PNL: Permissive-nominal logic

Murdoch J. Gabbay
Joint work with Gilles Dowek

June 4, 2010

The role of logic and semantics

Logic is a formal language for modelling mathematical reasoning.
Semantics is a formal notion of meaning for logic.

Surprisingly, there is no generally-accepted logic or semantics to
model reasoning at the informal meta-level.

We see what we are accustomed to seeing. We are not used to
seeing the informal meta-level, as a formal(isable) system. So let
me illustrate what | mean by informal meta-level.

The informal meta-level: some examples

Consider n-expansion,

(n) Ax.(ta) =t (a ¢ fv(t))

V-introduction,

dEo (x & (D))
®F Vx.¢

(VR)
or the m-calculus

Plva.Q = va.(P|Q) (a & fc(P)).

We see a pattern: level 1 (object-level) and level 2 (meta-level)
variables, binding, and freshness side-conditions.

Permissive-nominal logic

Permissive-nominal logic (PNL) is designed to cleanly express
specifications like those of the last slide.

It has two levels of variable, represented in the syntax formally as
atoms a, b, ¢ and unknowns X, Y, Z.

Each unknown X has a permission set p(X) to implement
freshness conditions; this is a set of ‘permitted atoms’ in X. If
a ¢ p(X) then ais ‘fresh for" X.

Here are the same specifications, written formally in PNL:

Some examples, again
n-expansion; here a ¢ p(X):
vX. A([a]app(X,a)) = X
Ax.(ta) =t (a & fv(t))
V-introduction; here a & p(P):

VP, Q. entails(P, Q) = entails(P, ¥([a]Q)) (VR)

m-calculus; here a & p(P):

VP, Q. par(P, v([a]Q)) = v([a]par(P, Q))
Plva.Q = va(P|Q) (a & fc(P)).

The permission set p(P) is a set of atoms. a € p(P) means that
the unknown P may not be instantiated to a term in which the
atom a is free. If a € p(X) then from

VX. A([a]lapp(X,a)) = X you cannot derive A([a]app(a,a)) = a.

How it works

Making this work in a logic and semantics is far from obvious.

There were serious technical challenges to overcome. Many
challenges and open questions remain.

The result so far, PNL, can specify systems like first-order logic,
the lambda-calculus, the pi-calculus, and arithmetic.

Axiomatisations tend to closely resemble informal specifications.
They tend to be finite.

PNL comes with a semantics: permissive-nominal sets. We have
proved the following properties:

Properties of permissive-nominal logic

Theories in PNL are sound and complete for models in
permissive-nominal sets.

Cut can be eliminated in PNL sequent derivations.

PNL semantics is more ‘first-order’ than ‘higher-order’ (the
semantics look very similar to the semantics of first-order logic).

Unification of the syntax of PNL is decidable.

Arithmetic can be finitely axiomatised in PNL and this
axiomatisation is, in a sense that can be made formal, correct.

| am confident that the same is true of first-order logic and the
lambda-calculus.

In short: PNL and permissive-nominal sets are a formal syntax and
semantics that are ‘e away' from the informal meta-level.

Some formal syntax

Fix two disjoint countably infinite sets of atoms A< and A~. Write
A=AwA.

Let a, b, ¢ range over distinct atoms (the permutative convention).

A permission set has the form (A<\ A) U B where A C A* and
B C A~ are finite.

An example permission set is (A< \ {a}) U {b, c}.

For each permission set fix a disjoint countably infinite set of
unknowns X, Y, Z. Write p(X) for the permission set of X.

Think of p(X) as a sort or type of X.

Some formal syntax

A permutation 7 is a bijection on atoms such that
nontriv(w) = {a € A | m(a) # a} is finite.

Think of 7 as an a-renaming; we can a-rename finitely many
atoms at a time.

Terms are inductively defined by:
re=al|mX|f(r,...,r)]| [a]r

ais like 'x'; X is like ‘t’; f is like ‘A", 'V", ‘|", or application. [a]r is
an atoms-abstraction; it is like the ‘x.t" or ‘x.30" in ‘Ax.t" or ‘Vx.1'.

Predicates are inductively defined by

pu=L|op=0¢|P(r,....r)| VX0

as in first-order logic.

Free atoms

Things start to get fun when you define free atoms, the
permutation action, and a-equivalence.

Define free atoms fa(r) by:

fa(m-X) = {m(a) | a € p(X)} fa([a]r) = fa(r) \ {a}
fa(f(ri,...,rm)) = Ufa(r) fa(a) = {a}

[a]r binds a in r.

m-X has an infinite set of free atoms 7(a), m(b), m(c); this reflects
the fact that the informal meta-variable ‘t" means ‘any term’ and
so could evaluate to any x, y, or z.

Free unknowns fV(r) and fV(¢) is standard. X € fV/(7-X) and
X & fV(VX.9).

Permutations and a-equivalence

m-a = m(a) wf(ry, ...) = f(mer, ... 7o)
m-lalr = [w(a)]m-r (7' X) = (wor’)- X
ml=1 m(¢ = ¢) = (7:¢) = (7))
mP(r1,...,rm) = P(mry,...,mrm) m(VX.¢) = VX.7-¢

Write (b a) for the swapping mapping a to b, b to a, and c to c.
a-equivalence is the least congruence such that:
(ba)r=q4s (b¢fa(r)) (m(a) = 7'(a) all a € p(X))
[alr =a [b]s X = 7' X

(Y X)d=at (Y €&1V(p))
VX =0 VY .2

Some examples of a-equivalence

It is all in the following examples:

VX X=X =, VY.Y=Y if p(X) = p(Y)
[ala =a [b]b
YXv([a]X)=X =a YX([b](ba)-X)=X if be p(X)

Unknowns can be a-renamed as usual. Atoms can be a-renamed
fresh but the a-renaming suspends on unknowns, as a permutation.

The derivation rules

— (A 1L
d>,<;5|—¢),\|l(x) ¢,LI—\IJ()
PO,V O YWV P, oY,V
S " (>R)
S, o=>9YFV SFop=9, ¥
O, ¢k
X
. PIX=r] Y OF o, U (X V(6
()P0, rs(x)) (o SO FEMEE o
e, VXV PFVX9 ¥

¢a¢|_w ((ﬁ:aw) ¢|_¢7\U (¢:a7w[})
(av) (aR)
b YV PHY, ¥

The derivation rules

The fa(r) C p(X) in (VL) means “¢[X:=r]| for every r such that
fa(r) C p(X)".

So VX .P(X) F P(b) for all b € p(X).

This restriction is not all it seems.

By considering the swapping (a b) and (M), YX.P(X) - P(a) for all
a, even if a & p(X).

VX.¢ does not mean “¢[X:=r] for every r", because permutations
are bijective. Suppose a ¢ p(X). Then VX.P(a, X) - P(a, b) for all

b other than a; no permutation can identify a with some atom
b € p(X).

Axioms for substitution as a PNL theory

(subvar) VX. var(a)[a—X] ~ X
(sub%) VX, Z. Z[a—X] ~Z
(p(2) = (b a)-A%)
(subsucc) VX', X. succ(X)[a—X] & succ(X'[a—X])
(subop) VX", X', X. (X" op X")[a—=X] = (X"[a—X] op X'[a—X])
, | (0p € {+,%,%,%})
(subV) VX, Z. (V([b]Z))[a—X] = V([b](Z[a—X]))
(subid) VX. X[a—var(a)] ~ X

a€ A% and b ¢ A~. The permission set of X”, X’, and X is equal
to A. The permission set of Z is equal to (b a)-A=.

Axioms for first-order logic as a PNL theory

() VZ.Z.¢Z = 2) & ((Z) = «(2))
(¥) VZ. (e(¥([a]Z)) & VX.c(Z[a—X]))

(1) e(1) = L
(&) VX, X. X'm~X =X &X)

Here Z’ and Z have sort o and permission set A<; X’ and X have
sort ¢ and permission set A<; and a € A~

Axioms for arithmetic as a PNL theory

(PSO0) VX. succ(X) =~ 0= L

(PSS) VX', X. succ(X') ~ succ(X) = X' ~ X
(P+0) VX. X+ 0~ X

(P+succ) VX', X. X'+ succ(X) ~ succ(X') + X
(P=0) VX. Xx0=0

(Pxsucc) VX', X. X" *succ(X) =~ (X' x X) + X
(PInd) VZ. (e(Z[a—0]) =

(VX.(e(Z[a—X]) = e(Z[assucc(X)]))) =
VX €(Z[a—X]))

All variables have permission set A<, and a € A<,

Conclusions

PNL is not obvious, but in a good way; it is not obvious because it
captures something important and non-trivial about mathematical
reasoning.

First-order logic, which PNL closely resembles in both its syntax
and semantics, is not obvious either.

PNL is really good at expressing specifications with binding.

| have not told you about: sorts, semantics, soundness and
completeness, proof-theory, cut-elimination, or the proof of
correctness for the axiomatisation of arithmetic.

Conclusions

Let me leave you with this thought:

Just as mathematical discourse can be formalised in first-order and
higher-order logic, and this is implemented in theorem-provers and
programming languages, so it could also be formalised in PNL.

The advantages of doing so are fully-formal reasoning in a
language which accurately reflects what we do in informal
mathematical practice.

More stuff . ..

The W quantifier

Nominal sets have the new quantifier meaning ‘for some/any fresh
atom’. Here is an example of something provable in a logic of
nominal sets, such as nominal logic or FM sets:

Vx.(P(x) = MNa.Q(a,x)) <« Vx.Ma.(P(x) = Q(a,x))
Here is the same example rendered in PNL, where a ¢ p(X):
VX.(P(X) = Q(a,X)) <« ¥X(P(X)= Q(a, X))
Another example:
Vx.Na.—P(a,x) < Vx.-Wa.P(a,x)
is rendered as

VX.-P(a,x) < VX=P(X).

Timeline:

Fraenkel-Mostowski/Nominal sets (journal paper newaas-jv 2002).
Nominal terms (two-level language; journal paper nomu-jv 2004).

Nominal algebra (logic over nominal terms with semantics in
nominal sets; journal paper nomuae 2009).

Permissive-nominal terms (made possible V.X and quotient by
a-equivalence; journal paper perntu-jv 2010).

Permissive-nominal logic (PPDP 2010).

What, | forgot substitution?

A (level 2) substitution is a map 6 from unknowns to terms such
that fa(6(X)) C p(X) for all X.

ad = a f(re,...,m)0 =f(r16,...,ra0)
([a1r)0 = [2](r0) (7-X)0 = 7-6(X)
16=1 (¢ =)0 = (¢0) = Yo
(P(r1,...,m))0 = P(r16,...,rn0) (VX.0)0 = VY.(((Y X)-9)0)

In the clause for V.X we rename X to be fresh for nontriv(0), if
necessary, using a fixed but arbitrary choice of fresh Y for each

X, ,0.

