Nominal Rewriting Systems

Murdoch J. Gabbay
Work with Maribel Fernandez and lan Mackie

August 26, Verona, PPDP’2004

Nominal Rewriting Systems August 26, Verona, PPDP’2004.

e Rewriting is an encompassing framework for expressing logic
and computation. Real logics and computing languages (e.g.
FOL, A-calculus) have (ol 3-equivalence).
(3-equivalence is undecidable, can cause problems in
higher-order systems.

e We have a decidable theory of a-equivalence, based on
Fraenkel-Mostowski sets.

e Cross it with a first-order theory of rewriting.

e Get a theory of —decidable, and with
binding.

e Verify some good properties of the system (critical pairs
lemma, linear time decidability, as expressive as Combinatory
Rewriting).

Nominal Rewriting Systems August 26, Verona, PPDP’2004.

Urban, Pitts, and Gabbay presented a decidable linear time unification
algorithm for Nominal Terms.

Nominal terms are similar to first-order terms but the theory of equality
IS not just literal equality on syntax trees, but «v-equivalence ~,, with
respect to a special operator (examples below) on

a,b,c € A, written |alt.

Nominal terms may contain unknowns X (representing unknown
nominal terms). These may occur under abstraction [a| X . The
unification algorithm finds a substitution o of X's for ssin ¢ and ¢’ such
thatto ~, t'o.

Nominal Rewriting is a natural extension of first-order rewriting with
respect to nominal terms and the matching algorithm obtained by
rewstricting nominal unification. The payoff is a first-order-like treatment
of binding in syntax.

Nominal Rewriting Systems August 26, Verona, PPDP’2004.

Signatures and Sorts

A Nominal Signature >, is some sorts of atoms v, base data sorts s
(e.g. N, B), and function symbols f of arity 71 —7o. If 71 is an empty
product say f is O-ary (i.e. a constant) and omit the arrow.

Term sorts are inductively defined by:
Tu=v|s|TXx...xT]| VT

T1 X ... X Ty, is a product sort. [V|7 is an abstraction sort. Terms are
defined in the next slide, but first an example:

A nominal signature for a fragment of ML has one sort of atoms v/, one
sort of data exp, and function symbols with arities

var : V—exp app : exp X exrp—exp

lam: [v]exp—exp let:exp X [V|exp—exp

letrec: [V|(([v]exp) X exp)—exp

Nominal Rewriting Systems August 26, Verona, PPDP’2004.

Terms

Fix 2. For each 7 fix countably infinite term variables X, Y, Z € X
meta-level unknowns. For each v fix countably infinite atoms
a,b,c, f,q,h,... € A, object-level variable symbols.

Nominal Terms are:

ti= ay ’ (T‘-.X)T ’ <t17'17"'7tn7'n>7'1><...><7'n ‘
([a,,]tT)[,,]T | (frratr)

and called resp. atoms, moderated variables, tuples, abstractions and
function applications. Ground terms are terms without variables.

a is abstracted in [alt, not under [al- it is free.

These terms have a notion of position as usual in first-order rewriting,
only the position of X in - X is €.

Nominal Rewriting Systems August 26, Verona, PPDP’2004.

For example

For our example 2., write

a for var(a)

tt’ for app(t,t’)
Alalt for lam(|alt)
let a=t int’ for let(t,[a]t’)

letrec (fa)=t int’ for letrec[f]{[a]t,t’).

a, (A|alaa)(Malaa), and letrec (fa) =a in fb are terms.

fis abstracted int and t’, and @ in t, in letrec f a=t int’.

Nominal Rewriting Systems August 26, Verona, PPDP’2004.

Swappings

(a b) a swapping is a pair of atoms. Permutations 7w ::=1d | (a b) - 7
are lists of swappings. (Id is the identity.)

Swappings (and thus permutations) act on atoms
@b) (@)L b (b)) Ea and (ab)(c) = c(c+a,b).
The action extends to terms:

(a)(X) = (ab) -z (a b)[n]t = [(a b)(n)|(ad)(?)

Syntactic equality = is not modulo ci-equivalence: [a]a Z [b]b.

We develop an explicit theory of cx-equivalence in context.

Nominal Rewriting Systems August 26, Verona, PPDP’2004.

Fresh

a#s1 -+ aHSy, a#s a#s
a#(st, - 5n) afifs a#tlb]s
- m ! (a)#X
a#tb a#ta]s a#tm - X

Write A for a set of apartness assumptions a# X . Write A F a#s
when assumptions A prove a#s.

a#X F a#(X,|a]Y)
a# X, b#X F a#((ad)- X,(bc)-Y)

Nominal Rewriting Systems August 26, Verona, PPDP’2004.

., a notion of cx-equivalence in context

S1 g l1 ++ Sy o Uy, s, t t =, t
(8153 8n) g (t1,...,tn) fsmy ft GFal ¢/ ¢
S R t a#t s~y (ab)-t ds(m, ") #X
als ~,, |alt [a]s o |b]t T X~ X
ds(m,m") = {a | 7 (7' (a)} the difference set.

Write A F s =, t when A proves s ~, t.
a,b#X F (ab)- X =, X
b#X F ANa]X =, Apl(ba) - X

The matching/unification algorithms invert these rules and include a
substitution step to solve X =, t. We omit details.

Nominal Rewriting Systems August 26, Verona, PPDP’2004.

Terms-in-context

Because the useful notion of equality, =, IS In a context, we work with
terms-in-context I' — ¢. For example:

1. 0 F a.
2. a#X + [a]X.
3. a# X, b#Y + (X,Y).

We may write) - ¢ as just ¢.

Nominal Rewriting Systems August 26, Verona, PPDP’2004.

10

Rewrite rules

Write V' (s) for X € X mentioned in s and A(s) for atoms mentioned
in s (free or abstracted). Similarly write V' (V).

A nominal rewrite rule over > is a tuple (V, [, 1), we write it

V F l—r,suchthat V(r) UV (V) C V(I).

We may write [—71 for) - [—r.
o a# X F (Aa]X)Y — X is aform of trivial 5-reduction.
e a# X F X—M\a|(Xa) is n-expansion.
o XY — XX is strange but quite valid.
e a—bis arewrite rule.

o a#7Z F X\alY—Xisnotarewriterule; Z ¢ V(X \alY).

X —Y is also not a rewrite rule.

Nominal Rewriting Systems August 26, Verona, PPDP’2004. 11

Examples

We discuss matching, then rewriting, in a moment. Here are some
examples:

1. X rewrites with) = X— (X X)to (X, X).
Y rewritesto (Y,Y).

2. a rewrites with) - a—a to a. b does not rewrite.

3. a# X F (X, X) rewrites with a# 2 + (Z,Z)—(Z, a) to
(Z,a). (X, X) does not rewrite, neither does (a, b), but
a#X + (b, X) rewrites to (b, a).

4. |a]a rewrites with) = [b]b—[b]c to [a]c, to [b]c, and [d]c, but not
[c]c. The former are all provably ci-equivalent in the context ().
a# X F |a]X also rewrites with the same rule to [a]c.

Nominal Rewriting Systems August 26, Verona, PPDP’2004. 12

Matching

Call aterm in context a pair I' - .
A matching problem is a pair of them, (V F [) = (A F s).

A solution is a substitution € such that
e /X =Xfor XinV(A F s).
e A F [0 ~, s.

o A - V0.

If a solution exists then a most general one is the 6 from (6, ") solving
[?2— S.

Nominal Rewriting Systems August 26, Verona, PPDP’2004.

13

Rewriting

Given R =V F [—r say s rewrites with R to ¢, in a context 2\, or
. R
just A = s — t, when:

e V(R)NV(A,s) =0 (wlog).

e There exists a position p in s and a solution 6 to

(V F D)= (AF s|p)
o A I slrd], =, t.

Nominal Rewriting Systems August 26, Verona, PPDP’2004.

14

Two basic lemmas of ~,, and a corollary

Lemma: If A = ¢t =, s|,then A F st], =, s.

Lemma: If A F t &, t' andif p is a position in s, then

At sft], =q s[t]p-

Eg. 0 F [ala =, [b]band) + [a]la]la =, [a][b]b.

If s ~,, s’ and t ~, t itis not necessarily the case that
slt]p ~q S'|t'],. For example, [a]a =, [b]band a ~, a but

ala £ [ba.

Corollary: The latter two conditions defining A + s ki t can be
expressed succinctly as (V = (s[l],,s|r]p)) 2= (A F (s,1)) for
some p.

Nominal Rewriting Systems August 26, Verona, PPDP’2004.

15

Critical pair lemma

Call a valid pair of rewrites A = s—tq, 15 a peak.

Suppose

1. R, =V, = [;—r; fort = 1,2 are copies of two rules in /K such
that V(R1) NV (Ry) =) (R1 and Ry could be copies of the
same rule).

2. pis a positionin /7.
3. 1], 2=2 la has a solution (I',0), sothat I" = [1],0 ~, [26.
Then call the pair of terms-in-context

V19, VQ(Q, I' = (T197 ll [TQH]Z?)

a critical pair. If p = € and R, R> are copies of the same rule, or if p is
the position of a variable in [then we say the critical pair is trivial.

Theorem: If all critical pairs are joinable, then rewriting is locally
confluent.

Nominal Rewriting Systems August 26, Verona, PPDP’2004.

16

First, note that Nominal Rewriting contains First-Order rewriting, just by
omitting abstraction |a|t and moderations 7 - X .

CRS can be encoded with a little more effort. Fix some CRS over an
alphabet A. Define a nominal signature > 4 with one sort of atoms (1),
one sort of data (9), the term sorts generated from these, and a set of
function symbols which contains the function symbols of the CRS R and
a new function symbol sub representing substitution, which we sugar to
t|ar—s| and more generally to t|a1+51, . . ., GnF>Sy|.

We obtain a nominal rewriting system R.

Nominal Rewriting Systems August 26, Verona, PPDP’2004. 17

Examples of the translation

[3-reduction in the CRSs syntax is:
app(lambda([a|Z(a)),Z") — Z(Z")
The translation is:

a#7' + app(lambda([a]Z), Z") — Z]la—Z']

A CRS rule defining a differentiation operator is:
diff([a]sin(Z(a))) — [b]mult(app(diff([c] Z(c)),b),cos(Z(b)))

The translation is:

b,c#7 F diff([alsin(Z)) —
|blmult(app(diff(|c| Z|a+—c]), b), cos(Z|a—Db]))

Nominal Rewriting Systems August 26, Verona, PPDP’2004.

18

Soundness and completeness

The translation is sound, and complete. Soundness is modulo rewriting
some substitutions (CRS elide 3-reduction steps). Completeness is
direct.

Theorem: Let t be aterm in a CRS R (and therefore also in R). If
= ¢ —R uthen there exists u’ suchthat = v —% u andt —pr v’

Theorem: Let t and u be arbitrary terms in the CRS R (and therefore
alsoinR). Ift —r uthen = ¢ —7 .

Nominal Rewriting Systems August 26, Verona, PPDP’2004. 19

Closed rewriting (briefly)

We have not discussed closed rewriting for efficiency in the presence of
equivariance: under certain reasonable reasonableness conditions
rewriting is linear time decidable even if the system is equivariant and
therefore has infinitely many rules, suchasa — a, b — b, ...

Nominal Rewriting Systems August 26, Verona, PPDP’2004.

20

Main results so far:
e Nominal Rewriting has a critical pair lemma,
® is linear time decidable,

e and is as expressive as CRS (the translation of a CRS is reasonable
In the sense above).

Nominal Rewriting Systems August 26, Verona, PPDP’2004.

21

e Extend these results to a framework that can express more complex
apartness conditions than a# X ; for example ‘X closed'.

e Prove more powerful confluence results, including criteria on rewrite
rules for global confluence.

e Include a I/l term-former to generate atoms on-the-fly.

e Consider generalization and Inductive Logic Programming.

Nominal Rewriting Systems August 26, Verona, PPDP’2004.

22

