
Nominal foundations of mathematics

Murdoch J. Gabbay

30 March 2016

1 / 24



Introduction

Thanks to Jessica for organising this talk. Thank you all for
coming.

2 / 24



Why foundations?

Foundations provide the datatypes, abstract machines, and
languages without which maths and computing would be
impossible:

I Turing machines; λ-calculus.
I Natural numbers; structured datatypes; relations.
I Real numbers and analysis.
I Logic, topology, set theory, type theory . . .
I . . . the list goes on.

3 / 24



Three pillars of mathematics

Most of us live in these:

I First-order logic.
I λ-calculus.
I Set theory.

When we need to form an abstraction, or express a definition, we
reach to the systems above.

Even if we don’t necessarily realise it! I taught Python last year:
the influence of these three pillars on Python’s design is quite
direct.

Foundations matter: they bring clarity, reliability, uniformity, and
speed.

Let’s study these foundations from a nominal perspective.

4 / 24



On nominal techniques

Nominal techniques go back to my PhD thesis. We differ from
‘ordinary’ mathematics in postulating a datatype of names or
atoms.

Names are unordered, atomic (have no internal structure), infinite,
and permutable. Examples of names include:

I Pointers.
I Variable symbols a and b.
I Channel names.
I Variables (the object of mathematical study in this talk).

Ordinary maths assumes a datatype of numbers. Nominal
techniques assume numbers and names.

Nominal techniques = ordinary sets/types + datatype of names.

5 / 24



Adding names

As it turns out, adding names as a datatype is fruitful.

Applications are numerous: in formal methods and mechanised
theorem-proving, concurrency, rewriting, automata theory, and
much more.

I want today to pull out one thread: using names to model the
variables in first-order logic, the λ-calculus, and set theory.

6 / 24



Syntax vs semantics

Variable symbol does not equal variable.

A variable symbol appears in a string, like the symbol ‘a’ in the
strings λa.a and ∀a.a=a. Similarly the equality symbol and the
lambda symbol appear.

= and λ have intended behaviour, for instance: we might expect a
property like congruence

u = u′ ⇒ s[a:=u] = s[a:=u′]

or a property like β-reduction

(λa.a)b → b.

Variables a and b are also symbols. They too have intended
behaviour.

7 / 24



Studying variables

Question: can we use nominal techniques to understand the
intended behaviour of the variable symbols that feature in
first-order logic, λ-calculus, and set theory?

These have the following intended behaviour in common: they can
be substituted. Usually written [a:=u] or [u/a] or [a/u] or [a 7→u].

(This is common, but not universal. Not all variable symbols
behave like this, for instance: pointers get dereferenced, not
substituted.)

8 / 24



Studying variables

There are also differences:

I In first-order logic, variables can be universally quantified:
∀a.φ.

I In λ-calculus they get β-reduced and possibly η-expanded:
(λa.s)t → s[a:=t] and s → λa.(sa).

I Variables in set theory are a special case of variables in
first-order logic, with the added property of being able to form
set comprehension {a | φ} (the set of a such that φ).

Still, these languages have substitutable variables in common, so
to understand variables, we must understand substitution.

It will turn out that other behaviour, as listed above, naturally
‘pops out of’ the model of substitution. I will discuss just ∀ and =
below (leaving λ and {a | φ} to other talks).

9 / 24



Substitution vs meaning of substitution

Substitution is simple on syntax, but the meaning of that
substitution may be complex.

Substituting p for 242643801 − 1 in the syntax ‘p is prime’ is simple.
We obtain ‘242643801 − 1 is prime’.

The meaning of this is non-trivial: we must check primality.

Likewise a multiplication like 131 ∗ 429083 ∗ 812052162169 is easy
to write, but the computational content of what it means is
(mildly) non-trivial.

In this talk we are studying the meaning of [a 7→u]; what it is to
substitute a for u—not the syntactic operation [a:=u] (syntax was
a topic of my PhD).

It turns out that substitution can be axiomatised, just like groups,
rings, and fields can be axiomatised:

10 / 24



Nominal algebra axioms of substitution

a#Z ⇒ Z [a 7→X ] = Z
Z [a 7→a] = Z

a#Y ⇒ Z [a 7→X ][b 7→Y ] = Z [b 7→Y ][a 7→X [b 7→Y ]]
b#Z ⇒ Z [a 7→X ] = ((b a)·Z )[b 7→X ]

These are axioms in nominal algebra (Gabbay & Mathijssen 2006),
which is like ordinary algebra but enriched with names.

The above is an algebraic system; substitution Z [a 7→X ] is an
algebraic operation, just like group multiplication.

Call a set with an operation satisfying the axioms above, a
sigma-algebra.

11 / 24



Sigma-algebra

a#Z ⇒ Z [a 7→X ] = Z
Z [a 7→a] = Z

a#Y ⇒ Z [a 7→X ][b 7→Y ] = Z [b 7→Y ][a 7→X [b 7→Y ]]
b#Z ⇒ Z [a 7→X ] = ((b a)·Z )[b 7→X ]

a#Z is a freshness side-condition. It corresponds to saying ‘if a is
not free in Z ’ (it requires nominal foundations to be interpreted).

(b a)·Z is a permutation. It corresponds to ‘swap b and a in Z ’. If
b#Z then (b a)·Z means ‘replace b by a in Z ’, so this axiom

b#Z ⇒ Z [a 7→X ] = ((b a)·Z )[b 7→X ]

is an axiomatic version of this lemma

b 6∈ fv(s)⇒ s[a 7→u] = s[a 7→b][b 7→u].

Permutations are better because they form a group.
12 / 24



How to understand variables: from sigma to amgis

We are now ready to understand variables in first-order logic.

Assume a sigma-algebra x , y , z , u, v ∈ X .
Consider its powerset p, q ∈ pow(X ).

Define an amgis-action on sets by:

x ∈ p[u←[a]⇔ x [a 7→u] ∈ p so
p[u←[a] = {x | x [a 7→u] ∈ p}.

The amgis-action is the functional preimage of the sigma-action.

(Amgis-algebras can be axiomatised, as sigma-algebras were
axiomatised above. See e.g. [Gabbay semooc 2016].)

Think of p[u←[a] as

“p reprogrammed to believe that a is equal to u.”

13 / 24



From amgis back to sigma
Assume an amgis-algebra p, q ∈ P.
Consider its powerset X ,Y ∈ pow(P).

Define an action by:

p ∈ X [a 7→u]⇔ Nb.p[u←[b] ∈ (b a)·X so
X [a 7→u] = {p | Nb.(p[u←[b] ∈ (b a)·X )}.

The Nis the new-quantifier (Gabbay & Pitts 1999). It means ‘for
a fresh name’.

This generates a sigma-algebra on pow(P)!

So taking powersets we alternate: sigma, amgis, sigma.
If X is a sigma-algebra, then
pow(X ) is an amgis-algebra, and
pow(pow(X )) is a sigma-algebra.

Think of X [a 7→u] as

“X reprogrammed to believe that a is equal to u — then hide/bind a.”

14 / 24



Who’s asking . . . why bother?

If we can go from sigma in X to amgis is pow(X ) back to sigma
in pow(pow(X )), then why not just stay in X ?

Because pow(pow(X )) has rich sets structure and X doesn’t. In
fact:

I It has all the structure of a model of first-order logic.
I It is a sound and complete model of first-order logic.
I We can prove a particularly strong completeness property

called Stone duality.

15 / 24



Interlude: duality theory

Consider Boolean algebra: the logic of ∧, ∨, and ¬, satisfying
axioms such as

¬¬φ = φ and φ ∧ (ψ ∨ ψ′) = (φ ∨ ψ) ∧ (φ ∨ ψ′).

Clearly conjunction ∧ ‘looks like’ sets intersection ∩ and
disjunction ∨ ‘looks like’ sets union ∪ and negation ¬ ‘looks like’
sets complement \.

But is there some model of Boolean algebras that is so wild that it
cannot be presented in these terms; so ∧ cannot mean ∩ and ∨
cannot mean ∪ and ¬ cannot mean \?

16 / 24



Interlude: duality theory

Stone duality for Boolean algebra says: no, there is no such model.

In fact, every Boolean algebra B can be presented as a subset of
pow(pow(B)) where ∧ is ∩ and ∨ is ∪ and ¬ is pow(pow(B)) \ -.

And every map of Boolean algebras extends to a map of this
presentation.

(More technically: Boolean algebras correspond to compact totally
disconnected Hausdorff spaces; maps of Boolean algebras
correspond to continuous functions.)

Stone duality is a strong sanity guarantee, that logical symbols
correspond to sets operations. It gives one very precise,
fine-grained account of what a logic ‘really means’.

A full Stone duality result is typically hard work (≥50 pages). You
don’t need to understand the proof, to use the result!

17 / 24



Interlude: duality theory

In brief, my three most recent papers work by giving Stone
representations/dualities for first-order logic, the λ-calculus, and
set theory (modulo ≈90 pages of maths per paper!).

I No Stone duality result for the λ-calculus had previously been
known. It was just not possible to engineer the proofs without
the fine control of names given by nominal techniques.

I The set theory I consider, Quine’s NF, could not be proved
consistent using ordinary mathematics. It consistency has
been an open problem since the 1930s.
(NF is fascinating in its own right. This is for another talk.)

So this isn’t just a new way of looking at old and well-understood
systems.

The nominal models help us to see and prove new things we
couldn’t see and prove before.

18 / 24



Duality for FOL in pow(pow(X ))

Let me indicate the representation of first-order logic.

Consider ‘predicates’ X ,Y ∈ pow(pow(X )) over a base
sigma-algebra X :

Logical conjunction ∧∧∧ becomes sets intersection X ∩ Y .

Negation ¬¬¬ becomes complement pow(pow(X )) \ X .

So far, just like Boolean algebras.

First-order logic extends with: variables a, quantification ∀a, and
equality =.

Variables are handled by the sigma- and amgis-actions. Recall:

p[u←[a] = {x∈X | x [a 7→u] ∈ p} ∈pow(X )
X [a 7→u] = {p∈pow(X ) | Nb.(p[u←[b] ∈ (b a)·X )} ∈pow(pow(X ))

19 / 24



Duality for FOL in pow(pow(X ))

Universal quantification becomes the following (they are equal):

∀a.X =
⋂
u

X [a 7→u] =
∨
{X ′ | X ′⊆X , a#X ′}.

I
⋂

u X [a 7→u] means
“X (u), for all u”.

I
∨
{X ′ | X ′⊆X , a#X ′} means

“the greatest predicate for which a is fresh, and implying X”.

Logicians recall from proof-theory (∀E) and (∀I):

Γ ` ∀a.φ
(∀E)

Γ ` φ[a:=u]

Γ ` φ (a 6∈fv(Γ))
(∀I)

Γ ` ∀a.φ

20 / 24



Model of FOL in pow(pow(X ))

Equality becomes this:

u=v = {p∈pow(X ) | Nc .p[u←[c] = p[v←[c]}.

Nc .p[u←[c] = p[v←[c]} is a congruence property: it is precisely
that which is necessary to derive

p ∈ X [a 7→u] if and only if p ∈ X [a 7→v ].

Bearing in mind that p ∈ X [a 7→u]⇔ Nc .(p[u← [c] ∈ (c a)·X ).

21 / 24



λ-calculus and Quine’s NF

The models of the λ-calculus and Quine’s NF differ in significant
details, but they also share a core pattern—a pattern which is
accessible using a nominal universe.

With this trio of papers we have covered a swathe of mathematical
foundations.

22 / 24



Applications

I Automata: generalised notions of finiteness-with-names.
I Echoes of this in SAT solving. Symmetry breaking. So far

unexplored.
I Programming languages with names. (FreshML and

FreshOCaml.)
I Theorem-provers. (Nominal Isabelle.)
I Computational aspects of substitution, and intermediate

calculi (with substitution, without λ).
I Other systems with name-binding, many of which are less

well-understood than the classic systems considered above.
I Meta-variables and meta-programming.
I Logic and programming constructs for handling pointers,

locations, and processes; either verification or programming
tools.

I Applications to physics (particle creation/destruction)?

23 / 24



Applications
Binders typically ‘create’ and ‘destroy’ a resource which may be
linked to within some scope in space or time. For instance:

∀a.(a=a)

Here resource ‘a’ is created by ∀. The occurrences of a in its scope
(a=a) point to that resource. The resource is destroyed when we
leave the scope of the binder.

The meanings vary depending on whether we have ∀, λ, {a | -},
∫

,
ν, threads, processes, memory, or whatever. This is a common
situation which appears in diverse areas:

I A pointer- or link-like structure, and a resource which can be
dynamically created and destroyed.

I A potentially infinite symmetry up to some noncanonical
choice of naming, or basis.

Nominal techniques are a toolset for modelling just this.
24 / 24


