
PNL: Permissive-nominal logic

Murdoch J. Gabbay
Joint work with Gilles Dowek

June 4, 2010

The role of logic and semantics

Logic is a formal language for modelling mathematical reasoning.
Semantics is a formal notion of meaning for logic.

Surprisingly, there is no generally-accepted logic or semantics to
model reasoning at the informal meta-level.

We see what we are accustomed to seeing. We are not used to
seeing the informal meta-level, as a formal(isable) system. So let
me illustrate what I mean by informal meta-level.

The informal meta-level: some examples

Consider η-expansion,

(η) λx .(ta) = t (a 6∈ fv(t))

∀-introduction,
Φ ` φ (x 6∈ fv(Φ))

(∀R)
Φ ` ∀x .φ

or the π-calculus

P | νa.Q = νa.(P | Q) (a 6∈ fc(P)).

We see a pattern: level 1 (object-level) and level 2 (meta-level)
variables, binding, and freshness side-conditions.

Permissive-nominal logic

Permissive-nominal logic (PNL) is designed to cleanly express
specifications like those of the last slide.

It has two levels of variable, represented in the syntax formally as
atoms a, b, c and unknowns X ,Y ,Z .

Each unknown X has a permission set p(X) to implement
freshness conditions; this is a set of ‘permitted atoms’ in X . If
a 6∈ p(X) then a is ‘fresh for’ X .

Here are the same specifications, written formally in PNL:

Some examples, again
η-expansion; here a 6∈ p(X):

∀X . λ([a]app(X, a)) = X
λx .(ta) = t (a 6∈ fv(t))

∀-introduction; here a 6∈ p(P):

∀P,Q. entails(P,Q)⇒ entails(P, ∀([a]Q))
Φ ` φ (x 6∈ fv(Φ))

(∀R)
Φ ` ∀x .φ

π-calculus; here a 6∈ p(P):

∀P,Q. par(P, ν([a]Q)) = ν([a]par(P,Q))
P | νa.Q = νa.(P | Q) (a 6∈ fc(P)).

The permission set p(P) is a set of atoms. a 6∈ p(P) means that
the unknown P may not be instantiated to a term in which the
atom a is free. If a 6∈ p(X) then from

∀X . λ([a]app(X, a)) = X you cannot derive λ([a]app(a, a)) = a.

How it works

Making this work in a logic and semantics is far from obvious.

There were serious technical challenges to overcome. Many
challenges and open questions remain.

The result so far, PNL, can specify systems like first-order logic,
the lambda-calculus, the pi-calculus, and arithmetic.

Axiomatisations tend to closely resemble informal specifications.
They tend to be finite.

PNL comes with a semantics: permissive-nominal sets. We have
proved the following properties:

Properties of permissive-nominal logic

Theories in PNL are sound and complete for models in
permissive-nominal sets.

Cut can be eliminated in PNL sequent derivations.

PNL semantics is more ‘first-order’ than ‘higher-order’ (the
semantics look very similar to the semantics of first-order logic).

Unification of the syntax of PNL is decidable.

Arithmetic can be finitely axiomatised in PNL and this
axiomatisation is, in a sense that can be made formal, correct.

I am confident that the same is true of first-order logic and the
lambda-calculus.

In short: PNL and permissive-nominal sets are a formal syntax and
semantics that are ‘ε away’ from the informal meta-level.

Some formal syntax

Fix two disjoint countably infinite sets of atoms A< and A>. Write
A = A<] A>.

Let a, b, c range over distinct atoms (the permutative convention).

A permission set has the form (A< \ A) ∪ B where A ⊆ A< and
B ⊆ A> are finite.

An example permission set is (A< \ {a}) ∪ {b, c}.

For each permission set fix a disjoint countably infinite set of
unknowns X ,Y ,Z . Write p(X) for the permission set of X .

Think of p(X) as a sort or type of X .

Some formal syntax

A permutation π is a bijection on atoms such that
nontriv(π) = {a ∈ A | π(a) 6= a} is finite.

Think of π as an α-renaming; we can α-rename finitely many
atoms at a time.

Terms are inductively defined by:

r ::= a | π·X | f(r, . . . , r) | [a]r

a is like ‘x ’; X is like ‘t’; f is like ‘λ’, ‘∀’, ‘|’, or application. [a]r is
an atoms-abstraction; it is like the ‘x .t’ or ‘x .ψ’ in ‘λx .t’ or ‘∀x .ψ’.

Predicates are inductively defined by

φ ::= ⊥ | φ⇒ φ | P(r, . . . , r) | ∀X.φ

as in first-order logic.

Free atoms

Things start to get fun when you define free atoms, the
permutation action, and α-equivalence.

Define free atoms fa(r) by:

fa(π·X) = {π(a) | a ∈ p(X)} fa([a]r) = fa(r) \ {a}
fa(f(r1, . . . , rn)) =

⋃
fa(ri) fa(a) = {a}

[a]r binds a in r .

π·X has an infinite set of free atoms π(a), π(b), π(c); this reflects
the fact that the informal meta-variable ‘t’ means ‘any term’ and
so could evaluate to any x , y , or z .

Free unknowns fV (r) and fV (φ) is standard. X ∈ fV (π·X) and
X 6∈ fV (∀X .φ).

Permutations and α-equivalence

π·a ≡ π(a) π·f(r1, . . . , rn) ≡ f(π·r1, . . . , π·rn)
π·[a]r ≡ [π(a)]π·r π·(π′·X) ≡ (π◦π′)·X

π·⊥ ≡ ⊥ π·(φ⇒ ψ) ≡ (π·φ)⇒ (π·ψ)
π·P(r1, . . . , rn) ≡ P(π·r1, . . . , π·rn) π·(∀X .φ) ≡ ∀X .π·φ

Write (b a) for the swapping mapping a to b, b to a, and c to c .

α-equivalence is the least congruence such that:

(b a)·r =α s (b 6∈ fa(r))

[a]r =α [b]s

(π(a) = π′(a) all a ∈ p(X))

π·X =α π
′·X

(Y X)·φ =α ψ (Y 6∈ fV (φ))

∀X .φ =α ∀Y .ψ

Some examples of α-equivalence

It is all in the following examples:

∀X .X=X =α ∀Y .Y=Y if p(X) = p(Y)
[a]a =α [b]b

∀X .ν([a]X)=X =α ∀X .ν([b](b a)·X)=X if b 6∈ p(X)

Unknowns can be α-renamed as usual. Atoms can be α-renamed
fresh but the α-renaming suspends on unknowns, as a permutation.

The derivation rules

(Ax)
Φ, φ ` φ, Ψ

(⊥L)
Φ, ⊥ ` Ψ

Φ ` φ, Ψ Φ, ψ ` Ψ
(⇒L)

Φ, φ⇒ ψ ` Ψ

Φ, φ ` ψ, Ψ
(⇒R)

Φ ` φ⇒ ψ, Ψ

Φ, φ ` Ψ
(N)

Φ, π·φ ` Ψ

Φ, φ[X :=r] ` Ψ
(fa(r)⊆p(X), r :s(X))

(∀L)
Φ, ∀X .φ ` Ψ

Φ ` φ, Ψ (X 6∈ fV (Φ,Ψ))
(∀R)

Φ ` ∀X .φ, Ψ

Φ, φ ` Ψ (φ =α ψ)
(αL)

Φ, ψ ` Ψ

Φ ` φ, Ψ (φ =α ψ)
(αR)

Φ ` ψ, Ψ

The derivation rules

The fa(r) ⊆ p(X) in (∀L) means “φ[X :=r] for every r such that
fa(r) ⊆ p(X)”.

So ∀X .P(X) ` P(b) for all b ∈ p(X).

This restriction is not all it seems.

By considering the swapping (a b) and (N), ∀X .P(X) ` P(a) for all
a, even if a 6∈ p(X).

∀X .φ does not mean “φ[X :=r] for every r”, because permutations
are bijective. Suppose a 6∈ p(X). Then ∀X .P(a,X) ` P(a, b) for all
b other than a; no permutation can identify a with some atom
b ∈ p(X).

Axioms for substitution as a PNL theory

(subvar) ∀X . var(a)[a7→X] ≈ X
(sub#) ∀X ,Z . Z [a 7→X] ≈ Z

(p(Z) = (b a)·A<)
(subsucc) ∀X ′,X . succ(X′)[a7→X] ≈ succ(X′[a7→X])
(subop) ∀X ′′,X ′,X . (X ′′ op X ′)[a 7→X] ≈ (X ′′[a 7→X] op X ′[a 7→X])

(op ∈ {+, ∗, ⇒̇, ≈̇})
(sub∀̇) ∀X ,Z . (∀̇([b]Z))[a 7→X] ≈ ∀̇([b](Z [a 7→X])) (p(Z) = (b a)·A<)
(subid) ∀X . X [a 7→var(a)] ≈ X

a ∈ A< and b 6∈ A<. The permission set of X ′′, X ′, and X is equal
to A<. The permission set of Z is equal to (b a)·A<.

Axioms for first-order logic as a PNL theory

(⇒̇) ∀Z ′,Z . ε(Z ′ ⇒̇ Z) ⇔ (ε(Z ′)⇒ ε(Z))

(∀̇) ∀Z .
(
ε(∀̇([a]Z)) ⇔ ∀X .ε(Z [a 7→X])

)
(⊥̇) ε(⊥̇) ⇒ ⊥
(≈̇) ∀X ′,X . X ′ ≈ X ⇒ ε(X ′ ≈̇ X)

Here Z ′ and Z have sort o and permission set A<; X ′ and X have
sort ι and permission set A<; and a ∈ A<.

Axioms for arithmetic as a PNL theory

(PS0) ∀X . succ(X) ≈ 0⇒ ⊥
(PSS) ∀X ′,X . succ(X′) ≈ succ(X)⇒ X′ ≈ X
(P+0) ∀X . X + 0 ≈ X
(P+succ) ∀X ′,X . X ′ + succ(X) ≈ succ(X′) + X
(P∗0) ∀X . X ∗ 0 ≈ 0
(P∗succ) ∀X ′,X . X ′ ∗ succ(X) ≈ (X′ ∗ X) + X
(PInd) ∀Z . (ε(Z [a 7→0])⇒(

∀X .(ε(Z [a 7→X])⇒ ε(Z [a 7→succ(X)]))
)
⇒

∀X .ε(Z [a 7→X]))

All variables have permission set A<, and a ∈ A<.

Conclusions

PNL is not obvious, but in a good way; it is not obvious because it
captures something important and non-trivial about mathematical
reasoning.

First-order logic, which PNL closely resembles in both its syntax
and semantics, is not obvious either.

PNL is really good at expressing specifications with binding.

I have not told you about: sorts, semantics, soundness and
completeness, proof-theory, cut-elimination, or the proof of
correctness for the axiomatisation of arithmetic.

Conclusions

Let me leave you with this thought:

Just as mathematical discourse can be formalised in first-order and
higher-order logic, and this is implemented in theorem-provers and
programming languages, so it could also be formalised in PNL.

The advantages of doing so are fully-formal reasoning in a
language which accurately reflects what we do in informal
mathematical practice.

More stuff . . .

The Nquantifier

Nominal sets have the new quantifier meaning ‘for some/any fresh
atom’. Here is an example of something provable in a logic of
nominal sets, such as nominal logic or FM sets:

∀x .(P(x)⇒ Na.Q(a, x)) ⇔ ∀x . Na.(P(x)⇒ Q(a, x))

Here is the same example rendered in PNL, where a 6∈ p(X):

∀X .(P(X)⇒ Q(a,X)) ⇔ ∀X.(P(X)⇒ Q(a,X))

Another example:

∀x . Na.¬P(a, x) ⇔ ∀x .¬ Na.P(a, x)

is rendered as

∀X .¬P(a, x) ⇔ ∀X.¬P(X).

Timeline:

Fraenkel-Mostowski/Nominal sets (journal paper newaas-jv 2002).

Nominal terms (two-level language; journal paper nomu-jv 2004).

Nominal algebra (logic over nominal terms with semantics in
nominal sets; journal paper nomuae 2009).

Permissive-nominal terms (made possible ∀X and quotient by
α-equivalence; journal paper perntu-jv 2010).

Permissive-nominal logic (PPDP 2010).

What, I forgot substitution?

A (level 2) substitution is a map θ from unknowns to terms such
that fa(θ(X)) ⊆ p(X) for all X .

aθ ≡ a f(r1, . . . , rn)θ ≡ f(r1θ, . . . , rnθ)
([a]r)θ ≡ [a](rθ) (π·X)θ ≡ π·θ(X)
⊥θ ≡ ⊥ (φ⇒ ψ)θ ≡ (φθ)⇒ ψθ

(P(r1, . . . , rn))θ ≡ P(r1θ, . . . , rnθ) (∀X .φ)θ ≡ ∀Y .(((Y X)·φ)θ)

In the clause for ∀X we rename X to be fresh for nontriv(θ), if
necessary, using a fixed but arbitrary choice of fresh Y for each
X , φ, θ.

