Nominal Terms with a Hierarchy of Variables
Or ...when are unknowns?

Murdoch J. Gabbay

Joint work with Giulio Manzonetto and Antonino Salibra

Technical University Eindhoven, 31 October 2005.

Nominal Terms with a Hierarchy of Variables Technical University Eindhoven, 31 October 2005.

Health warning:

I’m still busy inventing this stuff.

This material probably consists mostly of errors.

If this doesn’t make sense, tell me — and wait for the paper.

Thanks for finding time to come.

Nominal Terms with a Hierarchy of Variables Technical University Eindhoven, 31 October 2005.

‘Normal’ substitution is capture-avoiding on bound variables. E.g.
Ve.x =y)ly—z] =V . 2" =2 Qz.Qy.xy))y — M gy
‘Context’ substitution is not. E.g.

P = @ when in all C, C[P] | ifand only if C[Q)] |.

Normally these are understood as phenomena related purely to syntax.
| would like some semantic account. (This means technically that | have
to give x a semantics independently of some ambient evaluation to
closed terms, and a similar but not identical one to the hole |-] in C'[-],
as well as to (' itself.)

Nominal Terms with a Hierarchy of Variables Technical University Eindhoven, 31 October 2005.

YV and 3 from first-order logic have symmetric intro-rules:

P2 Wk @era) — 2 @n @erna)
L , £ ’
I - Vo P, A F 3z.P - A
[, Plx—s| F A I' = Plz—s|, A
(VL) (3R)
['Vx. P - A [I' = Vo. P, A

There are explanations of where these symmetries come from, a great
example of which is adjunctions in category theory. These presume a
typed environment and introduce, in effect, functions — but weren’t we
doing first-order logic?

| want something inherently type- and function-free. | also want to
decompose V and 3 into a simpler self-dual quantifier (

meaning that the intro-rules on left and right are identical except for the
side of the sequent they act on).

Nominal Terms with a Hierarchy of Variables Technical University Eindhoven, 31 October 2005. 4

Records and unstructured datatypes, for example customer.ID : N are
generally modelled using either table lookups, lists, or functions. | want
a notion of unstructured data which is atomic, that is, relies on no
Implementational overnead. This exists, e.g. in the Cardelli-Abadi object
calculus, but | want it in a generic framework which is not specifically
tailored to this one job.

| also want to model component-based semantics which involve graphs
being substituted into other graphs, possibly with rewiring of edges
during the substitution. Again, | want this with no specific
Implementational overhead (e.g., explicitly modelling graphs!).

Nominal Terms with a Hierarchy of Variables Technical University Eindhoven, 31 October 2005.

Is there a single system which will exhibit all of these disparate
phenomena as aspects of a single, preferably rather elementary,
system? Can we give this system a simple semantics.

Yes.

Very simple. I'll give an equational system (the only judgement is
equality s = 7).

If you know Nominal Algebraic Specifications (work with Aad
Mathijssen), you can think of what you are about to see as NAS on
steroids and speed. (Though that is only a first approximation.)

Nominal Terms with a Hierarchy of Variables Technical University Eindhoven, 31 October 2005.

Sorts and terms

Assume base data sorts 0, one of which is propositions 0. Sorts o, T
and arities p are:

o, 7T =0 ||olc pu=(01,...,0,)0.

Here n may equal zero.

Forz > 1 and sort o assume variable symbols a? , 0%, c of level ¢ and
sort o — we may drop the annotations.

Assume term-formers f : p.

Then terms are:

S, t, U,V 1= a’fy ‘ f(01,...,an)0(3017 I San) ‘ ([a’fj]ST)[O']T ‘ Vlaa-so-
Or, without annotations:

s,tyu, v i=a | f(s,...,s) | lals | Na.s.

Nominal Terms with a Hierarchy of Variables Technical University Eindhoven, 31 October 2005.

Sorts and terms

syt u, v = al | floy. ooy si) | ([ab]sr)io)r | Viae.so.

Assume term-formers:
® D(,0)0 IMplication.
® —(,,0)0 €quality (one for each o).
o |, false.
® 0((o/]0,0")o EXPlicit substitution (one for each o, o).

Use standard sugar. |a]s is called abstract a in s, Wa.s is new (or fresh)
a in s. U binds, abstraction does not. Write s|a—t] for o (|als, t).

Nominal Terms with a Hierarchy of Variables Technical University Eindhoven, 31 October 2005.

Some examples

1. 1, is atruth value. We know what it is and it represents itself.

2. a(l) IS a variable. It represents a truth value we do not know today,

but we will learn whetheritis T = 1 O _ or L, tomorrow.

3. Xg IS also a variable. We will only find out what it is this evening —
we may, for example, learn that it is _L_, but we may also learn that it
IS a.

4. Xg Is also a variable. We will find out what it is, oh, sometime early

this afternoon.

5. a(l)OOO IS also a variable. Let’s find out what it is right now. Any

suggestions?

It's lonely standing up here all alone. Look at my sad face. Make me
smile!

Nominal Terms with a Hierarchy of Variables Technical University Eindhoven, 31 October 2005.

a, is, well never mind what it is, but write it *. It lives in [0]o.

b is just b.

(a| X waits to find out what X is; if X becomes a then it becomes
ala, if X becomes b it becomes |alb, if X becomes L it becomes

a,

|, and so on.

e f(s1,...,8,)is f applied to s1 to s,,. No tricks. However, f may
become something else as a function of its arguments becoming
something else.

e l/la.s generates a fresh a. This will never become anything, but we
can use it as a ‘generic unknown’, e.g. to build |a]a or |a] X .

Nominal Terms with a Hierarchy of Variables Technical University Eindhoven, 31 October 2005. 10

e ala—b|is b. X|a—b]is X which has been told that a maps to b.
This evening when X becomes something, the substitution [a+—b]
will pounce on it.

e X|a—Y]is allowed by the syntax. We simply learn what X and Y’
become, and whatever the substitution becomes acts on whatever
X becomes. No sweat.

° a[X|—>b] is a. By the time a becomes anything else, X is long
gone.

O, =, and | are as usual.

Nominal Terms with a Hierarchy of Variables Technical University Eindhoven, 31 October 2005.

11

AxXioms

We now say that all in axioms:

P>@@>P)=T (Q@DOR)D(PD>Q)D(PDR)=
~—P =P

flar|a—x], ..., anla—x]
([a']2) [t —y] = [a’
a'#y O (([a']2) [t —y] = [az](%‘WHy])) =T 157
([a]z)|a—y] = |alx
(b#x D |alr = [b](z]a—0])) = T
(bt O wla—bl[b—y] = zla—y]) = T

ala—z] =z b'la'+z] = b

Nominal Terms with a Hierarchy of Variables Technical University Eindhoven, 31 October 2005. 12

AxXioms

...just a few more:

atta =L (Ny.a#(X[r—y])) = agf|z] X

(Na.L) =1
(Na.P) 5 Q) = (WNa.(PDQ)) agd
(P> (a.Q) = Ua(P>Q) agP
(Vla. P)[b—Q] = Na.(P—Q)) a ¢ Q
(Na.P) = (Na.a#tx N P) (WNa.P) = (Na.x#a N P)

@#Y > (¥ =Vp-X]) =T (X=X)=T
(X =Y)ACIX]) = (X = Y) AC[Y))

Nominal Terms with a Hierarchy of Variables Technical University Eindhoven, 31 October 2005.

Use a#s as a macro for (Wc.s|ar—c|]) = s and say a
As a term-former # would have arity (|c]o)o (one # for each o).

Intuitively it is clear (is it?) that a#£s means ‘a does not occur
unabstracted in s’. This statement may transcend syntactic fact, e.g.
a# X is an assertion about what happens this evening.

Then the conditions a#£x scattered about the axioms are simply
‘capture-avoidance’ conditions.

Nominal Terms with a Hierarchy of Variables Technical University Eindhoven, 31 October 2005. 14

Implementing ¥V and 3

Va. p = Ne.(a#oNdlar—c]) Fa. ¢ = Ne.(aFd D pla—c])

These have the expected behaviour, for example:

Vic.(a#p N ¢pla—c]) D ¢la—s] =

Ne.(a#d N (Blarss)=¢) A(gla—sd=0) Agla—c]) O Blarss] =
Ne. T = T.

It is possible (and quite interesting!) to verify that Va. ¢ = —da. —¢.

Nominal Terms with a Hierarchy of Variables Technical University Eindhoven, 31 October 2005.

15

Implementing the A-calculus (algebraically!)

Introduce a term-former - (5715 +/)o @nd an axiom
([a]X) Y = X[a—Y]

The rest of the system takes care of substitution.

Also possible to directly implement the NEW calculus of contexts, i.e. to
add in /I and abstract over the full hierarchy of variables. Thus, this
‘A\-calculus’ is actually a A-calculus of contexts, with stronger variables

playing the contexts.

Nominal Terms with a Hierarchy of Variables Technical University Eindhoven, 31 October 2005.

16

Records

Fix constants 1 and 2. [and m have level 1, X has level 2.

Here is a record:

X[l—1][m—2]
Here is record lookup:

X|[l—1]m—2|[X+—m| = X |l—1]| X+—m||m—2]
= X[X+—m|[l—1][m—2]
= ml|l—1]|m—2]
= m|m—2]
= 2.

Nominal Terms with a Hierarchy of Variables Technical University Eindhoven, 31 October 2005.

17

In-place update

X|[l—1]m—2|[X=X |I—2]] = X[I—1][X—X[l—2]][m—2]
= X | X—X|l—=2]|[l—1][m—2]
= X[l—-2][l—1][m—2]
= X|[l—2][m—2]

Nominal Terms with a Hierarchy of Variables Technical University Eindhoven, 31 October 2005.

18

Substitution-as-a-term

(AX.X[l—=An.n]) appliedto [m

(AX. X [l—=An.n])lm = X[l—An.n|[X—Ilm] = (An.n)m

Nominal Terms with a Hierarchy of Variables Technical University Eindhoven, 31 October 2005.

MWW X—X|l—2]] appliedto X|[l—1][m—2]

...and so on (JV has level 3).

I’'m telling you we can proceed to global state (the world is a big hole
with state suspended on it, just like a record), and Abadi-Cardelli imp-¢

object calculus.

Graphs are speculative; | haven’'t implemented them. | mentioned it only
to give you some idea of the directions | am thinking in. However, this
work may have applications to component-based systems, with strong
variables controlling how components are ‘plugged in’.

Nominal Terms with a Hierarchy of Variables Technical University Eindhoven, 31 October 2005. 20

The usual higher-order version of the axiom of choice:

Va. y. (pxy) < 3f. V. (¢x(fx)).

May be true of individual ¢, but the general assertion over all ¢ asserts
that there always exists a function picking out some ¥ for each .

Our ‘hierarchy’-based version (I think):
Vz!. 3yt ¢ & Y2 V. (¢[y—Y]).

Here ¢ is a sufficiently strong variable of sort 0. For example (this works
even without an axiom, because we have the terms to do it):

(V. Jy. xz=y) = T. (Y. Vz.2=Y) =T

calculations omitted, but basically we substitute Y for x on the
right-hand side. This gets captured by the V, which is for a weaker
(later) variable.

Nominal Terms with a Hierarchy of Variables Technical University Eindhoven, 31 October 2005.

21

Semantics

A model of a theory consists of the following data:

1. For each base data sort D, a set [D]°®. Extend this to all sorts as
follows:

[S" % S]* =[] = [S1* [19']S]° = [ST° u{x}.

[S]® U {*} adjoins a new element to [S]°.
2. For f : (5")S choose [f]*® a function from [.S]® to [.S]°.

Call [-]|® the closed section.

Nominal Terms with a Hierarchy of Variables Technical University Eindhoven, 31 October 2005.

22

Define

TO _ [[O']]. Tz—i—l (VH—l fin Tz) fzn T

o

Write T* for | J, T%, T, for | J_ T, and T for | J, . T"

| am afraid that all the hard work is hidden in the definition of @ and in

proving its (excellent) properties. That's what took me six months to
work out. | shall conclude by sketching the construction. ..

Nominal Terms with a Hierarchy of Variables Technical University Eindhoven, 31 October 2005.

23

Permutations

Write m € [P for level-preserving finitely supported bijections on
variables. 7 is a bijection such that:

e 7(a) has the same level as a always (whence ‘level-preserving’).

e 7(a) = a for all variables, except for some finite set (whence
‘finitely supported’).

Write Id for the identity permutation mapping a to a always. Write
composition of permutations 7 o 7. This is given by functional
composition.

A P-actiononSisP x S — S, write it infix as 7 - s, such that
m-(n'-s)=(mon’) -sandld-s =s.

Nominal Terms with a Hierarchy of Variables Technical University Eindhoven, 31 October 2005.

24

Permutations

Say s € Sis supported by A a set of variables when if m(a) = 7’ (a)
foralla € Athenm-s =7’ - s (saythat A supports s). Say S has
finite support when all its elements have a finite supporting set.

Lemma: Suppose S has a finitely supported [P-action and s € S.
Then:

1. s has a unique smallest finite supporting set; call it the support of s
and write it supp(s).

2. a € supp(s) if and only if for all but finitely many b, (b a) - s = s.

3. a € supp(s) if and only if for any other b & supp(s), (cb) - s = s.

Nominal Terms with a Hierarchy of Variables Technical University Eindhoven, 31 October 2005.

25

The typical example of a set with a [P-action is a set of syntax, where 7
acts literally on the variables mentioned in the syntax; then (finite)

syntax is obviously supported by the finite set of variables mentioned in
its syntax.

Functions f € S — S’ have a [P-action given by

(- f)(m-s)=m-(f(s)).

E.g. in T* above k € V* — S has a natural permutation action given
by (m - k)(m-a) =7 k(a).

Write V* @ S for the set of finitely supported functions from V'toS.

Nominal Terms with a Hierarchy of Variables Technical University Eindhoven, 31 October 2005. 26

Permutations

T e (V' hic S) — S’ also has a natural permutation action. Write

(V? kg) T S/ for the set of 7 such that:
1. 7 has a finite supporting set.

2. There exists some finite A C V* such that if x and ’ agree on A
then 7(k) = 7(K') (we say that 7 has no asymptotic behaviour).

The intuition is that 7 only examines a finite part of <; it must ‘ignore
what ~ does to most variables’.

Nominal Terms with a Hierarchy of Variables Technical University Eindhoven, 31 October 2005. 27

The fundamental result

If 7 examines arguments k at a then for all but finitely many b,

(ab) -1 #T.

Nominal Terms with a Hierarchy of Variables Technical University Eindhoven, 31 October 2005.

28

Semantics (sketched)

o [a']" = Ak'.k(a).

o [a']’ = A’ [a]? 1 for j > 1.

e [a']’ is not defined for j < i.

o Write [f]" for [f]°.
e Define [f]* : [S1]* x -+ x [Sp]* — [S]* by
[[f]]z’%z = ATy € Hsl]]z o Tp € [[Sn]]i°[[f]]i_1(7_1/@ oy Tk).

o Then [f(t1,...,t,)]'x* = [f1*([t1]'~, ..., [tn]*~) whenever
[t1]°, ..., [t,]" are all defined, and is undefined otherwise.

Nominal Terms with a Hierarchy of Variables Technical University Eindhoven, 31 October 2005.

29

Semantics (sketched some more)

o [[a]t]® = [a][t]* provided that a has level at most 7, and [t]* is
defined.

e Write | for [_L]?, for any 7. Write T for [L D L]

e [s = t]"is undefined if [s]* or [t]* is undefined. If they are defined
then [s = t]* = T if [s]* = [t]* and [s = t]* = L otherwise.

e If [t]" is not defined or 7 > i then [a’ #t]" is not defined.
Otherwise: [a#t] = T if a#[t]", and [a#t] = Lifa A[t]".

Nominal Terms with a Hierarchy of Variables Technical University Eindhoven, 31 October 2005.

30

| have given an equational system with the power to express some
sophisticated concepts in terms of a few basic primities (abstraction and
/, plus predicate logic, and of course the hierarchy of variables).

The real difference from higher-order frameworks (e.g. HOL) is that in
HOL we say what can appear in a term (by applying that term to the
argument). In this system (what to call it?), we say what cannot appear
in a term (by asserting a freshness # or choosing the levels right).

Finally, | have given a semantics which has a simple intuition (tomorrow,
this evening, this afternoon) but really quite subtle to get right — though
| have not gone into detalils.

Nominal Terms with a Hierarchy of Variables Technical University Eindhoven, 31 October 2005. 31

