
Nominal rewriting

Murdoch J. Gabbay

23/1/2006, Innsbruck, Austria

Nominal rewriting, 23/1/2006, Innsbruck, Austria. 1

Thanks for inviting me (at short notice).

I’ll talk about nominal rewriting. . .

. . . and the broader framework of my research, if I have time.

Nominal rewriting, 23/1/2006, Innsbruck, Austria. 2

The issue

Consider the term λx.t.

x is a variable symbol and t is a meta-level variable, ranging over

λ-terms.

Instantiation of t does not avoid capture: if we set t to be x, we get

λx.x.

Nominal rewriting, 23/1/2006, Innsbruck, Austria. 3

The issue

Consider the term (λx.t)u.

This reduces

(λx.t)u t[x7→u]

Let’s specify how substitution distributes through t:

x[x7→t] = t

y[x7→t] = y

(tt′)[x7→u] = (t[x7→u])(t′[x7→u])

(λz.t)[x7→u] = λz.(t[x7→u]) z 6∈ u

Nominal rewriting, 23/1/2006, Innsbruck, Austria. 4

The issue

x, y, and z are variable symbols, or more precisely meta-level variable

symbols varying over object-level variable symbols.

t and u are meta-level variable, ranging over λ-terms.

t itself is not a λ-term!

Instantiation of t does not avoid capture: if we set t to be x, we get

λx.x.

Nominal rewriting, 23/1/2006, Innsbruck, Austria. 5

The issue

The definition of substitution has side-conditions (so as a rewrite system

we would need conditional reductions:

(λz.t)[x7→u] = λz.(t[x7→u]) z 6∈ u

Nominal rewriting, 23/1/2006, Innsbruck, Austria. 6

The issue

Substitution of ‘strong’ (meta-level; t) variables for ‘weak’ (object-level;

x) variables does not avoid capture.

Substitution of variables of the same level does avoid capture. That’s

what we specify when we ‘specify substitution’ [x7→u].

Nominal rewriting is a rewriting framework which faithfully represents the

intuition and informal practice of writing λx.t, including the capturing

behaviour of instantiation of t.

Nominal rewriting, 23/1/2006, Innsbruck, Austria. 7

Syntax and sorts

Nominal rewriting has nominal terms.

It is abstract syntax trees, with sorts and term-formers.

t, u ::= a, b, c, . . . | X,Y,Z, . . . | [a]t | f(t, . . . , t) | . . .

a, b, c, . . . are atoms. They represent object-level variable symbols.

They have a sort of . . . ‘object-level variable symbols’. So object-level

variable symbols are data.

X,Y,Z, . . . are variables or unknowns. They represent unknowns

and may have any sort (usually elided).

[a]t is an abstraction. Think of it as λa.t, but without β-equivalence.

Nominal rewriting, 23/1/2006, Innsbruck, Austria. 8

Sorts for the λ-calculus

Take a sort T of λ-terms and a sort A of atoms.

Note: we represent the terms of the λ-calculus as nominal terms of sort

T.

Nominal rewriting, 23/1/2006, Innsbruck, Austria. 9

Nominal rewrite system for the λ-calculus

Take · (application) a binary term-former arity (T, T)T.

Write ·(t, u) as tu and associate to the left, as usual.

Take λ (abstraction) arity ([A]T)T.

Write λ([a]t) as λ[a]t.

Take sub (explicit substitution) arity ([A]T, T)T.

Write sub([a]t, u) as t[a7→u].

Nominal rewriting, 23/1/2006, Innsbruck, Austria. 10

Nominal rewrite system for the λ-calculus

Rewrite rules are:

(λ[a]X)Y → X[a7→Y]
(

·(λ[a]X,Y) → sub([a]X,Y)
)

and. . .

Nominal rewriting, 23/1/2006, Innsbruck, Austria. 11

Explicit substitution

a[a7→X] → X

a#Z ` Z[a7→X] → Z

f(X1, . . . ,Xn)[a7→X] → f(X1[a7→X], . . . ,Xn[a7→X])

b#X ` ([b]Y)[a7→X] → [b](Y [a7→X])

Nominal rewriting, 23/1/2006, Innsbruck, Austria. 12

For example:

(λ[a]a)b → a[a7→b] → b

(λ[a]aab)b → (aab)[a7→b] → (aa)[a7→b](b[a7→b]) → ∗ bbb

Nominal rewriting, 23/1/2006, Innsbruck, Austria. 13

For example:

(λ[a]λ[b]a)b → (λ[b]a)[a7→b] → λ(([b′]a)[a7→b])
b′#b
→

λ[b′](a[a7→b]) → λ[b′]b

(λ[a]λ[b]Z)X → (λ[b]Z)[a7→X] → λ(([b′](b′ b) · Z)[a7→X])
b′#X,Z
→

λ[b′]((b′ b) · Z[a7→X]).

If we also know a#Z we can further reduce

λ[b′]((b′ b) · Z[a7→X]) → λ[b′](b′ b) · Z.

Nominal rewriting, 23/1/2006, Innsbruck, Austria. 14

α-equality and freshness

What is a#t?

a#t1 · · · a#tn

a#f(s1, . . . , tn)

a#t

a#[b]t a#b a#[a]t

π-1(a)#X

a#π · X

a#[a]t always holds.

a#X only holds if you’ve assumed . . .a#X .

b#a always holds.

a#a never holds.

a#π · X holds if and only if π-1(a)#X holds.

Nominal rewriting, 23/1/2006, Innsbruck, Austria. 15

α-equality and freshness

What is (a b) · X?

Well, note that it is not possible for [a]X ≈α [b]X .

Then (since rewrites and thus equality should be closed under

instantiating unknowns) [a]a ≈α [b]a, which is like λa.a = λb.a (but

without the functions, i.e. β-equivalence!).

But we still want to rename atoms, to avoid capture, etc.

So we write [a]X ≈α [b](b a) · X .

Nominal rewriting is such that rewrites are equivalent up to the least

symmetric transitive reflexive congruence ≈α such that

a, b#t ` (a b) · t ≈α t.

Nominal rewriting, 23/1/2006, Innsbruck, Austria. 16

α-equality and freshness

≈α is decidable, in linear time:

s1 ≈α t1 · · · sn ≈α tn

f(s1, . . . , sn) ≈α f(t1, . . . , tn) a ≈α a

t ≈α t′

t′ ≈α t

s ≈α t

[a]s ≈α [a]t

a#t s ≈α (a b) · t

[a]s ≈α [b]t

ds(π, π′)#X

π · X ≈α π′ · X

(Here ds(π, π′)
def
=

{

n
∣

∣ π(n) 6= π′(n)
}

. For example,

ds((a b), Id) = {a, b}.)

Nominal rewriting, 23/1/2006, Innsbruck, Austria. 17

Example derivation

a#λ[a]ba

a ≈α a b ≈α b

ab ≈α ab

λ[b]ab ≈α (b a) · (λ[a]ba) ≡ λ[b]ab

λ[a]λ[b]ab ≈α λ[b]λ[a]ba

Looks like λf.λx.fx = λx.λf.xf .

Nominal rewriting, 23/1/2006, Innsbruck, Austria. 18

Example derivation

a#λ[a](b a) · X

(#X)
X ≈α (b a) ◦ (b a) · X

λ[b]X ≈α (b a) · (λ[a](b a) · X) ≡ λ[b](b a) ◦ (b a) · X

λ[a]λ[b]X ≈α λ[b]λ[a](b a) · X

Looks like?

Note permutation treats open terms (terms with unknowns). Parametric

treatment of abstraction.

Nominal rewriting, 23/1/2006, Innsbruck, Austria. 19

Global context

Nominal rewriting [PPDP’04] is like first-order rewriting:

If nontrivial critical pairs are joinable: local confluence.

Orthogonal rewrite system: confluence.

Interesting extensions [PPDP’05] as rewrite system.

Nominal rewriting, 23/1/2006, Innsbruck, Austria. 20

Equality

Instead of considering → , a directed equality. . .

. . . we can throw out the direction and consider nominal algebra

(Nominal Algebraic Specifications).

Nominal rewriting, 23/1/2006, Innsbruck, Austria. 21

Substitution (again)

(#7→) a#X ` X[a7→T] = X

(f 7→) ` f(X1, . . . ,Xn)[a7→T] = f(X1[a7→T], . . . ,Xn[a7→T]) (f 6= var)

(abs 7→) b#T ` ([b]X)[a7→T] = [b](X[a7→T])

(var 7→) ` var(a)[a7→T] = T

(ren7→) b#X ` X[a7→var(b)] = (b a) · X

(var has sort (A)T.)

These axioms are ω-complete — if tσ = uσ for all closing σ then

t = u.

This is not at all an easy result.

Nominal rewriting, 23/1/2006, Innsbruck, Austria. 22

Logic (first-order)

P ⇒ Q ⇒ P = > ¬¬P ⇒ P = >(Props)

(P ⇒ Q) ⇒ (Q ⇒ R) ⇒ (P ⇒ R) = > ⊥ ⇒ P = >

∀[a]P ⇒ P [a7→T] = > ∀[a](P ∧ Q) ⇔ ∀[a]P ∧ ∀[a]Q = >

(Quants)

a#P ` ∀[a](P ⇒ Q) ⇔ P ⇒ ∀[a]Q = >

T ≈ T = > T ≈ U ⇒ P [a7→T] ⇔ P [a7→U] = >(Eq)

Nominal rewriting, 23/1/2006, Innsbruck, Austria. 23

Further work

Atoms are data. That is, a 6= b is derivable.

So in a semantics, e.g. for substitution or logic, variable symbols are

first-class elements of the denotation.

What does that denotation look like?

Nominal rewriting, 23/1/2006, Innsbruck, Austria. 24

Further work

In a sense the only difference between X and a is that

([a]X)[X 7→t] ≡ [a]t, i.e. substitution of t for X does not avoid

capture.

([a]X)[b7→t] does avoid capture.

What if we allow abstraction by [X] in the syntax, and introduce a

hierarchy of levels of variables a1 (a), a2 (X), a3 (t?), and so on, what

do we get [PPDP’05b].

Nominal rewriting, 23/1/2006, Innsbruck, Austria. 25

Further work

Graphs with abstraction for name-generation (work with Joe Wells)?

Logics and lambda-calculi with hierarchies of variables (instead of

simple types)?

Feasibility study of mechanised formal proof system (like Isabelle) but

with iconoclastic treatment of functions?

. . . and much more, of course.

Nominal rewriting, 23/1/2006, Innsbruck, Austria. 26

