Nominal rewriting

Murdoch J. Gabbay

23/1/2006, Innsbruck, Austria

Nominal rewriting, 23/1/2006, Innsbruck, Austria.

Thanks for inviting me (at short notice).

...and the broader framework of my research, if | have time.

Nominal rewriting, 23/1/2006, Innsbruck, Austria.

Consider the term \x.t.

X is a variable symbol and t is a variable, ranging over
A-terms.

Instantiation of ¢ does not avoid capture: if we set ¢ to be x, we get
AT.X.

Nominal rewriting, 23/1/2006, Innsbruck, Austria.

The issue

Consider the term (Ax.t)w.

This reduces
(Az.t)u ~ tlx—ul

Let's specify how substitution distributes through t:

r|r—t] =t
ylz—t] =y
(1) [w—u] = (tlr—u]) (' [z—u])
(Az.t)[x—u] = Az.(t|z—u))

Nominal rewriting, 23/1/2006, Innsbruck, Austria.

The iIssue

x, 1, and z are variable symbols, or more precisely meta-level variable
symbols varying over object-level variable symbols.

t and u are meta-level variable, ranging over A-terms.
t itself is not a A-term!

Instantiation of ¢ does not avoid capture: if we set ¢ to be x, we get
AL.2.

Nominal rewriting, 23/1/2006, Innsbruck, Austria.

The issue

The definition of substitution has side-conditions (so as a rewrite system
we would need conditional reductions:

(Az.t)|z—u| = Az.(t|lz—u)) 2 & u

Nominal rewriting, 23/1/2006, Innsbruck, Austria.

The issue

Substitution of ‘strong’ (meta-level; t) variables for ‘weak’ (object-level;
x) variables does not avoid capture.

Substitution of variables of the same level does avoid capture. That's
what we specify when we ‘specify substitution’ [x—u].

Nominal rewriting is a rewriting framework which faithfully represents the
intuition and informal practice of writing Ax.t, including the capturing
behaviour of instantiation of ¢.

Nominal rewriting, 23/1/2006, Innsbruck, Austria.

Syntax and sorts

Nominal rewriting has nominal terms.

It is abstract syntax trees, with sorts and term-formers.

touws=abe,... | X, Y, Z, ... | [t | ft,....0)] ...

a,b,c,...areatoms. They represent object-level variable symbols.
They have a sort of . .. ‘object-level variable symbols’. So object-level
variable symbols are data.

X,Y, Z,...arevariables or unknowns. They represent unknowns
and may have any sort (usually elided).

lalt is an abstraction. Think of it as Aa.t, but without J-equivalence.

Nominal rewriting, 23/1/2006, Innsbruck, Austria.

Sorts for the A-calculus

Take a sort T of \-terms and a sort A of atoms.

Note: we represent the terms of the A-calculus as nominal terms of sort

T.

Nominal rewriting, 23/1/2006, Innsbruck, Austria.

Nominal rewrite system for the A-calculus

Take - (application) a binary term-former arity (T, T)T.

Write - (¢, u) as tu and associate to the left, as usual.

Take A\ (abstraction) arity (|A|T)T.
Write A(|alt) as A|alt.

Take sub (explicit substitution) arity ([A|T, T)T.

Write sub([alt, u) as t|ar—u).

Nominal rewriting, 23/1/2006, Innsbruck, Austria.

10

Nominal rewrite system for the A-calculus

Rewrite rules are:
Aa]X)Y — X[a—Y]

and. ..

Nominal rewriting, 23/1/2006, Innsbruck, Austria.

((A[a]X,Y) — sub([a]X,Y))

11

Explicit substitution

ala— X]|
a#Z + Zla—X]
f(X1,...,Xn)|a—X]

b#X F ([b]Y)]|a—X]

Nominal rewriting, 23/1/2006, Innsbruck, Austria.

f(X1[a—X],. .., Xn[a—X])

b](Y[a—X])

12

For example:

(Aala)b — ala—b] — b

(AMalaab)b — (aab)la—b] — (aa)|a—b|(bla—b]) — " bbb

Nominal rewriting, 23/1/2006, Innsbruck, Austria.

13

For example:

()\[a])\[b]a)b — (A[b]a)[al—%)] N)\(([b/]a)[al—%)]) b’_#>b
A[b')(ala—b]) — Alb']b

(A[a]A[D]Z2) X — (A[D)2)[a—X] — X([p'](bb) - Z)][ar— X])
AD((B'b) - Z[a—X]).

If we also know a# Z we can further reduce

AV B) - Zla—X]) — A0 D) - Z.

b#XZ

a-equality and freshness

What is a#£t?

a#ty - - - at, a#t

aF#f(s1,...,tn) aFt[b|t a—#b a#|alt

aF£|alt always holds.

a# X only holds if you've assumed ...a#.X .
b#ta always holds.

a#a never holds.

a#m - X holds if and only if 7! (a)# X holds.

Nominal rewriting, 23/1/2006, Innsbruck, Austria.

mt(a)#X

a#T - X

15

What is (a b) - X?
Well, note that it is not possible for [a| X =, [b]X.

Then (since rewrites and thus equality should be closed under
instantiating unknowns) |a|a ==, |bla, which is like Aa.a = Ab.a (but
without the functions, i.e. (3-equivalence!).

But we still want to rename atoms, to avoid capture, etc.
So we write [a]| X =~ [b](ba) - X.

Nominal rewriting is such that rewrites are equivalent up to the least
symmetric transitive reflexive congruence =, such that

a,b#t F (ab) -t ~,t.

Nominal rewriting, 23/1/2006, Innsbruck, Austria.

16

a-equality and freshness

~ . IS decidable, in linear time:

S1 R U1 Sp Rq tn t ~, t/
f(817 7Sn) ~ o f(tla 7t’n) a4 No a t/ o L
SR t aFt s~y (ab)-t ds(m, 7")#X

als ~q a]t a]s =, [b]t X R - X

(Here ds(m, ") e {n | m(n) #7'(n)}. For example,
ds((ab),1d) = {a,b}.)

Nominal rewriting, 23/1/2006, Innsbruck, Austria. 17

Example derivation

ab ~, ab

a#A|alba Ablab =, (ba) - (Ala]lba) = A[blab

Aa]A[blab =, A[b]A[a]ba

Looks like A f.A\x.fox = Ax. Af.xf.

Nominal rewriting, 23/1/2006, Innsbruck, Austria.

18

Example derivation

(#X)
X ~ (ba)o (ba)- X

a#Alal(ba) - X MO X =~ (ba) - (Ma](ba)- X)=Ab](ba)o (ba)- X
Aal Al X ~o Alb|A|a]l(ba) - X

Looks like?

Note permutation treats open terms (terms with unknowns). Parametric
treatment of abstraction.

Nominal rewriting, 23/1/2006, Innsbruck, Austria. 19

Nominal rewriting [PPDP’04] is like first-order rewriting:
If nontrivial critical pairs are joinable: local confluence.
Orthogonal rewrite system: confluence.

Interesting extensions [PPDP’05] as rewrite system.

Nominal rewriting, 23/1/2006, Innsbruck, Austria.

20

Equality

Instead of considering — , a directed equality. . .

... we can throw out the direction and consider nominal algebra
(Nominal Algebraic Specifications).

Nominal rewriting, 23/1/2006, Innsbruck, Austria.

21

Substitution (again)

(#—) a#X F X|a—T] = X
(f—) = f(X1,..., Xn)|[a—T] = f(Xi[a—T],..., X,la—T])
(abs—) b#T F ([b]X)[a—T] = [b](X[a—T])
var—) — var(a)|a—T] =T
ren—) b#X F X|a—var(b)] = (ba)- X
(var has sort (A)T.)

These axioms are w-complete — if fo = wo for all closing o then
t = u.

This is not at all an easy result.

Nominal rewriting, 23/1/2006, Innsbruck, Austria. 22

Logic (first-order)

(Props) P=Q=P=T ——P=P=T
(P=Q)=Q@=R)=(P=R)=T 1=P=T

(Quants)
Via|P = Pla—T| = T

a#P + Vla|(P

Via](P A Q) < V]a|P AV][a]Q = T

= Q)= P=VaQ =T

Eq) T~T=T T=U= Pla—T|< Pla—U|=T

Nominal rewriting, 23/1/2006, Innsbruck, Austria.

23

Atoms are data. That is, a # b is derivable.

So in a semantics, e.g. for substitution or logic, variable symbols are
first-class elements of the denotation.

What does that denotation look like?

Nominal rewriting, 23/1/2006, Innsbruck, Austria.

24

In a sense the only difference between X and a is that
(la| X)| X+—t] = |al]t, i.e. substitution of ¢ for X does not avoid
capture.

(|a] X)[b—t] does avoid capture.

What if we allow abstraction by | X | in the syntax, and introduce a
hierarchy of of variables a1 (a), as (X), as (t?), and so on, what
do we get [PPDP’05bh].

Nominal rewriting, 23/1/2006, Innsbruck, Austria.

25

Graphs with abstraction for name-generation (work with Joe Wells)?

Logics and lambda-calculi with hierarchies of variables (instead of
simple types)?

Feasibility study of mechanised formal proof system (like Isabelle) but
with iconoclastic treatment of functions?

...and much more, of course.

Nominal rewriting, 23/1/2006, Innsbruck, Austria.

26

