A Concrete Model of Linearity and Separation

Murdoch J. Gabbay

Heriot-Watt University, UK, 17/3/2006

Multiplicative conjunction and implication

$$\frac{P,Q,\Gamma \vdash \Delta}{P \otimes Q,\Gamma \vdash \Delta} (\otimes L) \qquad \frac{\Gamma \vdash \Delta,P \quad \Gamma' \vdash \Delta',Q}{\Gamma,\Gamma' \vdash \Delta,\Delta',P \otimes Q} (\otimes R)$$

$$\frac{Q,\Gamma \vdash \Delta \quad \Gamma' \vdash \Delta',P}{P \multimap Q,\Gamma,\Gamma' \vdash \Delta,\Delta'} (\multimap L) \qquad \frac{P,\Gamma \vdash \Delta,Q}{\Gamma \vdash \Delta,P \multimap Q} (\multimap R)$$

Why is this interesting?

These connectives model the idea of:

Different things happening in different parts of the universe, without interference.

To assert $P \otimes Q$ is to assert that the universe splits into two separate parts, one satisfying P and the other satisfying Q.

To assert $P \multimap Q$ is to assert that if this universe is placed separately in parallel with a universe satisfying P, then the universe as a whole satisfies Q.

(Jamie draws a picture.)

Additive conjunction and implication

$$\frac{P,Q,\Gamma \vdash \Delta}{P \land Q,\Gamma \vdash \Delta} (\land L) \qquad \frac{\Gamma \vdash \Delta,P \quad \Gamma \vdash \Delta,Q}{\Gamma \vdash \Delta,P \land Q} (\land R)$$

$$\frac{Q,\Gamma \vdash \Delta \quad \Gamma \vdash \Delta,P}{P \supset Q,\Gamma \vdash \Delta} (\supset L) \qquad \frac{P,\Gamma \vdash \Delta,Q}{\Gamma \vdash \Delta,P \supset Q} (\supset R)$$

Why is this interesting?

Well, obviously we still want to say

P and Q

and

if *P* then *Q*.

Structural rules

Note that the multiplicative and additive formulations become equivalent if we admit structural rules weakening and contraction:

$$\frac{\Gamma \vdash \Delta}{\Gamma, P \vdash \Delta} (Weaken) \qquad \frac{\Gamma, P, P \vdash \Delta}{\Gamma, P \vdash \Delta} (Contract)$$

Linear logic (LL) . . .

... has a bang !P.

Banged formulae can be freely weakened and contracted. Then additive implication may be obtained by using banged propositions.

Bunched implications (BI) . . .

... 'orthogonally' mixes the multiplicative and additive parts.

Syntax: Colourful logic

Formulae defined by grammar:

$$P,Q ::= P \Rightarrow P \mid P \otimes P \mid M[c].P \mid$$

 $(P-c) \mid (P+c) \mid \Box_c P \mid \bot \mid p,q,r.$

Identify up to binding by N[c]. Call p,q,r propositional constants.

Colourful sugar

- $P \otimes Q$ is BI, LL mult. conj.
- $P \supset Q = M[c]$. $(P+c \Rightarrow \Box_c Q)$ (BI add. imp).
- $\bullet \neg P = P \supset \bot$.
- $P \wedge Q = \neg (P \supset \neg Q)$ (BI add. conj).
- $T = \bot \supset \bot$.
- 0 = M[c]. $(\top + c)$ (BI, LL mult. unit).
- $P \multimap Q = M[c]$. $(P+c \Rightarrow Q+c) c$ (BI, LL mult. imp).
- Fix some c, write P for P c (LL bang).
- $!P \multimap Q$ is LL add. imp.

Interpretation

I claim these give are (natural) translations of bunched implications and linear logic into this syntax, such that the induced semantics is sound. . .

Semantics: Multicoloured multisets

Fix a countably infinite set $a, b, c \in C$ of colours.

Write $d \in \mathcal{D}$ for the set of finite sets of colours.

For a multiset U and a function $C_U : U \to \mathcal{D}$ say C_U is a colouring of U when $\bigcup_{u \in U} C_U(u)$ is finite.

So a colouring colours elements $u \in U$ from some 'finite palette'.

Multicoloured multisets

A multicoloured multiset or universe U is a pair $(|U|, C_U : |U| \to \mathcal{D})$ of an underlying multiset |U| and a colouring of |U|.

We may write just U for |U|. Write U for the set of universes.

Multicoloured multisets

Each colour c partitions |U| into two regions:

$$\{u \in |U| \mid c \in C_U(u)\}\$$
 $\{u \in |U| \mid c \notin C_U(u)\}.$

Call *u* uncoloured when $C_U(u) = \emptyset$.

Call *U* uncoloured when all $u \in U$ are uncoloured.

Interesting operations on multicoloured multisets

$$U - c = (|U|, \lambda u.(C_U(u) \setminus \{c\})).$$

Bleach c.

$$U + c = (|U|, \lambda u.(C_U(u) \cup \{c\})).$$

Paint c.

$$U \uplus U' = \left(|U| \uplus |U'|, \lambda x. \begin{cases} C_{U}x & x \in |U| \\ C_{U'}x & x \in |U'| \end{cases} \right).$$

Disjoint sum.

 $|U| \uplus |U'|$ is multiset union.

Interesting operations on multicoloured multisets

$$(a b)U = (|U|, \lambda u.(a b)C_U(u)).$$

Swapping action.

(a b) is the swapping function on colours mapping a to b and vice versa, and mapping $c \neq a, b$ to itself. Its action extends pointwise to sets of colours.

 $U \subseteq U'$ when $|U| \subseteq |U'|$ and $C_{U'}(u) = C_U(u)$ for all $u \in |U|$.

Multicoloured sub-multiset!

Cut-and-paste

Define \rightarrow as a rewrite on multisets induced by:

- $U \to U'$ when U and U' are uncoloured and $U' \subseteq U$.
- $U \rightarrow U'$ when U and U' are uncoloured and $U' = U \uplus U$.
- \rightarrow cuts and pastes the uncoloured parts of U.
- \rightarrow is not symmetric. Any uncoloured nonempty $U \rightarrow \emptyset$ but $\emptyset \not\rightarrow U$.

Predicates

Extend the swapping action to sets of universes, pointwise. Thus

$$(a b)\mathcal{P} = \{(a b)U \mid U \in \mathcal{P}\}.$$

 $\Phi(a)$ a predicate: $Va. \Phi(a)$ means ' $\Phi(a)$ holds of all but finitely many a'.

A predicate \mathcal{P} is a set of universes such that

$$\mathsf{N}a.\ \mathsf{N}b.\ (a\ b)\mathcal{P}=\mathcal{P}$$

See [Gabbay & Pitts 99] and later literature. Intuitively, \mathcal{P} may mention many atoms, but only finitely many in a 'distinguished manner'.

Predicates

 \mathcal{U} (set of all universes) is a predicate.

(empty set of no universes) is a predicate.

Any finite set of universes, is a predicate.

Any set of universes mentioning colours from some finite set d, is a predicate.

The set of all universes not mentioning colours from some finite set d, is a predicate.

Order the colours a_1, a_2, a_3, \ldots

The set of universes not mentioning even colours, is not a predicate — it is not fixed by $(a \ b)$ for any cofinite (complement is finite) set of colours for the a, b.

Operations on predicates

 $\langle \mathcal{P} \rangle$ is the least set containing \mathcal{P} and closed under \rightarrow . This is a predicate (easy lemma).

$$\mathcal{P} \otimes Q = \{ U_P \uplus U_Q \mid U_P \in \mathcal{P}, \ U_Q \in Q \}$$

$$\mathcal{P} \Rightarrow Q = \{ U \mid U \uplus \langle \mathcal{P} \rangle \subseteq Q \}$$

Note we use $\langle \mathcal{P} \rangle$, allowing cut-and-paste in \mathcal{P} !

Here
$$U \uplus \mathcal{P} = \{U \uplus U_P \mid U_P \in \mathcal{P}\}.$$

More operations on predicates

$$\mathcal{P} + c = \{U + c \mid U - c \in \mathcal{P}\}$$

$$\mathcal{P} - c = \{U - c \mid U + c \in \mathcal{P}\}$$

$$[c]\mathcal{P} = \{U \mid \mathsf{N}c'. (c'c)U \in \mathcal{P}\}.$$

 \mathcal{P} – c is the c-coloured part of \mathcal{P} , bleached.

 $\mathcal{P} + c$ is the *c*-uncoloured part of \mathcal{P} , painted.

[c] \mathcal{P} is the c-uncoloured part of \mathcal{P} , with the c-coloured part replaced by a c-coloured version of a c'-coloured part (note $(c'c)U \in \mathcal{P}$ iff $U \in (c'c)\mathcal{P}$).

For example

$$(\mathcal{P} \otimes \mathbf{Q}) \pm c = (\mathcal{P} \pm c) \otimes (\mathbf{Q} \pm c).$$

$$(\mathcal{P} \Rightarrow Q) \pm c \neq (\mathcal{P} \pm c) \Rightarrow (Q \pm c)$$
 in general, because $\langle \mathcal{P} \pm c \rangle \neq \langle \mathcal{P} \rangle \pm c$ in general.

 $[c](\mathcal{P}+c)=\mathcal{P}\cap\{\emptyset\}$ (here \emptyset is the multiset with $|\emptyset|=\emptyset$).

$$\mathcal{P}|_{c} = (\mathcal{P} - c) + c = \{U \in \mathcal{P} \mid U = U + c\}.$$
 Restrict \mathcal{P} to c .

If $c\#\mathcal{P}$ then $[c]\mathcal{P} = \mathcal{P}$.

 $c\#[c]\mathcal{P}$.

Write $a\#\mathcal{P}$ when $\mathsf{Va'}$. $(a'\ a)\mathcal{P} = \mathcal{P}$.

Multiplicative (separating) implication

Define $\mathcal{P} \multimap Q = \mathsf{N}c$. $[c]((\mathcal{P}+c \Rightarrow Q+c)-c)$.

Lemma: $U \in \mathcal{P} \multimap Q$ when $U \uplus \mathcal{P} \subseteq Q$.

Lemma: $(\mathcal{P} \otimes Q) \multimap \mathcal{R} = \mathcal{P} \multimap (Q \multimap \mathcal{R}).$

Additive (logical) implication

$$\Box_{c} \mathcal{P} = \{ U \uplus U - c \mid U \in \mathcal{P} + c \} \cup$$

$$(\mathcal{U} \setminus \{ U + c \uplus U - c \mid U \in \mathcal{U} \})$$

Define $\mathcal{P} \supset Q = \mathsf{N}c$. $[c](\mathcal{P}+c \Rightarrow \Box_c Q)$.

Lemma: $\mathcal{P} \supset Q = (\mathcal{U} \setminus \mathcal{P}) \cup Q$.

(So $\mathcal{P} \supset Q$ represents 'if \mathcal{P} then Q'.)

Bang

Suppose $\mathcal{P} = \mathcal{P}|_c$. Set $!\mathcal{P} = \mathcal{P} - c$.

 $\langle \mathcal{P} \rangle = \mathcal{P}$ but in general $\langle !\mathcal{P} \rangle \neq \langle \mathcal{P} \rangle$, because with *c* bleached cut-and-paste is now possible.

Conclusions

I have presented a model!

I have explored the details of the constructions necessary to interpret bunched implications and linear logic within it.

I claim that this interpretation is sound.

! is interpreted as a 'you may now weaken and contract' instruction, consistent with its intuitive interpretation.

The multiplicative and additive connectives are implemented using

$$\mathcal{P} + c$$
 $\mathcal{P} - c$ $\mathsf{Nc.}[c]\mathcal{P}$ $\square_c \mathcal{P}$,

as is bang. That's three modalities, and a quantifier.

Current and future work

I am writing up all the calculations I omitted in this talk.

Note that this model is classical, whereas bunched implications is intuitionistic. This is good; classical bunched implications is an interesting topic!

Proof theory for colourful logic (sequent rules for the modalities and N)?

Extend colourful logic to predicates?

Why **M**?

Why did we use this quantifier? Why not simply insist that there is some finite set of colours such that for all $U \in \mathcal{P}$ the colours in U are in that finite set?

Because that would make it impossible to model negation as $\mathcal{U} \setminus \mathcal{P}$!

It lets us choose fresh names even in the presence of infinite sets. We have used this in an integral way to make the whole system work.