15. V `PNA r = s if and only if V |=PNA r = s.
The proofs of the soundness part of Theorems 4.12, 4.13, and 4.15 are easy and more-or-less by

construction. The proofs of completeness are also easy by appropriate Herbrand constructions. In
the literature, these results can be found as [GM09a, Theorems 4.24 and 4.39], [CP07, Theorems 7.4
and 10.10], and [Gab12b, Theorems 7.4.6 and 7.5.12].10

9Why the extra condition? Consider a, a′ ∈ A> . If a ∈ supp(ς(X)) and a′ 6∈ supp(ς(X)) then J(a′ a)·XKI

ς 6= JXKI

ς ,
which would be unsound for the (Perm) rule of Figure 4.

Because a finite permutation can ‘place’ any finite number of atoms outside of A< , the restriction that supp(ς(X)) ⊆ A<

does not affect expressivity. It is not the case that permissive-nominal algebra ‘can only talk about atoms in A< ’.
10The proof in [Gab12b] proved completeness with respect to permissive-nominal sets, which may have infinite sup-

port. It is easy to replay the proof for nominal sets models. A more abstract and interesting models-based approach is
taken in a paper in preparation [Gab12a]. The result is the same, however we prove it.
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5. Translation between NEL and NA

5.1. Expressing semantic freshness in (permissive-)nominal algebra
NA and syntactic freshness

‘Free atoms of’ is an intensional judgement on syntax (Lemma 5.1) and is not implied by ‘not
in the support of the denotation of’ (Lemma 5.3). . .

Lemma 5.1. T; ∆ `NA r = s does not imply that a ∈ fa∆(r) if and only if a ∈ fa∆(s).

Proof. Consider a theory with one name sort ν, one base sort τ , one term-former f with arity (ν)τ ,
and one axiom ∅ ` f(a) = f(b). Then a ∈ fa∅(f(a)) and a 6∈ fa∅(f(b)).

Definition 5.2. Write T; ∆ |=NA a#rwhen for every model I and valuation ς to I , if supp(ς(X)) ⊆
fa∆(X) for every X , then a 6∈ supp(JrKI

ς ).

Lemma 5.3. It is not necessarily the case that T; ∆ |=NA a#r implies a 6∈ fa∆(r).

Proof. Using the previous example, it is not hard to verify that T; ∆ |=NA a#f(a), yet a ∈ fa∅(f(a)).

NA and semantic freshness
. . . however ‘(b a)·x = x for fresh b’ is an extensional judgement (Lemma 5.4; this is the real

meaning of the rule identified in Section 11 of [CP07]) and is implied by ‘not in the support of the
denotation of’ (Corollary 5.5).

Recall the notation ∆, a#vars(r) from Notation 3.11.

Lemma 5.4. Suppose T; ∆, b#vars(r) `NA (b a)·r = r and T; ∆ `NA r = s.
Then T; ∆, b#vars(s) `NA (b a)·s = s.

Proof. By routine calculations using Theorems 3.2.2 and 3.2.3 of [GM09a].

Corollary 5.5. T; ∆ |=NA a#r if and only if T; ∆, b#vars(r) `NA (b a)·r = r.

Proof. Write ∆′ = ∆, a#vars(r) and choose some fresh b (so b 6∈ fa∆′(r)).
Suppose T; ∆ |=NA a#r. By assumption if I is a model and ς is such that supp(ς(X)) ⊆

fa∆′(X) for every a#X ∈ ∆′, then a 6∈ supp(JrKI

ς ).
By assumption b 6∈ fa∆′(r) so by Lemma 4.11 b 6∈ supp(JrKI

ς ). It follows by Definition 4.2 that
(b a)·JrKI

ς = JrKI

ς . By Lemma 4.9 J(b a)·rKI

ς = JrKI

ς . By Completeness (the right-to-left part of
Theorem 4.12) T; ∆′ `NA (b a)·r = r.

The converse implication follows similarly, using Soundness (the left-to-right part of Theo-
rem 4.12).

Corollary 5.5 has appeared (at least) as Theorem 5.5 from [GM07], Lemma 4.51 from [GM09a],
and also as Theorem 5.5.7 of [Clo09].

A corresponding result holds for PNA, and is even simpler to state:

Definition 5.6. Write V |=PNA a#r when for every model I and permissive valuation ς to I ,
a 6∈ supp(JrKI

ς ).

Corollary 5.7. V |=PNA a#r if and only if V `PNA (b a)·r = r, where we choose b 6∈ fa(r).

12



5.2. Models
Definition 5.8. Given an NEL theory U create a new theory U′ with the same signature such that

• An axiom ∆ ` r = s maps to itself.
• An axiomA = ∆ ` a#rmaps toA′ = ∆, b#X1, . . . , b#Xn ` (b a)·r = rwhere {X1, . . . , Xn}

is the set of unknowns appearing in the axiom and b is fresh.

Theorem 5.9. The class of models defined by U in NEL is equal to the class of models defined by U′ in NA.

Proof. Using Corollary 5.5. For more details see [GM09a, Section 5].

So by Theorem 5.9 for every derivable NEL freshness judgement there is a corresponding
derivable NA equality judgement, in a corresponding theory, which has the same meaning in the
models.

Conversely, any NA theory is already an NEL theory, and it is not hard to prove the following
adjoint to Theorem 5.9:

Theorem 5.10. The class of models defined by U in NA is equal to the class of models defined by U consid-
ered as an NEL theory.

5.3. Translation of derivations
The arguments above are not constructive; they do not show how individual derivations

might translate. We now indicate how to do this.
The idea is that NEL semantic freshness judgements transform to NA equality judgements of

the form (b a)·r = r for fresh b.
Consider some NEL derivation Π of U′; ∆ ` r = s or U′; ∆ ` a#r. The challenge is to translate

the freshness part. First, we note down all the unknowns used in Π; write these X1, . . . , Xn. We
choose a fresh b that does not appear anywhere in Π and write ∆′ for the freshness context which
is ∆ augmented with b#X1, . . . , b#Xn.

An instance of (Ax∆`a#r) with π and θ translates to the following derivation-fragment:

(AxA′)
U′; ∆′ ` (π ◦ (b a))·(rθ) = π·(rθ)

Lemma 5.11. If U; ∆ `NA r = s then U; ∆ `NA π·r = π·s.

Proof. By a routine induction on derivations. See [GM09a, Theorem 3.2.2].

An instance of (Trans#) translates to the following derivation-fragment, which for clarity
we represent schematically; we use Lemma 5.11 and rules (Symm), (Trans), and so on:

(b a)·s = (b a)·r (b a)·r = r r = s

(b a)·s = s

The rules (#1) and (#2) easily translate; we consider only the case of (#1). This uses the fact
that (b a)·f(r1, . . . , rn) = f((b a)·r1, . . . , (b a)·r1); again we indicate it schematically:

(b a)·ri = ri (1 ≤ i ≤ n)
(Cong)

(b a)·f(r1, . . . , rn) = f(r1, . . . , rn)

What we now have is:

• From an NEL derivation of U; ∆ ` r = s an NA derivation of U′; ∆′ ` r = s, from which we
can obtain a derivation of U′; ∆ ` r = s, using (Fresh) repeatedly.

• From an NEL derivation of U; ∆ ` a#r an NA derivation of U′; ∆′ ` (b a)·r = r.

Translating an NA derivation to an NEL derivation is no harder. An NA derivation is almost
an NEL derivation already, except most notably for the different treatment of freshness assump-
tions in the axiom rule (Ax). We just use the fact that (#1) and (#2) can emulate the inductive
definition of fa∆(r).
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6. NA, NEL, and syntactic/semantic freshness

6.1. Notation for semantic freshness
We wrote ∆ ` a#r in [GM07] where here we write a 6∈ fa∆(r). The notation here is designed

to make it impossible to misread the side-condition a 6∈ fa∆(r) as a logical judgement, as can
happen to a reader exposed to the comments on nominal algebra in [CP07] and [Clo11] without
further context.

Where did this notation come from? The notation ∆ ` a#r was developed with Urban and
Pitts in [UPG04] and is the established notation for nominal terms, used e.g. in nominal rewriting
and αProlog [FG07, CU08]. Its use continues; see e.g. [CF08a, LV11], which are examples of quite
a large literature.

When one considers equational reasoning from axioms, there is a design choice: should deriv-
able freshness take the equations in the theory into account? If so, then we also need explicit rules
for reasoning about freshness from axioms that generalise the Urban-Pitts-Gabbay style freshness
judgement (and ought to be sound and complete for it); if not, we do not need such rules. Either
design choice is justifiable as a generalisation from the initial theory and notation of [UPG04];
however, in the case of NA the syntactic freshness reasoning (by design) no longer matches the
semantics. In this sense, the ∆ ` a#r notation can be misleading and we have replaced it in this
paper.

The choice is superficial, in the sense that one can do without freshness axioms and judge-
ments (NA). Thus, if we want to prove something about NEL or NEL with equality only, we
might be able to prove it about NA or PNA (which are smaller systems) and lift to NEL by trans-
lation.

Semantic and syntactic freshness had already parted company with the introduction of nomi-
nal rewriting [FGM04, FG07], where the interaction of syntactic freshness with rewrites (directed
equality) is a topic of great importance, notably for confluence properties. In particular we have
studied closed rules [FGM04] and uniform rules [FGM04, FG07], where the interest is specifically
how rewrites can influence the free atoms of a term.

We do have the following result, which is not hard to prove:

Lemma 6.1. a 6∈ fa∆(r) if and only if a 6∈ supp(JrKI

ς ), for every model I and valuation ς to that model.

Proof. It suffices to construct a Herbrand model out of closed syntax quotiented by α-equivalence,
possibly adding term-formers to ensure that we have enough closed terms.

In addition, in permissive-nominal terms quotiented by α-equivalence, a 6∈ fa(r) if and only if
a is fresh for r in permissive-nominal sets. That is off-topic for this paper; see [Gab12b] for more
details.

6.2. Three positions of Clouston and Pitts
Three positions are taken regarding NEL and NA in [CP07] (which introduced NEL), [Clo09]

(Clouston’s PhD thesis), and [Clo11] (which is based on the second half of [Clo09]):

• Position 1. “NA does not provide a complete axiomatisation of the semantic notion of [nominal]
freshness within nominal sets.” [CP07, Section 11]

• Position 2. “... freshness can be expressed in terms of equality, [so the difference between NA and
NEL] amounts to different design choices, rather than any deeper distinction [but] NEL’s choice
is clearly ... appropriate ... for approaching freshness as a first-class subject of study.” [Clo09,
Section 8.2]

• Position 3. Semantic freshness is dropped from nominal equational logic. It is approached
using equality alone [Clo11, Figure 1].

In the light of the maths we have seen so far we can note the following:
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1. Nominal algebra provides a complete notion of semantic freshness. This is built in to the
design and is noted explicitly in Theorem 5.5 from [GM07], and also by Theorem 5.5.7 of
[Clo09] and by the use of NEL with equality only in the second half of [Clo09] and [Clo11].
As mentioned in Subsection 6.1 the notation a 6∈ fa∆(r) is designed to make the confusion
between a side-condition and a logical judgement impossible.
Sadly this has more than historical interest, and confusion is still propagated in the litera-
ture today. Most recently in [Clo11, Section 7], Clouston writes “freshness in NA is sound, but
not complete, for freshness in the underlying nominal sets interpretation”.
We hope that by now, it is clear that this sentence is meaningless and rests on a category
error.

2. Semantic freshness is a definitional extension of NA. Contrary to the quote given above,
an explicit semantic freshness judgement is not clearly appropriate.11 Nominal Lawvere
Theories use as syntax NEL with equality only and the approach to freshness uses equality
only, after the manner of NA.

3. The semantic freshness judgement was eventually dropped, shifting from NEL to NEL with
equality only.
The logic of [Clo11] is called ‘nominal equational logic’. It should not be, since it is not the
same as the logic of the same name from [CP07]. We follow the terminology of [Clo09] and
call it NEL with equality only.

These logics are laid out for the reader to inspect and compare, in a uniform presentation and
for the first time together, in Figures 1, 2, and 3.

Remark 6.2. NEL and NEL with equality only are not truly equational. They are Horn clause
logics, in which propositions to the left of a turnstile are restricted to have (intuitively) the mean-
ing ‘(b a)·x = x for fresh b’. These judgements are expressive; e.g. in the presence of the right
axioms semantic freshness can be undecidable as we saw in Subsection 3.5. Thus Clouston wrote
“freshness is a more complicated concept that must be defined” [Clo09, Section 5.5].

Remark 6.3. It may surprise the reader that the logic in [Clo11] does use a syntactic freshness side-
condition after all. It is just a little hidden by the presentation: in our notation it is a 6∈ atms(r).

We trace this back to [Clo11]. In (Subst) in Figure 5.4 of [Clo11] there is a simultaneous choice
of fresh atoms āi; this notation is explained in an unnumbered definition just before Remark 3.2 of
that paper. Unpacking what this in syntax-directed terms reveals a freshness judgement written
a#r which is not written out in full, but which corresponds to a 6∈ atms(r) from Definition 3.4.

Remark 6.4 (a 6∈ atms(r) and a 6∈ fa∆(r) ‘morally’ equal). The difference between a 6∈ atms(r) and
a 6∈ fa∆(r) is to some extent an artefact. In the permissive-nominal terms framework of [Gab12b]
atms(r) and fa(r) become equal. The inequality between atms and fa here arises because our
representation of syntax is more concrete than it absolutely needs to be; our syntax ‘remem-
bers’ names of bound atoms, in the sense that [a]a and [b]b are distinct formal syntax, whereas in
permissive-nominal syntax they can be taken to be identical (just as we do for normal first-order
syntax).

There is a real sense in which NEL with equality only uses the same syntactic freshness judge-
ment as NA. They look different only because of how they are projected to concrete syntax. We
predict that this point will become clearer with time as the literature matures.

Remark 6.5. The computational content of fa∆(r) also exists in the NEL family, in a certain sense.
Broadly speaking: where NA uses a 6∈ fa∆(r); NEL with equality uses a 6∈ atms(r) to choose a

fresh atom, extends the freshness context with a#vars(r), and then produces an equality (b a)·r =
r, which we recognise as the equality of Corollary 5.5.

Solving this equality triggers a cascade of reasoning which follows the syntax-directed defi-
nition of fa∆(r).

11In the theory. As usual, in an implementation we should put in whatever users want and, presumably, compile the
richer language down to a core system.
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The reader can see this happen in (Perm) and (Ax) in Figure 3. Returning to [Clo11], choices
of atoms āi disjoint from atms(r), written āi#r in [Clo11], are used to generate an equality asser-
tion which is written out in full in [Clo11, Equation (9)].

One might debate which of these strategies is more computationally efficient, but in any case
NEL and NEL with equality only do have a syntactic freshness judgement, accompanied by ma-
chinery which is at least as complicated as fa∆(r).

Remark 6.6 ( Nat the meta-level). We can read ‘a 6∈ atms(r)’ as ‘a is fresh’. But here is an interesting
alternative reading: one can argue that what is really happening in (Fresh) in Figures 1 and 2,
and in (Fresh), (Perm) and (Ax) in Figure 3 (and in (Subst) in Figure 5.4 of [Clo11]), is the
Gabbay-Pitts Nquantifier. By that reading, syntactic freshness is simulated by swapping plus an
incognito meta-level new-quantifier.

6.3. Further comments
6.3.1. On the usefulness and necessity of reinterpretation

The NEL of this paper is a reinterpretation of Clouston and Pitts’s work. The presentation of
NEL used a different syntax from NA. Why reinterpret the syntax in this paper?

NEL uses a ‘cylindric’ style syntax (in the sense of cylindric algebra [HMT85]). See Defini-
tion 4.2 of [CP07] for their syntax, and Figure 3 of [CP07] for their permutation and substitution
actions. Compare with Definitions 2.5, 2.9, and 2.10 here.

Unfortunately, this choice of ‘non-standard syntax’ breaks compatibility with the large body
of work on nominal terms, and makes it difficult to compare NEL work with the quite substantial
body of work using nominal terms. One useful product of this paper is a more explicit presenta-
tion of NEL which bridges the gap between these two bodies of literature.12

Providing an inherently finitely presentable NEL syntax is a good idea. There is nothing
wrong with a more abstract presentation, but a finite presentation of the syntax should be pro-
vided too, as a service to and courtesy to the rest of the literature. This paper plugs that gap and
uses the syntax to clearly compare the members of the (P)NA/NEL family, arguably for the first
time.

There is also a little more. The cylindric style is that NEL almost always requires infinite
signatures; e.g. any non-equivariance in the signature will immediately cause this, because there
are infinitely many atoms to consider. For implementation, some explicitly finitely presentable
syntax for NEL is not only good practice but a necessity: users input ASCII text, not infinite sets.
Furthermore, work on complexity like [CF08b, LV10], depend on the finite presentability.

And finally, lest we forget, implementability was one of the motivations for nominal tech-
niques in the first place. In principle, variables are optional and we could use combinators, but
real implementations use variables and it was understanding these variables that motivated the
development of nominal sets in the first place.

6.3.2. Non-equivariant term-formers
We continue the discussion of Remark 3.9. The syntax used in [CP07] uses non-equivariant

term-formers.
Does this actually matter? Not for the logic. We explain how, in a moment.
But first, suppose we want non-equivariant term-formers in the logics of this paper, after all.

How would we go about it?

• We can simply extend nominal terms with non-equivariant term-formers, and thus allow
terms of the form (π·f)(r1, . . . , rn) alongside π·X in Definition 2.5. We would also need to
take π·(f(r1, . . . , rn)) = (π·f)(π·r1, . . . , π·rn) in Definition 2.9. This possibility was discussed
right back during the original design of nominal terms.

12We do not consider the non-equivariant sorts used in some later NEL work. Typing systems for nominal terms remain
an open topic.
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• We can admit a class of non-equivariant constant symbols, so even if term-formers are
equivariant, some constant symbols might not be. This is the approach taken in the PNL of
[Gab12b], where in addition support can be infinite.

In fact this does not matter for expressivity in an equational logic. Non-equivariant operation
symbols can map to equivariant term-formers restricted to apply to a finite list of distinct atoms.
A term-former f(-) with support {a1, . . . , an}maps to an equivariant term-former with arguments
f ′(a1, . . . , an, -) (we discuss ‘junk’ in the next subsection). Complexity is migrated between the
sort system and the notion of term-former/operator (cf. the simple examples of neq and abs from
Subsection 3.5).

If the permutation action satisfies non-trivial equalities, then these are converted to axioms
in the obvious way. For instance, if we want a sort τ and constant symbols of sort τ that are
isomorphic to unordered pairs of atoms from Aν , then the translation would require a term-
former f : (ν, ν)τ along with a single axiom f(a, b) = f(b, a).

How this generalises to an arbitrary nominal set follows from a general result, Theorem 3.12
of [Gab09b], which describes how every nominal set can be expressed as a disjoint sets union of
orbits under the permutation action, and equalities within each orbit can be captured by a finite
set of axioms.13 A translation of a non-equivariant signature to an equivariant signature plus for
each orbit a finite set of axioms, follows immediately. A translation of derivations between the
system with non-equivariant term-formers and the system with axioms for term-formers applied
to distinct atoms, is rather easy to construct (and resembles the more complex translation to
eliminate ‘junk’ in the proof of Theorem 6.9).

Note that the axiomatic theory hidden in the permutation action can be non-trivial. Consider
a nominal set which for every program P and pair of atoms a and b contains an element Pa,b such
that Pa,b = Pb,a if and only if P halts.

6.3.3. Junk in models
Continuing the previous point, if we emulate ‘a constant Ca,b with support {a, b}’ by taking a

term-former C taking two atoms as arguments and writing C(a, b), then we also admit the junk
term C(a, a). It is not possible, with an equivariant signature, to consider the term C(a, b) alone.

So in the translation from the NEL of [CP07] to the ‘NEL’ of this paper, some ‘junk’ is added
to the models. Does this make a difference? Not to the logic: the same non-junk equalities are
derivable either way. We show how this works for NA:

Definition 6.7. Fix a signature Σ (Definition 2.2) and pick out some set of term-formers fi :
(νi1, . . . , νini , αi1, . . . , αimi)τ for i ∈ I ; these are ‘pretending’ to be non-equivariant by taking
atoms as arguments.

Say a term of the form fi(s1, . . . , sni
, r1, . . . , rmi

) is junk when the set {s1, . . . , sni
} does not

consist of ni distinct atoms (in the example above C(a, a) is junk and C(a, b) is not junk).
If a term r contains a junk subterm then say that r contains junk (so every term that is junk,

contains junk, but not every term that contains junk, is junk). Say a theory T contains junk when
it contains an axiom that contains junk. Finally, if a derivation contains a junk term then say the
derivation contains junk.

We will prove a conservative extension result for the system in which junk is allowed, with
respect to the system in which no junk is allowed; this is Theorem 6.9. First, we need a key lemma
about nominal algebra:

Lemma 6.8. If T; ∆ `NA r = s and r : ν and s : ν then precisely one of the following holds:

• r = π·X and s = π′·X and a#X ∈ ∆ for every a such that π(a) 6= π′(a).
• r = a and s = a for some a ∈ Aν .

13Any set with a group action can be so partitioned. And why finite? Because support is finite; we choose a represen-
tative x of the orbit with support supp(x) = {a1, . . . , an} and write an axiom π·f(a1, . . . , an) = f(a1, . . . , an) for any of
the π such that π·x = x. An unsophisticated calculation gives an upper bound of n! distinct axioms.
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Proof. By soundness and completeness of NA with respect to its models (Theorem 4.12), in which
JνKI = Aν (Definition 4.6).14

Theorem 6.9. Suppose T, r, and s do not contain junk. Then T; ∆ `NA r = s is derivable if and only if
T; ∆ `NA r = s has a derivation that does not contain junk.

Proof. Clearly if T; ∆ `NA r = s has a derivation Π that does not contain junk then T; ∆ `NA r = s
has a derivation.

Suppose we have a derivation Π of T; ∆ `NA r = s, and suppose Π contains junk. Note that
T contains no junk, and neither does r = s. We now perform a transformation on Π specified as
follows:

• For each of the designated term-formers fi choose a completely fresh set of atoms ai1, . . . , aini

(so these atoms do not occur anywhere in Π).
• Define a translation (-)∗ by a∗ = a, (π·X)∗ = π·X , f(r1, . . . , rn)∗ = f(r∗1 , . . . , r

∗
n) if f(r1, . . . , rn)

is not junk,15 and fi(s1, . . . , sni , r1, . . . , rmi)
∗ = fi(ai1, . . . , aini , r

∗
1 , . . . , r

∗
mi

) otherwise.
• Finally, translate Π by replacing r with r∗ and replacing any instance of (Cong) whose

conclusion is junk, as follows:

Π1···
s1 = s′1 . . .

Πni···
sni

= s′ni
. . .

Πmi···
rmi

= r′mi
(Cong)

fi(s1, . . . , sni
, r1, . . . , rmi

) = fi(s
′
1, . . . , s

′
ni
, r′1, . . . , r

′
mi

)

is replaced by

(Refl)
ai1 = ai1 . . .

(Refl)
aini = a′ini

. . .

Πmi···
r∗mi

= (r′mi
)∗

(Cong).
fi(ai1, . . . , aini , r

∗
1 , . . . , r

∗
mi

) = fi(ai1, . . . , aini , (r
′
1)∗, . . . , (r′mi

)∗)

Note that if r contains no junk then r∗ = r, so this does not affect the conclusion of Π. Note also
that Lemma 6.8 implies that we do not have to consider the possibility in the replacement above
that fi(s1, . . . , sni

, r1, . . . , rmi
) is junk and fi(s

′
1, . . . , s

′
ni
, r′1, . . . , r

′
mi

) is not.
It is not hard to verify that this transformed labelled tree is a derivation. We consider the two

interesting cases:

• For an instance of (Perm) we note that r′ contains junk if and only if (a b)·r′ does, and
furthermore the junk is in the same parts of the term, and because we chose our atoms
{ai1, . . . , aini

} fresh, (a b) does not affect them. It follows that (a b)·(r∗) = ((a b)·r)∗. Also,
again because we chose our atoms fresh, it follows that a, b 6∈ r∗.

• For an instance of (Ax∆`r′=s′) we change the relevant θ to θ∗ which maps X to θ(X)∗. By
assumption r′ and s′ in the axiom do not contain junk, and this means in particular that
each occurrence of fi in r′ and s′ is not at the head of a junk term and so occurs applied to
ni distinct atoms. It follows that (r′θ∗) = (r′θ)∗ and (s′θ∗) = (s′θ)∗. Also, since the atoms
aij are chosen fresh θ∗ satisfies all the necessary freshness conditions.

The rest is routine.

14The important point here is that the interpretation of ν is always Aν , and JaKI

ς is always equal to a, not matter what
the model and what axioms are in T.

15It might still contain junk, but that is handled recursively by (-)∗.
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Junk is a common phenomenon. Models of Peano arithmetic admit non-standard elements
which cannot be detected from within the Peano theory itself, cf. also the upward Löwenheim-
Skolem theorem [Hod93]. Similarly models of Higher-Order Logic come with function-spaces of
various sizes.

Also similarly, by dropping atoms-abstraction [a]r from nominal terms we lost some control
over models with respect to the NA of [GM09a]. This is discussed in [GM09a], and NEL did the
same in [Clo10]. Though we can say in axioms ‘a is abstracted in abs(a, r)’ (cf. Subsection 3.5) it is
not possible (without negation or implication) to insist ‘and Jabs(a, r)KI

ς is exactly equal to [a]JrKI

ς ’.
There is nothing wrong with non-equivariant term-formers (they give us extra models) but for

designing a core equational reasoning system we can take them or leave them (the extra models
do not affect the entailment relation). For more expressive logics, this can matter more, and in
fact things can get quite subtle; see for instance [Gab12b, Gab12a].

6.3.4. The judgement form
The NEL of [CP07] has just one judgement form, written ∇ ` ā#t≈t′ : s. See equation (33) in

Section 6 of [CP07]. Here∇ is a freshness context, ā is a finite set of atoms, t and t′ are terms, and
s is a sort.

This difference does not matter. In this paper, that single judgement would be represented as
∇ ` a#t for each a in ā, and further ∇ ` t = t′.

6.3.5. Natural deduction presentation
Early presentations of nominal algebra used natural deduction style derivations, rather than

the sequent presentation used in later publications and here, see e.g. [Gab05]. When writing out
examples, the natural deduction style can be a lot more compact and easier to typeset; we used it
in this paper in equation 1 in Subsection 3.5.

This is purely a matter of presentation.

7. PNA versus NA

Permissive-nominal techniques were introduced in [DGM09, DGM10]. PNA is genuinely
different from NA and NEL (with or without equality) in two respects:

• PNA has a slightly but significantly different proof-theory because Figure 4 has no (Fresh)
rule.
We could also lose the (Perm) by a quotient of syntax; see the next point.

• The permissive-nominal treatment of nominal terms does not involve a mutable freshness
context ∆ (this is related to the previous point). α-equivalence can be taken as ‘just quotient
by α-equivalence’, like in traditional syntax. The interested reader is referred to [Gab12b].

PNA is part of a broader ‘permissive’ programme by the author with Mulligan and Dowek. We
have only presented here a simplified fragment of the more general theory surveyed in [Gab12b],
applied specifically to equational reasoning.

Intuitively, permissive-nominal techniques apply (Fresh) infinitely many times and fix the
resulting freshness context. So we can think of permissive-nominal reasoning as being nominal
reasoning in an infinite freshness context in which a#X for every a ∈ A> and every X .

Comparing Figures 2, 3, 1, and 4, we see a decrease in complexity; Figure 4 differs from nor-
mal first-order algebra only in adding the π in the axiom rule. In permissive-nominal techniques,
names and binding become structural properties of syntax instead of the quasi-logical—though
still syntax-directed—definitions-in-context that they have on nominal terms. This means in plain
English that we can ‘just quotient’ by α-equivalence just as we do in first- and higher-order syn-
tax, and we do not have to worry about the non-structural (Fresh) rule since this is replaced by
the use of A< and A> .

This is currently the author’s preferred technology for nominal reasoning. Empirically, we
seem to get a clearer view of the underlying mathematics.
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The permissive-nominal syntax of this paper is simplified. In other work, e.g. [Gab12b], we
allow X with permission sets which are sets of the form π·A< .16 In effect, this paper considers a
syntax in which all X have permission set A< . This does not affect expressivity because we can
emulate unknowns with different permission sets by writing π·X .

Remark 7.1. The reader who wants to see how PNA reasoning maps to NA reasoning can consult
[DGM10, Section 4]. We briefly sketch here how an NA theory can be translated to a PNA theory.
It is simplest to do this if we allow ourselves unknowns with permission sets of the form π·A< ;
by the remark above, this can always be emulated (at some cost in notational convenience).

Consider an axiom ∆ ` r = s. For each X ∈ vars(r, s), suppose {a | a#X ∈ ∆} =
{a1, . . . , an} = A. Choose some fresh atoms {b1, . . . , bn} = B. Assign X a permission set
(A< \A) ∪B, where we arrange things such that A ⊆ A< and B ⊆ A> .

Then ∆ ` r = s translates to r = s.

8. Atoms-abstraction in (P)NA/NEL

The NA in [GM07] included abstraction as primitive; the (P)NA in this paper does not.
That atoms-abstraction can be treated as a theory in equality and freshness is a matter of read-
ing and understanding the definitions, such as equation (35) in [GP01] or the reduction rule
(≈?-abstraction-2) from Figure 3 in [UPG04].

The observation is implicit in the structure of nominal algebra: see e.g. the (perm) rule of
CORE in [GM07] which does not mention abstraction or the two example derivations on page 6,
or e.g. Lemma 7.3 part 4 of [GM06a]. A subsection is devoted to the topic in [GM09a, Section 5.1].

NEL underwent a similar development. Abstraction sorts are absent in [CP07] but can be
recovered from the more complex non-equivariant operation symbols. The observation that ab-
straction is a theory was made explicit in [Clo10], which is based on Clouston’s PhD, see e.g.
[Clo09, Example 4.3.4] and surrounding text.

Having atoms-abstraction is convenient, so we can express in the signature that a term-former
binds (like λ([a]r)). As Clouston and Pitts note “atom-abstraction arities could be added to NEL
and probably should be, since making binding information part of a signature rather than part
of a theory’s axioms is a good idea” [CP07, Section 11]. There are some other good reasons to
include atoms-abstraction:

• NA/NEL can express by a simple axiom that a term-former of arity (ν, τ)τ binds, but not
that it is precisely atoms-abstraction (this is also discussed in [Clo10, Section 8], and see
below).
This seems to matter. For instance, in [Gab09a] which proved an HSPA theorem for nominal
algebra, atoms-abstraction emerged from denotational considerations. The proof of the
HSPA theorem used a free algebra construction, so to prove HSPA it seems necessary to
consider terms with atoms-abstraction, even if the original logic had not included it.
Kurz and Petrişan revisited this theorem [KP10] using their own methods, and they too
encountered some difficulties with atoms-abstraction (see their Section 5).

• Not only abstraction can be axiomatised in NA—so can permutation, substitution, or atom-
for-atom renaming. For some applications it might even be useful to drop permutations
entirely, but to keep binding; for instance, if we only care about ground terms.
A host of design decisions are involved here. Yet all the original applications of nominal
techniques involved atoms-abstraction, so in the presence of all these choices we should
verify in detail—and without any handwaving—that the most common amongst them,
works.

This is why atoms-abstraction has been taken as primitive in NA publications.

16We also allow atoms-abstraction, non-equivariant constant symbols, and certain classes of infinite permutations, all
of which is off-topic for this paper.

20



Interestingly, PNA enriched with a class of infinite permutations which we call shift-permutations,
satisfies a stronger HSP theorem [Gab12b]. Permissive-nominal syntax with shift has strictly
greater expressivity than (P)NA/NEL. Using shift has other advantages; this is a topic of cur-
rent research.

As a distinct issue, Clouston and Pitts’s semantic framework of Nominal Lawvere Theories is
unable to account directly for atoms-abstraction. Clouston confuses two distinct issues when he
presents this in terms of a hypothetical NA/NEL split in [Clo11] “a[n] interesting open question
is whether a compelling Lawvere theoretic account can be developed directly for some of the
design choices of NA, most notably explicit binding sorts”.

NA and NEL have both been considered with and without atoms-abstraction; [GM09a, Sub-
section 5.1] and [Clo10, Section 6] discuss this and show that expressivity is not lost or gained
either way. The issue is not with the language or signature.

The issue here is with the extremely rich structure of nominal sets. Nominal Lawvere Theo-
ries are not currently expressive enough to capture the notion ‘atoms-abstraction, precisely’. We
cannot express a negative assertion that we only have binding (that is, a theory can express that
an atom is abstracted, but cannot specify that that is all that happens).

This ‘negative’ part of atoms-abstraction cannot be captured by NA/NEL, either, so NA/NEL
is not able to detect whether a term-former that claims to be atoms-abstraction, really ‘is’ atoms-
abstraction; this is why expressivity is not lost whether we hard-wire atoms-abstraction into the
derivation system or simply write axioms.

As Clouston rightly goes on to remark, if we had a total destructor for atoms-abstraction
(instead of the partial destructor given by atoms-concretion) then the framework might be ex-
pressive enough to identify ‘real’ atoms-abstraction.

On this topic, the nominal renaming sets of [GH08] are a relevant structure, and it is current
research by the author with Dowek to apply these to the family of languages considered in this
paper.

9. Other ‘nominal’ algebras

Moving away from NEL/(P)NA, two other logics with broadly similar goals are under devel-
opment, and we will briefly sketch them.

Support encoded as multiple sorts. Kurz and Petrişan encode nominal sets in many-sorted first-
order algebra [KP10]. For each finite supporting set they take a sort, and they write a collection of
axioms describing how permutations interact with sorts/supporting sets, and with term-formers.
In this way, it is possible to translate any nominal algebra theory to a(n infinite, but finitely-
presentable) first-order theory.

The immediate reason for doing this was to use theorems of first-order model theory to obtain
theorems about nominal models, such as the HSP theorem. However, this might also turn out to
be a suitable method for designing purpose-built logics for reasoning on nominal sets.

Broadly speaking, the message here is: ‘analysis of nominal reasoning using many-sorted
first-order syntax and semantics’.

Term equational logic. Fiore and Hur have developed a general framework for generating syntax,
equational logic, and sound and complete equational systems [FH08]. The kinds of logics consid-
ered in this paper are claimed to be special cases of this framework (though the mathematics is
sufficiently complex that this would probably be quite hard to make completely formal). Broadly
speaking this seems plausible, with the caveat that if this is so then the framework of Fiore and
Hur could probably also be obtained by adding axioms to the base logics here.

The real interest of [FH08], it seems to this author, is the attempt to explicitly parameterise
everything—syntax, semantics, and proofs—over diagrams in category theory. This is in keeping
with Fiore’s general style of mathematics, and with a broader current in theoretical computer
science, running parallel to the ‘sets and functions between them’ approach favoured by this
author, to present everything as far as possible in abstract, categorical terms. The message here
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is: ‘parameterise everything as diagrams’. We do not see that there is any real difference in
generality, but there is a marked difference in style, and if this different approach can be made
to work then it may be possible to apply, in the style of category theory, general diagrammatic
arguments to obtain concise proofs of theorems.

10. Conclusion

We have sketched out a design space for equational logics over nominal terms—what a math-
ematician would call algebra [Coh65]. A number of design choices have arisen: semantic freshness
or syntactic freshness; atoms-abstraction or no atoms-abstraction; equivariant function-symbols
or non-equivariant function-symbols; freshness contexts or permission sets.

These choices are equivalent in expressivity, though PNA has a significantly different treat-
ment of freshness and potentially of α-equivalence.

The goal, when nominal algebra was designed in 2005, was to produce something simple,
clear, user-friendly, and compatible with previous work on nominal terms and nominal rewriting
[UPG04, FG07]. This author’s long-standing belief is that we succeeded: NA and PNA are the
simplest possible core logics in their class. Other design decisions are certainly possible, and we
do not necessarily promote NA and PNA directly for implementation—but the natural variations
add complexity without increasing expressivity, and they do not seem to improve on or greatly
change the character of the logic.

We believe that this paper offers the best overview of this family of logics, their clearest and
most direct presentation, and the most accurate and best-informed commentary on their design,
in existence at the time of writing.17 We hope the results and discussion here will help readers
to understand the design of these logics, and that our detailed discussion will help to inform the
design of future generations of logics based on nominal sets. For the interested reader, we collect
here a partial selection of the literature: [GP01, GM06a, GM06c, GM07, CP07, FH08, GM09a,
GM09b, Clo09, KP10, DGM10, Gab11, Clo11, DG12, Gab12b, Gab12a].

An additional design choice not discussed in this paper is whether to have finite or infinite
permutations18 and whether to allow infinitely-supported constants. This does increase expres-
sivity; see [Gab12b, Gab12a].

Permissive-nominal algebra (PNA) was introduced in [GM09b] in 2009 and is sketched in
this paper and described in detail in [Gab12b]. This may be the simplest ‘nominal algebra’ yet.
In the permissive-nominal syntax, judgements take the self-evidently purely equational form
r = s and the derivation rules are even simpler than those of NA. PNA is the author’s currently
preferred nominal equational logic, though NA is more familiar and somewhat easier to define
(no arbitrary partitions of A to confuse the reader).

Understanding semantic freshness goes back to [GP01] and its defining equality for freshness
(equation 13)

a 6∈ supp(x)⇔ Nb.(b a)·x = x.

N(meaning ‘for all but finitely many’) delivers the kind of freshness that syntactic freshness
does: something guaranteed sufficiently fresh, but possibly fresher than we absolutely need (cf.
Lemma 5.3). This author and Mathijssen designed NA with exactly this in mind.

(P)NA/NEL all have semantics in nominal sets, and because they are all equivalent they also
have semantics in Nominal Lawvere Theories. It would be interesting to reconsider Nominal
Lawvere Theories in a permissive-nominal context. In particular, we speculate that the ordering
on permission sets and shift-permutation discussed e.g. in [Gab12b] might be one way to gener-
ate a destructor for atoms-abstraction and so extend (permissive) Nominal Lawvere Theories to
atoms-abstraction.

17. . . for which I am indebted to two anonymous referees, without whose tireless constructive critisism this paper would
have been far less rigorous.

18Even if finitely representable in some implementation or mathematical foundation, a permutation can still permute
infinitely many atoms—think of the operation ‘successor’ on integers.
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