Nominal Rewriting Systems

Murdoch J. Gabbay
Work with Maribel Fernández and Ian Mackie

August 26, Verona, PPDP'2004

The talk in a slide:

- Rewriting is an encompassing framework for expressing logic and computation. Real logics and computing languages (e.g. FOL, λ -calculus) have binding ($\alpha l \beta$ -equivalence). β -equivalence is undecidable, can cause problems in higher-order systems.
- We have a decidable theory of α -equivalence, based on Fraenkel-Mostowski sets.
- Cross it with a first-order theory of rewriting.
- Get a theory of Nominal Rewriting—decidable, and with binding.
- Verify some good properties of the system (critical pairs lemma, linear time decidability, as expressive as Combinatory Rewriting).

In more detail:

Urban, Pitts, and Gabbay presented a decidable linear time unification algorithm for Nominal Terms.

Nominal terms are similar to first-order terms but the theory of equality is not just literal equality on syntax trees, but α -equivalence \approx_{α} with respect to a special abstraction operator (examples below) on atoms $a,b,c\in\mathbb{A}$, written at.

Nominal terms may contain unknowns X (representing unknown nominal terms). These may occur under abstraction [a]X. The unification algorithm finds a substitution σ of Xs for ss in t and t' such that $t\sigma \approx_{\alpha} t'\sigma$.

Nominal Rewriting is a natural extension of first-order rewriting with respect to nominal terms and the matching algorithm obtained by rewstricting nominal unification. The payoff is a first-order-like treatment of binding in syntax.

Signatures and Sorts

A **Nominal Signature** Σ is some sorts of atoms ν , base data sorts s (e.g. \mathbb{N} , \mathbb{B}), and function symbols f of arity $\tau_1 \rightarrow \tau_2$. If τ_1 is an empty product say f is 0-ary (i.e. a constant) and omit the arrow.

Term sorts are inductively defined by:

$$\tau ::= \nu \mid s \mid \tau \times \ldots \times \tau \mid [\nu]\tau.$$

 $\tau_1 \times \ldots \times \tau_n$ is a product sort. $[\nu]\tau$ is an abstraction sort. Terms are defined in the next slide, but first an example:

A nominal signature for a fragment of ML has one sort of atoms ν , one sort of data exp, and function symbols with arities

```
\begin{array}{ll} \mathtt{var} : \nu \!\!\to\!\! exp & \mathtt{app} : exp \times exp \!\!\to\!\! exp \\ \mathtt{lam} : [\nu] exp \!\!\to\!\! exp & \mathtt{let} : exp \times [\nu] exp \!\!\to\!\! exp \\ \mathtt{letrec} : [\nu] (([\nu] exp) \times exp) \!\!\to\!\! exp \end{array}
```

Terms

Fix Σ . For each τ fix countably infinite term variables $X,Y,Z\in\mathcal{X}_{\tau}$ meta-level unknowns. For each ν fix countably infinite atoms $a,b,c,f,g,h,\ldots\in\mathcal{A}_{\nu}$ object-level variable symbols.

Nominal Terms are:

$$t ::= a_{\nu} | (\pi \cdot X)_{\tau} | \langle t_{1\tau_{1}}, \dots, t_{n\tau_{n}} \rangle_{\tau_{1} \times \dots \times \tau_{n}} |$$
$$([a_{\nu}]t_{\tau})_{[\nu]\tau} | (f_{\tau_{1} \to \tau_{2}}t_{\tau_{1}})_{\tau_{2}}$$

and called resp. atoms, moderated variables, tuples, abstractions and function applications. Ground terms are terms without variables.

a is abstracted in a, not under a- it is free.

These terms have a notion of position as usual in first-order rewriting, only the position of X in $\pi \cdot X$ is ϵ .

For example

For our example Σ , write

```
\begin{array}{lll} a & & \text{for} & \text{var}(a) \\ tt' & & \text{for} & \text{app}\langle t,t'\rangle \\ \lambda[a]t & & \text{for} & \text{lam}([a]t) \\ \text{let } a{=}t \text{ in } t' & & \text{for} & \text{let}\langle t,[a]t'\rangle \\ \text{letrec } (fa){=}t \text{ in } t' & & \text{for} & \text{letrec}[f]\langle [a]t,t'\rangle. \end{array}
```

a, $(\lambda[a]aa)(\lambda[a]aa)$, and letrec (fa)=a in fb are terms. f is abstracted in t and t', and a in t, in letrec f a=t in t'.

Swappings

 $(a\ b)$ a swapping is a pair of atoms. Permutations $\pi ::= \operatorname{Id} \mid (a\ b) \cdot \pi$ are lists of swappings. (Id is the identity.)

Swappings (and thus permutations) act on atoms

$$(a b)(a) \stackrel{\text{def}}{=} b$$
 $(a b)(b) \stackrel{\text{def}}{=} a$ and $(a b)(c) \stackrel{\text{def}}{=} c (c \neq a, b)$.

The action extends to terms:

$$(a b)(X) = (a b) \cdot x$$
 $(a b)[n]t = [(a b)(n)](a b)(t)$

Syntactic equality \equiv is not modulo α -equivalence: $[a]a \not\equiv [b]b$.

We develop an explicit theory of α -equivalence in context.

Fresh

$$\frac{a\#s_1 \cdots a\#s_n}{a\#\langle s_1, \dots, s_n \rangle} \qquad \frac{a\#s}{a\#fs} \qquad \frac{a\#s}{a\#[b]s}$$

$$\frac{a\#s}{a\#b} \qquad \frac{a\#s}{a\#[a]s} \qquad \frac{\pi^{-1}(a)\#X}{a\#\pi \cdot X}$$

Write Δ for a set of apartness assumptions a#X. Write $\Delta \vdash a\#s$ when assumptions Δ prove a#s.

$$a\#X \vdash a\#\langle X, [a]Y \rangle$$

 $a\#X, b\#X \vdash a\#\langle (a\ b)\cdot X, (b\ c)\cdot Y \rangle$

\approx_{α} , a notion of α -equivalence in context

$$\frac{s_1 \approx_{\alpha} t_1 \cdots s_n \approx_{\alpha} t_n}{\langle s_1, \dots, s_n \rangle} \approx_{\alpha} \langle t_1, \dots, t_n \rangle \quad s \approx_{\alpha} t} \quad \frac{t \approx_{\alpha} t'}{a \approx_{\alpha} a} \quad \frac{t \approx_{\alpha} t'}{t' \approx_{\alpha} t}$$

$$\frac{s \approx_{\alpha} t}{[a]s \approx_{\alpha} [a]t} \quad \frac{a\#t \quad s \approx_{\alpha} (a b) \cdot t}{[a]s \approx_{\alpha} [b]t} \quad \frac{ds(\pi, \pi') \#X}{\pi \cdot X \approx_{\alpha} \pi' \cdot X}$$

$$ds(\pi, \pi') = \{a \mid \pi(a) \neq \pi'(a)\}$$
 the difference set.

Write $\Delta \vdash s \approx_{\alpha} t$ when Δ proves $s \approx_{\alpha} t$.

$$a, b \# X \vdash (a b) \cdot X \approx_{\alpha} X$$

 $b \# X \vdash \lambda[a] X \approx_{\alpha} \lambda[b](b a) \cdot X$

The matching/unification algorithms invert these rules and include a substitution step to solve $X \approx_{\alpha} t$. We omit details.

Terms-in-context

Because the useful notion of equality, \approx_{α} , is in a context, we work with terms-in-context $\Gamma \vdash t$. For example:

- 1. $\emptyset \vdash a$.
- 2. $a \# X \vdash [a] X$.
- 3. a#X, $b\#Y \vdash \langle X,Y\rangle$.

We may write $\emptyset \vdash t$ as just t.

Rewrite rules

Write V(s) for $X \in \mathcal{X}$ mentioned in s and A(s) for atoms mentioned in s (free or abstracted). Similarly write $V(\nabla)$.

A nominal rewrite rule over Σ is a tuple (∇, l, r) , we write it $\nabla \vdash l \rightarrow r$, such that $V(r) \cup V(\nabla) \subseteq V(l)$.

We may write $l \rightarrow r$ for $\emptyset \vdash l \rightarrow r$.

- $a\#X \vdash (\lambda[a]X)Y \rightarrow X$ is a form of trivial β -reduction.
- $a \# X \vdash X \rightarrow \lambda[a](Xa)$ is η -expansion.
- $XY \rightarrow XX$ is strange but quite valid.
- $a \rightarrow b$ is a rewrite rule.
- $a\#Z \vdash X\lambda[a]Y \rightarrow X$ is not a rewrite rule; $Z \notin V(X\lambda[a]Y)$. $X \rightarrow Y$ is also not a rewrite rule.

Examples

We discuss matching, then rewriting, in a moment. Here are some examples:

- 1. X rewrites with $\emptyset \vdash X \rightarrow \langle X, X \rangle$ to $\langle X, X \rangle$. Y rewrites to $\langle Y, Y \rangle$.
- 2. a rewrites with $\emptyset \vdash a \rightarrow a$ to a. b does not rewrite.
- 3. $a\#X \vdash \langle X,X \rangle$ rewrites with $a\#Z \vdash \langle Z,Z \rangle \rightarrow \langle Z,a \rangle$ to $\langle Z,a \rangle$. $\langle X,X \rangle$ does not rewrite, neither does $\langle a,b \rangle$, but $a\#X \vdash \langle b,X \rangle$ rewrites to $\langle b,a \rangle$.
- 4. [a]a rewrites with $\emptyset \vdash [b]b \rightarrow [b]c$ to [a]c, to [b]c, and [d]c, but not [c]c. The former are all provably α -equivalent in the context \emptyset . $a\#X \vdash [a]X$ also rewrites with the same rule to [a]c.

Matching

Call a term in context a pair $\Gamma \vdash t$.

A matching problem is a pair of them, $(\nabla \vdash l) ?= (\Delta \vdash s)$.

A solution is a substitution θ such that

- $\theta X \equiv X$ for X in $V(\Delta \vdash s)$.
- $\bullet \ \Delta \vdash l\theta \approx_{\alpha} s.$
- $\bullet \Delta \vdash \nabla \theta$.

If a solution exists then a most general one is the θ from (θ,Γ) solving $l_?=s$.

Rewriting

Given $R=\nabla\vdash l\to r$ say s rewrites with R to t, in a context Δ , or just $\Delta\vdash s\stackrel{R}{\to} t$, when:

- $V(R) \cap V(\Delta, s) = \emptyset$ (wlog).
- There exists a position p in s and a solution θ to $(\nabla \vdash l)_? = (\Delta \vdash s|_p)$.
- $\Delta \vdash s[r\theta]_p \approx_{\alpha} t$.

Two basic lemmas of \approx_{α} , and a corollary

Lemma: If $\Delta \vdash t \approx_{\alpha} s|_{p}$ then $\Delta \vdash s[t]_{p} \approx_{\alpha} s$.

Lemma: If $\Delta \vdash t \approx_{\alpha} t'$ and if p is a position in s, then $\Delta \vdash s[t]_{p} \approx_{\alpha} s[t']_{p}$.

E.g. $\emptyset \vdash [a]a \approx_{\alpha} [b]b$ and $\emptyset \vdash [a][a]a \approx_{\alpha} [a][b]b$.

If $s \approx_{\alpha} s'$ and $t \approx_{\alpha} t'$ it is not necessarily the case that $s[t]_p \approx_{\alpha} s'[t']_p$. For example, $[a]a \approx_{\alpha} [b]b$ and $a \approx_{\alpha} a$ but $[a]a \not\approx_{\alpha} [b]a$.

Corollary: The latter two conditions defining $\Delta \vdash s \xrightarrow{R} t$ can be expressed succinctly as $(\nabla \vdash (s[l]_p, s[r]_p)) := (\Delta \vdash (s, t))$ for some p.

Critical pair lemma

Call a valid pair of rewrites $\Delta \vdash s \rightarrow t_1, t_2$ a peak.

Suppose

- 1. $R_i = \nabla_i \vdash l_i \rightarrow r_i$ for i=1,2 are copies of two rules in $\mathcal R$ such that $V(R_1) \cap V(R_2) = \emptyset$ (R_1 and R_2 could be copies of the same rule).
- 2. p is a position in l_1 .
- 3. $l_1|_{p} ?=? l_2$ has a solution (Γ, θ) , so that $\Gamma \vdash l_1|_{p} \theta \approx_{\alpha} l_2 \theta$.

Then call the pair of terms-in-context

$$\nabla_1 \theta, \nabla_2 \theta, \Gamma \vdash (r_1 \theta, l_1[r_2 \theta]_p)$$

a critical pair. If $p = \epsilon$ and R_1 , R_2 are copies of the same rule, or if p is the position of a variable in l_1 then we say the critical pair is trivial.

Theorem: If all critical pairs are joinable, then rewriting is locally confluent.

Simulating Combinatory Reduction Systems (CRS)

First, note that Nominal Rewriting contains First-Order rewriting, just by omitting abstraction at at and moderations $\pi \cdot X$.

CRS can be encoded with a little more effort. Fix some CRS over an alphabet A. Define a nominal signature Σ_A with one sort of atoms (ν) , one sort of data (δ) , the term sorts generated from these, and a set of function symbols which contains the function symbols of the CRS R and a new function symbol \sup representing substitution, which we sugar to $t[a \mapsto s]$ and more generally to $t[a_1 \mapsto s_1, \dots, a_n \mapsto s_n]$.

We obtain a nominal rewriting system \mathcal{R} .

Examples of the translation

β-reduction in the CRSs syntax is:

$$\operatorname{app}(\operatorname{lambda}([a]Z(a)), Z') \to Z(Z')$$

The translation is:

$$a\#Z' \vdash \operatorname{app}(\operatorname{lambda}([a]Z), Z') \to Z[a \mapsto Z']$$

A CRS rule defining a differentiation operator is:

$$\operatorname{diff}([a]\sin(Z(a))) \to [b]\operatorname{mult}(\operatorname{app}(\operatorname{diff}([c]Z(c)),b),\cos(Z(b)))$$

The translation is:

$$b, c\#Z \vdash \mathsf{diff}([a]\mathsf{sin}(Z)) \to \\ [b]\mathsf{mult}\langle \mathsf{app}\langle \mathsf{diff}([c]Z[a \mapsto c]), b\rangle, \mathsf{cos}(Z[a \mapsto b]\rangle)$$

Soundness and completeness

The translation is sound, and complete. Soundness is modulo rewriting some substitutions (CRS elide β -reduction steps). Completeness is direct.

Theorem: Let t be a term in a CRS R (and therefore also in R). If $\vdash t \to_R u$ then there exists u' such that $\vdash u \to_R^* u'$ and $t \to_R u'$.

Theorem: Let t and u be arbitrary terms in the CRS R (and therefore also in R). If $t \to_R u$ then $\vdash t \to_R^* u$.

Closed rewriting (briefly)

We have not discussed closed rewriting for efficiency in the presence of equivariance: under certain reasonable reasonableness conditions rewriting is linear time decidable even if the system is equivariant and therefore has infinitely many rules, such as $a \to a$, $b \to b$, ...

Conclusions

Main results so far:

- Nominal Rewriting has a critical pair lemma,
- is linear time decidable,
- and is as expressive as CRS (the translation of a CRS is reasonable in the sense above).

Future work

- Extend these results to a framework that can express more complex apartness conditions than a#X; for example 'X closed'.
- Prove more powerful confluence results, including criteria on rewrite rules for global confluence.
- Include a term-former to generate atoms on-the-fly.
- Consider generalization and Inductive Logic Programming.