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Thanks for inviting me (at short notice).

...and the broader framework of my research, if | have time.
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Consider the term \x.t.

X is a variable symbol and t is a variable, ranging over
A-terms.

Instantiation of ¢ does not avoid capture: if we set ¢ to be x, we get
AT.X.
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The issue

Consider the term (Ax.t)w.

This reduces
(Az.t)u ~ tlx—ul

Let's specify how substitution distributes through t:

r|r—t] =t
ylz—t] =y
(1) [w—u] = (tlr—u]) (' [z—u])
(Az.t)[x—u] = Az.(t|z—u))
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The iIssue

x, 1, and z are variable symbols, or more precisely meta-level variable
symbols varying over object-level variable symbols.

t and u are meta-level variable, ranging over A-terms.
t itself is not a A-term!

Instantiation of ¢ does not avoid capture: if we set ¢ to be x, we get
AL.2.
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The issue

The definition of substitution has side-conditions (so as a rewrite system
we would need conditional reductions:

(Az.t)|z—u| = Az.(t|lz—u)) 2 & u
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The issue

Substitution of ‘strong’ (meta-level; t) variables for ‘weak’ (object-level;
x) variables does not avoid capture.

Substitution of variables of the same level does avoid capture. That's
what we specify when we ‘specify substitution’ [x—u].

Nominal rewriting is a rewriting framework which faithfully represents the
intuition and informal practice of writing Ax.t, including the capturing
behaviour of instantiation of ¢.
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Syntax and sorts

Nominal rewriting has nominal terms.

It is abstract syntax trees, with sorts and term-formers.

touws=abe,... | X, Y, Z, ... | [t | ft,....0) ] ...

a,b,c,...areatoms. They represent object-level variable symbols.
They have a sort of . .. ‘object-level variable symbols’. So object-level
variable symbols are data.

X,Y, Z,...arevariables or unknowns.  They represent unknowns
and may have any sort (usually elided).

lalt is an abstraction.  Think of it as Aa.t, but without J-equivalence.
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Sorts for the A-calculus

Take a sort T of \-terms and a sort A of atoms.

Note: we represent the terms of the A-calculus as nominal terms of sort

T.
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Nominal rewrite system for the A-calculus

Take - (application) a binary term-former arity (T, T)T.

Write - (¢, u) as tu  and associate to the left, as usual.

Take A\ (abstraction) arity (|A|T)T.
Write A(|alt) as A|alt.

Take sub  (explicit substitution) arity ([A|T, T)T.

Write sub([alt, u) as t|ar—u).
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Nominal rewrite system for the A-calculus

Rewrite rules are:
Aa]X)Y — X[a—Y]

and. ..

Nominal rewriting, 23/1/2006, Innsbruck, Austria.

((A[a]X,Y) — sub([a]X,Y))
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Explicit substitution

ala— X]|
a#Z + Zla—X]
f(X1,...,Xn)|a—X]

b#X F ([b]Y)]|a—X]
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f(X1[a—X],. .., Xn[a—X])

b](Y[a—X])
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For example:

(Aala)b — ala—b] — b

(AMalaab)b — (aab)la—b] — (aa)|a—b|(bla—b]) — " bbb
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For example:

()\[a])\[b]a)b — (A[b]a)[al—%)] N )\(([b/]a)[al—%)]) b’_#>b
A[b')(ala—b]) — Alb']b

(A[a]A[D]Z2) X — (A[D)2)[a—X] — X([p'](bb) - Z)][ar— X])
AD((B'b) - Z[a—X]).

If we also know a# Z we can further reduce

AV B) - Zla—X]) — A0 D) - Z.

b#XZ



a-equality and freshness

What is a#£t?

a#ty - - - at, a#t

aF#f(s1,...,tn)  aFt[b|t a—#b a#|alt

aF£|alt always holds.

a# X only holds if you've assumed ...a#.X .
b#ta always holds.

a#a never holds.

a#m - X holds if and only if 7! (a)# X holds.
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mt(a)#X

a#T - X
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What is (a b) - X?
Well, note that it is not possible for [a| X =, [b]X.

Then (since rewrites and thus equality should be closed under
instantiating unknowns) |a|a ==, |bla, which is like Aa.a = Ab.a (but
without the functions, i.e. (3-equivalence!).

But we still want to rename atoms, to avoid capture, etc.
So we write [a]| X =~ [b](ba) - X.

Nominal rewriting is such that rewrites are equivalent up to the least
symmetric transitive reflexive congruence =, such that

a,b#t F (ab) -t ~,t.
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a-equality and freshness

~ . IS decidable, in linear time:

S1 R U1 Sp Rq tn t ~, t/
f(817 7Sn) ~ o f(tla 7t’n) a4 No a t/ o L
SR t aFt s~y (ab)-t ds(m, 7" )#X

als ~q a]t a]s =, [b]t X R - X

(Here ds(m, ") e {n | m(n) #7'(n)}. For example,
ds((ab),1d) = {a,b}.)
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Example derivation

ab ~, ab

a#A|alba Ablab =, (ba) - (Ala]lba) = A[blab

Aa]A[blab =, A[b]A[a]ba

Looks like A f.A\x.fox = Ax. Af.xf.

Nominal rewriting, 23/1/2006, Innsbruck, Austria.

18



Example derivation

(#X)
X ~ (ba)o (ba)- X

a#Alal(ba) - X MO X =~ (ba) - (Ma](ba)- X)=Ab](ba)o (ba)- X
Aal Al X ~o Alb|A|a]l(ba) - X

Looks like?

Note permutation treats open terms (terms with unknowns). Parametric
treatment of abstraction.
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Nominal rewriting [PPDP’04] is like first-order rewriting:
If nontrivial critical pairs are joinable: local confluence.
Orthogonal rewrite system: confluence.

Interesting extensions [PPDP’05] as rewrite system.
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Equality

Instead of considering — , a directed equality. . .

... we can throw out the direction and consider nominal algebra
(Nominal Algebraic Specifications).
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Substitution (again)

(#—) a#X F X|a—T] = X
(f—) = f(X1,..., Xn)|[a—T] = f(Xi[a—T],..., X,la—T])
(abs—) b#T F ([b]X)[a—T] = [b](X[a—T])
var—) — var(a)|a—T] =T
ren—) b#X F X|a—var(b)] = (ba)- X
(var has sort (A)T.)

These axioms are w-complete — if fo = wo for all closing o then
t = u.

This is not at all an easy result.
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Logic (first-order)

(Props) P=Q=P=T ——P=P=T
(P=Q)=Q@=R)=(P=R)=T 1=P=T

(Quants)
Via|P = Pla—T| = T

a#P + Vla|(P

Via](P A Q) < V]a|P AV][a]Q = T

= Q)= P=VaQ =T

Eq) T~T=T T=U= Pla—T|< Pla—U|=T
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Atoms are data. That is, a # b is derivable.

So in a semantics, e.g. for substitution or logic, variable symbols are
first-class elements of the denotation.

What does that denotation look like?
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In a sense the only difference between X and a is that
(la| X )| X+—t] = |al]t, i.e. substitution of ¢ for X does not avoid
capture.

(|a] X)[b—t] does avoid capture.

What if we allow abstraction by | X | in the syntax, and introduce a
hierarchy of of variables a1 (a), as (X), as (t?), and so on, what
do we get [PPDP’05bh].
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Graphs with abstraction for name-generation (work with Joe Wells)?

Logics and lambda-calculi with hierarchies of variables (instead of
simple types)?

Feasibility study of mechanised formal proof system (like Isabelle) but
with iconoclastic treatment of functions?

...and much more, of course.
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