PNL: Permissive-nominal logic

Murdoch J. Gabbay Joint work with Gilles Dowek

June 4, 2010

The role of logic and semantics

Logic is a formal language for modelling mathematical reasoning. Semantics is a formal notion of meaning for logic.

Surprisingly, there is no generally-accepted logic or semantics to model reasoning at the informal meta-level.

We see what we are accustomed to seeing. We are not used to seeing the informal meta-level, as a formal(isable) system. So let me illustrate what I mean by informal meta-level.

The informal meta-level: some examples

Consider η -expansion,

$$(\eta)$$
 $\lambda x.(ta) = t$ $(a \notin fv(t))$

∀-introduction,

$$\frac{\Phi \vdash \phi \quad (x \not\in fv(\Phi))}{\Phi \vdash \forall x.\phi} (\forall \mathbf{R})$$

or the π -calculus

$$P \mid \nu a.Q = \nu a.(P \mid Q) \quad (a \notin fc(P)).$$

We see a pattern: level 1 (object-level) and level 2 (meta-level) variables, binding, and freshness side-conditions.

Permissive-nominal logic

Permissive-nominal logic (PNL) is designed to cleanly express specifications like those of the last slide.

It has two levels of variable, represented in the syntax formally as atoms a, b, c and unknowns X, Y, Z.

Each unknown X has a permission set p(X) to implement freshness conditions; this is a set of 'permitted atoms' in X. If $a \notin p(X)$ then a is 'fresh for' X.

Here are the same specifications, written formally in PNL:

Some examples, again

 η -expansion; here $a \notin p(X)$:

$$\forall X. \ \lambda([a]app(X,a)) = X$$
$$\lambda x.(ta) = t \qquad (a \notin fv(t))$$

 \forall -introduction; here $a \notin p(P)$:

$$\forall P, Q. \text{ entails}(P, Q) \Rightarrow \text{entails}(P, \forall ([a]Q))$$

$$\frac{\Phi \vdash \phi \quad (x \notin f_V(\Phi))}{\Phi \vdash \forall x. \phi} (\forall R)$$

 π -calculus; here $a \notin p(P)$:

$$\forall P, Q. \text{ par}(P, \nu([a]Q)) = \nu([a]\text{par}(P, Q))$$

 $P \mid \nu a.Q = \nu a.(P \mid Q) \quad (a \notin fc(P)).$

The permission set p(P) is a set of atoms. $a \notin p(P)$ means that the unknown P may not be instantiated to a term in which the atom a is free. If $a \notin p(X)$ then from

 $\forall X. \ \lambda([a]app(X,a)) = X$ you cannot derive $\lambda([a]app(a,a)) = a$.

How it works

Making this work in a logic and semantics is far from obvious.

There were serious technical challenges to overcome. Many challenges and open questions remain.

The result so far, PNL, can specify systems like first-order logic, the lambda-calculus, the pi-calculus, and arithmetic.

Axiomatisations tend to closely resemble informal specifications. They tend to be finite.

PNL comes with a semantics: permissive-nominal sets. We have proved the following properties:

Properties of permissive-nominal logic

Theories in PNL are sound and complete for models in permissive-nominal sets.

Cut can be eliminated in PNL sequent derivations.

PNL semantics is more 'first-order' than 'higher-order' (the semantics look very similar to the semantics of first-order logic).

Unification of the syntax of PNL is decidable.

Arithmetic can be finitely axiomatised in PNL and this axiomatisation is, in a sense that can be made formal, correct.

I am confident that the same is true of first-order logic and the lambda-calculus.

In short: PNL and permissive-nominal sets are a formal syntax and semantics that are ' ϵ away' from the informal meta-level.

Some formal syntax

Fix two disjoint countably infinite sets of atoms $\mathbb{A}^{<}$ and $\mathbb{A}^{>}$. Write $\mathbb{A} = \mathbb{A}^{<} \uplus \mathbb{A}^{>}$.

Let a, b, c range over distinct atoms (the permutative convention).

A permission set has the form $(\mathbb{A}^{<} \setminus A) \cup B$ where $A \subseteq \mathbb{A}^{<}$ and $B \subseteq \mathbb{A}^{>}$ are finite.

An example permission set is $(\mathbb{A}^{<} \setminus \{a\}) \cup \{b,c\}$.

For each permission set fix a disjoint countably infinite set of unknowns X, Y, Z. Write p(X) for the permission set of X.

Think of p(X) as a sort or type of X.

Some formal syntax

A permutation π is a bijection on atoms such that $nontriv(\pi) = \{a \in \mathbb{A} \mid \pi(a) \neq a\}$ is finite.

Think of π as an α -renaming; we can α -rename finitely many atoms at a time.

Terms are inductively defined by:

$$r ::= a \mid \pi \cdot X \mid f(r, \ldots, r) \mid [a]r$$

a is like 'x'; X is like 't'; f is like ' λ ', ' \forall ', '|', or application. [a]r is an atoms-abstraction; it is like the 'x.t' or ' $x.\psi$ ' in ' $\lambda x.t$ ' or ' $\forall x.\psi$ '.

Predicates are inductively defined by

$$\phi ::= \bot \mid \phi \Rightarrow \phi \mid \mathsf{P}(\mathsf{r}, \dots, \mathsf{r}) \mid \forall \mathsf{X}.\phi$$

as in first-order logic.

Free atoms

Things start to get fun when you define free atoms, the permutation action, and α -equivalence.

Define free atoms fa(r) by:

$$\begin{array}{ll} \textit{fa}(\pi \cdot X) = \{\pi(a) \mid a \in p(X)\} & \textit{fa}([a]r) = \textit{fa}(r) \setminus \{a\} \\ \textit{fa}(f(r_1, \dots, r_n)) = \bigcup \textit{fa}(r_i) & \textit{fa}(a) = \{a\} \end{array}$$

[a]r binds a in r.

 $\pi \cdot X$ has an infinite set of free atoms $\pi(a), \pi(b), \pi(c)$; this reflects the fact that the informal meta-variable 't' means 'any term' and so could evaluate to any x, y, or z.

Free unknowns fV(r) and $fV(\phi)$ is standard. $X \in fV(\pi \cdot X)$ and $X \notin fV(\forall X.\phi)$.

Permutations and α -equivalence

$$\begin{split} \pi \cdot \mathbf{a} &\equiv \pi(\mathbf{a}) & \pi \cdot \mathbf{f}(\mathbf{r}_1, \dots, \mathbf{r}_n) \equiv \mathbf{f}(\pi \cdot \mathbf{r}_1, \dots, \pi \cdot \mathbf{r}_n) \\ \pi \cdot [\mathbf{a}] \mathbf{r} &\equiv [\pi(\mathbf{a})] \pi \cdot \mathbf{r} & \pi \cdot (\pi' \cdot X) \equiv (\pi \circ \pi') \cdot X \end{split}$$

$$\pi \cdot \bot \equiv \bot & \pi \cdot (\phi \Rightarrow \psi) \equiv (\pi \cdot \phi) \Rightarrow (\pi \cdot \psi)$$

$$\pi \cdot \mathsf{P}(\mathbf{r}_1, \dots, \mathbf{r}_n) \equiv \mathsf{P}(\pi \cdot \mathbf{r}_1, \dots, \pi \cdot \mathbf{r}_n) & \pi \cdot (\forall X.\phi) \equiv \forall X.\pi \cdot \phi \end{split}$$

Write $(b \ a)$ for the swapping mapping a to b, b to a, and c to c. α -equivalence is the least congruence such that:

$$\frac{(b \ a) \cdot r =_{\alpha} s \quad (b \not\in fa(r))}{[a]r =_{\alpha} [b]s} \qquad \frac{(\pi(a) = \pi'(a) \text{ all } a \in p(X))}{\pi \cdot X =_{\alpha} \pi' \cdot X}$$
$$\frac{(Y \ X) \cdot \phi =_{\alpha} \psi \quad (Y \not\in fV(\phi))}{\forall X. \phi =_{\alpha} \forall Y. \psi}$$

Some examples of α -equivalence

It is all in the following examples:

$$\begin{array}{rcl} \forall X.X = & X & =_{\alpha} & \forall Y.Y = Y & \text{if } p(X) = p(Y) \\ [a]a & =_{\alpha} & [b]b & \\ \forall X.\nu([a]X) = & X & =_{\alpha} & \forall X.\nu([b](b \ a) \cdot X) = X & \text{if } b \notin p(X) \end{array}$$

Unknowns can be α -renamed as usual. Atoms can be α -renamed fresh but the α -renaming suspends on unknowns, as a permutation.

The derivation rules

The derivation rules

The $fa(r) \subseteq p(X)$ in $(\forall \mathbf{L})$ means " $\phi[X:=r]$ for every r such that $fa(r) \subseteq p(X)$ ".

So $\forall X.P(X) \vdash P(b)$ for all $b \in p(X)$.

This restriction is not all it seems.

By considering the swapping $(a\ b)$ and (V), $\forall X.P(X) \vdash P(a)$ for all a, even if $a \notin p(X)$.

 $\forall X. \phi$ does not mean " $\phi[X:=r]$ for every r", because permutations are bijective. Suppose $a \notin p(X)$. Then $\forall X. P(a,X) \vdash P(a,b)$ for all b other than a; no permutation can identify a with some atom $b \in p(X)$.

Axioms for substitution as a PNL theory

$$\begin{array}{llll} (\textbf{sub} \forall X. \ \text{var}(a)[a \mapsto X] & \approx X \\ (\textbf{sub}\#) & \forall X, Z. \ Z[a \mapsto X] & \approx Z \\ & & (p(Z) = (b \ a) \cdot \mathbb{A}^<) \\ (\textbf{sub} \text{succ}) & \forall X', X. \ \text{succ}(X')[a \mapsto X] & \approx \text{succ}(X'[a \mapsto X]) \\ (\textbf{sub} op) & \forall X'', X', X. \ (X'' \ op \ X')[a \mapsto X] \approx (X''[a \mapsto X] \ op \ X'[a \mapsto X]) \\ & & (op \in \{+, *, \Rightarrow, \approx\}) \\ (\textbf{sub} \dot{\forall}) & \forall X, Z. \ (\dot{\forall}([b]Z))[a \mapsto X] & \approx \dot{\forall}([b](Z[a \mapsto X])) \\ (\textbf{subid}) & \forall X. \ X[a \mapsto \text{var}(a)] & \approx X \\ \end{array}$$

 $a \in \mathbb{A}^{<}$ and $b \notin \mathbb{A}^{<}$. The permission set of X'', X', and X is equal to $\mathbb{A}^{<}$. The permission set of Z is equal to $(b \ a) \cdot \mathbb{A}^{<}$.

Axioms for first-order logic as a PNL theory

$$\begin{array}{lll} (\dot{\Rightarrow}) & \forall Z', Z. \; \epsilon(Z' \dot{\Rightarrow} Z) \; \Leftrightarrow (\epsilon(Z') \Rightarrow \epsilon(Z)) \\ (\dot{\forall}) & \forall Z. \; \left(\epsilon(\dot{\forall}([a]Z)) \Leftrightarrow \forall X. \epsilon(Z[a \mapsto X])\right) \\ (\dot{\bot}) & \epsilon(\dot{\bot}) & \Rightarrow \bot \\ (\dot{\approx}) & \forall X', X. \; X' \approx X & \Rightarrow \epsilon(X' \dot{\approx} X) \end{array}$$

Here Z' and Z have sort o and permission set $\mathbb{A}^{<}$; X' and X have sort ι and permission set $\mathbb{A}^{<}$; and $a \in \mathbb{A}^{<}$.

Axioms for arithmetic as a PNL theory

$$\begin{array}{lll} (\textbf{PS0}) & \forall X. \ \mathsf{succ}(\mathsf{X}) \approx 0 \Rightarrow \bot \\ (\textbf{PSS}) & \forall X', X. \ \mathsf{succ}(\mathsf{X}') \approx \mathsf{succ}(\mathsf{X}) \Rightarrow \mathsf{X}' \approx \mathsf{X} \\ (\textbf{P+0}) & \forall X. \ X+0 \approx X \\ (\textbf{P+succ}) & \forall X', X. \ X' + \mathsf{succ}(\mathsf{X}) \approx \mathsf{succ}(\mathsf{X}') + \mathsf{X} \\ (\textbf{P*0}) & \forall X. \ X*0 \approx 0 \\ (\textbf{P*succ}) & \forall X', X. \ X' * \mathsf{succ}(\mathsf{X}) \approx (\mathsf{X}'*\mathsf{X}) + \mathsf{X} \\ (\textbf{PInd}) & \forall Z. \ (\epsilon(Z[a \mapsto 0]) \Rightarrow \\ & (\forall X. (\epsilon(Z[a \mapsto X])) \Rightarrow \epsilon(Z[a \mapsto \mathsf{succ}(\mathsf{X})]))) \Rightarrow \\ & \forall X. \epsilon(Z[a \mapsto X])) \end{array}$$

All variables have permission set $\mathbb{A}^{<}$, and $a \in \mathbb{A}^{<}$.

Conclusions

PNL is not obvious, but in a good way; it is not obvious because it captures something important and non-trivial about mathematical reasoning.

First-order logic, which PNL closely resembles in both its syntax and semantics, is not obvious either.

PNL is really good at expressing specifications with binding.

I have not told you about: sorts, semantics, soundness and completeness, proof-theory, cut-elimination, or the proof of correctness for the axiomatisation of arithmetic.

Conclusions

Let me leave you with this thought:

Just as mathematical discourse can be formalised in first-order and higher-order logic, and this is implemented in theorem-provers and programming languages, so it could also be formalised in PNL.

The advantages of doing so are fully-formal reasoning in a language which accurately reflects what we do in informal mathematical practice.

The I quantifier

Nominal sets have the new quantifier meaning 'for some/any fresh atom'. Here is an example of something provable in a logic of nominal sets, such as nominal logic or FM sets:

$$\forall x. (P(x) \Rightarrow \mathsf{Ma.}Q(a,x)) \Leftrightarrow \forall x. \mathsf{Ma.}(P(x) \Rightarrow Q(a,x))$$

Here is the same example rendered in PNL, where $a \notin p(X)$:

$$\forall X. (\mathsf{P}(\mathsf{X}) \Rightarrow \mathsf{Q}(\mathsf{a},\mathsf{X})) \quad \Leftrightarrow \quad \forall X. (\mathsf{P}(\mathsf{X}) \Rightarrow \mathsf{Q}(\mathsf{a},\mathsf{X}))$$

Another example:

$$\forall x. \mathsf{Ma.} \neg P(a, x) \Leftrightarrow \forall x. \neg \mathsf{Ma.} P(a, x)$$

is rendered as

$$\forall X. \neg P(a,x) \Leftrightarrow \forall X. \neg P(X).$$

Timeline:

Fraenkel-Mostowski/Nominal sets (journal paper newaas-jv 2002).

Nominal terms (two-level language; journal paper nomu-jv 2004).

Nominal algebra (logic over nominal terms with semantics in nominal sets; journal paper nomuae 2009).

Permissive-nominal terms (made possible $\forall X$ and quotient by α -equivalence; journal paper perntu-jv 2010).

Permissive-nominal logic (PPDP 2010).

What, I forgot substitution?

A (level 2) substitution is a map θ from unknowns to terms such that $f_a(\theta(X)) \subseteq p(X)$ for all X.

$$\begin{array}{ll} a\theta \equiv a & f(r_1,\ldots,r_n)\theta \equiv f(r_1\theta,\ldots,r_n\theta) \\ ([a]r)\theta \equiv [a](r\theta) & (\pi\cdot X)\theta \equiv \pi\cdot \theta(X) \\ \bot\theta \equiv \bot & (\phi\Rightarrow\psi)\theta \equiv (\phi\theta)\Rightarrow\psi\theta \\ (P(r_1,\ldots,r_n))\theta \equiv P(r_1\theta,\ldots,r_n\theta) & (\forall X.\phi)\theta \equiv \forall Y.(((Y\ X)\cdot\phi)\theta) \end{array}$$

In the clause for $\forall X$ we rename X to be fresh for $nontriv(\theta)$, if necessary, using a fixed but arbitrary choice of fresh Y for each X, ϕ, θ .