
Nominal Terms with a Hierarchy of Variables
Or . . . when are unknowns?

Murdoch J. Gabbay

Joint work with Giulio Manzonetto and Antonino Salibra

Technical University Eindhoven, 31 October 2005.

Nominal Terms with a Hierarchy of Variables Technical University Eindhoven, 31 October 2005. 1

Health warning:

I’m still busy inventing this stuff.

This material probably consists mostly of errors.

If this doesn’t make sense, tell me — and wait for the paper.

Thanks for finding time to come.

Nominal Terms with a Hierarchy of Variables Technical University Eindhoven, 31 October 2005. 2

Motivation

‘Normal’ substitution is capture-avoiding on bound variables. E.g.

(∀x. x = y)[y 7→x] ≡ ∀x′. x′ = x (λx.(λy.xy))y → λy′.yy′

‘Context’ substitution is not. E.g.

P ∼= Q when in all process contexts C , C[P] ↓ if and only if C[Q] ↓.

Normally these are understood as phenomena related purely to syntax.

I would like some semantic account. (This means technically that I have

to give x a semantics independently of some ambient evaluation to

closed terms, and a similar but not identical one to the hole [-] in C[-],
as well as to C itself.)

Nominal Terms with a Hierarchy of Variables Technical University Eindhoven, 31 October 2005. 3

Motivation

∀ and ∃ from first-order logic have symmetric intro-rules:

Γ ` P, ∆
(∀R) (x 6∈ Γ,∆)

Γ ` ∀x. P, ∆

Γ, P ` ∆
(∃L) (x 6∈ Γ,∆)

Γ, ∃x. P ` ∆

Γ, P [x7→s] ` ∆
(∀L)

Γ,∀x. P ` ∆

Γ ` P [x7→s], ∆
(∃R)

Γ ` ∀x. P, ∆

There are explanations of where these symmetries come from, a great
example of which is adjunctions in category theory. These presume a
typed environment and introduce, in effect, functions — but weren’t we
doing first-order logic?

I want something inherently type- and function-free. I also want to
decompose ∀ and ∃ into a simpler self-dual quantifier (self-dual
meaning that the intro-rules on left and right are identical except for the
side of the sequent they act on).

Nominal Terms with a Hierarchy of Variables Technical University Eindhoven, 31 October 2005. 4

Motivation

Records and unstructured datatypes, for example customer.ID : N are

generally modelled using either table lookups, lists, or functions. I want

a notion of unstructured data which is atomic, that is, relies on no

implementational overhead. This exists, e.g. in the Cardelli-Abadi object

calculus, but I want it in a generic framework which is not specifically

tailored to this one job.

I also want to model component-based semantics which involve graphs

being substituted into other graphs, possibly with rewiring of edges

during the substitution. Again, I want this with no specific

implementational overhead (e.g., explicitly modelling graphs!).

Nominal Terms with a Hierarchy of Variables Technical University Eindhoven, 31 October 2005. 5

Can we do this?

Is there a single system which will exhibit all of these disparate

phenomena as aspects of a single, preferably rather elementary,

system? Can we give this system a simple semantics.

Yes.

Very simple. I’ll give an equational system (the only judgement is

equality s = t).

If you know Nominal Algebraic Specifications (work with Aad

Mathijssen), you can think of what you are about to see as NAS on

steroids and speed. (Though that is only a first approximation.)

Nominal Terms with a Hierarchy of Variables Technical University Eindhoven, 31 October 2005. 6

Sorts and terms

Assume base data sorts δ, one of which is propositions o. Sorts σ, τ

and arities ρ are:

σ, τ ::= δ | [σ]σ ρ ::= (σ1, . . . , σn)σ.

Here n may equal zero.

For i ≥ 1 and sort σ assume variable symbols ai
σ, bi

σ, ci
σ of level i and

sort σ — we may drop the annotations.

Assume term-formers f : ρ.

Then terms are:

s, t, u, v ::= ai
σ | f(σ1,...,σn)σ(sσ1

, . . . , sσn
) | ([ai

σ]sτ)[σ]τ | Naσ.so.

Or, without annotations:

s, t, u, v ::= a | f(s, . . . , s) | [a]s | Na.s.

Nominal Terms with a Hierarchy of Variables Technical University Eindhoven, 31 October 2005. 7

Sorts and terms

s, t, u, v ::= ai
σ | f(σ1,...,σn)σ(si1

σ1
, . . . , sin

σn

) | ([ai
σ]sτ)[σ]τ | Naσ.so.

Assume term-formers:

• ⊃(o,o)o implication.

• =(σ,σ)o equality (one for each σ).

• ⊥()o false.

• σ([σ′]σ,σ′)σ explicit substitution (one for each σ, σ′).

Use standard sugar. [a]s is called abstract a in s, Na.s is new (or fresh)

a in s. Nbinds, abstraction does not. Write s[a7→t] for σ([a]s, t).

Nominal Terms with a Hierarchy of Variables Technical University Eindhoven, 31 October 2005. 8

Some examples

1. ⊥o is a truth value. We know what it is and it represents itself.

2. a1
o is a variable. It represents a truth value we do not know today,

but we will learn whether it is > ≡ ⊥ ⊃ ⊥ or ⊥, tomorrow.

3. X2
o is also a variable. We will only find out what it is this evening —

we may, for example, learn that it is ⊥, but we may also learn that it

is a.

4. X 3
o is also a variable. We will find out what it is, oh, sometime early

this afternoon.

5. a1000
o is also a variable. Let’s find out what it is right now. Any

suggestions?

It’s lonely standing up here all alone. Look at my sad face. Make me

smile!

Nominal Terms with a Hierarchy of Variables Technical University Eindhoven, 31 October 2005. 9

Some examples

• [a]ao is, well never mind what it is, but write it ∗. It lives in [o]o.

• [a]b is just b.

• [a]X waits to find out what X is; if X becomes a then it becomes

[a]a, if X becomes b it becomes [a]b, if X becomes ⊥ it becomes

[a]⊥, and so on.

• f(s1, . . . , sn) is f applied to s1 to sn. No tricks. However, f may

become something else as a function of its arguments becoming

something else.

• Na.s generates a fresh a. This will never become anything, but we

can use it as a ‘generic unknown’, e.g. to build [a]a or [a]X .

Nominal Terms with a Hierarchy of Variables Technical University Eindhoven, 31 October 2005. 10

Some examples

• a[a7→b] is b. X[a7→b] is X which has been told that a maps to b.

This evening when X becomes something, the substitution [a7→b]
will pounce on it.

• X[a7→Y] is allowed by the syntax. We simply learn what X and Y

become, and whatever the substitution becomes acts on whatever

X becomes. No sweat.

• a[X 7→b] is a. By the time a becomes anything else, X is long

gone.

⊃, =, and ⊥ are as usual.

Nominal Terms with a Hierarchy of Variables Technical University Eindhoven, 31 October 2005. 11

Axioms

We now say that all in axioms:

P ⊃ (Q ⊃ P) = > (Q ⊃ R) ⊃ (P ⊃ Q) ⊃ (P ⊃ R) = >

¬¬P = P

f(a1[a7→x], . . . , an[a7→x]) = f(a1, . . . , an)[a7→x]

([ai]x)[bj 7→y] = [ai](x[bj 7→y]) j > i

ai#y ⊃ (([ai]x)[bj 7→y] = [ai](x[bj 7→y])) = > i ≤ j

([a]x)[a7→y] = [a]x

(b#x ⊃ [a]x = [b](x[a7→b])) = >

(b#x ⊃ x[a7→b][b7→y] = x[a7→y]) = >

a[a7→x] = x bi[ai 7→x] = b

Nominal Terms with a Hierarchy of Variables Technical University Eindhoven, 31 October 2005. 12

Axioms

. . . just a few more:

a#a = ⊥ (Ny.a#(X[x7→y])) = a#[x]X

(Na.⊥) = ⊥

((Na.P) ⊃ Q) = (Na.(P ⊃ Q)) a 6∈ Q

(P ⊃ (Na.Q)) = (Na.(P ⊃ Q)) a 6∈ P

(Na.P)[b7→Q] = Na.(P [b7→Q]) a 6∈ Q

(Na.P) = (Na.a#x ∧ P) (Na.P) = (Na.x#a ∧ P)

(a#Y ⊃ (Y = Y [a7→X])) = > (X = X) = >

((X = Y) ∧ C[X]) = ((X = Y) ∧ C[Y])

Nominal Terms with a Hierarchy of Variables Technical University Eindhoven, 31 October 2005. 13

Our first definition

Use a#s as a macro for (Nc.s[a7→c]) = s and say a is fresh for s.

As a term-former # would have arity ([σ]o)o (one # for each σ).

Intuitively it is clear (is it?) that a#s means ‘a does not occur

unabstracted in s’. This statement may transcend syntactic fact, e.g.

a#X is an assertion about what happens this evening.

Then the conditions a#x scattered about the axioms are simply

‘capture-avoidance’ conditions.

Nominal Terms with a Hierarchy of Variables Technical University Eindhoven, 31 October 2005. 14

Implementing ∀ and ∃

∀a. φ ≡ Nc.(a#φ∧φ[a7→c]) ∃a. φ ≡ Nc.(a#φ ⊃ φ[a7→c])

These have the expected behaviour, for example:

Nc.(a#φ ∧ φ[a7→c]) ⊃ φ[a7→s] =

Nc.(a#φ∧(φ[a7→s]=φ)∧(φ[a7→c]=φ)∧φ[a7→c]) ⊃ φ[a7→s] =

Nc.> = >.

It is possible (and quite interesting!) to verify that ∀a. φ = ¬∃a. ¬φ.

Nominal Terms with a Hierarchy of Variables Technical University Eindhoven, 31 October 2005. 15

Implementing the λ-calculus (algebraically!)

Introduce a term-former ·([σ′]σ,σ′)σ and an axiom

([a]X) · Y = X[a7→Y].

The rest of the system takes care of substitution.

Also possible to directly implement the NEW calculus of contexts, i.e. to

add in Nand abstract over the full hierarchy of variables. Thus, this

‘λ-calculus’ is actually a λ-calculus of contexts, with stronger variables

playing the contexts.

Nominal Terms with a Hierarchy of Variables Technical University Eindhoven, 31 October 2005. 16

Records

Fix constants 1 and 2. l and m have level 1, X has level 2.

Here is a record:

X[l 7→1][m 7→2]

Here is record lookup:

X[l 7→1][m7→2][X 7→m] = X[l 7→1][X 7→m][m7→2]

= X[X 7→m][l 7→1][m7→2]

= m[l 7→1][m7→2]

= m[m7→2]

= 2.

Nominal Terms with a Hierarchy of Variables Technical University Eindhoven, 31 October 2005. 17

In-place update

X[l 7→1][m7→2][X 7→X[l 7→2]] = X[l 7→1][X 7→X[l 7→2]][m7→2]

= X[X 7→X[l 7→2]][l 7→1][m7→2]

= X[l 7→2][l 7→1][m7→2]

= X[l 7→2][m7→2]

Nominal Terms with a Hierarchy of Variables Technical University Eindhoven, 31 October 2005. 18

Substitution-as-a-term

(λX.X[l 7→λn.n]) applied to lm

(λX.X[l 7→λn.n])lm = X[l 7→λn.n][X 7→lm] = (λn.n)m

Nominal Terms with a Hierarchy of Variables Technical University Eindhoven, 31 October 2005. 19

In-place update as a term

λW.W[X 7→X[l 7→2]] applied to X[l 7→1][m7→2]

. . . and so on (W has level 3).

I’m telling you we can proceed to global state (the world is a big hole

with state suspended on it, just like a record), and Abadi-Cardelli imp-ε

object calculus.

Graphs are speculative; I haven’t implemented them. I mentioned it only

to give you some idea of the directions I am thinking in. However, this

work may have applications to component-based systems, with strong

variables controlling how components are ‘plugged in’.

Nominal Terms with a Hierarchy of Variables Technical University Eindhoven, 31 October 2005. 20

Skolemisation and the axiom of choice

The usual higher-order version of the axiom of choice:

∀x. ∃y. (φxy) ⇔ ∃f. ∀x. (φx(fx)).

May be true of individual φ, but the general assertion over all φ asserts

that there always exists a function picking out some y for each x.

Our ‘hierarchy’-based version (I think):

∀x1. ∃y1. φ ⇔ ∃Y 2. ∀x. (φ[y 7→Y]).

Here φ is a sufficiently strong variable of sort o. For example (this works

even without an axiom, because we have the terms to do it):

(∀x. ∃y. x=y) = >. (∃Y. ∀x. x=Y) = >

calculations omitted, but basically we substitute Y for x on the

right-hand side. This gets captured by the ∀, which is for a weaker

(later) variable.

Nominal Terms with a Hierarchy of Variables Technical University Eindhoven, 31 October 2005. 21

Semantics

A model of a theory consists of the following data:

1. For each base data sort D, a set [[D]]•. Extend this to all sorts as

follows:

[[S′ × S]]• = [[S′]]• × [[S]]• [[[S′]S]]• = [[S]]• ∪ {∗}.

[[S]]• ∪ {∗} adjoins a new element to [[S]]•.

2. For f : (S′)S choose [[f]]• a function from [[S′]]• to [[S]]•.

Call [[-]]• the closed section.

Nominal Terms with a Hierarchy of Variables Technical University Eindhoven, 31 October 2005. 22

Semantics

Define

T
0
σ = [[σ]]• T

i+1
σ = (Vi+1 fin

→ T
i)

fin
→ T

i
σ

Write Ti for
⋃

i Ti
σ , Tσ for

⋃
σ Ti

σ , and T for
⋃

i,σ Ti
σ .

I am afraid that all the hard work is hidden in the definition of
fin
→ , and in

proving its (excellent) properties. That’s what took me six months to

work out. I shall conclude by sketching the construction. . .

Nominal Terms with a Hierarchy of Variables Technical University Eindhoven, 31 October 2005. 23

Permutations

Write π ∈ P for level-preserving finitely supported bijections on

variables. π is a bijection such that:

• π(a) has the same level as a always (whence ‘level-preserving’).

• π(a) = a for all variables, except for some finite set (whence

‘finitely supported’).

Write Id for the identity permutation mapping a to a always. Write

composition of permutations π ◦ π′. This is given by functional

composition.

A P-action on S is P × S → S, write it infix as π · s, such that

π · (π′ · s) = (π ◦ π′) · s and Id · s = s.

Nominal Terms with a Hierarchy of Variables Technical University Eindhoven, 31 October 2005. 24

Permutations

Say s ∈ S is supported by A a set of variables when if π(a) = π′(a)
for all a ∈ A then π · s = π′ · s (say that A supports s). Say S has

finite support when all its elements have a finite supporting set.

Lemma: Suppose S has a finitely supported P-action and s ∈ S.

Then:

1. s has a unique smallest finite supporting set; call it the support of s

and write it supp(s).

2. a ∈ supp(s) if and only if for all but finitely many b, (b a) · s = s.

3. a ∈ supp(s) if and only if for any other b 6∈ supp(s), (c b) · s = s.

Nominal Terms with a Hierarchy of Variables Technical University Eindhoven, 31 October 2005. 25

Permutations

The typical example of a set with a P-action is a set of syntax, where π

acts literally on the variables mentioned in the syntax; then (finite)

syntax is obviously supported by the finite set of variables mentioned in

its syntax.

Functions f ∈ S → S
′ have a P-action given by

(π · f)(π · s) = π · (f(s)).

E.g. in T
i above κ ∈ V

i → S has a natural permutation action given

by (π · κ)(π · a) = π · κ(a).

Write V
i fin
→ S for the set of finitely supported functions from V

i to S.

Nominal Terms with a Hierarchy of Variables Technical University Eindhoven, 31 October 2005. 26

Permutations

τ ∈ (Vi fin
→ S) → S

′ also has a natural permutation action. Write

(Vi fin
→ S)

fin
→ S

′ for the set of τ such that:

1. τ has a finite supporting set.

2. There exists some finite A ⊆ V
i such that if κ and κ′ agree on A

then τ(κ) = τ(κ′) (we say that τ has no asymptotic behaviour).

The intuition is that τ only examines a finite part of κ; it must ‘ignore

what κ does to most variables’.

Nominal Terms with a Hierarchy of Variables Technical University Eindhoven, 31 October 2005. 27

The fundamental result

If τ examines arguments κ at a then for all but finitely many b,

(a b) · τ 6= τ .

Nominal Terms with a Hierarchy of Variables Technical University Eindhoven, 31 October 2005. 28

Semantics (sketched)

• [[ai]]i = λκi.κ(a).

• [[ai]]j = λκj .[[a]]j−1 for j > i.

• [[ai]]j is not defined for j < i.

• Write [[f]]0 for [[f]]•.

• Define [[f]]i : [[S1]]
i × · · · × [[Sn]]i → [[S]]i by

[[f]]iκi = λτ1 ∈ [[S1]]
i · · · τn ∈ [[Sn]]i.[[f]]i−1(τ1κ, . . . , τnκ).

• Then [[f(t1, . . . , tn)]]iκi = [[f]]i([[t1]]
iκ, . . . , [[tn]]iκ) whenever

[[t1]]
i, . . . , [[tn]]i are all defined, and is undefined otherwise.

Nominal Terms with a Hierarchy of Variables Technical University Eindhoven, 31 October 2005. 29

Semantics (sketched some more)

• [[[a]t]]i = [a][[t]]i provided that a has level at most i, and [[t]]i is

defined.

• Write ⊥ for [[⊥]]i, for any i. Write > for [[⊥ ⊃ ⊥]]i.

• [[s = t]]i is undefined if [[s]]i or [[t]]i is undefined. If they are defined

then [[s = t]]i = > if [[s]]i = [[t]]i and [[s = t]]i = ⊥ otherwise.

• If [[t]]i is not defined or j > i then [[aj#t]]i is not defined.

Otherwise: [[a#t]] = > if a#[[t]]i, and [[a#t]] = ⊥ if a 6 #[[t]]i.

Nominal Terms with a Hierarchy of Variables Technical University Eindhoven, 31 October 2005. 30

Summary

I have given an equational system with the power to express some

sophisticated concepts in terms of a few basic primities (abstraction and

N, plus predicate logic, and of course the hierarchy of variables).

The real difference from higher-order frameworks (e.g. HOL) is that in

HOL we say what can appear in a term (by applying that term to the

argument). In this system (what to call it?), we say what cannot appear

in a term (by asserting a freshness # or choosing the levels right).

Finally, I have given a semantics which has a simple intuition (tomorrow,

this evening, this afternoon) but really quite subtle to get right — though

I have not gone into details.

Nominal Terms with a Hierarchy of Variables Technical University Eindhoven, 31 October 2005. 31

