Nominal Terms with a Hierarchy of Variables Or ... when are unknowns? Murdoch J. Gabbay Joint work with Giulio Manzonetto and Antonino Salibra Technical University Eindhoven, 31 October 2005. # Health warning: I'm still busy inventing this stuff. This material probably consists mostly of errors. If this doesn't make sense, tell me — and wait for the paper. Thanks for finding time to come. #### **Motivation** 'Normal' substitution is capture-avoiding on bound variables. E.g. $$(\forall x. \ x = y)[y \mapsto x] \equiv \forall x'. \ x' = x \qquad (\lambda x.(\lambda y.xy))y \rightarrow \lambda y'.yy'$$ 'Context' substitution is not. E.g. $$P \cong Q$$ when in all process contexts C , $C[P] \downarrow$ if and only if $C[Q] \downarrow$. Normally these are understood as phenomena related purely to syntax. I would like some semantic account. (This means technically that I have to give x a semantics independently of some ambient evaluation to closed terms, and a similar but not identical one to the hole [-] in C[-], as well as to C itself.) \forall and \exists from first-order logic have symmetric intro-rules: $$\frac{\Gamma \vdash P, \Delta}{\Gamma \vdash \forall x. P, \Delta} (\forall R) \quad (x \notin \Gamma, \Delta) \qquad \frac{\Gamma, P \vdash \Delta}{\Gamma, \exists x. P \vdash \Delta} (\exists L) \quad (x \notin \Gamma, \Delta)$$ $$\frac{\Gamma, P[x \mapsto s] \vdash \Delta}{\Gamma, \forall x. P \vdash \Delta} (\forall L) \qquad \frac{\Gamma \vdash P[x \mapsto s], \Delta}{\Gamma \vdash \forall x. P, \Delta} (\exists R)$$ There are explanations of where these symmetries come from, a great example of which is adjunctions in category theory. These presume a typed environment and introduce, in effect, functions — but weren't we doing first-order logic? I want something inherently type- and function-free. I also want to decompose \forall and \exists into a simpler self-dual quantifier (self-dual meaning that the intro-rules on left and right are identical except for the side of the sequent they act on). #### **Motivation** Records and unstructured datatypes, for example customer.ID: \mathbb{N} are generally modelled using either table lookups, lists, or functions. I want a notion of unstructured data which is *atomic*, that is, relies on *no implementational overhead*. This exists, e.g. in the Cardelli-Abadi object calculus, but I want it in a generic framework which is not specifically tailored to this one job. I also want to model component-based semantics which involve graphs being substituted into other graphs, possibly with rewiring of edges during the substitution. Again, I want this with no specific implementational overhead (e.g., explicitly modelling graphs!). #### Can we do this? Is there a single system which will exhibit all of these disparate phenomena as aspects of a single, preferably rather elementary, system? Can we give this system a simple semantics. Yes. Very simple. I'll give an equational system (the only judgement is equality s=t). If you know Nominal Algebraic Specifications (work with Aad Mathijssen), you can think of what you are about to see as NAS on steroids and speed. (Though that is only a first approximation.) #### Sorts and terms Assume base data sorts δ , one of which is propositions o. Sorts σ , τ and arities ρ are: $$\sigma, \tau ::= \delta \mid [\sigma] \sigma \qquad \rho ::= (\sigma_1, \dots, \sigma_n) \sigma.$$ Here n may equal zero. For $i \geq 1$ and sort σ assume variable symbols $a^i_{\sigma}, b^i_{\sigma}, c^i_{\sigma}$ of level i and sort σ — we may drop the annotations. Assume term-formers $f: \rho$. Then terms are: $$s,t,u,v:=a^i_\sigma\mid f_{(\sigma_1,\ldots,\sigma_n)\sigma}(s_{\sigma_1},\ldots,s_{\sigma_n})\mid ([a^i_\sigma]s_\tau)_{[\sigma]\tau}\mid \mathsf{M}a_\sigma.s_o.$$ Or, without annotations: $$s, t, u, v := a \mid f(s, ..., s) \mid [a]s \mid Va.s.$$ #### Sorts and terms $$s, t, u, v := a^i_{\sigma} \mid f_{(\sigma_1, \dots, \sigma_n)\sigma}(s^{i_1}_{\sigma_1}, \dots, s^{i_n}_{\sigma_n}) \mid ([a^i_{\sigma}]s_{\tau})_{[\sigma]\tau} \mid \mathsf{V} a_{\sigma}.s_o.$$ #### Assume term-formers: - $\supset_{(o,o)o}$ implication. - $=_{(\sigma,\sigma)o}$ equality (one for each σ). - $\perp_{()o}$ false. - $\sigma_{([\sigma']\sigma,\sigma')\sigma}$ explicit substitution (one for each σ,σ'). Use standard sugar. [a]s is called abstract a in s, Va.s is new (or fresh) a in s. Value of the sum of the sugar s # Some examples - 1. \perp_o is a truth value. We know what it is and it represents itself. - 2. a_o^1 is a variable. It represents a truth value we do not know today, but we will learn whether it is $\top \equiv \bot \supset \bot$ or \bot , tomorrow. - 3. X_o^2 is also a variable. We will only find out what it is this evening we may, for example, learn that it is \bot , but we may also learn that it is a. - 4. \mathcal{X}_o^3 is also a variable. We will find out what it is, oh, sometime early this afternoon. - 5. a_o^{1000} is also a variable. Let's find out what it is right now. Any suggestions? It's lonely standing up here all alone. Look at my sad face. Make me smile! # Some examples - $[a]a_o$ is, well never mind what it is, but write it *. It lives in [o]o. - [a]b is just b. - [a]X waits to find out what X is; if X becomes a then it becomes [a]a, if X becomes b it becomes [a]b, if X becomes \bot it becomes $[a]\bot$, and so on. - $f(s_1, \ldots, s_n)$ is f applied to s_1 to s_n . No tricks. However, f may become something else as a function of its arguments becoming something else. - Ma.s generates a *fresh* a. This will never become anything, but we can use it as a 'generic unknown', e.g. to build a or a. # Some examples - $a[a \mapsto b]$ is b. $X[a \mapsto b]$ is X which has been told that a maps to b. This evening when X becomes something, the substitution $[a \mapsto b]$ will pounce on it. - $X[a \mapsto Y]$ is allowed by the syntax. We simply learn what X and Y become, and whatever the substitution becomes acts on whatever X becomes. No sweat. - $a[X \mapsto b]$ is a. By the time a becomes anything else, X is long gone. - \supset , =, and \perp are as usual. We now say that all in axioms: $$P\supset (Q\supset P)=\top \qquad (Q\supset R)\supset (P\supset Q)\supset (P\supset R)=\top$$ $$\neg\neg P=P$$ $$f(a_1[a \mapsto x], \dots, a_n[a \mapsto x]) = f(a_1, \dots, a_n)[a \mapsto x]$$ $$([a^i]x)[b^j \mapsto y] = [a^i](x[b^j \mapsto y]) \qquad j > i$$ $$a^i \# y \supset (([a^i]x)[b^j \mapsto y] = [a^i](x[b^j \mapsto y])) = \top \qquad i \le j$$ $$([a]x)[a \mapsto y] = [a]x$$ $$(b \# x \supset [a]x = [b](x[a \mapsto b])) = \top$$ $$(b \# x \supset x[a \mapsto b][b \mapsto y] = x[a \mapsto y]) = \top$$ $$a[a \mapsto x] = x \qquad b^i[a^i \mapsto x] = b$$ ## ...just a few more: $$a\#a = \bot \qquad (\mathsf{V} y.a\#(X[x\mapsto y])) = a\#[x]X$$ $$(\operatorname{Va}.\bot) = \bot$$ $$((\operatorname{Va}.P) \supset Q) = (\operatorname{Va}.(P \supset Q)) \quad a \not\in Q$$ $$(P \supset (\operatorname{Va}.Q)) = (\operatorname{Va}.(P \supset Q)) \quad a \not\in P$$ $$(\operatorname{Va}.P)[b \mapsto Q] = \operatorname{Va}.(P[b \mapsto Q]) \quad a \not\in Q$$ $$(\operatorname{Va}.P) = (\operatorname{Va}.a\#x \land P) \qquad (\operatorname{Va}.P) = (\operatorname{Va}.x\#a \land P)$$ $$(a\#Y\supset (Y=Y[a\mapsto X]))=\top \qquad (X=X)=\top \ ((X=Y)\land C[X])=((X=Y)\land C[Y])$$ #### Our first definition Use a#s as a macro for $(\mathsf{N} c.s[a\mapsto c])=s$ and say a is fresh for s. As a term-former # would have arity $([\sigma]o)o$ (one # for each σ). Intuitively it is clear (*is it?*) that a#s means 'a does not occur unabstracted in s'. This statement may transcend syntactic fact, e.g. a#X is an assertion about what happens this evening. Then the conditions a # x scattered about the axioms are simply 'capture-avoidance' conditions. # Implementing ∀ and ∃ $$\forall a. \, \phi \equiv \mathsf{V} c. (a \# \phi \land \phi[a \mapsto c]) \qquad \exists a. \, \phi \equiv \mathsf{V} c. (a \# \phi \supset \phi[a \mapsto c])$$ These have the expected behaviour, for example: $$\begin{array}{ll} \operatorname{Nc.}(a\#\phi \wedge \phi[a\mapsto c])\supset \phi[a\mapsto s] &= \\ \operatorname{Nc.}(a\#\phi \wedge (\phi[a\mapsto s]=\phi) \wedge (\phi[a\mapsto c]=\phi) \wedge \phi[a\mapsto c])\supset \phi[a\mapsto s] &= \\ \operatorname{Nc.}\top &= \top. \end{array}$$ It is possible (and quite interesting!) to verify that $\forall a. \phi = \neg \exists a. \neg \phi$. # Implementing the λ -calculus (algebraically!) Introduce a term-former $\cdot_{([\sigma']\sigma,\sigma')\sigma}$ and an axiom $$([a]X) \cdot Y = X[a \mapsto Y].$$ The rest of the system takes care of substitution. Also possible to directly implement the NEW calculus of contexts, i.e. to add in \square and abstract over the full hierarchy of variables. Thus, this ' λ -calculus' is *actually* a λ -calculus of contexts, with stronger variables playing the contexts. #### Records Fix constants 1 and 2. l and m have level 1, X has level 2. Here is a record: $$X[l \mapsto 1][m \mapsto 2]$$ Here is record lookup: $$X[l\mapsto 1][m\mapsto 2][X\mapsto m] = X[l\mapsto 1][X\mapsto m][m\mapsto 2]$$ $$= X[X\mapsto m][l\mapsto 1][m\mapsto 2]$$ $$= m[l\mapsto 1][m\mapsto 2]$$ $$= m[m\mapsto 2]$$ $$= 2.$$ # In-place update $$X[l\mapsto 1][m\mapsto 2][X\mapsto X[l\mapsto 2]] = X[l\mapsto 1][X\mapsto X[l\mapsto 2]][m\mapsto 2]$$ $$= X[X\mapsto X[l\mapsto 2]][l\mapsto 1][m\mapsto 2]$$ $$= X[l\mapsto 2][l\mapsto 1][m\mapsto 2]$$ $$= X[l\mapsto 2][m\mapsto 2]$$ ### Substitution-as-a-term $$(\lambda X.X[l\mapsto \lambda n.n])$$ applied to lm $$(\lambda X.X[l\mapsto \lambda n.n])lm = X[l\mapsto \lambda n.n][X\mapsto lm] = (\lambda n.n)m$$ # In-place update as a term $$\lambda \mathcal{W}.\mathcal{W}[X \mapsto X[l \mapsto 2]]$$ applied to $X[l \mapsto 1][m \mapsto 2]$ \dots and so on (\mathcal{W} has level 3). I'm *telling* you we can proceed to global state (the world is a big hole with state suspended on it, just like a record), and Abadi-Cardelli imp- ε object calculus. Graphs are speculative; I haven't implemented them. I mentioned it only to give you some idea of the directions I am thinking in. However, this work may have applications to component-based systems, with strong variables controlling how components are 'plugged in'. The usual higher-order version of the axiom of choice: $$\forall x. \exists y. (\phi xy) \Leftrightarrow \exists f. \forall x. (\phi x(fx)).$$ May be true of individual ϕ , but the general assertion over all ϕ asserts that there always exists a function picking out some y for each x. Our 'hierarchy'-based version (I think): $$\forall x^1. \exists y^1. \phi \Leftrightarrow \exists Y^2. \forall x. (\phi[y \mapsto Y]).$$ Here ϕ is a sufficiently strong variable of sort o. For example (this works even without an axiom, because we have the terms to do it): $$(\forall x. \exists y. x=y) = \top.$$ $(\exists Y. \forall x. x=Y) = \top$ calculations omitted, but basically we substitute Y for x on the right-hand side. This gets captured by the \forall , which is for a weaker (later) variable. #### **Semantics** A model of a theory consists of the following data: 1. For each base data sort D, a set D. Extend this to all sorts as follows: $$[S' \times S]^{\bullet} = [S']^{\bullet} \times [S]^{\bullet} \qquad [[S']S]^{\bullet} = [S]^{\bullet} \cup \{*\}.$$ - $\llbracket S \rrbracket^{\bullet} \cup \{*\}$ adjoins a new element to $\llbracket S \rrbracket^{\bullet}$. - 2. For f:(S')S choose $\llbracket f \rrbracket^{\bullet}$ a function from $\llbracket S' \rrbracket^{\bullet}$ to $\llbracket S \rrbracket^{\bullet}$. Call - the closed section. #### **Semantics** Define $$\mathbb{T}_{\sigma}^{0} = \llbracket \sigma \rrbracket^{\bullet} \qquad \mathbb{T}_{\sigma}^{i+1} = (\mathbb{V}^{i+1} \overset{fin}{\to} \mathbb{T}^{i}) \overset{fin}{\to} \mathbb{T}_{\sigma}^{i}$$ Write \mathbb{T}^i for $\bigcup_i \mathbb{T}^i_{\sigma}$, \mathbb{T}_{σ} for $\bigcup_{\sigma} \mathbb{T}^i_{\sigma}$, and \mathbb{T} for $\bigcup_{i,\sigma} \mathbb{T}^i_{\sigma}$. I am afraid that all the hard work is hidden in the definition of $\stackrel{fin}{\rightarrow}$, and in proving its (excellent) properties. That's what took me six months to work out. I shall conclude by sketching the construction... Write $\pi \in \mathbb{P}$ for level-preserving finitely supported bijections on variables. π is a bijection such that: - $\pi(a)$ has the same level as a always (whence 'level-preserving'). - $\pi(a) = a$ for all variables, *except* for some finite set (whence 'finitely supported'). Write Id for the identity permutation mapping a to a always. Write composition of permutations $\pi \circ \pi'$. This is given by functional composition. A \mathbb{P} -action on \mathbb{S} is $\mathbb{P} \times \mathbb{S} \to \mathbb{S}$, write it infix as $\pi \cdot s$, such that $\pi \cdot (\pi' \cdot s) = (\pi \circ \pi') \cdot s$ and $\operatorname{Id} \cdot s = s$. Say $s \in \mathbb{S}$ is supported by A a set of variables when if $\pi(a) = \pi'(a)$ for all $a \in A$ then $\pi \cdot s = \pi' \cdot s$ (say that A supports s). Say \mathbb{S} has finite support when all its elements have a *finite* supporting set. **Lemma:** Suppose S has a finitely supported \mathbb{P} -action and $s \in S$. Then: - 1. s has a unique smallest finite supporting set; call it the support of s and write it supp(s). - 2. $a \in \text{supp}(s)$ if and only if for all but finitely many b, $(b \ a) \cdot s = s$. - 3. $a \in \text{supp}(s)$ if and only if for any other $b \notin \text{supp}(s)$, $(c \ b) \cdot s = s$. The typical example of a set with a \mathbb{P} -action is a set of syntax, where π acts literally on the variables mentioned in the syntax; then (finite) syntax is obviously supported by the finite set of variables mentioned in its syntax. Functions $f \in \mathbb{S} \to \mathbb{S}'$ have a \mathbb{P} -action given by $(\pi \cdot f)(\pi \cdot s) = \pi \cdot (f(s))$. E.g. in \mathbb{T}^i above $\kappa \in \mathbb{V}^i \to \mathbb{S}$ has a natural permutation action given by $(\pi \cdot \kappa)(\pi \cdot a) = \pi \cdot \kappa(a)$. Write $\mathbb{V}^i \stackrel{fin}{\longrightarrow} \mathbb{S}$ for the set of finitely supported functions from \mathbb{V}^i to \mathbb{S} . $au \in (\mathbb{V}^i \overset{fin}{\to} \mathbb{S}) \to \mathbb{S}'$ also has a natural permutation action. Write $(\mathbb{V}^i \overset{fin}{\to} \mathbb{S}) \overset{fin}{\to} \mathbb{S}'$ for the set of τ such that: - 1. *τ* has a finite supporting set. - 2. There exists some finite $A \subseteq \mathbb{V}^i$ such that if κ and κ' agree on A then $\tau(\kappa) = \tau(\kappa')$ (we say that τ has no asymptotic behaviour). The intuition is that τ only examines a finite part of κ ; it must 'ignore what κ does to most variables'. ## The fundamental result If τ examines arguments κ at a then for all but finitely many b, $(a\ b)\cdot \tau \neq \tau$. # Semantics (sketched) - $\bullet \ \llbracket a^i \rrbracket^i = \lambda \kappa^i . \kappa(a).$ - $\bullet \ \llbracket a^i rbracket^j = \lambda \kappa^j . \llbracket a rbracket^{j-1} \text{ for } j > i.$ - $[a^i]^j$ is not defined for j < i. - Write $[\![f]\!]^0$ for $[\![f]\!]^\bullet$. - Define $\llbracket f \rrbracket^i : \llbracket S_1 \rrbracket^i imes \cdots imes \llbracket S_n \rrbracket^i o \llbracket S \rrbracket^i$ by $\llbracket f \rrbracket^i \kappa^i = \lambda \tau_1 \in \llbracket S_1 \rrbracket^i \cdots \tau_n \in \llbracket S_n \rrbracket^i . \llbracket f \rrbracket^{i-1} (\tau_1 \kappa, \ldots, \tau_n \kappa).$ - Then $[f(t_1,\ldots,t_n)]^i \kappa^i = [f]^i ([t_1]^i \kappa,\ldots,[t_n]^i \kappa)$ whenever $[t_1]^i,\ldots,[t_n]^i$ are all defined, and is undefined otherwise. # Semantics (sketched some more) - $[[a]t]^i = [a][t]^i$ provided that a has level at most i, and $[t]^i$ is defined. - Write \bot for $[\![\bot]\!]^i$, for any i. Write \top for $[\![\bot]\!]^i$. - $\llbracket s=t \rrbracket^i$ is undefined if $\llbracket s \rrbracket^i$ or $\llbracket t \rrbracket^i$ is undefined. If they *are* defined then $\llbracket s=t \rrbracket^i = \top$ if $\llbracket s \rrbracket^i = \llbracket t \rrbracket^i$ and $\llbracket s=t \rrbracket^i = \bot$ otherwise. - If $\llbracket t \rrbracket^i$ is not defined or j > i then $\llbracket a^j \# t \rrbracket^i$ is not defined. Otherwise: $\llbracket a \# t \rrbracket = \top$ if $a \# \llbracket t \rrbracket^i$, and $\llbracket a \# t \rrbracket = \bot$ if $a \# \llbracket t \rrbracket^i$. # Summary I have given an equational system with the power to express some sophisticated concepts in terms of a few basic primities (abstraction and I/I, plus predicate logic, and of course the hierarchy of variables). The real difference from higher-order frameworks (e.g. HOL) is that in HOL we say what *can* appear in a term (by applying that term to the argument). In this system (*what to call it?*), we say what *cannot* appear in a term (by asserting a freshness # or choosing the levels right). Finally, I have given a semantics which has a simple intuition (tomorrow, this evening, this afternoon) but really quite subtle to get right — though I have not gone into details.