A NEW calculus of contexts

Murdoch J Gabbay

Tel Aviv University, Israel 14/5/2006

This talk...

... is the third in a series of about four talks in the framework of a mini-course describing (some? most?) of the mathematics I've done over the past six years (since I got my PhD).

Motivation

In this talk I'll discuss the NEW calculus of contexts, see my webpage www.gabbay.org.uk for the paper [PPDP'05].

Motivation

I'd like to talk about the λ -calculus.

How original.

No, wait! I have something NEW to say.

Motivation

Consider the term $\lambda x.t$.

x is a variable symbol and t is a meta-level variable, ranging over λ -terms. Instantiation of t does not avoid capture: if we set t to be x, we get $\lambda x.x$.

The essence of the meta-level

Claim: This is the essence of the meta-level.

- Substitution of 'strong' (meta-level) variables for 'weak' (object-level) variables does not avoid capture. Call this instantiation.
- Substitution of variables of the same level does avoid capture.

Why formalise the meta-level?

It's what we use to make programs, do logic, etcetera; whether we do this formally or not, it's there.

A formal framework which accurately represents our intention when we write ' $\lambda x.t$ ', including how t is instantiated, is worthy of serious mathematical investigation.

Why formalise the meta-level?

In this course we have already seen the following based on this philosophy and accompanying mathematics:

- 1. Semantics.
- 2. Logic with proof-theory.
- 3. Algebra.

Let's now look at a calculus, i.e. do programming.

An example

Suppose x is weak (level 1, say) and X is stronger (level 2, say), then

$$(\lambda X.\lambda x.X)x \leadsto (\lambda x.X)[X \mapsto x]$$
$$\leadsto \lambda x.(X[X \mapsto x]) \leadsto \lambda x.x.$$

Difficulty: α -equivalence

If $\lambda x.X$ and $\lambda y.X$ are equivalent then

$$(\lambda X.\lambda x.X)x \rightsquigarrow \lambda y.x.$$

This is undesirable. Yet some capture-avoidance remains legitimate, e.g. we still want $\lambda x.x$ to be equivalent to $\lambda y.y$.

The syntax

Suppose sets of variables $a_i, b_i, c_i, n_i, \ldots$ for $i \geq 1$.

 a_i has level i. Syntax is given by:

$$s,t ::= a_i \mid tt \mid \lambda a_i.t \mid t[a_i \mapsto t] \mid \forall a_i.t.$$

- $s[a_i \mapsto t]$ is explicit substitution.
- $\lambda a_i.t$ is abstraction.
- Ma_i . t a binder.

Equate up to **1**-binding, nothing else.

Call b_i stronger than a_i when j > i.

E.g. b_3 is stronger than a_1 .

Example terms and reductions

x, y, z have level 1. X, Y, Z have level 2.

$$(\lambda x.x)y \rightsquigarrow x[x \mapsto y] \rightsquigarrow y$$

$$(\lambda x.X)[X \mapsto x] \rightsquigarrow \lambda x.(X[X \mapsto x]) \rightsquigarrow \lambda x.x$$

$$x[X \mapsto t] \rightsquigarrow x$$

$$x[x' \mapsto t] \rightsquigarrow x$$

$$x[x \mapsto t] \rightsquigarrow t$$

$$X[x \mapsto t] \rightsquigarrow t$$

Ordinary reduction Context substitution X stronger than x Ordinary substitution Ordinary substitution Suspended substitution

Records

Fix constants 1 and 2.

l and m have level 1, X has level 2.

A record:

$$X[l \mapsto 1][m \mapsto 2]$$

Record lookup

$$X[l\mapsto 1][m\mapsto 2][X\mapsto m] \rightsquigarrow X[l\mapsto 1][X\mapsto m][m\mapsto 2]$$

$$\rightsquigarrow X[X\mapsto m][l\mapsto 1][m\mapsto 2]$$

$$\rightsquigarrow m[l\mapsto 1][m\mapsto 2]$$

$$\rightsquigarrow m[m\mapsto 2]$$

$$\rightsquigarrow 2.$$

In-place update

$$X[l\mapsto 1][m\mapsto 2][X\mapsto X[l\mapsto 2]] \rightsquigarrow X[l\mapsto 1][X\mapsto X[l\mapsto 2]][m\mapsto 2]$$

$$\rightsquigarrow X[X\mapsto X[l\mapsto 2]][l\mapsto 1][m\mapsto 2]$$

$$\rightsquigarrow X[l\mapsto 2][l\mapsto 1][m\mapsto 2]$$

$$\rightsquigarrow X[l\mapsto 2][m\mapsto 2]$$

Substitution-as-a-term

$$(\lambda X.X[l\mapsto \lambda n.n])$$
 applied to lm

$$(\lambda X.X[l\mapsto \lambda n.n])(lm) \rightsquigarrow X[l\mapsto \lambda n.n][X\mapsto lm] \rightsquigarrow^* (\lambda n.n)m$$

In-place update as a term

$$\lambda \mathcal{W}.\mathcal{W}[X \mapsto X[l \mapsto 2]] \quad \text{applied to} \quad X[l \mapsto 1][m \mapsto 2]$$

 \dots and so on (\mathcal{W} has level 3).

Likewise global state (world = a big hole), and Abadi-Cardelli imp- ε object calculus.

Records (again, using λ)

Fix constants 1 and 2.

l and m have level 1. X has level 2.

A record:

$$\lambda X.X[l\mapsto 1][m\mapsto 2].$$

Now we use application to retrieve the value stored at m:

$$(\lambda X.X[l\mapsto 1][m\mapsto 2])m \rightsquigarrow X[l\mapsto 1][m\mapsto 2][X\mapsto m]$$

Records (again, using λ)

$$\lambda X.X[l\mapsto \mathcal{W}][m\mapsto 2]$$

Here \mathcal{W} has level 3. It beats X, l, and m.

Apply $[\mathcal{W} \mapsto X]$:

$$\Big(\lambda X.X[l\mapsto \mathcal{W}][m\mapsto 2]\Big)[\mathcal{W}\mapsto X] \rightsquigarrow^* \lambda X.X[l\mapsto X][m\mapsto 2].$$

Apply to (lm) and obtain (l2)2:

$$\left(\lambda X.X[l\mapsto X][m\mapsto 2]\right)(lm) \rightsquigarrow^* lm[l\mapsto lm][m\mapsto 2] \rightsquigarrow^* (l2)2$$

Records (again, using λ)

$$\Big(\lambda \mathcal{W}.\lambda X.X[l\mapsto \mathcal{W}][m\mapsto 2]\Big)X(lm) \rightsquigarrow^* (l2)2$$

Is that wrong?

Depends what you want.

This kind of thing makes the Abadi-Cardelli 'self' variable work. The issue is that λ does not bind — it abstracts.

И

$$\mathsf{V} X. (\lambda X. X[l \mapsto \mathcal{W}][m \mapsto 2]).$$

Then

И

Apply to lm:

$$\mathsf{V}X'.\ (\lambda X'.X'[l\mapsto X][m\mapsto 2])\ (lm)$$

$$\rightsquigarrow \mathsf{V}X'.\ ((\lambda X'.X'[l\mapsto X][m\mapsto 2])\ (lm))$$

$$\rightsquigarrow \mathsf{V}X'.\ X'[l\mapsto X][m\mapsto 2][X'\mapsto lm] \rightsquigarrow^* (X[m\mapsto 2])2$$

 I behaves like the π -calculus ν ; it floats to the top (extrudes scope).

How the different bits fit together

- 1. λ abstracts it stays put and β -reduces.
- 2. $[x \mapsto s]$ substitutes it floats downwards capturing x until it runs out of term or gets stuck on a stronger variable.
- 3. V binds it floats upwards avoiding capture.

Implementation of the untyped λ -calculus

Terms of the untyped λ -calculus:

$$s := a \mid ss \mid \lambda a.s$$

quotiented by α -equivalence as usual.

Translation into the NEWcc is:

$$\llbracket a \rrbracket \equiv a \qquad \llbracket ss' \rrbracket = \llbracket s \rrbracket \llbracket s' \rrbracket \qquad \llbracket \lambda a.s \rrbracket = \mathsf{N}a. \ \lambda a. \llbracket s \rrbracket.$$

Theorem: NEWcc reductions simulate λ -calculus reductions, and they preserve strong normalisation.

Reduction rules

$$\begin{array}{llll} (\beta) & (\lambda a_i.s)u \leadsto s[a_i \mapsto u] \\ (\sigma a) & a_i[a_i \mapsto u] \leadsto u \\ (\sigma \#) & s[a_i \mapsto u] \leadsto s & a_i \# s \\ (\sigma p) & (a_it_1\dots t_n)[b_j \mapsto u] \leadsto (a_i[b_j \mapsto u])\dots (t_n[b_j \mapsto u]) \\ (\sigma \sigma) & s[a_i \mapsto u][b_j \mapsto v] \leadsto s[b_j \mapsto v][a_i \mapsto u[b_j \mapsto v]] & j > i \\ (\sigma \lambda) & (\lambda a_i.s)[c_k \mapsto u] \leadsto \lambda a_i.(s[c_k \mapsto u]) & a_i \# u, c_k \ k \leq i \\ (\sigma \lambda') & (\lambda a_i.s)[b_j \mapsto u] \leadsto \lambda a_i.(s[b_j \mapsto u]) & j > i \\ (\sigma tr) & s[a_i \mapsto a_i] \leadsto s \\ (\mathsf{M}p) & (\mathsf{M}n_j.\ s)t \leadsto \mathsf{M}n_j.\ (st) & n_j \not\in t \\ (\mathsf{M}\lambda) & \lambda a_i.\mathsf{M}n_j.\ s \leadsto \mathsf{M}n_j.\ \lambda a_i.s & n_j \neq a_i \\ (\mathsf{M}\sigma) & (\mathsf{M}n_j.\ s)[a_i \mapsto u] \leadsto \mathsf{M}n_j.\ (s[a_i \mapsto u]) & n_j \not\in u \ n_j \not\in s \\ (\mathsf{M}\not\in) & \mathsf{M}n_j.\ s \leadsto s & n_j \not\in s \end{array}$$

Graphs

Here is a fun NEW calculus of contexts program:

$$s = \lambda X.((X[x \mapsto y])(X[y \mapsto x])).$$

Observe $s(xy) \rightsquigarrow (yy)(xx)$.

Free variables behave like dangling edges in graphs; stronger variables behave like holes.

What is the 'geometry' of a NEWCC term?

Partial evaluation

Write

$$if = \lambda a, b, c.abc$$
 true $= \lambda ab.a$ false $= \lambda ab.b$ not $= \lambda a.if$ a false true.

in untyped λ -calculus. Then calculate

$$s = \lambda f, a.$$
if $a(fa)a$ specialised to s not

by β -reduction. We obtain λa .if a (not a) a.

A more intelligent method may recognise that the program will always return false (with types etc.).

Partial evaluation

Choose level 1 variables a, b and level 2 variables and B, C and define

$$\mathtt{true} = \lambda ab.a \quad \mathtt{false} = \lambda ab.b$$

$$\mathtt{if} = \lambda a, B, C. \, a(B[a \mapsto \mathtt{true}])(C[a \mapsto \mathtt{false}])$$

$$\mathtt{not} = \lambda a.\mathtt{if} \,\, a\, \mathtt{false} \, \mathtt{true}.$$

Partial evaluation

So if we get to B, a =true. Consider

$$s = \lambda f, a.$$
if $a(fa)a$ specialised to s not.

We obtain:

$$s \ \mathsf{not} \quad \leadsto^* \ \lambda a.a \ ((\mathsf{not}B)[a \mapsto \mathsf{true}][B \mapsto a]) \ (C[a \mapsto \mathsf{false}][C \mapsto a]) \ \leadsto^* \ \lambda a.a \ ((\mathsf{not}a)[a \mapsto \mathsf{true}]) \ (a[a \mapsto \mathsf{false}]) \ \leadsto^* \ \lambda a.(a \ \mathsf{false} \ \mathsf{false}).$$

More efficient!

Other applications

Dynamic (re)binding.

Staged computation. Our calculus is a pure rewrite system. However, a programming language based on it can model staged computation (I think).

Complexity. Can we write more efficient programs?

Geometry. What is a notion of Böhm tree (or similar), in the presence of strong variables?

Types (briefly)

$$\frac{x:\sigma\in\Gamma\quad\tau\preceq\sigma}{\Gamma\vdash x:\tau}\qquad\frac{\Gamma,a_i:\tau\vdash s:\tau'}{\Gamma\vdash\lambda a_i.s:\tau\to\tau'}$$

$$\frac{\Gamma\vdash s':\tau'\quad\Gamma,a_i:\forall\overline{\alpha}.\tau'\vdash s:\tau\quad\overline{\alpha}=\mathit{tyv}(\tau')\setminus\mathit{tyv}(\Gamma)}{\Gamma\vdash s[a_i\mapsto s']:\tau}$$

$$\frac{\Gamma,a_i:\tau\vdash s:\tau\to\tau'}{\Gamma\vdash s[a_i\mapsto s']:\tau}\qquad\frac{\Gamma\vdash s:\tau\to\tau'\quad\Gamma\vdash t:\tau}{\Gamma\vdash s[a_i\mapsto s']:\tau}$$

Meta-properties

- Confluence.
- Preservation of strong normalisation (for untyped lambda-calculus).
- Hindley-Milner type system. Explicit substitution rule is like that for let.
- Applicative characterisation of contextual equivalence.

Conclusions

With the NEWcc, we really can meta-program.

Scope separate from abstraction; necessary for proper control of α -equivalence in the presence of the hierarchy.

Hierarchy of strengths of variables in common with work by Sato et al. But we have different control of α -equivalence.

Explicit substitution calculus.

Unexpectedly: model of state, unordered datatypes, objects, graphs, and more.